1
|
Saker Z, Rizk M, Bahmad HF, Nabha SM. Targeting Angiogenic Factors for the Treatment of Medulloblastoma. Curr Treat Options Oncol 2022; 23:864-886. [PMID: 35412196 DOI: 10.1007/s11864-022-00981-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2022] [Indexed: 11/24/2022]
Abstract
OPINION STATEMENT Medulloblastoma (MB) is the most frequent pediatric brain tumor. Despite conventional therapy, MB patients have high mortality and morbidity rates mainly due to the incomplete understanding of the molecular and cellular processes involved in development of this cancer. Similar to other solid tumors, MB demonstrated high endothelial cell proliferation and angiogenic activity, wherein new blood vessels arise from the pre-existing vasculature, a process named angiogenesis. MB angiogenesis is considered a hallmark for MB development, progression, and metastasis emphasizing its potential target for antitumor therapy. However, angiogenesis is tightly regulated by a set of angiogenic factors making it a complex process to be targeted. Although agents targeting these factors and their receptors are early in development, the potential for their targeting may translate into improvement in the clinical care for MB patients. In this review, we focus on the most potent angiogenic factors and their corresponding receptors, highlighting their basic properties and expression in MB. We describe their contribution to MB tumorigenesis and angiogenesis and the potential therapeutic targeting of these factors.
Collapse
Affiliation(s)
- Zahraa Saker
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Mahdi Rizk
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Hisham F Bahmad
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, 4300 Alton Rd, Miami Beach, FL, 33140, USA.
| | - Sanaa M Nabha
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon.
| |
Collapse
|
2
|
Bottrell A, Meng YH, Najy AJ, Hurst N, Kim S, Kim CJ, Kim ES, Moon A, Kim EJ, Park SY, Kim HRC. An oncogenic activity of PDGF-C and its splice variant in human breast cancer. Growth Factors 2019; 37:131-145. [PMID: 31542979 PMCID: PMC6872946 DOI: 10.1080/08977194.2019.1662415] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite strong evidence for the involvement of PDGF signaling in breast cancer, little is known about the PDGF ligand responsible for PDGFR activation during breast cancer progression. Here, we found PDGF-C to be highly expressed in breast carcinoma cell lines. Immunohistochemical analysis of invasive breast cancer revealed an association between increased PDGF-C expression and lymph node metastases, Ki-67 proliferation index, and poor disease-free survival. We also identified a PDGF-C splice variant encoding truncated PDGF-C (t-PDGF-C) isoform lacking the signal peptide and the N-terminal CUB domain. While t-PDGF C homodimer is retained intracellularly, it can be secreted as a heterodimer with full-length PDGF-C (FL-PDGF-C). PDGF-C downregulation reduced anchorage-independent growth and matrigel invasion of MDA-MB-231 cells. Conversely, ectopic expression of t-PDGF-C enhanced phenotypic transformation and invasion in BT-549 cells expressing endogenous FL-PDGF-C. The present study provides new insights into the functional significance of PDGF-C and its splice variant in human breast cancer.
Collapse
Affiliation(s)
- Alyssa Bottrell
- Department of Pathology, Wayne State School of Medicine, Detroit, Michigan, 48201
| | - Yong Hong Meng
- Department of Pathology, Wayne State School of Medicine, Detroit, Michigan, 48201
| | - Abdo J. Najy
- Department of Pathology, Wayne State School of Medicine, Detroit, Michigan, 48201
| | - Newton Hurst
- Department of Pathology, Wayne State School of Medicine, Detroit, Michigan, 48201
| | - Seongho Kim
- Department of Oncology, Wayne State School of Medicine, Detroit, Michigan, 48201
| | - Chong Jai Kim
- Department of Pathology, Wayne State School of Medicine, Detroit, Michigan, 48201
| | - Eun-Sook Kim
- College of Pharmacy, Duksung Women’s University, Seoul, Republic of Korea
| | - Aree Moon
- College of Pharmacy, Duksung Women’s University, Seoul, Republic of Korea
| | - Eun Joo Kim
- Department of Pathology, Seoul National University Bundang Hospital, Republic of Korea
| | - So Yeon Park
- Department of Pathology, Seoul National University Bundang Hospital, Republic of Korea
- Co-corresponding authors: Hyeong-Reh C. Kim: Department of Pathology, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI 48201, USA. Tel: 313-577-2407, Fax: 313-577-0057, , So Yeon Park: Department of Pathology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 166 Gumiro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, South Korea. Tel: 82-31-787-7712, Fax: 82-31-787-4012,
| | - Hyeong-Reh Choi Kim
- Department of Pathology, Wayne State School of Medicine, Detroit, Michigan, 48201
- Co-corresponding authors: Hyeong-Reh C. Kim: Department of Pathology, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI 48201, USA. Tel: 313-577-2407, Fax: 313-577-0057, , So Yeon Park: Department of Pathology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 166 Gumiro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, South Korea. Tel: 82-31-787-7712, Fax: 82-31-787-4012,
| |
Collapse
|
3
|
Li H, Zeitelhofer M, Nilsson I, Liu X, Allan L, Gloria B, Perani A, Murone C, Catimel B, Neville AM, Scott FE, Scott AM, Eriksson U. Development of monoclonal anti-PDGF-CC antibodies as tools for investigating human tissue expression and for blocking PDGF-CC induced PDGFRα signalling in vivo. PLoS One 2018; 13:e0201089. [PMID: 30052660 PMCID: PMC6063412 DOI: 10.1371/journal.pone.0201089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/09/2018] [Indexed: 01/06/2023] Open
Abstract
PDGF-CC is a member of the platelet-derived growth factor (PDGF) family that stimulates PDGFRα phosphorylation and thereby activates intracellular signalling events essential for development but also in cancer, fibrosis and neuropathologies involving blood-brain barrier (BBB) disruption. In order to elucidate the biological and pathological role(s) of PDGF-CC signalling, we have generated high affinity neutralizing monoclonal antibodies (mAbs) recognizing human PDGF-CC. We determined the complementarity determining regions (CDRs) of the selected clones, and mapped the binding epitope for clone 6B3. Using the monoclonal 6B3, we determined the expression pattern for PDGF-CC in different human primary tumours and control tissues, and explored its ability to neutralize PDGF-CC-induced phosphorylation of PDGFRα. In addition, we showed that PDGF-CC induced disruption of the blood-retinal barrier (BRB) was significantly reduced upon intraperitoneal administration of a chimeric anti-PDGF-CC antibody. In summary, we report on high affinity monoclonal antibodies against PDGF-CC that have therapeutic efficacy in vivo.
Collapse
Affiliation(s)
- Hong Li
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Manuel Zeitelhofer
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ingrid Nilsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Xicong Liu
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Laura Allan
- Ludwig institute for Cancer Research, Melbourne Austin Branch, Melbourne, Australia
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Benjamin Gloria
- Ludwig institute for Cancer Research, Melbourne Austin Branch, Melbourne, Australia
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Angelo Perani
- Ludwig institute for Cancer Research, Melbourne Austin Branch, Melbourne, Australia
| | - Carmel Murone
- Ludwig institute for Cancer Research, Melbourne Austin Branch, Melbourne, Australia
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Bruno Catimel
- Ludwig institute for Cancer Research, Melbourne Austin Branch, Melbourne, Australia
| | - A. Munro Neville
- Ludwig Institute for Cancer Research, New York, New York, United States of America
| | - Fiona E. Scott
- Ludwig institute for Cancer Research, Melbourne Austin Branch, Melbourne, Australia
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Andrew M. Scott
- Ludwig institute for Cancer Research, Melbourne Austin Branch, Melbourne, Australia
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Ulf Eriksson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
4
|
Guru SA, Mir R, Bhat M, Najar I, Zuberi M, Sumi M, Masroor M, Gupta N, Saxena A. PDGFRα promoter polymorphisms and expression patterns influence risk of development of imatinib-induced thrombocytopenia in chronic myeloid leukemia: A study from India. Tumour Biol 2017; 39:1010428317713857. [PMID: 29019285 DOI: 10.1177/1010428317713857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024] Open
Abstract
Platelet-derived growth factor receptor has been implicated in many malignant and non-malignant diseases. Platelet-derived growth factor receptor-α is a tyrosine kinase and a side target for imatinib, a revolutionary drug for the treatment of chronic myeloid leukemia that has dramatically improved the survival of chronic myeloid leukemia patients. Given the importance of platelet-derived growth factor receptor in platelet development and its inhibition by imatinib, it was intriguing to analyze the role of platelet-derived growth factor receptor-α in relation to imatinib treatment in the development of imatinib-induced thrombocytopenia in chronic myeloid leukemia patients. We hypothesized that two known functional polymorphisms, +68GA insertion/deletion and -909C/A, in the promoter region of the platelet-derived growth factor receptor-α gene may affect the susceptibility of chronic myeloid leukemia patients receiving imatinib treatment to the development of thrombocytopenia. A case-control study was conducted among a cohort of chronic myeloid leukemia patients admitted to the Lok Nayak Hospital, New Delhi, India. A set of 100 patients of chronic myeloid leukemia in chronic phase and 100 age- and sex-matched healthy controls were studied. After initiation of imatinib treatment, the hematological response of chronic myeloid leukemia patients was monitored regularly for 2 years, in which the development of thrombocytopenia was the primary end point. Platelet-derived growth factor receptor-α promoter polymorphisms +68GA ins/del and -909C/A were studied by allele-specific polymerase chain reaction. Platelet-derived growth factor receptor-α messenger RNA expression was evaluated by quantitative real-time polymerase chain reaction. The messenger RNA expression results were expressed as 2-Δct ± standard deviation. The distribution of +68GA ins/del promoter polymorphism genotypes differed significantly between the thrombocytopenic and non-thrombocytopenic chronic myeloid leukemia patient groups (p < 0.0001). Moreover, +68GA del/del and ins/del genotypes in imatinib-treated chronic myeloid leukemia patients were associated with an increased risk of developing thrombocytopenia, with odds ratios 6.5 (95% confidence interval = 2.02-0.89, p = 0.001) and 6.0 (95% confidence interval = 2.26-15.91, p = 0.0002), respectively. Similarly, -909C/A promoter polymorphism genotype distribution also differed significantly between thrombocytopenic and non-thrombocytopenic chronic myeloid leukemia patient groups (p = 0.02), and a significantly increased risk of imatinib-induced thrombocytopenia was associated with -909C/A polymorphism mutant homozygous (AA) genotypes the odds ratio being 7.7 (95% confidence interval 1.50 to 39.91, p = 0.009). However, no significant risk of imatinib-induced thrombocytopenia was found to be associated with heterozygous genotype (-909C/A) with odds ratio 1.9 (95% confidence interval = 0.86-4.56, p = 1.14). Platelet-derived growth factor receptor-α messenger RNA expression was significantly higher in chronic myeloid leukemia patients compared to controls (p = 0.008). Moreover, patients with imatinib-induced thrombocytopenia had a significantly lower platelet-derived growth factor receptor-α messenger RNA expression, compared to patients without thrombocytopenia (p = 0.01). A differential expression of platelet-derived growth factor receptor-α messenger RNA was observed with respect to different +68 GA ins/del and -909C/A polymorphism genotypes. The +68GA deletion allele and -909A allele were significantly associated with lower expression of platelet-derived growth factor receptor-α messenger RNA. The platelet-derived growth factor receptor-α +68GA del/del, +68GA ins/del, and -909AA genotypes are associated with an increased risk of developing thrombocytopenia in imatinib-treated chronic myeloid leukemia patients. A significantly lower platelet-derived growth factor receptor-α messenger RNA expression accompanies the +68GA deletion allele in an allele dose-dependent manner. Platelet-derived growth factor receptor-α -909AA genotype is also associated with lower expression of platelet-derived growth factor receptor-α. The downregulation of platelet-derived growth factor receptor-α expression may play a causative role in imatinib-induced thrombocytopenia, a common side effect, in the subset of chronic myeloid leukemia patients with platelet-derived growth factor receptor-α +68 GA ins/del, +68 GA del/del, and -909C/A genotypes.
Collapse
Affiliation(s)
| | - Rashid Mir
- 2 Sher-i-Kashmir Institute of Medical Science, Srinagar, India
| | - Musadiq Bhat
- 1 Maulana Azad Medical College, New Delhi, India
| | | | | | - Mamta Sumi
- 1 Maulana Azad Medical College, New Delhi, India
| | | | - Naresh Gupta
- 1 Maulana Azad Medical College, New Delhi, India
| | | |
Collapse
|
5
|
Noskovičová N, Petřek M, Eickelberg O, Heinzelmann K. Platelet-Derived Growth Factor Signaling in the Lung. From Lung Development and Disease to Clinical Studies. Am J Respir Cell Mol Biol 2015; 52:263-84. [DOI: 10.1165/rcmb.2014-0294tr] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
6
|
Son D, Na YR, Hwang ES, Seok SH. Platelet-derived growth factor-C (PDGF-C) induces anti-apoptotic effects on macrophages through Akt and Bad phosphorylation. J Biol Chem 2014; 289:6225-35. [PMID: 24421315 DOI: 10.1074/jbc.m113.508994] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PDGF-C, which is abundant in the malignant breast tumor microenvironment, plays an important role in cell growth and survival. Because tumor-associated macrophages (TAMs) contribute to cancer malignancy, macrophage survival mechanisms are an attractive area of research into controlling tumor progression. In this study, we investigated PDGF-C-mediated signaling pathways involved in anti-apoptotic effects in macrophages. We found that the human malignant breast cancer cell line MDA-MB-231 produced high quantities of PDGF-C, whereas benign MCF-7 cells did not. Recombinant PDGF-C induced PDGF receptor α chain phosphorylation, followed by Akt and Bad phosphorylation in THP-1-derived macrophages. MDA-MB-231 culture supernatants also activated macrophage PDGF-Rα. PDGF-C prevented staurosporine-induced macrophage apoptosis by inhibiting the activation of caspase-3, -7, -8, and -9 and cleavage of poly(ADP-ribose) polymerase. Finally, TAMs isolated from the PDGF-C knockdown murine breast cancer cell line 4T1 and PDGF-C knockdown MDA-MB-231-derived tumor mass showed higher rates of apoptosis than the respective WT controls. Collectively, our results suggest that tumor cell-derived PDGF-C enhances TAM survival, promoting tumor malignancy.
Collapse
Affiliation(s)
- Dain Son
- From the Department of Microbiology and Immunology, and Institute of Endemic Disease, College of Medicine, Seoul National University, Seoul 110-799, Korea
| | | | | | | |
Collapse
|
7
|
Ruffini F, Tentori L, Dorio AS, Arcelli D, D'Amati G, D'Atri S, Graziani G, Lacal PM. Platelet-derived growth factor C and calpain-3 are modulators of human melanoma cell invasiveness. Oncol Rep 2013; 30:2887-96. [PMID: 24126726 DOI: 10.3892/or.2013.2791] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 04/08/2013] [Indexed: 11/06/2022] Open
Abstract
The molecular mechanisms responsible for the elevated metastatic potential of malignant melanoma are still not fully understood. In order to shed light on the molecules involved in the acquisition by melanoma of a highly aggressive phenotype, we compared the gene expression profiles of two cell clones derived from the human cutaneous metastatic melanoma cell line M14: a highly invasive clone (M14C2/MK18) and a clone (M14C2/C4) with low ability to invade the extracellular matrix (ECM). The highly invasive phenotype of M14C2/MK18 cells was correlated with overexpression of neuropilin-1, activation of a vascular endothelial growth factor (VEGF)-A/VEGFR-2 autocrine loop and secretion of matrix metalloprotease-2. Moreover, in an in vivo murine model, M14C2/MK18 cells displayed a higher growth rate as compared with M14C2/C4 cells, even though in vitro both clones possessed comparable proliferative potential. Microarray analysis in M14C2/MK18 cells showed a strong upregulation of platelet-derived growth factor (PDGF)-C, a cytokine that contributes to angiogenesis, and downregulation of calpain-3, a calcium-dependent thiol-protease that regulates specific signalling cascade components. Inhibition of PDGF-C with a specific antibody resulted in a significant decrease in ECM invasion by M14C2/MK18 cells, confirming the involvement of PDGF-C in melanoma cell invasiveness. Moreover, the PDGF-C transcript was found to be upregulated in a high percentage of human melanoma cell lines (17/20), whereas only low PDGF-C levels were detected in a few melanocytic cultures (2/6). By contrast, inhibition of calpain-3 activity in M14C2/C4 control cells, using a specific chemical inhibitor, markedly increased ECM invasion, strongly suggesting that downregulation of calpain-3 plays a role in the acquisition of a highly invasive phenotype. The results indicate that PDGF-C upregulation and calpain-3 downregulation are involved in the aggressiveness of malignant melanoma and suggest that modulators of these proteins or their downstream effectors may synergise with VEGF‑A therapies in combating tumour-associated angiogenesis and melanoma spread.
Collapse
Affiliation(s)
- Federica Ruffini
- Laboratory of Molecular Oncology, 'Istituto Dermopatico dell'Immacolata'- IRCCS, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Wojtalla A, Salm F, Christiansen DG, Cremona T, Cwiek P, Shalaby T, Gross N, Grotzer MA, Arcaro A. Novel agents targeting the IGF-1R/PI3K pathway impair cell proliferation and survival in subsets of medulloblastoma and neuroblastoma. PLoS One 2012; 7:e47109. [PMID: 23056595 PMCID: PMC3466180 DOI: 10.1371/journal.pone.0047109] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 09/10/2012] [Indexed: 12/31/2022] Open
Abstract
The receptor tyrosine kinase (RTK)/phosphoinositide 3-kinase (PI3K) pathway is fundamental for cancer cell proliferation and is known to be frequently altered and activated in neoplasia, including embryonal tumors. Based on the high frequency of alterations, targeting components of the PI3K signaling pathway is considered to be a promising therapeutic approach for cancer treatment. Here, we have investigated the potential of targeting the axis of the insulin-like growth factor-1 receptor (IGF-1R) and PI3K signaling in two common cancers of childhood: neuroblastoma, the most common extracranial tumor in children and medulloblastoma, the most frequent malignant childhood brain tumor. By treating neuroblastoma and medulloblastoma cells with R1507, a specific humanized monoclonal antibody against the IGF-1R, we could observe cell line-specific responses and in some cases a strong decrease in cell proliferation. In contrast, targeting the PI3K p110α with the specific inhibitor PIK75 resulted in broad anti-proliferative effects in a panel of neuro- and medulloblastoma cell lines. Additionally, sensitization to commonly used chemotherapeutic agents occurred in neuroblastoma cells upon treatment with R1507 or PIK75. Furthermore, by studying the expression and phosphorylation state of IGF-1R/PI3K downstream signaling targets we found down-regulated signaling pathway activation. In addition, apoptosis occurred in embryonal tumor cells after treatment with PIK75 or R1507. Together, our studies demonstrate the potential of targeting the IGF-1R/PI3K signaling axis in embryonal tumors. Hopefully, this knowledge will contribute to the development of urgently required new targeted therapies for embryonal tumors.
Collapse
Affiliation(s)
- Anna Wojtalla
- Division of Pediatric Hematology/Oncology, Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Fabiana Salm
- Division of Pediatric Hematology/Oncology, Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Ditte G. Christiansen
- Division of Pediatric Hematology/Oncology, Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Tiziana Cremona
- Department of Oncology, University Children's Hospital Zurich, Zurich, Switzerland
| | - Paulina Cwiek
- Division of Pediatric Hematology/Oncology, Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Tarek Shalaby
- Department of Oncology, University Children's Hospital Zurich, Zurich, Switzerland
| | - Nicole Gross
- Department of Pediatrics, Pediatric Oncology Research, University Hospital CHUV, Lausanne, Switzerland
| | - Michael A. Grotzer
- Department of Oncology, University Children's Hospital Zurich, Zurich, Switzerland
| | - Alexandre Arcaro
- Division of Pediatric Hematology/Oncology, Department of Clinical Research, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
9
|
Platelet-derived growth factor-C (PDGF-C) activation by serine proteases: implications for breast cancer progression. Biochem J 2012; 441:909-18. [PMID: 22035541 DOI: 10.1042/bj20111020] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The PDGF (platelet-derived growth factor) family members are potent mitogens for cells of mesenchymal origin and serve as important regulators of cell migration, survival, apoptosis and transformation. Tumour-derived PDGF ligands are thought to function in both autocrine and paracrine manners, activating receptors on tumour and surrounding stromal cells. PDGF-C and -D are secreted as latent dimers, unlike PDGF-A and -B. Cleavage of the CUB domain from the PDGF-C and -D dimers is required for their biological activity. At present, little is known about the proteolytic processing of PDGF-C, the rate-limiting step in the regulation of PDGF-C activity. In the present study we show that the breast carcinoma cell line MCF7, engineered to overexpress PDGF-C, produces proteases capable of cleaving PDGF-C to its active form. Increased PDGF-C expression enhances cell proliferation, anchorage-independent cell growth and tumour cell motility by autocrine signalling. In addition, MCF7-produced PDGF-C induces fibroblast cell migration in a paracrine manner. Interestingly, PDGF-C enhances tumour cell invasion in the presence of fibroblasts, suggesting a role for tumour-derived PDGF-C in tumour-stromal interactions. In the present study, we identify tPA (tissue plasminogen activator) and matriptase as major proteases for processing of PDGF-C in MCF7 cells. In in vitro studies, we also show that uPA (urokinase-type plasminogen activator) is able to process PDGF-C. Furthermore, by site-directed mutagenesis, we identify the cleavage site for these proteases in PDGF-C. Lastly, we provide evidence suggesting a two-step proteolytic processing of PDGF-C involving creation of a hemidimer, followed by GFD-D (growth factor domain dimer) generation.
Collapse
|
10
|
Abstract
Overexpression of platelet-derived growth factor receptor alpha (PDGFR-A) has been documented in association with primary tumors and metastasis in medulloblastoma. Tumors from our genetically engineered sonic hedgehog-driven medulloblastoma mouse model overexpress PDGFR-A in primary tumors and thus this mouse model is a good platform with which to study the role of PDGFR-A in this central nervous system malignancy. We hypothesized that inhibition of PDGFR-A in medulloblastoma can slow or inhibit tumor progression in living individuals. To test our hypothesis, we targeted PDGFR-A mediated tumor growth in vitro and in vivo using the tyrosine kinase inhibitor, tandutinib (MLN-518), which strongly inhibits PDGFR-A. Although PDGFR-A inhibition by this agent resulted in reduced mouse tumor cell growth and increased apoptosis in vitro, and reduced tumor cell proliferation in vivo, tandutinib did reduce tumor volume at the doses tested (360 mg/kg) in vivo. Thus, tandutinib may be an agent of interest for sonic hedgehog-driven medulloblastoma if a synergistic drug combination can be identified.
Collapse
|
11
|
Hedborg F, Fischer-Colbrie R, Ostlin N, Sandstedt B, Tran MGB, Maxwell PH. Differentiation in neuroblastoma: diffusion-limited hypoxia induces neuro-endocrine secretory protein 55 and other markers of a chromaffin phenotype. PLoS One 2010; 5. [PMID: 20862257 PMCID: PMC2941466 DOI: 10.1371/journal.pone.0012825] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2010] [Accepted: 08/23/2010] [Indexed: 01/07/2023] Open
Abstract
Background Neuroblastoma is a childhood malignancy of sympathetic embryonal origin. A high potential for differentiation is a hallmark of neuroblastoma cells. We have previously presented data to suggest that in situ differentiation in tumors frequently proceeds along the chromaffin lineage and that decreased oxygen (hypoxia) plays a role in this. Here we explore the utility of Neuro-Endocrine Secretory Protein 55 (NESP55), a novel member of the chromogranin family, as a marker for this process. Methodology/Principal Findings Immunohistochemical analyses and in situ hybridizations were performed on human fetal tissues, mouse xenografts of human neuroblastoma cell lines, and on specimens of human neuroblastoma/ganglioneuroma. Effects of anaerobic exposure on gene expression by cultured neuroblastoma cells was analyzed with quantitative real-time PCR. Fetal sympathetic nervous system expression of NESP55 was shown to be specific for chromaffin cell types. In experimental and clinical neuroblastoma NESP55 immunoreactivity was specific for regions of chronic hypoxia. NESP55 expression also correlated strikingly with morphological evidence of differentiation and with other chromaffin-specific patterns of gene expression, including IGF2 and HIF2α. Anaerobic culture of five neuroblastoma cell lines resulted in an 18.9-fold mean up-regulation of NESP55. Conclusions/Significance The data confirms that chronic tumor hypoxia is a key microenvironmental factor for neuroblastoma cell differentiation, causing induction of chromaffin features and NESP55 provides a reliable marker for this neuronal to neuroendocrine transition. The hypoxia-induced phenotype is the predominant form of differentiation in stroma-poor tumors, while in stroma-rich tumors the chromaffin phenotype coexists with ganglion cell-like differentiation. The findings provide new insights into the biological diversity which is a striking feature of this group of tumors.
Collapse
Affiliation(s)
- Fredrik Hedborg
- Rudbeck Laboratory, Department of Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
12
|
Blom T, Roselli A, Häyry V, Tynninen O, Wartiovaara K, Korja M, Nordfors K, Haapasalo H, Nupponen NN. Amplification and overexpression of KIT, PDGFRA, and VEGFR2 in medulloblastomas and primitive neuroectodermal tumors. J Neurooncol 2009; 97:217-24. [PMID: 19779861 DOI: 10.1007/s11060-009-0014-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Accepted: 09/14/2009] [Indexed: 10/20/2022]
Abstract
Medulloblastomas (MB) and primitive neuroectodermal tumors (PNET) are the most common malignant brain tumors in children. These two tumor types are histologically similar, but have different genetic backgrounds and clinical outcomes. Other brain tumors, such as gliomas, frequently have coamplification and overexpression of receptor tyrosine kinases KIT, platelet-derived growth factor receptor alpha (PDGFRA), and vascular endothelial growth factor receptor 2 (VEGFR2). We investigated protein expression and gene copy numbers of KIT, PDGFRA, and VEGFR2 in 41 MB and 11 PNET samples by immunohistochemistry (IHC) and chromogenic in situ hybridization (CISH). KIT and PDGFRA expression was detected in both MBs and PNETs, whereas VEGFR2 expression was weak in these tumors. KIT, PDGFRA, and VEGFR2 amplifications were all present in 4% of MBs/PNETs, and KIT amplification was associated with concurrent PDGFRA and VEGFR2 amplifications (P <or= 0.001). Most strikingly, increased gene copy number of PDGFRA was associated with poor overall survival (P = 0.027). We suggest that coamplification of PDGFRA or VEGFR2 with KIT may be clinically useful novel molecular markers in MBs and PNETs.
Collapse
Affiliation(s)
- Tea Blom
- Molecular Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, P.O. Box 63, 00014, University of Helsinki, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Hede SM, Hansson I, Afink GB, Eriksson A, Nazarenko I, Andrae J, Genove G, Westermark B, Nistér M. GFAP promoter driven transgenic expression of PDGFB in the mouse brain leads to glioblastoma in a Trp53 null background. Glia 2009; 57:1143-53. [PMID: 19115382 DOI: 10.1002/glia.20837] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Glioblastomas are the most common and malignant astrocytic brain tumors in human adults. The tumor suppressor gene TP53 is commonly mutated and/or lost in astrocytic brain tumors and the TP53 alterations are often found in combination with excessive growth factor signaling via PDGF/PDGFRalpha. Here, we have generated transgenic mice over-expressing human PDGFB in brain, under control of the human GFAP promoter. These mice showed no phenotype, but on a Trp53 null background a majority of them developed brain tumors. This occurred at 2-6 months of age and tumors displayed human glioblastoma-like features with integrated development of Pdgfralpha+ tumor cells and Pdgfrbeta+/Nestin+ vasculature. The transgene was expressed in subependymal astrocytic cells, in glia limitans, and in astrocytes throughout the brain substance, and subsequently, microscopic tumor lesions were initiated equally in all these areas. With tumor size, there was an increase in Nestin positivity and variability in lineage markers. These results indicate an unexpected plasticity of all astrocytic cells in the adult brain, not only of SVZ cells. The results also indicate a contribution of widely distributed Pdgfralpha+ precursor cells in the tumorigenic process.
Collapse
Affiliation(s)
- Sanna-Maria Hede
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital Solna, SE-17176, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Sikkema AH, Diks SH, den Dunnen WFA, ter Elst A, Scherpen FJG, Hoving EW, Ruijtenbeek R, Boender PJ, de Wijn R, Kamps WA, Peppelenbosch MP, de Bont ESJM. Kinome profiling in pediatric brain tumors as a new approach for target discovery. Cancer Res 2009; 69:5987-95. [PMID: 19567681 DOI: 10.1158/0008-5472.can-08-3660] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Progression in pediatric brain tumor growth is thought to be the net result of signaling through various protein kinase-mediated networks driving cell proliferation. Defining new targets for treatment of human malignancies, without a priori knowledge on aberrant cell signaling activity, remains exceedingly complicated. Here, we introduce kinome profiling using flow-through peptide microarrays as a new concept for target discovery. Comprehensive tyrosine kinase activity profiles were identified in 29 pediatric brain tumors using the PamChip kinome profiling system. Previously reported activity of epidermal growth factor receptor, c-Met, and vascular endothelial growth factor receptor in pediatric brain tumors could be appreciated in our array results. Peptides corresponding with phosphorylation consensus sequences for Src family kinases showed remarkably high levels of phosphorylation compared with normal tissue types. Src activity was confirmed applying Phos-Tag SDS-PAGE. Furthermore, the Src family kinase inhibitors PP1 and dasatinib induced substantial tumor cell death in nine pediatric brain tumor cell lines but not in control cell lines. Thus, this study describes a new high-throughput technique to generate clinically relevant tyrosine kinase activity profiles as has been shown here for pediatric brain tumors. In the era of a rapidly increasing number of small-molecule inhibitors, this approach will enable us to rapidly identify new potential targets in a broad range of human malignancies.
Collapse
Affiliation(s)
- Arend H Sikkema
- Department of Pediatric Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Targeting the PI3K p110α Isoform Inhibits Medulloblastoma Proliferation, Chemoresistance, and Migration. Clin Cancer Res 2008; 14:6761-9. [DOI: 10.1158/1078-0432.ccr-08-0385] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Zhao J, Liu Z, Liu T, Nilsson S, Nistér M. Identification and expression analysis of an N-terminally truncated isoform of human PDGF-C. Exp Cell Res 2008; 314:2529-43. [PMID: 18588873 DOI: 10.1016/j.yexcr.2008.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 06/04/2008] [Accepted: 06/04/2008] [Indexed: 10/21/2022]
Abstract
Platelet-derived growth factor C (PDGF-C) is a member of the PDGF family that plays an important role in developmental and physiological processes, and in human diseases. Here, we report a novel splice variant of human PDGF-C (PDGF-Cb), which encodes an N-terminally truncated protein, lacking the signal peptide and CUB domain. This variant is coexpressed with PDGF-C in all normal tissues analyzed. PDGF-Cb is produced as a cytoplasmic protein, and has a similar intracellular localization to PDGF-C, but is not secreted from transfected cells. Further, we show that PDGF-Cb can form heterodimers (PDGF-CCb) with PDGF-C, which is thereby retained and degraded within cells. In primary renal cell carcinoma (RCC), expression of the two alternatively spliced transcripts was different. Generally, expression of the full-length PDGF-C transcript was increased in RCC tumors, whereas expression of PDGF-Cb was not in the 30 analyzed cases with paired RCC tumor tissues and normal renal tissues. Based on these findings, we suggest that PDGF-Cb might act as a dominant negative molecule regulating the secretion of PDGF-C, and that deregulation of full-length PDGF-C is involved in RCC tumorigenesis.
Collapse
Affiliation(s)
- Jian Zhao
- Department of Oncology-Pathology, Karolinska Institutet, CCK R8:05, Karolinska University Hospital, SE-171 76 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
17
|
Jia J, Lu R, Zhou C, Zhao L, Fu Z, Zhu Z, Wang L, Zheng M, Yang J, Zhang Y, Yao Z. Gene-chip analysis of the effect of tripeptide tyroservatide (YSV) on gene-expression in human hepatocarcinoma BEL-7402 tumors transplanted to nude mice. Mol Carcinog 2006; 45:197-203. [PMID: 16353255 DOI: 10.1002/mc.20172] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Tyroservatide (YSV) is a bioactive tripeptide of tyrosyl-seryl-valine. In this study, we studied the effects of YSV on human hepatocarcinoma BEL-7402 tumors transplanted in BALB/c (nu/nu) nude mice, and gene expression in the tumor cells with gene-chip analysis. Results show that YSV significantly inhibits the growth of transplanted human hepatocarcinoma BEL-7402 in nude mice (n = 12) compared with the control group (P < 0.05); with an inhibition rate of 55% at 320 microg/kg/d. Seven hundred eighty-one genes were different between the YSV group and the control group. Fifty-two genes changed in expression level by onefold or more including 37 downregulated genes and 15 upregulated genes. Probably, YSV exhibits a significant antitumor activity by inhibiting the expression of tumor cells histone genes, then damaging tumor cell chromosome and killing tumor cells.
Collapse
Affiliation(s)
- Jing Jia
- Department of Immunology, Tianjin Medical University, Tianjin, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Toepoel M, Ackerschott B, van Zoelen EJJ. Haplotype-dependent binding of nuclear proteins to the promoter of the neural tube defects-associated platelet-derived growth factor alpha-receptor gene. Biochim Biophys Acta Mol Basis Dis 2006; 1741:350-7. [PMID: 16126374 DOI: 10.1016/j.bbadis.2005.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Revised: 07/28/2005] [Accepted: 08/03/2005] [Indexed: 11/19/2022]
Abstract
We have previously shown that polymorphisms in the promoter of the human platelet-derived growth factor alpha-receptor (PDGFRA) gene can be grouped into five distinct haplotypes, designated H1, H 2 alpha, H 2 beta, H 2 gamma and H 2 delta, and that specific combinations of these promoter haplotypes predispose to neural tube defects (NTDs). These promoter haplotypes differ strongly in their ability to drive reporter gene expression in various human cell lines, with highest activity for H 2 alpha and H 2 beta. Here, we show that the haplotype-linked PDGFRA promoter region extends to 3.6 kb upstream from the transcription start site, and contains a total of ten polymorphic sites. For two of these polymorphic sites, i.e. -909 C/A and +68 GAins/del, we observed differential binding of nuclear proteins from human osteosarcoma (HOS) cells. The protein complex binding specifically to -909 C, which is present in all haplotypes except the low activity haplotype H 2 gamma, contained members of the upstream stimulatory factor (USF) family of transcription factors. Furthermore, we identified a protein complex of 125 kDa which bound specifically to the low activity haplotype H1 at position +68 GAdel and may represent an H1-specific PDGFRA transcriptional repressor. The current identification of cis-acting elements in the PDGFRA promoter and the transcription factors that bind them, provides a new strategy for the identification of genes that are potentially involved in neural tube defects.
Collapse
Affiliation(s)
- Mascha Toepoel
- Department of Cell Biology FNWI, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| | | | | |
Collapse
|
19
|
De Bustos C, Smits A, Strömberg B, Collins VP, Nistér M, Afink G. A PDGFRA promoter polymorphism, which disrupts the binding of ZNF148, is associated with primitive neuroectodermal tumours and ependymomas. J Med Genet 2006; 42:31-7. [PMID: 15635072 PMCID: PMC1735903 DOI: 10.1136/jmg.2004.024034] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Platelet derived growth factor receptor alpha (PDGFRalpha) expression is typical for a variety of brain tumours, while in normal adult brain PDGFRalpha expression is limited to a small number of neural progenitor cells. The molecular mechanisms responsible for the PDGFRalpha expression in tumours are not known, but in the absence of amplification, changes in transcriptional regulation might be an important factor in this process. METHODS AND RESULTS We have investigated the link between single nucleotide polymorphisms (SNPs) within the PDGFRalpha gene promoter and the occurrence of brain tumours (medulloblastomas, supratentorial primitive neuroectodermal tumours (PNETs), ependymal tumours, astrocytomas, oligodendrogliomas, and mixed gliomas). These SNPs give rise to five different promoter haplotypes named H1 and H2alpha-delta. It is apparent from the haplotype frequency distribution that both PNET (10-fold) and ependymoma (6.5-fold) patient groups display a significant over-representation of the H2delta haplotype. The precise functional role in PDGFRalpha gene transcription for the H2delta haplotype is not known yet, but we can show that the H2delta haplotype specifically disrupts binding of the transcription factor ZNF148 as compared to the other promoter haplotypes. CONCLUSIONS The specific over-representation of the H2delta haplotype in both patients with PNETs and ependymomas suggests a functional role for the ZNF148/PDGFRalpha pathway in the pathogenesis of these tumours.
Collapse
Affiliation(s)
- C De Bustos
- Department of Genetics and Pathology, Uppsala University, Rudbeck Laboratory, 751 85 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
20
|
Reigstad LJ, Martinez A, Varhaug JE, Lillehaug JR. Nuclear localisation of endogenous SUMO-1-modified PDGF-C in human thyroid tissue and cell lines. Exp Cell Res 2006; 312:782-95. [PMID: 16443219 DOI: 10.1016/j.yexcr.2005.11.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Revised: 11/21/2005] [Accepted: 11/30/2005] [Indexed: 01/06/2023]
Abstract
We investigated post-translational modification and subcellular localisation of endogenous platelet-derived growth factor-C (PDGF-C) in human thyroid papillary carcinomas (PTC), non-neoplastic thyroid tissues, and a selection of cultured cell lines. PDGF-C expressed nuclear localisation in 95% of all tested cell types in culture and in 10% of the thyrocytes from both PTC and non-neoplastic tissue. The cell lines expressed two forms of full-length PDGF-C, approximately 39 and approximately 55 kDa, in cell membrane and cytosol, while the approximately 55 kDa form dominated in the nucleus where it was partly chromatin-associated. The approximately 55 kDa form was post-translationally modified by SUMO-1. The putative PDGF-C SUMOylation site is the surface exposed (314)lysine part of a positively charged loop ((312)RPKTGVRGLHK(322)) with characteristics of a nuclear localisation signal. The tissue thyrocytes expressed a non-SUMOylated approximately 43 kDa and the 55 kDa PDGF-C. The SUMO-1 modified approximately 55 kDa PDGF-C expression was low in PTC where the approximately 43 kDa PDGF-C dominated. This is in contrast to non-neoplastic tissue and cultured cells where the SUMOylated approximately 55 kDa PDGF-C was strongly expressed. Our data provide novel evidence for nuclear localisation of PDGF-C, post-translational modification by SUMOylation and the expression of a novel form of PDGF-C in human papillary thyroid carcinomas.
Collapse
Affiliation(s)
- Laila J Reigstad
- Department of Molecular Biology, University of Bergen, Section of Surgery, Haukeland University Hospital, Bergen 5020, Norway
| | | | | | | |
Collapse
|
21
|
Abstract
Treatment of pediatric brain tumors remains a challenge because of the toxicity associated with conventional treatment and the relative resistance of tumors at the time of recurrence. The traditional approach of administering cytotoxic agents at the maximum tolerated dose is being supplanted by the development of molecularly targeted agents aimed at critical cellular changes that are responsible for the growth and spread of cancer cells. These agents theoretically should be more specific for tumor cells and less toxic to normal cells. While the idea of targeted therapy has generated much excitement in the oncology community, the degree of benefit to patients with central nervous system (CNS) tumors remains unclear. Numerous challenges remain in the development of these agents, including identification of meaningful targets, delivery of agents in sufficient quantity at the target site, and determination of any biologic response to these agents. This article discusses the rationale behind several of these agents and their use in pediatric patients with brain tumors.
Collapse
Affiliation(s)
- Warren K E
- National Cancer Institute, Neuro-Oncology Branch, Bloch Bldg, 82, Rm 224, 9030 Old Georgetown Road, Bethesda, Maryland 20892-8200, USA.
| |
Collapse
|
22
|
Reigstad LJ, Varhaug JE, Lillehaug JR. Structural and functional specificities of PDGF-C and PDGF-D, the novel members of the platelet-derived growth factors family. FEBS J 2005; 272:5723-41. [PMID: 16279938 DOI: 10.1111/j.1742-4658.2005.04989.x] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The platelet-derived growth factor (PDGF) family was for more than 25 years assumed to consist of only PDGF-A and -B. The discovery of the novel family members PDGF-C and PDGF-D triggered a search for novel activities and complementary fine tuning between the members of this family of growth factors. Since the expansion of the PDGF family, more than 60 publications on the novel PDGF-C and PDGF-D have been presented, highlighting similarities and differences to the classical PDGFs. In this paper we review the published data on the PDGF family covering structural (gene and protein) similarities and differences among all four family members, with special focus on PDGF-C and PDGF-D expression and functions. Little information on the protein structures of PDGF-C and -D is currently available, but the PDGF-C protein may be structurally more similar to VEGF-A than to PDGF-B. PDGF-C contributes to normal development of the heart, ear, central nervous system (CNS), and kidney, while PDGF-D is active in the development of the kidney, eye and brain. In adults, PDGF-C is active in the kidney and the central nervous system. PDGF-D also plays a role in the lung and in periodontal mineralization. PDGF-C is expressed in Ewing family sarcoma and PDGF-D is linked to lung, prostate and ovarian cancers. Both PDGF-C and -D play a role in progressive renal disease, glioblastoma/medulloblastoma and fibrosis in several organs.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Motifs
- Amino Acid Sequence
- Animals
- Codon, Initiator
- Codon, Terminator
- Cysteine/chemistry
- Dimerization
- Disulfides/chemistry
- Exons
- Humans
- Introns
- Lymphokines/chemistry
- Lymphokines/genetics
- Lymphokines/physiology
- Mice
- Mice, Knockout
- Models, Molecular
- Molecular Sequence Data
- Platelet-Derived Growth Factor/chemistry
- Platelet-Derived Growth Factor/genetics
- Platelet-Derived Growth Factor/physiology
- Promoter Regions, Genetic
- Protein Binding
- Protein Processing, Post-Translational
- Protein Sorting Signals
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Receptors, Platelet-Derived Growth Factor/genetics
- Receptors, Platelet-Derived Growth Factor/metabolism
- Sequence Homology, Amino Acid
Collapse
|
23
|
Andrae J, Afink G, Zhang XQ, Wurst W, Nistér M. Forced expression of platelet-derived growth factor B in the mouse cerebellar primordium changes cell migration during midline fusion and causes cerebellar ectopia. Mol Cell Neurosci 2004; 26:308-21. [PMID: 15207855 DOI: 10.1016/j.mcn.2004.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2003] [Revised: 02/02/2004] [Accepted: 02/11/2004] [Indexed: 11/22/2022] Open
Abstract
The platelet-derived growth factor (PDGF) and receptors are expressed in the developing central nervous system and in brain tumors. To investigate the role of PDGF during normal cerebellar development, we created transgenic mice where PDGF-B was introduced into the endogenous Engrailed1 locus (En1). These mice expressed PDGF-B in all types of cells that constitute the developing cerebellum, with localized high expression in the ventral midline of the cerebellar anlage. This affected cell migration in the midline during fusion of the cerebellar anlage and caused misplacement of midline structures. PDGFR-alpha- and laminin alpha1-positive meningeal cells migrated inwards, attracted by the ectopic transgene expression in the ventral neuroepithelium. Other cells followed the meningeal cells and in the adult mouse, cells from all cortical cell layers were found misplaced in the midline. Moreover, the transgene caused an enhancement of capillary vessels. The findings indicate that normal PDGF signaling is important for proper neural tube fusion. It also illustrates that meningeal structures can influence the process.
Collapse
Affiliation(s)
- Johanna Andrae
- Department of Genetics and Pathology, Uppsala University, Rudbeck Laboratory, SE-751 85 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
24
|
Fredriksson L, Li H, Fieber C, Li X, Eriksson U. Tissue plasminogen activator is a potent activator of PDGF-CC. EMBO J 2004; 23:3793-802. [PMID: 15372073 PMCID: PMC522796 DOI: 10.1038/sj.emboj.7600397] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2004] [Accepted: 08/12/2004] [Indexed: 01/06/2023] Open
Abstract
Tissue plasminogen activator (tPA) is a serine protease involved in the degradation of blood clots through the activation of plasminogen to plasmin. Here we report on the identification of tPA as a specific protease able to activate platelet-derived growth factor C (PDGF-C). The newly identified PDGF-C is secreted as a latent dimeric factor (PDGF-CC) that upon proteolytic removal of the N-terminal CUB domains becomes a PDGF receptor alpha agonist. The CUB domains in PDGF-CC directly interact with tPA, and fibroblasts from tPA-deficient mice fail to activate latent PDGF-CC. We further demonstrate that growth of primary fibroblasts in culture is dependent on a tPA-mediated cleavage of latent PDGF-CC, generating a growth stimulatory loop. Immunohistochemical analysis showed similar expression patterns of PDGF-C and tPA in developing mouse embryos and in tumors, indicating both autocrine and paracrine modes of activation of PDGF receptor-mediated signaling pathways. The identification of tPA as an activator of PDGF signaling establishes a novel role for the protease in normal and pathological tissue growth and maintenance, distinct from its well-known role in plasminogen activation and fibrinolysis.
Collapse
Affiliation(s)
- Linda Fredriksson
- Ludwig Institute for Cancer Research, Stockholm Branch, Stockholm, Sweden
| | - Hong Li
- Ludwig Institute for Cancer Research, Stockholm Branch, Stockholm, Sweden
| | - Christina Fieber
- Ludwig Institute for Cancer Research, Stockholm Branch, Stockholm, Sweden
| | - Xuri Li
- Ludwig Institute for Cancer Research, Stockholm Branch, Stockholm, Sweden
| | - Ulf Eriksson
- Ludwig Institute for Cancer Research, Stockholm Branch, Stockholm, Sweden
- Ludwig Institute for Cancer Research, Stockholm Branch, Box 240, 171 77 Stockholm, Sweden. Tel.: +46 8 728 7109; Fax: +46 8 332812; E-mail:
| |
Collapse
|
25
|
Fang L, Yan Y, Komuves LG, Yonkovich S, Sullivan CM, Stringer B, Galbraith S, Lokker NA, Hwang SS, Nurden P, Phillips DR, Giese NA. PDGF C is a selective alpha platelet-derived growth factor receptor agonist that is highly expressed in platelet alpha granules and vascular smooth muscle. Arterioscler Thromb Vasc Biol 2004; 24:787-92. [PMID: 15061151 DOI: 10.1161/01.atv.0000120785.82268.8b] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE The platelet-derived growth factor (PDGF) family consists of four members, PDGF A, PDGF B, and 2 new members, PDGF C and PDGF D, which signal through the alpha and beta PDGF receptor (PDGFR) tyrosine kinases. This study was performed to determine the receptor specificity and cellular expression profile of PDGF C. METHODS AND RESULTS PDGF C growth factor domain (GFD) was shown to preferentially bind and activate alpha PDGFR and activate beta PDGFR when it is co-expressed with alpha PDGFR through heterodimer formation. An investigation of PDGF C mRNA and protein expression revealed that during mouse fetal development, PDGF C was expressed in the mesonephric mesenchyme, prefusion skeletal muscle, cardiac myoblasts, and in visceral and vascular smooth muscle, whereas in adult human tissues expression was largely restricted to smooth muscle. Microarray analysis of various cell types showed PDGF C expression in vascular smooth muscle cells, renal mesangial cells, and platelets. PDGF C mRNA expression in platelets was confirmed by real-time polymerase chain reaction, and PDGF C protein was localized in alpha granules by immuno-gold electron microscopy. Western blot analysis of platelets identified 55-kDa and 80-kDa PDGF C isoforms that were secreted on platelet activation. CONCLUSIONS Taken together, our results demonstrated for the first time to our knowledge that like PDGF A and B, PDGF C is likely to play a role in platelet biology.
Collapse
Affiliation(s)
- Li Fang
- Millennium Pharmaceuticals, South San Francisco, Calif 94080, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Midgley VC, Khachigian LM. Fibroblast growth factor-2 induction of platelet-derived growth factor-C chain transcription in vascular smooth muscle cells is ERK-dependent but not JNK-dependent and mediated by Egr-1. J Biol Chem 2004; 279:40289-95. [PMID: 15247255 DOI: 10.1074/jbc.m406063200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Platelet-derived growth factors (PDGFs) play an integral role in normal tissue growth and maintenance as well as many human pathological states including atherosclerosis, fibrosis, and tumorigenesis. The PDGF family of ligands is comprised of A, B, C, and D chains. Here, we provide the first functional characterization of the PDGF-C promoter. We examined 797 bp of the human PDGF-C promoter and identified several putative recognition elements for Sp1, Ets Egr-1, and Smad. The proximal region of the PDGF-C promoter bears a remarkable resemblance to a comparable region of the PDGF-A promoter (1). Binding and transient transfection analysis in primary vascular smooth muscle cells revealed that PDGF-C, like PDGF-A, is under the transcriptional control of the zinc finger nuclear protein Egr-1 (early growth response-1). Electrophoretic mobility shift analysis using both smooth muscle cell nuclear extracts and recombinant protein revealed that Egr-1 and Sp1 bind this region of the PDGF-C promoter (Oligo C, -35 to -1). Egr-1 competes with Sp1 for overlapping binding sites even when the former is at a stoichiometric disadvantage. Reverse transcriptase PCR and supershift analysis demonstrate that fibroblast growth factor-2 (FGF-2) stimulates both Egr-1 and PDGF-C mRNA expression in a time-dependent and transient manner and that FGF-2-inducible Egr-1 binds the proximal PDGF-C promoter. FGF-2-inducible PDGF-C expression was completely abrogated using catalytic DNA (DNAzymes) targeting Egr-1 but not by its scrambled counterpart. Moreover, using pharmacological inhibitors we demonstrate the critical role of ERK but not JNK in FGF-2-inducible PDGF-C expression. These findings thus demonstrate that PDGF-C transcription, activated by FGF-2, is mediated by Egr-1 and its upstream kinase ERK.
Collapse
Affiliation(s)
- Valerie C Midgley
- Centre for Vascular Research, The University of New South Wales, Department of Haematology, The Prince of Wales Hospital, Sydney, New South Wales 2052, Australia
| | | |
Collapse
|
27
|
Kirby M, Zsarnovszky A, Belcher SM. Estrogen receptor expression in a human primitive neuroectodermal tumor cell line from the cerebral cortex: estrogen stimulates rapid ERK1/2 activation and receptor-dependent cell migration. Biochem Biophys Res Commun 2004; 319:753-8. [PMID: 15184047 DOI: 10.1016/j.bbrc.2004.05.049] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Indexed: 11/20/2022]
Abstract
Primitive neuroectodermal tumors (PNETs) are the most common form of pediatric brain tumor. Most often these malignant childhood brain tumors arise from neuroepithelial precursor cells in the cerebellum, and less frequently in the cerebral cortex. Because the normal PNET precursor cells from the cerebrum and cerebellum transiently express high levels of estrogen receptors (ERs), we hypothesized that the PNET cells of the cerebrocortical-derived cell line PFSK1 may also express ERs and would be responsive to estrogen. Results of immunoblot studies using ER-specific antiserum indicate that both ERalpha and ERbeta are expressed in PFSK1 cells. The ability of estrogen to rapidly activate MAPK signaling was tested; low physiological concentrations of E(2) stimulated ERK1/2 phosphorylation and nuclear translocation within 15min of exposure. Exogenously added 17beta-estradiol (E(2)) could not stimulate PFSK1 growth, however E(2) significantly increased PFSK1 cell migration, suggesting that rapid actions of E(2) and ER-mediated processes might contribute to the metastatic phenotype of some PNETs.
Collapse
Affiliation(s)
- Michelle Kirby
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0575, USA
| | | | | |
Collapse
|
28
|
Chopra A, Brown KM, Rood BR, Packer RJ, MacDonald TJ. The use of gene expression analysis to gain insights into signaling mechanisms of metastatic medulloblastoma. Pediatr Neurosurg 2003; 39:68-74. [PMID: 12845196 DOI: 10.1159/000071317] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2003] [Accepted: 03/06/2003] [Indexed: 11/19/2022]
Abstract
Metastasis is the leading cause of treatment failure in medulloblastoma. Understanding the genetic regulation of metastasis may aid in the development of novel treatments. We therefore performed in silico analysis of the mRNA expression of 83 medulloblastomas compiled from two independent microarray studies by focusing on 135 genes most frequently linked to metastasis in other tumors. We then asked whether expression of these genes correlated with metastasis in the medulloblastoma array data sets. We found the platelet-derived growth factor receptor alpha, early growth response protein 1 and insulin-like growth factor 2 genes as well as several genes associated with MYCC and ERBB2 overexpressed by at least 2-fold in metastatic tumors in both array data sets. We conclude that these genes may interact to promote prometastatic signaling in medulloblastoma.
Collapse
Affiliation(s)
- Arun Chopra
- Department of Pediatrics, Children's National Medical Center, Washington, DC 20010, USA
| | | | | | | | | |
Collapse
|
29
|
Abstract
Platelet-derived growth factors (PDGFs) were discovered almost two decades ago. The classical PDGF polypeptide chains, PDGF-A and PDGF-B, are well studied and they regulate a number of physiological and pathophysiological processes in many types of mesenchymal cells via two receptor tyrosine kinases, PDGF receptors alpha and beta. Recently, two additional PDGF polypeptide chains were discovered, namely PDGF-C and PDGF-D. The discovery of two additional ligands for the two PDGF receptors suggests that PDGF-mediated signaling is more complex than previously anticipated.
Collapse
Affiliation(s)
- Xuri Li
- Ludwig Institute for Cancer Research, Stockholm Branch, Box 240, S-171 77, Stockholm, Sweden
| | | |
Collapse
|