1
|
Zamora-Briseño JA, Améndola-Pimenta M, Ortega-Rosas DA, Pereira-Santana A, Hernández-Velázquez IM, González-Penagos CE, Pérez-Vega JA, Del Río-García M, Árcega-Cabrera F, Rodríguez-Canul R. Gill and liver transcriptomic responses of Achirus lineatus (Neopterygii: Achiridae) exposed to water-accommodated fraction (WAF) of light crude oil reveal an onset of hypoxia-like condition. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:34309-34327. [PMID: 33646544 DOI: 10.1007/s11356-021-12909-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Crude oil is one of the most widespread pollutants released into the marine environment, and native species have provided useful information about the effect of crude oil pollution in marine ecosystems. We consider that the lined sole Achirus lineatus can be a useful monitor of the effect of crude oil in the Gulf of Mexico (GoM) because this flounder species has a wide distribution along the GoM, and its response to oil components is relevant. The objective of this study was to compare the transcriptomic changes in liver and gill of adults lined sole fish (Achirus lineatus) exposed to a sublethal acute concentration of water-accommodated fraction (WAF) of light crude oil for 48 h. RNA-Seq was performed to assess the transcriptional changes in both organs. A total of 1073 differentially expressed genes (DEGs) were detected in gills; 662 (61.69%) were upregulated, and 411 (38.30%) were downregulated whereas in liver, 515 DEGs; 306 (59.42%) were upregulated, and 209 (40.58%) were downregulated. Xenobiotic metabolism and redox metabolism, along with DNA repair mechanisms, were activated. The induction of hypoxia-regulated genes and the generalized regulation of multiple signaling pathways support the hypothesis that WAF exposition causes a hypoxia-like condition.
Collapse
Affiliation(s)
- Jesús Alejandro Zamora-Briseño
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-Unidad Mérida, Km 6 Antigua Carretera a Progreso, CORDEMEX, CP 97310, Mérida, Yucatán, Mexico
| | - Monica Améndola-Pimenta
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-Unidad Mérida, Km 6 Antigua Carretera a Progreso, CORDEMEX, CP 97310, Mérida, Yucatán, Mexico
| | | | - Alejandro Pereira-Santana
- División de Biotecnología Industrial, CONACYT-Centro de Investigación y Asistencia en Tecnología y Diseño del estado de Jalisco, Camino Arenero 1227, El Bajío, C.P. 45019, Zapopan, Jalisco, Mexico
| | - Ioreni Margarita Hernández-Velázquez
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-Unidad Mérida, Km 6 Antigua Carretera a Progreso, CORDEMEX, CP 97310, Mérida, Yucatán, Mexico
| | - Carlos Eduardo González-Penagos
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-Unidad Mérida, Km 6 Antigua Carretera a Progreso, CORDEMEX, CP 97310, Mérida, Yucatán, Mexico
| | - Juan Antonio Pérez-Vega
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-Unidad Mérida, Km 6 Antigua Carretera a Progreso, CORDEMEX, CP 97310, Mérida, Yucatán, Mexico
| | - Marcela Del Río-García
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-Unidad Mérida, Km 6 Antigua Carretera a Progreso, CORDEMEX, CP 97310, Mérida, Yucatán, Mexico
| | - Flor Árcega-Cabrera
- Unidad de Química Sisal, Facultad de Química, Universidad Nacional Autónoma de México, Puerto de Abrigo S/N, 97356, Sisal, Yucatán, Mexico
| | - Rossanna Rodríguez-Canul
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-Unidad Mérida, Km 6 Antigua Carretera a Progreso, CORDEMEX, CP 97310, Mérida, Yucatán, Mexico.
- Laboratorio de Inmunología y Biología Molecular, CINVESTAV-IPN Unidad Mérida, Antigua carretera a Progreso Km 6., CP 97310, Mérida, Yucatán, Mexico.
| |
Collapse
|
2
|
Altenhöfer S, Kleikers PWM, Radermacher KA, Scheurer P, Rob Hermans JJ, Schiffers P, Ho H, Wingler K, Schmidt HHHW. The NOX toolbox: validating the role of NADPH oxidases in physiology and disease. Cell Mol Life Sci 2012; 69:2327-43. [PMID: 22648375 PMCID: PMC3383958 DOI: 10.1007/s00018-012-1010-9] [Citation(s) in RCA: 288] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 04/18/2012] [Accepted: 04/20/2012] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) are cellular signals but also disease triggers; their relative excess (oxidative stress) or shortage (reductive stress) compared to reducing equivalents are potentially deleterious. This may explain why antioxidants fail to combat diseases that correlate with oxidative stress. Instead, targeting of disease-relevant enzymatic ROS sources that leaves physiological ROS signaling unaffected may be more beneficial. NADPH oxidases are the only known enzyme family with the sole function to produce ROS. Of the catalytic NADPH oxidase subunits (NOX), NOX4 is the most widely distributed isoform. We provide here a critical review of the currently available experimental tools to assess the role of NOX and especially NOX4, i.e. knock-out mice, siRNAs, antibodies, and pharmacological inhibitors. We then focus on the characterization of the small molecule NADPH oxidase inhibitor, VAS2870, in vitro and in vivo, its specificity, selectivity, and possible mechanism of action. Finally, we discuss the validation of NOX4 as a potential therapeutic target for indications including stroke, heart failure, and fibrosis.
Collapse
Affiliation(s)
- Sebastian Altenhöfer
- Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Vascular Drug Discovery Group, Faculty of Medicine, Health and Life Science, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Pamela W. M. Kleikers
- Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Vascular Drug Discovery Group, Faculty of Medicine, Health and Life Science, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Kim A. Radermacher
- Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Vascular Drug Discovery Group, Faculty of Medicine, Health and Life Science, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | | | - J. J. Rob Hermans
- Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Vascular Drug Discovery Group, Faculty of Medicine, Health and Life Science, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Paul Schiffers
- Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Vascular Drug Discovery Group, Faculty of Medicine, Health and Life Science, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Heidi Ho
- National Stroke Research Institute, Melbourne, VIC Australia
| | - Kirstin Wingler
- Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Vascular Drug Discovery Group, Faculty of Medicine, Health and Life Science, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Harald H. H. W. Schmidt
- Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Vascular Drug Discovery Group, Faculty of Medicine, Health and Life Science, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
3
|
Cave AC, Brewer AC, Narayanapanicker A, Ray R, Grieve DJ, Walker S, Shah AM. NADPH oxidases in cardiovascular health and disease. Antioxid Redox Signal 2006; 8:691-728. [PMID: 16771662 DOI: 10.1089/ars.2006.8.691] [Citation(s) in RCA: 469] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Increased oxidative stress plays an important role in the pathophysiology of cardiovascular diseases such as hypertension, atherosclerosis, diabetes, cardiac hypertrophy, heart failure, and ischemia-reperfusion. Although several sources of reactive oxygen species (ROS) may be involved, a family of NADPH oxidases appears to be especially important for redox signaling and may be amenable to specific therapeutic targeting. These include the prototypic Nox2 isoform-based NADPH oxidase, which was first characterized in neutrophils, as well as other NADPH oxidases such as Nox1 and Nox4. These Nox isoforms are expressed in a cell- and tissue-specific fashion, are subject to independent activation and regulation, and may subserve distinct functions. This article reviews the potential roles of NADPH oxidases in both cardiovascular physiological processes (such as the regulation of vascular tone and oxygen sensing) and pathophysiological processes such as endothelial dysfunction, inflammation, hypertrophy, apoptosis, migration, angiogenesis, and vascular and cardiac remodeling. The complexity of regulation of NADPH oxidases in these conditions may provide the possibility of targeted therapeutic manipulation in a cell-, tissue- and/or pathway-specific manner at appropriate points in the disease process.
Collapse
Affiliation(s)
- Alison C Cave
- King's College London, Department of Cardiology, Cardiovascular Division, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
4
|
Yoshida LS, Nishida S, Shimoyama T, Kawahara T, Kondo-Teshima S, Rokutan K, Kobayashi T, Tsunawaki S. Superoxide generation by Nox1 in guinea pig gastric mucosal cells involves a component with p67(phox)-ability. Biol Pharm Bull 2004; 27:147-55. [PMID: 14758023 DOI: 10.1248/bpb.27.147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nox1, a homologue of gp91(phox) subunit of the phagocyte NADPH oxidase, is responsible for spontaneous superoxide (O(2)(-)) generation in guinea pig gastric mucosal cells (GMC), but involvement of regulatory components (p67(phox), p47(phox), and Rac) which are essential in phagocytes remains unknown. Here, we aimed to figure out how Nox1 of GMC achieves an active oxidase status. GMC in primary culture show low O(2)(-) generation but acquire a 9-fold higher activity when cultured with Helicobacter pylori lipopolysaccharide (LPS), in correlation with a far increased Nox1 expression. Investigation into the O(2)(-)-generating ability of LPS-induced Nox1 in cell-free reconstitution assays showed that: 1) Nox1 is unable to generate O(2)(-) per se; 2) the combination of Nox1 with GMC cytosol is insufficient for a significant O(2)(-) generation; 3) the combination with neutrophil cytosol enables Nox1 to act like gp91(phox), i.e., to produce O(2)(-) appreciably in response to myristate stimulation; 4) Nox1 prefers NADPH to NADH under the in vitro assay with neutrophil cytosol plus myristate (K(m)=10.4 microM); 5) substitution of neutrophil cytosol by a set of recombinant cytosolic components (rp67(phox), rp47(phox), Rac2) is, however, ineffective and still requires GMC cytosol. Thus, Nox1 probably requires an additional cytosolic factor(s). In contrast, GMC cytosol enables cytochrome b(558) to generate plenty of O(2)(-), on condition that rp47(phox) is added. This result suggests that GMC cytosol contains a component with p67(phox)-ability, and also Rac, but lacks p47(phox). These data indicate that GMC Nox1 requires at least a p67(phox) counterpart and Rac to acquire NADPH oxidase activity.
Collapse
Affiliation(s)
- Lucia Satiko Yoshida
- Department of Infectious Diseases, National Research Institute for Child Health and Development, Setagaya, Tokyo 154-8567, Japan
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Kobayashi S, Nojima Y, Shibuya M, Maru Y. Nox1 regulates apoptosis and potentially stimulates branching morphogenesis in sinusoidal endothelial cells. Exp Cell Res 2004; 300:455-62. [PMID: 15475009 DOI: 10.1016/j.yexcr.2004.07.023] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2003] [Revised: 07/13/2004] [Indexed: 11/22/2022]
Abstract
Tubulogenic transformation of a nontubulogenic endothelial cell line NP31 by a constitutively activated form of the Flt-1 kinase (NP31/kinase) was accompanied by an increased expression of Nox1 by sixfold over NP31. Overexpression of Nox1 in NP31 cells (NP31/Nox1) stimulated branching morphogenesis in Matrigel but surprisingly cords lacked a lumen. The branching morphogenesis by NP31/kinase and NP31/Nox1 cells was blocked either by N-acetyl-l-cysteine (NAC) or Tiron. Vascular endothelial growth factor (VEGF)-dependent sinusoidal endothelial cells (SEC) in primary culture showed fivefold increase in Nox1 expression 4 days after VEGF stimulation. Interestingly, VEGF-resistant apoptosis in SEC at day 7 was inhibited by NAC or by anti-Nox1 siRNA. These results suggest that Nox1 regulates apoptosis in SEC and can potentially stimulate branching morphogenesis in SEC-derived NP 31 cells.
Collapse
Affiliation(s)
- Satsuki Kobayashi
- Department of Genetics, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-0071, Japan
| | | | | | | |
Collapse
|
6
|
Chamulitrat W, Stremmel W, Kawahara T, Rokutan K, Fujii H, Wingler K, Schmidt HHHW, Schmidt R. A constitutive NADPH oxidase-like system containing gp91phox homologs in human keratinocytes. J Invest Dermatol 2004; 122:1000-9. [PMID: 15102091 DOI: 10.1111/j.0022-202x.2004.22410.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In non-phagocytic cells, superoxide has been implicated in physiological and pathological cellular functions in the skin and mucosa, such as, host defense, mitogenic responses, and malignant conversion. Here, we identify a constitutively expressed heme-flavoprotein NADPH oxidase (Nox) system as a source of superoxide in human skin (HaCaT) and gingival mucosal (GM16) keratinocyte cell lines. Western blot analysis showed that both cell lines expressed the phagocyte oxidase (phox) cytosolic proteins Rac1, p40phox, and p67phox. With respect to the catalytic flavoheme protein subunit, HaCaT membranes, which expressed p22phox, showed an absorbance peak at 558 nm indicative of a b-type cytochrome. At mRNA levels, both GM16 and HaCaT cells expressed gp91phox homologs Nox1, Nox2, and Nox4, however, HaCaT cells expressed very low levels of Nox1 mRNA. At protein levels, Nox1 was readily detected in HaCaT but was nearly undetectable in GM16 cells. Consistently, Nox activity of HaCaT membranes was demonstrated by electron paramagnetic resonance spin-trapping and cytochrome c reduction, and the activity was sensitive to the flavoprotein inhibitor diphenylene iodonium. V(max) values were 20-fold lower than those reported for phagocytic oxidase. In conclusion, keratinocytes expressed a Nox distinct from the phox isoform of phagocytes providing molecular evidence for a source of superoxide that may regulate cell proliferation and host defense in skin and oral mucosa.
Collapse
Affiliation(s)
- Walee Chamulitrat
- Department of Internal Medicine IV, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Chamulitrat W, Schmidt R, Tomakidi P, Stremmel W, Chunglok W, Kawahara T, Rokutan K. Association of gp91phox homolog Nox1 with anchorage-independent growth and MAP kinase-activation of transformed human keratinocytes. Oncogene 2003; 22:6045-53. [PMID: 12955083 DOI: 10.1038/sj.onc.1206654] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Among five members of the NADPH oxidase (Nox) family, Nox1 confers mitogenic properties and is implicated to participate in the process of cell transformation. We have established two phenotypes of carcinogenesis model by ethanol treatment of human gingival keratinocytes immortalized with E6/E7 oncogenes of human papillomavirus type16: immortalized (EPI) nontransformed cells with epithelium-like morphology and more advanced transformed (FIB) cells with spindle fibroblastic-shape morphology. FIB membranes possessed a 63-kDa Nox1 protein at higher levels and exhibited 2.8-fold higher capability for superoxide and hydroxyl radical generation, compared with EPI membranes. Both EPI and FIB cells expressed more abundant Nox1 protein at a proliferating stage than that at a quiescent confluent phase. Immunofluorescence staining with an anti-Nox1 antibody showed that immunoreactive materials were distributed in the whole interior of both types of cells, while they were preferentially localized in the nuclei of FIB cells. Nuclei isolated from EPI and FIB cells contained a 63 kDa-Nox1 protein. Compared with EPI cells, FIB cells expressed elevated levels of Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase proteins. Furthermore, JNK2 was constitutively phosphorylated in FIB cells. Together, our data strongly implicate Nox1 in redox-mediated signaling related to cellular activation of human keratinocytes at a more advanced stage of transformation.
Collapse
Affiliation(s)
- Walee Chamulitrat
- Deutsches Krebsforschungszentrum, Department of Applied Tumorvirology, 69120 Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
8
|
Gu Y, Souza RF, Wu RF, Xu YC, Terada LS. Induction of colonic epithelial cell apoptosis by p47-dependent oxidants. FEBS Lett 2003; 540:195-200. [PMID: 12681507 DOI: 10.1016/s0014-5793(03)00262-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Exogenous oxidants appear capable of initiating both proliferative and death signals, but the role of endogenous oxidants in either tumorigenesis or tumor suppression is unclear. We found that expression of the NAD(P)H oxidase adapter p47(phox) was suppressed in human colon carcinoma specimens relative to adjacent normal colon. Overexpression of p47(phox) increased apoptosis in colon cancer cell lines independent of p53 and mismatch-repair competency. p47(phox) was found to interact with the c-Abl adapter Abl interactor-1 (ABI-1), and p47(phox) coprecipitated with both ABI-1 and c-Abl. Ectopic expression of p47(phox) in colon cancer cells increased oxidant production with phosphorylation and activation of nuclear c-Abl and consequent apoptosis. Colonic epithelial p47(phox) may be specifically targeted to a c-Abl-containing complex that serves a physiologic tumor suppressing function.
Collapse
Affiliation(s)
- Ying Gu
- Department of Internal Medicine, University of Texas Southwestern and the Dallas VAMC, Mail Code 151, 4500 S Lancaster Rd, Dallas, TX 75216, USA
| | | | | | | | | |
Collapse
|