1
|
Zhang T, Fan J, Wen X, Duan X. ECSIT: Biological function and involvement in diseases. Int Immunopharmacol 2024; 143:113524. [PMID: 39488037 DOI: 10.1016/j.intimp.2024.113524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/28/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
Evolutionary conserved signaling intermediate in Toll pathways (ECSIT), a multi-functional protein, was first identified as a cytosolic adaptor protein in Toll-like receptors (TLRs) signaling-mediated innate immune responses. In the past two decades, studies have expanded the understanding of ECSIT. Nevertheless, there are still large knowledge gaps due to the inadequate number of studies regarding ECSIT, especially an overall review of ECSIT is lacking. Here, we first comprehensively summarize the biological functions of ECSIT with particular focus on innate immune responses and mitochondrial homeostasis. Cumulative studies have reinforced that ECSIT is involved in the regulation of innate immune responses through activating NF-κB signaling and potentiating the Retinoic acid-induced gene Ⅰ (RIG-Ⅰ)/ mitochondrial antiviral- signaling protein (MAVS) pathway-mediated innate antiviral immunity. In addition, ECSIT determines the mitochondrial morphology and function including mitochondrial complex Ⅰ (CⅠ) assembly, mitochondrial reactive oxygen species (mROS) production, mitochondrial membrane potential (MMP) maintenance and mitochondrial quality control. Owing to these distinct functions, ECSIT is involved in the etiology and pathology of human diseases including Alzheimer's disease (AD), cardiac hypertrophy, musculoskeletal disintegration, cancer, extranodal natural killer/T cell lymphoma (ENKTL) and ischemic stroke. Collectively, the roles and mechanisms of ECSIT under physiological and pathological conditions are critically discussed to provide a clearer view of the therapeutic potential of ECSIT.
Collapse
Affiliation(s)
- Tan Zhang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, PR China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai 200438, PR China.
| | - Jingcheng Fan
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, PR China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai 200438, PR China
| | - Xin Wen
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, PR China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai 200438, PR China
| | - Xuemei Duan
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, PR China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai 200438, PR China
| |
Collapse
|
2
|
McGregor L, Acajjaoui S, Desfosses A, Saïdi M, Bacia-Verloop M, Schwarz JJ, Juyoux P, von Velsen J, Bowler MW, McCarthy AA, Kandiah E, Gutsche I, Soler-Lopez M. The assembly of the Mitochondrial Complex I Assembly complex uncovers a redox pathway coordination. Nat Commun 2023; 14:8248. [PMID: 38086790 PMCID: PMC10716376 DOI: 10.1038/s41467-023-43865-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
The Mitochondrial Complex I Assembly (MCIA) complex is essential for the biogenesis of respiratory Complex I (CI), the first enzyme in the respiratory chain, which has been linked to Alzheimer's disease (AD) pathogenesis. However, how MCIA facilitates CI assembly, and how it is linked with AD pathogenesis, is poorly understood. Here we report the structural basis of the complex formation between the MCIA subunits ECSIT and ACAD9. ECSIT binding induces a major conformational change in the FAD-binding loop of ACAD9, releasing the FAD cofactor and converting ACAD9 from a fatty acid β-oxidation (FAO) enzyme to a CI assembly factor. We provide evidence that ECSIT phosphorylation downregulates its association with ACAD9 and is reduced in neuronal cells upon exposure to amyloid-β (Aβ) oligomers. These findings advance our understanding of the MCIA complex assembly and suggest a possible role for ECSIT in the reprogramming of bioenergetic pathways linked to Aβ toxicity, a hallmark of AD.
Collapse
Affiliation(s)
- Lindsay McGregor
- Structural Biology Group, European Synchrotron Radiation Facility (ESRF), 38043, Grenoble, France
| | - Samira Acajjaoui
- Structural Biology Group, European Synchrotron Radiation Facility (ESRF), 38043, Grenoble, France
| | - Ambroise Desfosses
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS (IBS), 38044, Grenoble, France
| | - Melissa Saïdi
- Structural Biology Group, European Synchrotron Radiation Facility (ESRF), 38043, Grenoble, France
| | - Maria Bacia-Verloop
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS (IBS), 38044, Grenoble, France
| | - Jennifer J Schwarz
- European Molecular Biology Laboratory (EMBL), 69117, Heidelberg, Germany
| | - Pauline Juyoux
- European Molecular Biology Laboratory (EMBL), 38043, Grenoble, France
| | - Jill von Velsen
- European Molecular Biology Laboratory (EMBL), 38043, Grenoble, France
| | - Matthew W Bowler
- European Molecular Biology Laboratory (EMBL), 38043, Grenoble, France
| | - Andrew A McCarthy
- European Molecular Biology Laboratory (EMBL), 38043, Grenoble, France
| | - Eaazhisai Kandiah
- Structural Biology Group, European Synchrotron Radiation Facility (ESRF), 38043, Grenoble, France
| | - Irina Gutsche
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS (IBS), 38044, Grenoble, France.
- Department of Chemistry, Umeå University, Umeå, Sweden.
| | - Montserrat Soler-Lopez
- Structural Biology Group, European Synchrotron Radiation Facility (ESRF), 38043, Grenoble, France.
| |
Collapse
|
3
|
Uehara K, Santoleri D, Whitlock AEG, Titchenell PM. Insulin Regulation of Hepatic Lipid Homeostasis. Compr Physiol 2023; 13:4785-4809. [PMID: 37358513 PMCID: PMC10760932 DOI: 10.1002/cphy.c220015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
The incidence of obesity, insulin resistance, and type II diabetes (T2DM) continues to rise worldwide. The liver is a central insulin-responsive metabolic organ that governs whole-body metabolic homeostasis. Therefore, defining the mechanisms underlying insulin action in the liver is essential to our understanding of the pathogenesis of insulin resistance. During periods of fasting, the liver catabolizes fatty acids and stored glycogen to meet the metabolic demands of the body. In postprandial conditions, insulin signals to the liver to store excess nutrients into triglycerides, cholesterol, and glycogen. In insulin-resistant states, such as T2DM, hepatic insulin signaling continues to promote lipid synthesis but fails to suppress glucose production, leading to hypertriglyceridemia and hyperglycemia. Insulin resistance is associated with the development of metabolic disorders such as cardiovascular and kidney disease, atherosclerosis, stroke, and cancer. Of note, nonalcoholic fatty liver disease (NAFLD), a spectrum of diseases encompassing fatty liver, inflammation, fibrosis, and cirrhosis, is linked to abnormalities in insulin-mediated lipid metabolism. Therefore, understanding the role of insulin signaling under normal and pathologic states may provide insights into preventative and therapeutic opportunities for the treatment of metabolic diseases. Here, we provide a review of the field of hepatic insulin signaling and lipid regulation, including providing historical context, detailed molecular mechanisms, and address gaps in our understanding of hepatic lipid regulation and the derangements under insulin-resistant conditions. © 2023 American Physiological Society. Compr Physiol 13:4785-4809, 2023.
Collapse
Affiliation(s)
- Kahealani Uehara
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dominic Santoleri
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anna E. Garcia Whitlock
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Paul M. Titchenell
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Riboflavin (Vitamin B2) Deficiency Induces Apoptosis Mediated by Endoplasmic Reticulum Stress and the CHOP Pathway in HepG2 Cells. Nutrients 2022; 14:nu14163356. [PMID: 36014863 PMCID: PMC9414855 DOI: 10.3390/nu14163356] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Riboflavin is an essential micronutrient and a precursor of flavin mononucleotide and flavin adenine dinucleotide for maintaining cell homeostasis. Riboflavin deficiency (RD) induces cell apoptosis. Endoplasmic reticulum (ER) stress is considered to induce apoptosis, and C/EBP homologous protein (CHOP) is a key pathway involved in this process. However, whether RD-induced apoptosis is mediated by ER stress and the CHOP pathway remains unclear and needs further investigation. Therefore, the current study presents the effect of RD on ER stress and apoptosis in the human hepatoma cell line (HepG2). Firstly, cells were cultured in a RD medium (4.55 nM riboflavin) and a control (CON) medium (1005 nM riboflavin). We conducted an observation of cell microstructure characterization and determining apoptosis. Subsequently, 4-phenyl butyric acid (4-PBA), an ER stress inhibitor, was used in HepG2 cells to investigate the role of ER stress in RD-induced apoptosis. Finally, CHOP siRNA was transfected into HepG2 cells to validate whether RD triggered ER stress-mediated apoptosis by the CHOP pathway. The results show that RD inhibited cell proliferation and caused ER stress, as well as increased the expression of ER stress markers (CHOP, 78 kDa glucose-regulated protein, activating transcription factor 6) (p < 0.05). Furthermore, RD increased the cell apoptosis rate, enhanced the expression of proapoptotic markers (B-cell lymphoma 2-associated X, Caspase 3), and decreased the expression of the antiapoptotic marker (B-cell lymphoma 2) (p < 0.05). The 4-PBA treatment and CHOP knockdown markedly alleviated RD-induced cell apoptosis. These results demonstrate that RD induces cell apoptosis by triggering ER stress and the CHOP pathway.
Collapse
|
5
|
Schnerwitzki D, Vabulas RM. Dynamic association of flavin cofactors to regulate flavoprotein function. IUBMB Life 2022; 74:645-654. [PMID: 35015339 DOI: 10.1002/iub.2591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 11/09/2022]
Abstract
Flavoproteins are key players in numerous redox pathways in cells. Flavin cofactors FMN and FAD confer the required chemical reactivity to flavoenzymes. In most cases, the interaction between the proteins and the flavins is noncovalent, yet stronger in comparison to other redox-active cofactors, such as NADH and NADPH. The association is considered static, but this view has started to change with the recent discovery of the dynamic association of flavins and flavoenzymes. Six cases from different organisms and various metabolic pathways are discussed here. The available mechanistic details span the range from rudimentary, as in the case of the ER-resident oxidoreductase Ero1, to comprehensive, as for the bacterial respiratory complex I. The same holds true in regard to the assumed functional role of the dynamic association presented here. More work is needed to clarify the structural and functional determinants of the known examples. Identification of new cases will help to appreciate the generality of the new principle of intracellular flavoenzyme regulation.
Collapse
Affiliation(s)
- Danny Schnerwitzki
- Charité-Universitätsmedizin Berlin, Institute of Biochemistry, Berlin, Germany
| | - R Martin Vabulas
- Charité-Universitätsmedizin Berlin, Institute of Biochemistry, Berlin, Germany
| |
Collapse
|
6
|
Xia C, Lou B, Fu Z, Mohsen AW, Shen AL, Vockley J, Kim JJP. Molecular mechanism of interactions between ACAD9 and binding partners in mitochondrial respiratory complex I assembly. iScience 2021; 24:103153. [PMID: 34646991 PMCID: PMC8497999 DOI: 10.1016/j.isci.2021.103153] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/09/2021] [Accepted: 09/16/2021] [Indexed: 01/05/2023] Open
Abstract
The dual function protein ACAD9 catalyzes α,β-dehydrogenation of fatty acyl-CoA thioesters in fatty acid β-oxidation and is an essential chaperone for mitochondrial respiratory complex I (CI) assembly. ACAD9, ECSIT, and NDUFAF1 interact to form the core mitochondrial CI assembly complex. Current studies examine the molecular mechanism of ACAD9/ECSIT/NDUFAF1interactions. ACAD9 binds to the carboxy-terminal half and NDUFAF1 to the amino-terminal half of ECSIT. Binary complexes are unstable and aggregate easily, while the ACAD9/ECSIT/NDUFAF1 ternary complex is soluble and highly stable. Molecular modeling and small-angle X-ray scattering studies identified intra-complex interaction sites and binding sites for other assembly factors. Binding of ECSIT at the ETF binding site in the amino-terminal domain of ACAD9 is consistent with observed loss of FAD and enzymatic activity and demonstrates that the two functions of ACAD9 are mutually exclusive. Mapping of 42 known pathogenic mutations onto the homology-modeled ACAD9 structure provides structural insights into pathomechanisms of CI deficiency.
Collapse
Affiliation(s)
- Chuanwu Xia
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Baoying Lou
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Zhuji Fu
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Al-Walid Mohsen
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, USA
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Anna L. Shen
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jerry Vockley
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, USA
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jung-Ja P. Kim
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
7
|
Ruiz-Sala P, Peña-Quintana L. Biochemical Markers for the Diagnosis of Mitochondrial Fatty Acid Oxidation Diseases. J Clin Med 2021; 10:jcm10214855. [PMID: 34768374 PMCID: PMC8584803 DOI: 10.3390/jcm10214855] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/07/2021] [Accepted: 10/19/2021] [Indexed: 12/30/2022] Open
Abstract
Mitochondrial fatty acid β-oxidation (FAO) contributes a large proportion to the body’s energy needs in fasting and in situations of metabolic stress. Most tissues use energy from fatty acids, particularly the heart, skeletal muscle and the liver. In the brain, ketone bodies formed from FAO in the liver are used as the main source of energy. The mitochondrial fatty acid oxidation disorders (FAODs), which include the carnitine system defects, constitute a group of diseases with several types and subtypes and with variable clinical spectrum and prognosis, from paucisymptomatic cases to more severe affectations, with a 5% rate of sudden death in childhood, and with fasting hypoketotic hypoglycemia frequently occurring. The implementation of newborn screening programs has resulted in new challenges in diagnosis, with the detection of new phenotypes as well as carriers and false positive cases. In this article, a review of the biochemical markers used for the diagnosis of FAODs is presented. The analysis of acylcarnitines by MS/MS contributes to improving the biochemical diagnosis, both in affected patients and in newborn screening, but acylglycines, organic acids, and other metabolites are also reported. Moreover, this review recommends caution, and outlines the differences in the interpretation of the biomarkers depending on age, clinical situation and types of samples or techniques.
Collapse
Affiliation(s)
- Pedro Ruiz-Sala
- Centro de Diagnóstico de Enfermedades Moleculares, Universidad Autónoma Madrid, CIBERER, IDIPAZ, 28049 Madrid, Spain;
| | - Luis Peña-Quintana
- Pediatric Gastroenterology, Hepatology and Nutrition Unit, Mother and Child Insular University Hospital Complex, Asociación Canaria para la Investigación Pediátrica (ACIP), CIBEROBN, University Institute for Research in Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
- Correspondence:
| |
Collapse
|
8
|
Sinsheimer A, Mohsen AW, Bloom K, Karunanidhi A, Bharathi S, Wu YL, Schiff M, Wang Y, Goetzman ES, Ghaloul-Gonzalez L, Vockley J. Development and characterization of a mouse model for Acad9 deficiency. Mol Genet Metab 2021; 134:156-163. [PMID: 34556413 PMCID: PMC8588265 DOI: 10.1016/j.ymgme.2021.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 11/27/2022]
Abstract
Acyl CoA Dehydrogenase 9 (ACAD9) is a member of the family of flavoenzymes that catalyze the dehydrogenation of acyl-CoAs to 2,3 enoyl-CoAs in mitochondrial fatty acid oxidation (FAO). Inborn errors of metabolism of all family members, including ACAD9, have been described in humans, and represent significant causes of morbidity and mortality particularly in children. ACAD9 deficiency leads to a combined defect in fatty acid oxidation and oxidative phosphorylation (OXPHOS) due to a dual role in the pathways. In addition to its function in mitochondrial FAO, ACAD9 has a second function as one of 14 factors responsible for assembly of complex I of the electron transport chain (ETC). Considerable controversy remains over the relative role of these two functions in normal physiology and the disparate clinical findings described in patients with ACAD9 deficiency. To better understand the normal function of ACAD9 and the pathophysiology of its deficiency, several knock out mouse models were developed. Homozygous total body knock out appeared to be lethal as no ACAD9 animals were obtained. Cre-lox technology was then used to generate tissue-specific deletion of the gene. Cardiac-specific ACAD9 deficient animals had severe neonatal cardiomyopathy and died by 17 days of age. They had severe mitochondrial dysfunction in vitro. Muscle-specific mutants were viable but exhibited muscle weakness. Additional studies of heart muscle from the cardiac specific deficient animals were used to examine the evolutionarily conserved signaling Intermediate in toll pathway (ECSIT) protein, a known binding partner of ACAD9 in the electron chain complex I assembly pathway. As expected, ECSIT levels were significantly reduced in the absence of ACAD9 protein, consistent with the demonstrated impairment of the complex I assembly. The various ACAD9 deficient animals should serve as useful models for development of novel therapeutics for this disorder.
Collapse
Affiliation(s)
- Andrew Sinsheimer
- University of Pittsburgh, Graduate School of Public Health, Human Genetics, Pittsburgh, PA, United States of America
| | - Al-Walid Mohsen
- University of Pittsburgh, Graduate School of Public Health, Human Genetics, Pittsburgh, PA, United States of America; University of Pittsburgh, School of Medicine, Pediatrics, Pittsburgh, PA, United States of America
| | - Kailyn Bloom
- University of Pittsburgh, School of Medicine, Pediatrics, Pittsburgh, PA, United States of America
| | - Anuradha Karunanidhi
- University of Pittsburgh, School of Medicine, Pediatrics, Pittsburgh, PA, United States of America
| | - Sivakama Bharathi
- University of Pittsburgh, School of Medicine, Pediatrics, Pittsburgh, PA, United States of America
| | - Yijen L Wu
- Department of Developmental Biology, University of Pittsburgh, and UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States of America
| | - Manuel Schiff
- University of Pittsburgh, School of Medicine, Pediatrics, Pittsburgh, PA, United States of America; Inserm UMR_S1163, Institut Imagine, Paris, France
| | - Yudong Wang
- University of Pittsburgh, School of Medicine, Pediatrics, Pittsburgh, PA, United States of America
| | - Eric S Goetzman
- University of Pittsburgh, Graduate School of Public Health, Human Genetics, Pittsburgh, PA, United States of America; University of Pittsburgh, School of Medicine, Pediatrics, Pittsburgh, PA, United States of America
| | - Lina Ghaloul-Gonzalez
- University of Pittsburgh, Graduate School of Public Health, Human Genetics, Pittsburgh, PA, United States of America; University of Pittsburgh, School of Medicine, Pediatrics, Pittsburgh, PA, United States of America
| | - Jerry Vockley
- University of Pittsburgh, Graduate School of Public Health, Human Genetics, Pittsburgh, PA, United States of America; University of Pittsburgh, School of Medicine, Pediatrics, Pittsburgh, PA, United States of America.
| |
Collapse
|
9
|
Effects of riboflavin deficiency on the lipid metabolism of duck breeders and duck embryos. Poult Sci 2021; 100:101342. [PMID: 34438327 PMCID: PMC8383102 DOI: 10.1016/j.psj.2021.101342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/10/2021] [Accepted: 06/18/2021] [Indexed: 11/22/2022] Open
Abstract
This study aimed to evaluate the effects of dietary riboflavin deficiency (RD) on the lipid metabolism of duck breeders and duck embryos. A total of 40 female 40-wk-old white Pekin duck breeders were randomly divided into 2 groups, received either RD diet (1.48 mg riboflavin/kg) or control diet (16.48 mg riboflavin/kg, CON) for 14 wk. Each group consisted of 20 duck breeders (10 replicates per group, 2 birds per replicate), and all experiment birds were single-caged. At the end of the experiment, reproductive performance, hepatic riboflavin, hepatic flavin mononucleotide (FMN), hepatic flavin adenine dinucleotide (FAD), hepatic morphology, hepatic lipid contents, and hepatic protein expression of duck breeders and duck embryos were measured. The results showed that the RD had no effect on egg production and egg fertility but reduced egg hatchability, duck embryo weight, hepatic riboflavin, FMN, and FAD status compared to results obtained in the CON group (all P < 0.05). Livers from RD ducks presented enlarged lipid droplets, excessive accumulation of total lipids, triglycerides, and free fatty acids (all P < 0.05). In addition to excessive lipids accumulation, medium-chain specific acyl-CoA dehydrogenase expression was downregulated (P < 0.05), and short-chain specific acyl-CoA dehydrogenase expression was upregulated in maternal and embryonic livers (P < 0.05). RD did not affect maternal hepatic acyl-CoA dehydrogenase family member 9 (ACAD9) expression, but duck embryonic hepatic ACAD9 expression was reduced in the RD group (P < 0.05). Collectively, dietary RD conditioned lower egg hatchability and inhibited the development of duck embryos. Increased accumulation of lipids, both maternal and embryo, was impaired due to the reduced flavin protein expression, which caused inhibition of hepatic lipids utilization. These findings suggest that abnormal duck embryonic growth and low hatchability caused by RD might be associated with disorders of lipid metabolism in maternal as well as embryos.
Collapse
|
10
|
Feng QM, Liu MM, Cheng YX, Wu XG. Comparative proteomics elucidates the dynamics of ovarian development in the Chinese mitten crab Eriocheir sinensis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 40:100878. [PMID: 34333232 DOI: 10.1016/j.cbd.2021.100878] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/14/2021] [Accepted: 07/05/2021] [Indexed: 11/30/2022]
Abstract
Ovarian development is a complex physiological process for crustacean reproduction that is divided into the oogonium proliferation stage, endogenous vitellogenic stage, exogenous vitellogenic stage, and oocyte maturation stage. Proteomics analysis offers a feasible approach to reveal the proteins involved in the complex physiological processes of any organism. Therefore, this study performed a comparative proteomics analysis of the ovary and hepatopancreas at three key ovarian stages, including stages I (oogonium proliferation), II (endogenous vitellogenesis) and IV (exogenous vitellogenesis), of the Chinese mitten crab Eriocheir sinensis using a label-free quantitative approach. The results showed that a total of 2,224 proteins were identified, and some key proteins related to ovarian development and nutrition metabolism were differentially expressed. The 26 key proteins were mainly involved in the ubiquitin/proteasome pathway (UPP), cyclic AMP-protein kinase A (cAMP-PKA) signaling pathway, and mitogen-activated protein kinase (MAPK) signaling pathway during oogenesis. Fifteen differentially abundant proteins (DAPs) were found to participate in vitellogenesis and oocyte development, such as vitelline membrane outer layer protein 1 homolog, vitellogenin, vitellogenin receptor, heat shock 70 kDa protein cognate 3 and farnesyl pyrophosphate synthase. Forty-seven DAPs related to nutrition metabolism were identified, including the protein digestion, fatty acid metabolism, prostaglandin metabolism, lipid digestion and transportation, i.e. short-chain specific acyl-CoA dehydrogenase, acyl-CoA desaturase, fatty acid-binding protein, long-chain fatty acid CoA ligase 4, and hematopoietic prostaglandin D synthase. These results not only indicate proteins involved in ovarian development and nutrient deposition but also enhance the understanding of the regulatory pathways and physiological processes of crustacean ovarian development.
Collapse
Affiliation(s)
- Qiang-Mei Feng
- Centre for Research on Environmental Ecology and Fish Nutrition of Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Mei-Mei Liu
- Key Laboratory of Marine Biotechnology of Jiangsu Province, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Yong-Xu Cheng
- Centre for Research on Environmental Ecology and Fish Nutrition of Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Xu-Gan Wu
- Centre for Research on Environmental Ecology and Fish Nutrition of Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
11
|
Plantone D, Pardini M, Rinaldi G. Riboflavin in Neurological Diseases: A Narrative Review. Clin Drug Investig 2021; 41:513-527. [PMID: 33886098 DOI: 10.1007/s40261-021-01038-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2021] [Indexed: 12/11/2022]
Abstract
Riboflavin is classified as one of the water-soluble B vitamins. It is part of the functional group of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) cofactors and is required for numerous flavoprotein-catalysed reactions. Riboflavin has important antioxidant properties, essential for correct cell functioning. It is required for the conversion of oxidised glutathione to the reduced form and for the mitochondrial respiratory chain as complexes I and II contain flavoprotein reductases and electron transferring flavoproteins. Riboflavin deficiency has been demonstrated to impair the oxidative state of the body, especially in relation to lipid peroxidation status, in both animal and human studies. In the nervous system, riboflavin is essential for the synthesis of myelin and its deficiency can determine the disruption of myelin lamellae. The inherited condition of restricted riboflavin absorption and utilisation, reported in about 10-15% of world population, warrants further investigation in relation to its association with the main neurodegenerative diseases. Several successful trials testing riboflavin for migraine prevention were performed, and this drug is currently classified as a Level B medication for migraine according to the American Academy of Neurology evidence-based rating, with evidence supporting its efficacy. Brown-Vialetto-Van Laere syndrome and Fazio-Londe diseases are now renamed as "riboflavin transporter deficiency" because these are autosomal recessive diseases caused by mutations of SLC52A2 and SLC52A3 genes that encode riboflavin transporters. High doses of riboflavin represent the mainstay of the therapy of these diseases and high doses of riboflavin should be rapidly started as soon as the diagnosis is suspected and continued lifelong. Remarkably, some mitochondrial diseases respond to supplementation with riboflavin. These include multiple acyl-CoA-dehydrogenase deficiency (which is caused by ETFDH gene mutations in the majority of the cases, or mutations in the ETFA and ETFB genes in a minority), mutations of ACAD9 gene, mutations of AIFM1 gene, mutations of the NDUFV1 and NDUFV2 genes. Therapeutic riboflavin administration has been tried in other neurological diseases, including stroke, multiple sclerosis, Friedreich's ataxia and Parkinson's disease. Unfortunately, the design of these clinical trials was not uniform, not allowing to accurately assess the real effects of this molecule on the disease course. In this review we analyse the properties of riboflavin and its possible effects on the pathogenesis of different neurological diseases, and we will review the current indications of this vitamin as a therapeutic intervention in neurology.
Collapse
Affiliation(s)
- Domenico Plantone
- Neurology Unit, Azienda Sanitaria Locale della Provincia di Bari, Di Venere Teaching Hospital, Via Ospedale Di Venere 1, 70131, Bari, Italy.
| | - Matteo Pardini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.,Ospedale Policlinico San Martino, IRCCS, Genoa, Italy
| | - Giuseppe Rinaldi
- Neurology Unit, Azienda Sanitaria Locale della Provincia di Bari, Di Venere Teaching Hospital, Via Ospedale Di Venere 1, 70131, Bari, Italy
| |
Collapse
|
12
|
Giachin G, Jessop M, Bouverot R, Acajjaoui S, Saïdi M, Chretien A, Bacia‐Verloop M, Signor L, Mas PJ, Favier A, Borel Meneroud E, Hons M, Hart DJ, Kandiah E, Boeri Erba E, Buisson A, Leonard G, Gutsche I, Soler‐Lopez M. Assembly of The Mitochondrial Complex I Assembly Complex Suggests a Regulatory Role for Deflavination. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Gabriele Giachin
- Structural Biology Group European Synchrotron Radiation Facility (ESRF) 71 avenue des Martyrs 38043 Grenoble France
| | - Matthew Jessop
- Institut de Biologie Structurale (IBS) CNRS, CEA Université Grenoble Alpes 71 avenue des Martyrs 38044 Grenoble France
| | - Romain Bouverot
- Structural Biology Group European Synchrotron Radiation Facility (ESRF) 71 avenue des Martyrs 38043 Grenoble France
| | - Samira Acajjaoui
- Structural Biology Group European Synchrotron Radiation Facility (ESRF) 71 avenue des Martyrs 38043 Grenoble France
| | - Melissa Saïdi
- Structural Biology Group European Synchrotron Radiation Facility (ESRF) 71 avenue des Martyrs 38043 Grenoble France
| | - Anaïs Chretien
- Structural Biology Group European Synchrotron Radiation Facility (ESRF) 71 avenue des Martyrs 38043 Grenoble France
| | - Maria Bacia‐Verloop
- Institut de Biologie Structurale (IBS) CNRS, CEA Université Grenoble Alpes 71 avenue des Martyrs 38044 Grenoble France
| | - Luca Signor
- Institut de Biologie Structurale (IBS) CNRS, CEA Université Grenoble Alpes 71 avenue des Martyrs 38044 Grenoble France
| | - Philippe J. Mas
- Integrated Structural Biology Grenoble (ISBG) CNRS CEA, Université Grenoble Alpes 71 avenue des Martyrs 38042 Grenoble France
| | - Adrien Favier
- Institut de Biologie Structurale (IBS) CNRS, CEA Université Grenoble Alpes 71 avenue des Martyrs 38044 Grenoble France
| | - Eve Borel Meneroud
- Grenoble Institut des Neurosciences (GIN) Centre Inserm U1216 Equipe Neuropathologies et Dysfonctions Synaptiques Université Grenoble Alpes 31 Chemin Fortuné Ferrini 38700 La Tronche France
| | - Michael Hons
- European Molecular Biology Laboratory (EMBL) Grenoble Outstation 71 avenue des Martyrs 38042 Grenoble France
| | - Darren J. Hart
- Institut de Biologie Structurale (IBS) CNRS, CEA Université Grenoble Alpes 71 avenue des Martyrs 38044 Grenoble France
| | - Eaazhisai Kandiah
- Structural Biology Group European Synchrotron Radiation Facility (ESRF) 71 avenue des Martyrs 38043 Grenoble France
| | - Elisabetta Boeri Erba
- Institut de Biologie Structurale (IBS) CNRS, CEA Université Grenoble Alpes 71 avenue des Martyrs 38044 Grenoble France
| | - Alain Buisson
- Grenoble Institut des Neurosciences (GIN) Centre Inserm U1216 Equipe Neuropathologies et Dysfonctions Synaptiques Université Grenoble Alpes 31 Chemin Fortuné Ferrini 38700 La Tronche France
| | - Gordon Leonard
- Structural Biology Group European Synchrotron Radiation Facility (ESRF) 71 avenue des Martyrs 38043 Grenoble France
| | - Irina Gutsche
- Institut de Biologie Structurale (IBS) CNRS, CEA Université Grenoble Alpes 71 avenue des Martyrs 38044 Grenoble France
| | - Montserrat Soler‐Lopez
- Structural Biology Group European Synchrotron Radiation Facility (ESRF) 71 avenue des Martyrs 38043 Grenoble France
| |
Collapse
|
13
|
Giachin G, Jessop M, Bouverot R, Acajjaoui S, Saïdi M, Chretien A, Bacia-Verloop M, Signor L, Mas PJ, Favier A, Borel Meneroud E, Hons M, Hart DJ, Kandiah E, Boeri Erba E, Buisson A, Leonard G, Gutsche I, Soler-Lopez M. Assembly of The Mitochondrial Complex I Assembly Complex Suggests a Regulatory Role for Deflavination. Angew Chem Int Ed Engl 2021; 60:4689-4697. [PMID: 33320993 PMCID: PMC7986633 DOI: 10.1002/anie.202011548] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Indexed: 01/01/2023]
Abstract
Fatty acid β‐oxidation (FAO) and oxidative phosphorylation (OXPHOS) are mitochondrial redox processes that generate ATP. The biogenesis of the respiratory Complex I, a 1 MDa multiprotein complex that is responsible for initiating OXPHOS, is mediated by assembly factors including the mitochondrial complex I assembly (MCIA) complex. However, the organisation and the role of the MCIA complex are still unclear. Here we show that ECSIT functions as the bridging node of the MCIA core complex. Furthermore, cryo‐electron microscopy together with biochemical and biophysical experiments reveal that the C‐terminal domain of ECSIT directly binds to the vestigial dehydrogenase domain of the FAO enzyme ACAD9 and induces its deflavination, switching ACAD9 from its role in FAO to an MCIA factor. These findings provide the structural basis for the MCIA complex architecture and suggest a unique molecular mechanism for coordinating the regulation of the FAO and OXPHOS pathways to ensure an efficient energy production.
Collapse
Affiliation(s)
- Gabriele Giachin
- Structural Biology Group, European Synchrotron Radiation Facility (ESRF), 71 avenue des Martyrs, 38043, Grenoble, France
| | - Matthew Jessop
- Institut de Biologie Structurale (IBS), CNRS, CEA, Université Grenoble Alpes, 71 avenue des Martyrs, 38044, Grenoble, France
| | - Romain Bouverot
- Structural Biology Group, European Synchrotron Radiation Facility (ESRF), 71 avenue des Martyrs, 38043, Grenoble, France
| | - Samira Acajjaoui
- Structural Biology Group, European Synchrotron Radiation Facility (ESRF), 71 avenue des Martyrs, 38043, Grenoble, France
| | - Melissa Saïdi
- Structural Biology Group, European Synchrotron Radiation Facility (ESRF), 71 avenue des Martyrs, 38043, Grenoble, France
| | - Anaïs Chretien
- Structural Biology Group, European Synchrotron Radiation Facility (ESRF), 71 avenue des Martyrs, 38043, Grenoble, France
| | - Maria Bacia-Verloop
- Institut de Biologie Structurale (IBS), CNRS, CEA, Université Grenoble Alpes, 71 avenue des Martyrs, 38044, Grenoble, France
| | - Luca Signor
- Institut de Biologie Structurale (IBS), CNRS, CEA, Université Grenoble Alpes, 71 avenue des Martyrs, 38044, Grenoble, France
| | - Philippe J Mas
- Integrated Structural Biology Grenoble (ISBG) CNRS, CEA, Université Grenoble Alpes, 71 avenue des Martyrs, 38042, Grenoble, France
| | - Adrien Favier
- Institut de Biologie Structurale (IBS), CNRS, CEA, Université Grenoble Alpes, 71 avenue des Martyrs, 38044, Grenoble, France
| | - Eve Borel Meneroud
- Grenoble Institut des Neurosciences (GIN), Centre Inserm U1216, Equipe Neuropathologies et Dysfonctions Synaptiques, Université Grenoble Alpes, 31 Chemin Fortuné Ferrini, 38700, La Tronche, France
| | - Michael Hons
- European Molecular Biology Laboratory (EMBL), Grenoble Outstation, 71 avenue des Martyrs, 38042, Grenoble, France
| | - Darren J Hart
- Institut de Biologie Structurale (IBS), CNRS, CEA, Université Grenoble Alpes, 71 avenue des Martyrs, 38044, Grenoble, France
| | - Eaazhisai Kandiah
- Structural Biology Group, European Synchrotron Radiation Facility (ESRF), 71 avenue des Martyrs, 38043, Grenoble, France
| | - Elisabetta Boeri Erba
- Institut de Biologie Structurale (IBS), CNRS, CEA, Université Grenoble Alpes, 71 avenue des Martyrs, 38044, Grenoble, France
| | - Alain Buisson
- Grenoble Institut des Neurosciences (GIN), Centre Inserm U1216, Equipe Neuropathologies et Dysfonctions Synaptiques, Université Grenoble Alpes, 31 Chemin Fortuné Ferrini, 38700, La Tronche, France
| | - Gordon Leonard
- Structural Biology Group, European Synchrotron Radiation Facility (ESRF), 71 avenue des Martyrs, 38043, Grenoble, France
| | - Irina Gutsche
- Institut de Biologie Structurale (IBS), CNRS, CEA, Université Grenoble Alpes, 71 avenue des Martyrs, 38044, Grenoble, France
| | - Montserrat Soler-Lopez
- Structural Biology Group, European Synchrotron Radiation Facility (ESRF), 71 avenue des Martyrs, 38043, Grenoble, France
| |
Collapse
|
14
|
Jacobi‐Polishook T, Yosha‐Orpaz N, Sagi Y, Lev D, Lerman‐Sagie T. Successful pregnancy in a patient with mitochondrial cardiomyopathy due to ACAD9 deficiency. JIMD Rep 2020; 56:9-13. [PMID: 33204590 PMCID: PMC7653261 DOI: 10.1002/jmd2.12157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 07/23/2020] [Indexed: 11/08/2022] Open
Abstract
Acyl-CoA dehydrogenase family member 9 (ACAD9) is an enzyme essential for the assembly of mitochondrial respiratory chain complex I. ACAD9 deficiency can cause lactic acidosis, myopathy, cardiomyopathy, intellectual disability, and early demise. We present a patient with mitochondrial myopathy, hypertrophic cardiomyopathy, and epilepsy due to recessive ACAD9 mutations. A muscle biopsy depicted ragged red fibers, and decreased activity of complex I of the respiratory chain. Treatment with riboflavin was initiated at the age of 4 years due to complex I deficiency (before the genetic diagnosis), resulting in symptomatic improvement of the cardiomyopathy, exercise intolerance, and lactate levels. A novel homozygous ACAD9 mutation was found: c.398G>A; p.Ser133Asn at the age of 23 years. Three years later she sustained a normal pregnancy, and gave birth to a healthy baby girl delivered by an elective Cesarean section. To the best of our knowledge, this is the first description of a successful pregnancy and delivery in a patient with this rare mitochondrial disease.
Collapse
Affiliation(s)
- Talia Jacobi‐Polishook
- Pediatrics DepartmentEdith Wolfson Medical CenterHolonIsrael
- Metabolic‐Neurogenetic ClinicEdith Wolfson Medical CenterHolonIsrael
| | - Naama Yosha‐Orpaz
- Metabolic‐Neurogenetic ClinicEdith Wolfson Medical CenterHolonIsrael
- Pediatric Neurology UnitEdith Wolfson Medical CenterHolonIsrael
| | - Yair Sagi
- Department of Obstetrics and GynecologySourasky Medical CenterTel AvivIsrael
- Sackler School of MedicineTel‐Aviv UniversityTel‐AvivIsrael
| | - Dorit Lev
- Metabolic‐Neurogenetic ClinicEdith Wolfson Medical CenterHolonIsrael
- Sackler School of MedicineTel‐Aviv UniversityTel‐AvivIsrael
- The Rina Mor Institute of Medical GeneticsEdith Wolfson Medical CenterHolonIsrael
| | - Tally Lerman‐Sagie
- Metabolic‐Neurogenetic ClinicEdith Wolfson Medical CenterHolonIsrael
- Pediatric Neurology UnitEdith Wolfson Medical CenterHolonIsrael
- Sackler School of MedicineTel‐Aviv UniversityTel‐AvivIsrael
| |
Collapse
|
15
|
Role of acyl-CoA dehydrogenases from Shewanella livingstonensis Ac10 in docosahexaenoic acid conversion. Biochem Biophys Res Commun 2020; 528:453-458. [DOI: 10.1016/j.bbrc.2020.05.185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 05/25/2020] [Indexed: 11/21/2022]
|
16
|
Burgin HJ, McKenzie M. Understanding the role of OXPHOS dysfunction in the pathogenesis of ECHS1 deficiency. FEBS Lett 2020; 594:590-610. [PMID: 31944285 DOI: 10.1002/1873-3468.13735] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/12/2019] [Accepted: 12/27/2019] [Indexed: 12/29/2022]
Abstract
Mitochondria provide the main source of energy for eukaryotic cells, oxidizing fatty acids and sugars to generate ATP. Mitochondrial fatty acid β-oxidation (FAO) and oxidative phosphorylation (OXPHOS) are two key pathways involved in this process. Disruption of FAO can cause human disease, with patients commonly presenting with liver failure, hypoketotic glycaemia and rhabdomyolysis. However, patients with deficiencies in the FAO enzyme short-chain enoyl-CoA hydratase 1 (ECHS1) are typically diagnosed with Leigh syndrome, a lethal form of subacute necrotizing encephalomyelopathy that is normally associated with OXPHOS dysfunction. Furthermore, some ECHS1-deficient patients also exhibit secondary OXPHOS defects. This sequela of FAO disorders has long been thought to be caused by the accumulation of inhibitory fatty acid intermediates. However, new evidence suggests that the mechanisms involved are more complex, and that disruption of OXPHOS protein complex biogenesis and/or stability is also involved. In this review, we examine the clinical, biochemical and genetic features of all ECHS1-deficient patients described to date. In particular, we consider the secondary OXPHOS defects associated with ECHS1 deficiency and discuss their possible contribution to disease pathogenesis.
Collapse
Affiliation(s)
- Harrison James Burgin
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Geelong, Australia
| | - Matthew McKenzie
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Geelong, Australia.,Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Melbourne, Australia.,Department of Molecular and Translational Science, Monash University, Melbourne, Australia
| |
Collapse
|
17
|
Yin F, Gupta R, Vergnes L, Driscoll WS, Ricks J, Ramanathan G, Stewart JA, Shih DM, Faull KF, Beaven SW, Lusis AJ, Reue K, Rosenfeld ME, Araujo JA. Diesel Exhaust Induces Mitochondrial Dysfunction, Hyperlipidemia, and Liver Steatosis. Arterioscler Thromb Vasc Biol 2019; 39:1776-1786. [PMID: 31340670 PMCID: PMC6703953 DOI: 10.1161/atvbaha.119.312736] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 06/17/2019] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Air pollution is associated with increased cardiovascular morbidity and mortality, as well as dyslipidemia and metabolic syndrome. Our goal was to dissect the mechanisms involved. Approach and Results: We assessed the effects of exposure to air pollution on lipid metabolism in mice through assessment of plasma lipids and lipoproteins, oxidized fatty acids 9-HODE (9-hydroxyoctadecadienoic) and 13-HODE (13-hydroxyoctadecadienoic), lipid, and carbohydrate metabolism. Findings were corroborated, and mechanisms were further assessed in HepG2 hepatocytes in culture. ApoE knockout mice exposed to inhaled diesel exhaust (DE, 6 h/d, 5 days/wk for 16 weeks) exhibited elevated plasma cholesterol and triglyceride levels, increased hepatic triglyceride content, and higher hepatic levels of 9-HODE and 13-HODE, as compared to control mice exposed to filtered air. A direct effect of DE exposure on hepatocytes was demonstrated by treatment of HepG2 cells with a methanol extract of DE particles followed by loading with oleic acid. As observed in vivo, this led to increased triglyceride content and significant downregulation of ACAD9 mRNA expression. Treatment of HepG2 cells with DE particles and oleic acid did not alter de novo lipogenesis but inhibited total, mitochondrial, and ATP-linked oxygen consumption rate, indicative of mitochondrial dysfunction. Treatment of isolated mitochondria, prepared from mouse liver, with DE particles and oleic acid also inhibited mitochondrial complex activity and β-oxidation. CONCLUSIONS DE exposure leads to dyslipidemia and liver steatosis in ApoE knockout mice, likely due to mitochondrial dysfunction and decreased lipid catabolism.
Collapse
Affiliation(s)
- Fen Yin
- Division of Cardiology, David Geffen School of Medicine at University of California Los Angeles, 10833 Le Conte Avenue, CHS 43-264, Los Angeles, CA
| | - Rajat Gupta
- Division of Cardiology, David Geffen School of Medicine at University of California Los Angeles, 10833 Le Conte Avenue, CHS 43-264, Los Angeles, CA
| | - Laurent Vergnes
- Department of Human Genetics, David Geffen School of Medicine at University of California Los Angeles, 659 Charles E. Young Drive South, Los Angeles, CA
| | | | - Jerry Ricks
- Department of Pathology, University of Washington, Seattle, WA
| | - Gajalakshmi Ramanathan
- Division of Cardiology, David Geffen School of Medicine at University of California Los Angeles, 10833 Le Conte Avenue, CHS 43-264, Los Angeles, CA
| | - James A. Stewart
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA
| | - Diana M. Shih
- Division of Cardiology, David Geffen School of Medicine at University of California Los Angeles, 10833 Le Conte Avenue, CHS 43-264, Los Angeles, CA
| | - Kym F. Faull
- Pasarow Mass Spectrometry Laboratory, Semel Institute for Neuroscience and Human Behavior and Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at University of California Los Angeles, 760 Westwood Boulevard, Los Angeles, CA
| | - Simon W. Beaven
- Division of Gastroenterology, David Geffen School of Medicine at University of California Los Angeles, 10833 Le Conte Avenue, CHS 44-144, Los Angeles, CA
| | - Aldons J. Lusis
- Division of Cardiology, David Geffen School of Medicine at University of California Los Angeles, 10833 Le Conte Avenue, CHS 43-264, Los Angeles, CA
- Department of Human Genetics, David Geffen School of Medicine at University of California Los Angeles, 659 Charles E. Young Drive South, Los Angeles, CA
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine at University of California Los Angeles, 659 Charles E. Young Drive South, Los Angeles, CA
| | - Michael E. Rosenfeld
- Department of Pathology, University of Washington, Seattle, WA
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA
| | - Jesus A. Araujo
- Division of Cardiology, David Geffen School of Medicine at University of California Los Angeles, 10833 Le Conte Avenue, CHS 43-264, Los Angeles, CA
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, 10833 Le Conte Avenue, CHS 43-264, Los Angeles, CA
| |
Collapse
|
18
|
Repp BM, Mastantuono E, Alston CL, Schiff M, Haack TB, Rötig A, Ardissone A, Lombès A, Catarino CB, Diodato D, Schottmann G, Poulton J, Burlina A, Jonckheere A, Munnich A, Rolinski B, Ghezzi D, Rokicki D, Wellesley D, Martinelli D, Wenhong D, Lamantea E, Ostergaard E, Pronicka E, Pierre G, Smeets HJM, Wittig I, Scurr I, de Coo IFM, Moroni I, Smet J, Mayr JA, Dai L, de Meirleir L, Schuelke M, Zeviani M, Morscher RJ, McFarland R, Seneca S, Klopstock T, Meitinger T, Wieland T, Strom TM, Herberg U, Ahting U, Sperl W, Nassogne MC, Ling H, Fang F, Freisinger P, Van Coster R, Strecker V, Taylor RW, Häberle J, Vockley J, Prokisch H, Wortmann S. Clinical, biochemical and genetic spectrum of 70 patients with ACAD9 deficiency: is riboflavin supplementation effective? Orphanet J Rare Dis 2018; 13:120. [PMID: 30025539 PMCID: PMC6053715 DOI: 10.1186/s13023-018-0784-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 03/09/2018] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Mitochondrial acyl-CoA dehydrogenase family member 9 (ACAD9) is essential for the assembly of mitochondrial respiratory chain complex I. Disease causing biallelic variants in ACAD9 have been reported in individuals presenting with lactic acidosis and cardiomyopathy. RESULTS We describe the genetic, clinical and biochemical findings in a cohort of 70 patients, of whom 29 previously unpublished. We found 34 known and 18 previously unreported variants in ACAD9. No patients harbored biallelic loss of function mutations, indicating that this combination is unlikely to be compatible with life. Causal pathogenic variants were distributed throughout the entire gene, and there was no obvious genotype-phenotype correlation. Most of the patients presented in the first year of life. For this subgroup the survival was poor (50% not surviving the first 2 years) comparing to patients with a later presentation (more than 90% surviving 10 years). The most common clinical findings were cardiomyopathy (85%), muscular weakness (75%) and exercise intolerance (72%). Interestingly, severe intellectual deficits were only reported in one patient and severe developmental delays in four patients. More than 70% of the patients were able to perform the same activities of daily living when compared to peers. CONCLUSIONS Our data show that riboflavin treatment improves complex I activity in the majority of patient-derived fibroblasts tested. This effect was also reported for most of the treated patients and is mirrored in the survival data. In the patient group with disease-onset below 1 year of age, we observed a statistically-significant better survival for patients treated with riboflavin.
Collapse
Affiliation(s)
- Birgit M. Repp
- 0000000123222966grid.6936.aInstitute of Human Genetics, Technische Universität München, Trogerstrasse 32, 81675 Munich, Germany ,0000 0004 0483 2525grid.4567.0Institute of Human Genetics, Helmholtz Zentrum München, Munich, Germany
| | - Elisa Mastantuono
- 0000000123222966grid.6936.aInstitute of Human Genetics, Technische Universität München, Trogerstrasse 32, 81675 Munich, Germany ,0000 0004 0483 2525grid.4567.0Institute of Human Genetics, Helmholtz Zentrum München, Munich, Germany
| | - Charlotte L. Alston
- 0000 0001 0462 7212grid.1006.7Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK
| | - Manuel Schiff
- 0000 0001 2217 0017grid.7452.4UMR1141, PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, 75019 Paris, France ,0000 0004 1937 0589grid.413235.2Reference Center for Inborn Errors of Metabolism, Robert Debré University Hospital, APHP, 75019 Paris, France
| | - Tobias B. Haack
- 0000000123222966grid.6936.aInstitute of Human Genetics, Technische Universität München, Trogerstrasse 32, 81675 Munich, Germany ,0000 0001 2190 1447grid.10392.39Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Agnes Rötig
- 0000 0001 2188 0914grid.10992.33UMR1163, Université Paris Descartes, Sorbonne Paris Cité, Institut IMAGINE, 24 Boulevard du Montparnasse, 75015 Paris, France
| | - Anna Ardissone
- 0000 0001 0707 5492grid.417894.7Unit of Molecular Neurogenetics, Fondazione Istituto Neurologico “Carlo Besta”, Milan, Italy ,0000 0001 0707 5492grid.417894.7Child Neurology, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milan, Italy ,0000 0001 2174 1754grid.7563.7Department of Molecular and Translational Medicine DIMET, University of Milan-Bicocca, Milan, Italy
| | - Anne Lombès
- 0000 0004 0643 431Xgrid.462098.1INSERM U1016, Institut Cochin, Paris, France
| | - Claudia B. Catarino
- 0000 0004 1936 973Xgrid.5252.0Department of Neurology, Friedrich-Baur-Institute, University Hospital of the Ludwig-Maximilians-Universität München, Munich, Germany
| | - Daria Diodato
- 0000 0001 0727 6809grid.414125.7Muscular and Neurodegenerative Disorders Unit, Bambino Gesu´ Children’s Hospital, IRCCS, Rome, Italy
| | - Gudrun Schottmann
- NeuroCure Clinical Research Center (NCRC), Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Joanna Poulton
- Nuffield Department of Women’s and Reproductive Health, University of Oxford, The Women’s Centre, John Radcliffe Hospital, Oxford, UK
| | - Alberto Burlina
- 0000 0004 1760 2630grid.411474.3Division of Inherited Metabolic Diseases, Department of Paediatrics, University Hospital of Padova, Padova, Italy
| | - An Jonckheere
- 0000 0004 0626 3418grid.411414.5Department of Pediatrics, Antwerp University Hospital, Edegem, Belgium
| | - Arnold Munnich
- 0000 0001 2188 0914grid.10992.33UMR1163, Université Paris Descartes, Sorbonne Paris Cité, Institut IMAGINE, 24 Boulevard du Montparnasse, 75015 Paris, France
| | | | - Daniele Ghezzi
- 0000 0001 0707 5492grid.417894.7Unit of Molecular Neurogenetics, Fondazione Istituto Neurologico “Carlo Besta”, Milan, Italy ,0000 0004 1757 2822grid.4708.bDepartment of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Dariusz Rokicki
- 0000 0001 2232 2498grid.413923.eDepartment of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Diana Wellesley
- 0000 0004 0641 6277grid.415216.5Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, UK
| | - Diego Martinelli
- 0000 0001 0727 6809grid.414125.7Genetics and Rare Diseases Research Division, Unit of Metabolism, Bambino Gesù Children’s Research Hospital, Rome, Italy
| | - Ding Wenhong
- Department of Pediatric cardiology, Beijing Anzhe Hospital, Captital Medical University, Beijing, China
| | - Eleonora Lamantea
- 0000 0001 0707 5492grid.417894.7Unit of Molecular Neurogenetics, Fondazione Istituto Neurologico “Carlo Besta”, Milan, Italy
| | - Elsebet Ostergaard
- grid.475435.4Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Ewa Pronicka
- 0000 0001 2232 2498grid.413923.eDepartment of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Germaine Pierre
- 0000 0004 0399 4960grid.415172.4South West Regional Metabolic Department, Bristol Royal Hospital for Children, Bristol, BS1 3NU UK
| | - Hubert J. M. Smeets
- 0000 0004 0480 1382grid.412966.eDepartment of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Ilka Wittig
- 0000 0004 1936 9721grid.7839.5Functional Proteomics, SFB 815 Core Unit, Faculty of Medicine, Goethe-University, Frankfurt am Main, Germany
| | - Ingrid Scurr
- grid.416544.6Department of Clinical Genetics, St Michael’s Hospital, Bristol, UK
| | - Irenaeus F. M. de Coo
- 000000040459992Xgrid.5645.2Department of Neurology, Erasmus MC, Rotterdam, Netherlands ,0000 0004 0480 1382grid.412966.eDepartment of Clinical Genetics, Research School GROW, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Isabella Moroni
- 0000 0001 0707 5492grid.417894.7Child Neurology, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milan, Italy
| | - Joél Smet
- 0000 0004 0626 3303grid.410566.0Department of Pediatric Neurology and Metabolism, Ghent University Hospital, De Pintelaan, Ghent, Belgium
| | - Johannes A. Mayr
- 0000 0000 9803 4313grid.415376.2Department of Pediatrics, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), Salzburg, Austria
| | - Lifang Dai
- 0000 0004 0369 153Xgrid.24696.3fDepartment of Neurology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Linda de Meirleir
- 0000 0001 2290 8069grid.8767.eResearch Group Reproduction and Genetics, Vrije Universiteit Brussel, Brussels, Belgium ,0000 0001 2290 8069grid.8767.eDepartment of Pediatric Neurology, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Markus Schuelke
- NeuroCure Clinical Research Center (NCRC), Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Massimo Zeviani
- 0000 0004 0427 1414grid.462573.1MRC-Mitochondrial Biology Unit, Cambridge, Cambridgeshire UK
| | - Raphael J. Morscher
- 0000 0000 9803 4313grid.415376.2Department of Pediatrics, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), Salzburg, Austria ,0000 0000 8853 2677grid.5361.1Division of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - Robert McFarland
- 0000 0001 0462 7212grid.1006.7Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK
| | - Sara Seneca
- 0000 0001 2290 8069grid.8767.eCenter for Medical Genetics, UZ Brussel, Research Group Reproduction and Genetics (REGE), Vrije Universiteit Brussel, Brussels, Belgium
| | - Thomas Klopstock
- 0000 0004 1936 973Xgrid.5252.0Department of Neurology, Friedrich-Baur-Institute, University Hospital of the Ludwig-Maximilians-Universität München, Munich, Germany ,0000 0004 0438 0426grid.424247.3German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.452617.3Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Thomas Meitinger
- 0000000123222966grid.6936.aInstitute of Human Genetics, Technische Universität München, Trogerstrasse 32, 81675 Munich, Germany ,0000 0004 0483 2525grid.4567.0Institute of Human Genetics, Helmholtz Zentrum München, Munich, Germany ,grid.452617.3Munich Cluster of Systems Neurology (SyNergy), Munich, Germany ,0000 0004 5937 5237grid.452396.fDZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Thomas Wieland
- 0000 0004 0483 2525grid.4567.0Institute of Human Genetics, Helmholtz Zentrum München, Munich, Germany
| | - Tim M. Strom
- 0000000123222966grid.6936.aInstitute of Human Genetics, Technische Universität München, Trogerstrasse 32, 81675 Munich, Germany ,0000 0004 0483 2525grid.4567.0Institute of Human Genetics, Helmholtz Zentrum München, Munich, Germany
| | - Ulrike Herberg
- 0000 0001 2240 3300grid.10388.32Department of Pediatric Cardiology, University of Bonn, Bonn, Germany
| | - Uwe Ahting
- 0000000123222966grid.6936.aInstitute of Human Genetics, Technische Universität München, Trogerstrasse 32, 81675 Munich, Germany
| | - Wolfgang Sperl
- 0000 0000 9803 4313grid.415376.2Department of Pediatrics, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), Salzburg, Austria
| | - Marie-Cecile Nassogne
- 0000 0004 0461 6320grid.48769.34Université Catholique de Louvain, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Han Ling
- Department of Pediatric cardiology, Beijing Anzhe Hospital, Captital Medical University, Beijing, China
| | - Fang Fang
- 0000 0004 0369 153Xgrid.24696.3fDepartment of Neurology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Peter Freisinger
- Department of Pediatrics, Klinikum Reutlingen, Reutlingen, Germany
| | - Rudy Van Coster
- 0000 0004 0626 3303grid.410566.0Department of Pediatric Neurology and Metabolism, Ghent University Hospital, De Pintelaan, Ghent, Belgium
| | - Valentina Strecker
- 0000 0004 1936 9721grid.7839.5Functional Proteomics, SFB 815 Core Unit, Faculty of Medicine, Goethe-University, Frankfurt am Main, Germany
| | - Robert W. Taylor
- 0000 0001 0462 7212grid.1006.7Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK
| | - Johannes Häberle
- 0000 0001 0726 4330grid.412341.1Division of Metabolism and Children’s Research Center, University Children’s Hospital, Zurich, Switzerland
| | - Jerry Vockley
- Department of Pediatrics, University of Pittsburgh School of Medicine, University of Pittsburgh, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, USA
| | - Holger Prokisch
- 0000000123222966grid.6936.aInstitute of Human Genetics, Technische Universität München, Trogerstrasse 32, 81675 Munich, Germany ,0000 0004 0483 2525grid.4567.0Institute of Human Genetics, Helmholtz Zentrum München, Munich, Germany
| | - Saskia Wortmann
- 0000000123222966grid.6936.aInstitute of Human Genetics, Technische Universität München, Trogerstrasse 32, 81675 Munich, Germany ,0000 0004 0483 2525grid.4567.0Institute of Human Genetics, Helmholtz Zentrum München, Munich, Germany ,0000 0000 9803 4313grid.415376.2Department of Pediatrics, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), Salzburg, Austria
| |
Collapse
|
19
|
Formosa LE, Dibley MG, Stroud DA, Ryan MT. Building a complex complex: Assembly of mitochondrial respiratory chain complex I. Semin Cell Dev Biol 2018; 76:154-162. [DOI: 10.1016/j.semcdb.2017.08.011] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/26/2017] [Accepted: 08/04/2017] [Indexed: 10/19/2022]
|
20
|
Jiang P, Fang X, Zhao Z, Yu X, Sun B, Yu H, Yang R. The effect of short/branched chain acyl-coenzyme A dehydrogenase gene on triglyceride synthesis of bovine mammary epithelial cells. Arch Anim Breed 2018. [DOI: 10.5194/aab-61-115-2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Abstract. Short/branched chain acyl-CoA dehydrogenase (ACADSB) is a member of
the acyl-CoA dehydrogenase family of enzymes that catalyze the
dehydrogenation of acyl-CoA derivatives in the metabolism of fatty
acids. Our previous transcriptome analysis in dairy cattle showed
that ACADSB was differentially expressed and was associated with milk
fat metabolism. The aim of this study was to elucidate the
background of this differential expression and to evaluate the role
of ACADSB as a candidate for fat metabolism in dairy cattle. After
analysis of ACADSB mRNA abundance by qRT-PCR and Western blot,
overexpression and RNA interference (RNAi) vectors of ACADSB gene
were constructed and then transfected into bovine mammary
epithelial cells (bMECs) to examine the effects of ACADSB on
milk fat synthesis. The results showed that the ACADSB was
differentially expressed in mammary tissue of low and high milk fat
dairy cattle. Overexpression of ACADSB gene could significantly
increase the level of intracellular triglyceride (TG), while ACADSB
gene knockdown could significantly reduce the TG synthesis
in bMECs. This study suggested that the ACADSB was important in
TG synthesis in bMECs, and it could be a candidate gene
to regulate the metabolism of milk fat in dairy cattle.
Collapse
|
21
|
Severe riboflavin deficiency induces alterations in the hepatic proteome of starter Pekin ducks. Br J Nutr 2017; 118:641-650. [PMID: 29185933 DOI: 10.1017/s0007114517002641] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Suboptimal vitamin B2 status is encountered globally. Riboflavin deficiency depresses growth and results in a fatty liver. The underlying mechanisms remain to be established and an overview of molecular alterations is lacking. We investigated hepatic proteome changes induced by riboflavin deficiency to explain its effects on growth and hepatic lipid metabolism. In all, 360 1-d-old Pekin ducks were divided into three groups of 120 birds each, with twelve replicates and ten birds per replicate. For 21 d, the ducks were fed ad libitum a control diet (CAL), a riboflavin-deficient diet (RD) or were pair-fed with the control diet to the mean daily intake of the RD group (CPF). When comparing RD with CAL and CPF, growth depression, liver enlargement, liver lipid accumulation and enhanced liver SFA (C6 : 0, C12 : 0, C16 : 0, C18 : 0) were observed. In RD, thirty-two proteins were enhanced and thirty-one diminished (>1·5-fold) compared with CAL and CPF. Selected proteins were confirmed by Western blotting. The diminished proteins are mainly involved in fatty acid β-oxidation and the mitochondrial electron transport chain (ETC), whereas the enhanced proteins are mainly involved in TAG and cholesterol biosynthesis. RD causes liver lipid accumulation and growth depression probably by impairing fatty acid β-oxidation and ETC. These findings contribute to our understanding of the mechanisms of liver lipid metabolic disorders due to RD.
Collapse
|
22
|
Advances in the Understanding and Treatment of Mitochondrial Fatty Acid Oxidation Disorders. CURRENT GENETIC MEDICINE REPORTS 2017; 5:132-142. [PMID: 29177110 DOI: 10.1007/s40142-017-0125-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Purpose of review This review focuses on advances made in the past three years with regards to understanding the mitochondrial fatty acid oxidation (FAO) pathway, the pathophysiological ramifications of genetic lesions in FAO enzymes, and emerging therapies for FAO disorders. Recent findings FAO has now been recognized to play a key energetic role in pulmonary surfactant synthesis, T-cell differentiation and memory, and the response of the proximal tubule to kidney injury. Patients with FAO disorders may face defects in these cellular systems as they age. Aspirin, statins, and nutritional supplements modulate the rate of FAO under normal conditions and could be risk factors for triggering symptoms in patients with FAO disorders. Patients have been identified with mutations in the ACAD9 and ECHS1 genes, which may represent new FAO disorders. New interventions for long-chain FAODs are in clinical trials. Finally, post-translational modifications that regulate fatty acid oxidation protein activities have been characterized that represent important new therapeutic targets. Summary Recent research has led to a deeper understanding of FAO. New therapeutic avenues are being pursued that may ultimately cause a paradigm shift for patient care.
Collapse
|
23
|
Zeng J, Deng S, Wang Y. Identification of the Catalytic Residue of Rat Acyl-CoA Dehydrogenase 9 by Site-Directed Mutagenesis. Appl Biochem Biotechnol 2017; 182:1198-1207. [DOI: 10.1007/s12010-016-2392-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 12/29/2016] [Indexed: 10/20/2022]
|
24
|
Schrank B, Schoser B, Klopstock T, Schneiderat P, Horvath R, Abicht A, Holinski-Feder E, Augustis S. Lifetime exercise intolerance with lactic acidosis as key manifestation of novel compound heterozygous ACAD9 mutations causing complex I deficiency. Neuromuscul Disord 2017; 27:473-476. [PMID: 28279569 DOI: 10.1016/j.nmd.2017.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 02/03/2017] [Accepted: 02/08/2017] [Indexed: 10/20/2022]
Abstract
We report a 36-year-old female having lifetime exercise intolerance and lactic acidosis with nausea associated with novel compound heterozygous Acyl-CoA dehydrogenase 9 gene (ACAD9) mutations (p.Ala390Thr and p.Arg518Cys). ACAD9 is an assembly factor for the mitochondrial respiratory chain complex I. ACAD9 mutations are recognized as frequent causes of complex I deficiency. Our patient presented with exercise intolerance, rapid fatigue, and nausea since early childhood. Mild physical workload provoked the occurrence of nausea and vomiting repeatedly. Her neurological examination, laboratory findings and muscle biopsy demonstrated no abnormalities. A bicycle spiroergometry provoked significant lactic acidosis during and following exercise pointing towards a mitochondrial disorder. Subsequently, the analysis of respiratory chain enzyme activities in muscle revealed severe isolated complex I deficiency. Candidate gene sequencing revealed two novel heterozygous ACAD9 mutations. This patient report expands the mutational and phenotypic spectrum of diseases associated with mutations in ACAD9.
Collapse
Affiliation(s)
- Bertold Schrank
- Department of Neurology, DKD HELIOS Medical Center Wiesbaden, Wiesbaden, Germany
| | - Benedikt Schoser
- Friedrich-Baur-Institute, Department of Neurology, University Hospital of LMU Munich, Munich, Germany
| | - Thomas Klopstock
- Friedrich-Baur-Institute, Department of Neurology, University Hospital of LMU Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Peter Schneiderat
- Friedrich-Baur-Institute, Department of Neurology, University Hospital of LMU Munich, Munich, Germany
| | - Rita Horvath
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | | | - Sarunas Augustis
- Department of Neurology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| |
Collapse
|
25
|
Aintablian HK, Narayanan V, Belnap N, Ramsey K, Grebe TA. An atypical presentation of ACAD9 deficiency: Diagnosis by whole exome sequencing broadens the phenotypic spectrum and alters treatment approach. Mol Genet Metab Rep 2016; 10:38-44. [PMID: 28070495 PMCID: PMC5219625 DOI: 10.1016/j.ymgmr.2016.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/17/2016] [Accepted: 12/17/2016] [Indexed: 11/04/2022] Open
Abstract
Acyl-CoA dehydrogenase 9 (ACAD9), linked to chromosome 3q21.3, is one of a family of multimeric mitochondrial flavoenzymes that catalyze the degradation of fatty acyl-CoA from the carnitine shuttle via β-oxidation (He et al. 2007). ACAD9, specifically, is implicated in the processing of palmitoyl-CoA and long-chain unsaturated substrates, but unlike other acyl-CoA dehydrogenases (ACADs), it has a significant role in mitochondrial complex I assembly (Nouws et al. 2010 & 2014). Mutations in this enzyme typically cause mitochondrial complex I deficiency, as well as a mild defect in long chain fatty acid metabolism (Haack et al. 2010, Kirby et al. 2004, Mcfarland et al. 2003, Nouws et al. 2010 & 2014). The clinical phenotype of ACAD9 deficiency and the associated mitochondrial complex I deficiency reflect this unique duality, and symptoms are variable in severity and onset. Patients classically present with cardiac dysfunction due to hypertrophic cardiomyopathy. Other common features include Leigh syndrome, macrocephaly, and liver disease (Robinson et al. 1998). We report the case of an 11-month old girl presenting with microcephaly, dystonia, and lactic acidosis, concerning for a mitochondrial disorder, but atypical for ACAD9 deficiency. Muscle biopsy showed mitochondrial proliferation, but normal mitochondrial complex I activity. The diagnosis of ACAD9 deficiency was not initially considered, due both to these findings and to her atypical presentation. Biochemical assay for ACAD9 deficiency is not clinically available. Family trio-based whole exome sequencing (WES) identified 2 compound heterozygous mutations in the ACAD9 gene. This discovery led to optimized treatment of her mitochondrial dysfunction, and supplementation with riboflavin, resulting in clinical improvement. There have been fewer than 25 reported cases of ACAD9 deficiency in the literature to date. We review these and compare them to the unique features of our patient. ACAD9 deficiency should be considered in the differential diagnosis of patients with lactic acidosis, seizures, and other symptoms of mitochondrial disease, including those with normal mitochondrial enzyme activities. This case demonstrates the utility of WES, in conjunction with biochemical testing, for the appropriate diagnosis and treatment of disorders of energy metabolism.
Collapse
Affiliation(s)
- H K Aintablian
- Phoenix Children's Hospital, Division of Genetics and Metabolism, United States; Phoenix Children's Hospital Rosenberg Children's Medical Building 1920 E. Cambridge Ave Ste 301 Phoenix, AZ 85006, United States
| | - V Narayanan
- Tgen's Center for Rare Childhood Disorders (C4RCD), United States; Tgen 445 N 5th St, Phoenix, AZ 85004, United States
| | - N Belnap
- Tgen's Center for Rare Childhood Disorders (C4RCD), United States; Tgen 445 N 5th St, Phoenix, AZ 85004, United States
| | - K Ramsey
- Tgen's Center for Rare Childhood Disorders (C4RCD), United States; Tgen 445 N 5th St, Phoenix, AZ 85004, United States
| | - T A Grebe
- Phoenix Children's Hospital, Division of Genetics and Metabolism, United States; Phoenix Children's Hospital Rosenberg Children's Medical Building 1920 E. Cambridge Ave Ste 301 Phoenix, AZ 85006, United States
| |
Collapse
|
26
|
Deep Sequencing Reveals Novel Genetic Variants in Children with Acute Liver Failure and Tissue Evidence of Impaired Energy Metabolism. PLoS One 2016; 11:e0156738. [PMID: 27483465 PMCID: PMC4970743 DOI: 10.1371/journal.pone.0156738] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 05/10/2016] [Indexed: 01/21/2023] Open
Abstract
Background & Aims The etiology of acute liver failure (ALF) remains elusive in almost half of affected children. We hypothesized that inherited mitochondrial and fatty acid oxidation disorders were occult etiological factors in patients with idiopathic ALF and impaired energy metabolism. Methods Twelve patients with elevated blood molar lactate/pyruvate ratio and indeterminate etiology were selected from a retrospective cohort of 74 subjects with ALF because their fixed and frozen liver samples were available for histological, ultrastructural, molecular and biochemical analysis. Results A customized next-generation sequencing panel for 26 genes associated with mitochondrial and fatty acid oxidation defects revealed mutations and sequence variants in five subjects. Variants involved the genes ACAD9, POLG, POLG2, DGUOK, and RRM2B; the latter not previously reported in subjects with ALF. The explanted livers of the patients with heterozygous, truncating insertion mutations in RRM2B showed patchy micro- and macrovesicular steatosis, decreased mitochondrial DNA (mtDNA) content <30% of controls, and reduced respiratory chain complex activity; both patients had good post-transplant outcome. One infant with severe lactic acidosis was found to carry two heterozygous variants in ACAD9, which was associated with isolated complex I deficiency and diffuse hypergranular hepatocytes. The two subjects with heterozygous variants of unknown clinical significance in POLG and DGUOK developed ALF following drug exposure. Their hepatocytes displayed abnormal mitochondria by electron microscopy. Conclusion Targeted next generation sequencing and correlation with histological, ultrastructural and functional studies on liver tissue in children with elevated lactate/pyruvate ratio expand the spectrum of genes associated with pediatric ALF.
Collapse
|
27
|
Dewulf JP, Barrea C, Vincent MF, De Laet C, Van Coster R, Seneca S, Marie S, Nassogne MC. Evidence of a wide spectrum of cardiac involvement due to ACAD9 mutations: Report on nine patients. Mol Genet Metab 2016; 118:185-189. [PMID: 27233227 DOI: 10.1016/j.ymgme.2016.05.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/08/2016] [Accepted: 05/08/2016] [Indexed: 11/17/2022]
Abstract
Acyl-CoA dehydrogenase 9 (ACAD9) is a mitochondrial protein involved in oxidative phosphorylation complex I biogenesis. This protein also exhibits acyl-CoA dehydrogenase (ACAD) activity. ACAD9-mutated patients have been reported to suffer from primarily heart, muscle, liver, and nervous system disorders. ACAD9 mutation is suspected in cases of elevated lactic acid levels combined with complex I deficiency, and confirmed by ACAD9 gene analysis. At least 18 ACAD9-mutated patients have previously been reported, usually displaying severe cardiac involvement. We retrospectively studied nine additional patients from three unrelated families with a wide spectrum of cardiac involvement between the families as well as the patients from the same families. All patients exhibited elevated lactate levels. Deleterious ACAD9 mutations were identified in all patients except one for whom it was not possible to recover DNA. To our knowledge, this is one of the first reports on isolated mild ventricular hypertrophy due to ACAD9 mutation in a family with moderate symptoms during adolescence. This report also confirms that dilated cardiomyopathy may occur in conjunction with ACAD9 mutation and that some patients may respond clinically to riboflavin treatment. Of note, several patients suffered from patent ductus arteriosus (PDA), with one exhibiting a complex congenital heart defect. It is yet unknown whether these cardiac manifestations were related to ACAD9 mutation. In conclusion, this disorder should be suspected in the presence of lactic acidosis, complex I deficiency, and any cardiac involvement, even mild.
Collapse
Affiliation(s)
- Joseph P Dewulf
- Université Catholique de Louvain, Cliniques Universitaires Saint-Luc, Service de Biochimie génétique, B-1200 Brussels, Belgium
| | - Catherine Barrea
- Université Catholique de Louvain, Cliniques Universitaires Saint-Luc, Service de Cardiologie Pédiatrique, B-1200 Brussels, Belgium
| | - Marie-Françoise Vincent
- Université Catholique de Louvain, Cliniques Universitaires Saint-Luc, Service de Biochimie génétique, B-1200 Brussels, Belgium
| | - Corinne De Laet
- Nutrition and Metabolism Unit, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, Belgium
| | - Rudy Van Coster
- Pediatric Neurology, University Hospital, De Pintelaan 185, B-9000 Gent, Belgium
| | - Sara Seneca
- Center for Medical Genetics, UZ Brussel, Research Group for Reproduction and Genetics (VUB), Laarbeeklaan 101, B-1090 Brussels, Belgium
| | - Sandrine Marie
- Université Catholique de Louvain, Cliniques Universitaires Saint-Luc, Service de Biochimie génétique, B-1200 Brussels, Belgium
| | - Marie-Cécile Nassogne
- Université Catholique de Louvain, Cliniques Universitaires Saint-Luc, Service de Neurologie pédiatrique, B-1200 Brussels, Belgium.
| |
Collapse
|
28
|
Lagoutte-Renosi J, Ségalas-Milazzo I, Crahes M, Renosi F, Menu-Bouaouiche L, Torre S, Lardennois C, Rio M, Marret S, Brasse-Lagnel C, Laquerrière A, Bekri S. Lethal Neonatal Progression of Fetal Cardiomegaly Associated to ACAD9 Deficiency. JIMD Rep 2015; 28:1-10. [PMID: 26475292 PMCID: PMC5059192 DOI: 10.1007/8904_2015_499] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/05/2015] [Accepted: 09/17/2015] [Indexed: 12/24/2022] Open
Abstract
ACAD9 (acyl-CoA dehydrogenase 9) is an essential factor for the mitochondrial respiratory chain complex I assembly. ACAD9, a member of acyl-CoA dehydrogenase family, has high homology with VLCAD (very long-chain acyl-CoA dehydrogenase) and harbors a homodimer structure. Recently, patients with ACAD9 deficiency have been described with a wide clinical spectrum ranging from severe lethal form to moderate form with exercise intolerance.We report here a prenatal presentation with intrauterine growth retardation and cardiomegaly, with a fatal outcome shortly after birth. Compound heterozygous mutations, a splice-site mutation - c.1030-1G>T and a missense mutation - c.1249C>T; p.Arg417Cys, were identified in the ACAD9 gene. Their effect on protein structure and expression level was investigated. Protein modeling suggested a functional effect of the c.1030-1G>T mutation generating a non-degraded truncated protein and the p.Arg417Cys, creating an aberrant dimer. Our results underscore the crucial role of ACAD9 protein for cardiac function.
Collapse
Affiliation(s)
- Jennifer Lagoutte-Renosi
- Department of Metabolic Biochemistry, Rouen University Hospital, 1 Rue de Germont, 76031, Rouen, France
| | - Isabelle Ségalas-Milazzo
- UMR 6014 CNRS COBRA, IRCOF, Normandie Université, Institute of Research for Innovation in Biomedicine, University of Rouen, Mont-Saint-Aignan, France
| | - Marie Crahes
- Pathology Laboratory, Rouen University Hospital, Rouen, France
| | - Florian Renosi
- Department of Metabolic Biochemistry, Rouen University Hospital, 1 Rue de Germont, 76031, Rouen, France
| | - Laurence Menu-Bouaouiche
- Glyco-MEV EA 4358, Normandie Université, Institute of Research for Innovation in Biomedicine, University of Rouen, Mont-Saint-Aignan, France
| | - Stéphanie Torre
- NeoVasc Region-Inserm Team ERI28, Laboratory of Microvascular Endothelium and Neonate Brain Lesions, Institute of Research for Innovation in Biomedicine, University of Rouen, Rouen, France
- Department of Neonatology, Rouen University Hospital, Rouen, France
| | | | - Marlène Rio
- Department of Pediatrics and Genetics, Hôpital Necker-Enfants Malades, Paris, France
| | - Stéphane Marret
- NeoVasc Region-Inserm Team ERI28, Laboratory of Microvascular Endothelium and Neonate Brain Lesions, Institute of Research for Innovation in Biomedicine, University of Rouen, Rouen, France
- Department of Neonatology, Rouen University Hospital, Rouen, France
| | - Carole Brasse-Lagnel
- Department of Metabolic Biochemistry, Rouen University Hospital, 1 Rue de Germont, 76031, Rouen, France
- NeoVasc Region-Inserm Team ERI28, Laboratory of Microvascular Endothelium and Neonate Brain Lesions, Institute of Research for Innovation in Biomedicine, University of Rouen, Rouen, France
| | - Annie Laquerrière
- Pathology Laboratory, Rouen University Hospital, Rouen, France
- NeoVasc Region-Inserm Team ERI28, Laboratory of Microvascular Endothelium and Neonate Brain Lesions, Institute of Research for Innovation in Biomedicine, University of Rouen, Rouen, France
| | - Soumeya Bekri
- Department of Metabolic Biochemistry, Rouen University Hospital, 1 Rue de Germont, 76031, Rouen, France.
- NeoVasc Region-Inserm Team ERI28, Laboratory of Microvascular Endothelium and Neonate Brain Lesions, Institute of Research for Innovation in Biomedicine, University of Rouen, Rouen, France.
| |
Collapse
|
29
|
Houten SM, Violante S, Ventura FV, Wanders RJA. The Biochemistry and Physiology of Mitochondrial Fatty Acid β-Oxidation and Its Genetic Disorders. Annu Rev Physiol 2015; 78:23-44. [PMID: 26474213 DOI: 10.1146/annurev-physiol-021115-105045] [Citation(s) in RCA: 489] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mitochondrial fatty acid β-oxidation (FAO) is the major pathway for the degradation of fatty acids and is essential for maintaining energy homeostasis in the human body. Fatty acids are a crucial energy source in the postabsorptive and fasted states when glucose supply is limiting. But even when glucose is abundantly available, FAO is a main energy source for the heart, skeletal muscle, and kidney. A series of enzymes, transporters, and other facilitating proteins are involved in FAO. Recessively inherited defects are known for most of the genes encoding these proteins. The clinical presentation of these disorders may include hypoketotic hypoglycemia, (cardio)myopathy, arrhythmia, and rhabdomyolysis and illustrates the importance of FAO during fasting and in hepatic and (cardio)muscular function. In this review, we present the current state of knowledge on the biochemistry and physiological functions of FAO and discuss the pathophysiological processes associated with FAO disorders.
Collapse
Affiliation(s)
- Sander M Houten
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029; ,
| | - Sara Violante
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029; ,
| | - Fatima V Ventura
- Metabolism and Genetics Group, Research Institute for Medicines and Pharmaceutical Sciences, iMed.ULisboa, 1649-003 Lisboa, Portugal; .,Department of Biochemistry and Human Biology, Faculty of Pharmacy, University of Lisbon, 1649-003 Lisboa, Portugal
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, University of Amsterdam, 1100 DE Amsterdam, The Netherlands; .,Department of Pediatrics, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
30
|
Schrader M, Costello J, Godinho LF, Islinger M. Peroxisome-mitochondria interplay and disease. J Inherit Metab Dis 2015; 38:681-702. [PMID: 25687155 DOI: 10.1007/s10545-015-9819-7] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/21/2015] [Accepted: 01/26/2015] [Indexed: 12/16/2022]
Abstract
Peroxisomes and mitochondria are ubiquitous, highly dynamic organelles with an oxidative type of metabolism in eukaryotic cells. Over the years, substantial evidence has been provided that peroxisomes and mitochondria exhibit a close functional interplay which impacts on human health and development. The so-called "peroxisome-mitochondria connection" includes metabolic cooperation in the degradation of fatty acids, a redox-sensitive relationship, an overlap in key components of the membrane fission machineries and cooperation in anti-viral signalling and defence. Furthermore, combined peroxisome-mitochondria disorders with defects in organelle division have been revealed. In this review, we present the latest progress in the emerging field of peroxisomal and mitochondrial interplay in mammals with a particular emphasis on cooperative fatty acid β-oxidation, redox interplay, organelle dynamics, cooperation in anti-viral signalling and the resulting implications for disease.
Collapse
Affiliation(s)
- Michael Schrader
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK,
| | | | | | | |
Collapse
|
31
|
Keller L, Plaza A, Dubiella C, Groll M, Kaiser M, Müller R. Macyranones: Structure, Biosynthesis, and Binding Mode of an Unprecedented Epoxyketone that Targets the 20S Proteasome. J Am Chem Soc 2015; 137:8121-30. [PMID: 26050527 DOI: 10.1021/jacs.5b03833] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In our screening efforts to identify unique scaffolds from myxobacteria for the drug discovery process, we used LC-SPE-NMR-MS techniques to isolate six linear peptides, termed macyranone A-F, from Cystobacter fuscus MCy9118. The macyranones are characterized by a rare 2-methylmalonamide moiety and an α-amino ketone fragment including an α',β'-epoxyketone in macyranone A. Gene disruption experiments confirmed the biosynthetic gene cluster of the macyranones as PKS/NRPS hybrid. Detailed in silico and phylogenetic analysis unraveled that the biosynthesis involves two conspicuous amide bond formations accomplished by an amidotransferase and a unique condensation domain. The gene cluster provides further insights into the formation of the powerful epoxyketone residue involving an acyl-CoA dehydrogenase and an unconventional free-standing thioesterase. Macyranone A was found to inhibit the chymotrypsin-like activity of the yeast 20S proteasome with an IC50 of 5.9 nM and the human constitutive proteasome and immunoproteasome with IC50 values of 21 and 15 nM, respectively. The β5 subunit of the 20S proteasome was characterized as target by X-ray crystallography revealing an irreversible binding mode similar to the natural product epoxomicin. The presence of the methylmalonamide residue facilitates the stabilization of macyranone A with the active β5 subunit of the proteasome. Macyranone A exhibits a potent inhibitory effect against the parasites Trypanosoma brucei rhodesiense and Leishmania donovani with IC50 values of 1.55 and 0.22 μM, respectively.
Collapse
Affiliation(s)
- Lena Keller
- †Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Pharmaceutical Biotechnology, Saarland University, Campus C2 3, 66123 Saarbrücken, Germany.,∥German Center for Infection Research (DZIF), Partner site Hannover-Braunschweig 38124, Germany
| | - Alberto Plaza
- †Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Pharmaceutical Biotechnology, Saarland University, Campus C2 3, 66123 Saarbrücken, Germany.,∥German Center for Infection Research (DZIF), Partner site Hannover-Braunschweig 38124, Germany
| | - Christian Dubiella
- ⊥Center for Integrated Protein Science Munich (CIPSM), Department für Chemie, Technische Universität München, Lichtenbergstraße 4, 85747 Garching, Germany
| | - Michael Groll
- ⊥Center for Integrated Protein Science Munich (CIPSM), Department für Chemie, Technische Universität München, Lichtenbergstraße 4, 85747 Garching, Germany
| | - Marcel Kaiser
- §Swiss Tropical and Public Health Institute (Swiss TPH), Socinstraße 57, CH-4002 Basel, Switzerland.,‡University of Basel, Petersplatz 1, CH-4003 Basel, Switzerland
| | - Rolf Müller
- †Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Pharmaceutical Biotechnology, Saarland University, Campus C2 3, 66123 Saarbrücken, Germany.,∥German Center for Infection Research (DZIF), Partner site Hannover-Braunschweig 38124, Germany
| |
Collapse
|
32
|
Kinetic and spectral properties of isovaleryl-CoA dehydrogenase and interaction with ligands. Biochimie 2014; 108:108-19. [PMID: 25450250 DOI: 10.1016/j.biochi.2014.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 11/10/2014] [Indexed: 11/21/2022]
Abstract
Isovaleryl-CoA dehydrogenase (IVD) catalyzes the conversion of isovaleryl-CoA to 3-methylcrotonyl-CoA and the transfer of electrons to the electron transfer flavoprotein (ETF). Recombinant human IVD purifies with bound CoA-persulfide. A modified purification protocol was developed to isolate IVD without bound CoA-persulfide and to protect the protein thiols from oxidation. The CoA-persulfide-free IVD specific activity was 112.5 μmol porcine ETF min(-)(1) mg(-)(1), which was ∼20-fold higher than that of its CoA-persulfide bound form. The Km and catalytic efficiency (kcat/Km) for isovaleryl-CoA were 1.0 μM and 4.3 × 10(6) M(-1) s(-1) per monomer, respectively, and its Km for ETF was 2.0 μM. Anaerobic titration of isovaleryl-CoA into an IVD solution resulted in a stable blue complex with increased absorbance at 310 nm, decreased absorbance at 373 and 447 nm, and the appearance of the charge transfer complex band at 584 nm. The apparent dissociation constant (KDapp) determined spectrally for isovaleryl-CoA was 0.54 μM. Isovaleryl-CoA, acetoacetyl-CoA, methylenecyclopropyl-acetyl-CoA, and ETF induced CD spectral changes at the 250-500 nm region while isobutyryl-CoA did not, suggesting conformational changes occur at the flavin ring that are ligand specific. Replacement of the IVD Trp166 with a Phe did not block IVD interaction with ETF, indicating that its indole ring is not essential for electron transfer to ETF. A twelve amino acid synthetic peptide that matches the sequence of the ETF docking peptide competitively inhibited the enzyme reaction when ETF was used as the electron acceptor with a Ki of 1.5 mM.
Collapse
|
33
|
Nouws J, te Brinke H, Nijtmans LG, Houten SM. ACAD9, a complex I assembly factor with a moonlighting function in fatty acid oxidation deficiencies. Hum Mol Genet 2013; 23:1311-9. [DOI: 10.1093/hmg/ddt521] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
34
|
Salem M, Manor ML, Aussanasuwannakul A, Kenney PB, Weber GM, Yao J. Effect of sexual maturation on muscle gene expression of rainbow trout: RNA-Seq approach. Physiol Rep 2013; 1:e00120. [PMID: 24303187 PMCID: PMC3841051 DOI: 10.1002/phy2.120] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 09/10/2013] [Accepted: 09/11/2013] [Indexed: 11/28/2022] Open
Abstract
Muscle degradation occurs as a response to various physiological states that are regulated by specific molecular mechanisms. Previously, we characterized the metabolic changes of muscle deterioration of the female rainbow trout at full sexual maturity and spawning (Salem et al., Physiol. Genomics 2006;28:33–45; J. Proteomics 2010;73:778–789). Muscle deterioration in this model represents nutrient mobilization as a response to the energetic overdemands of the egg/ovarian growth phase. Our recent studies showed that most of the changes in muscle growth and quality start 2–3 months before spawning. Gravid fish exhibited reduced intramuscular fat that is lower in saturated and monounsaturated fatty acids and higher in polyunsaturated fatty acids compared to sterile fish. In this study, RNA-Seq was used to explain the mechanisms underlying changes during this phase of sexual maturity. Furthermore, to minimize changes due to nutrient deficits, fish were fed on a high-plane of nutrition. The RNA-Seq technique identified a gene expression signature that is consistent with metabolic changes of gravid fish. Gravid fish exhibited increased abundance of transcripts in metabolic pathways of fatty acid degradation and up-regulated expression of genes involved in biosynthesis of unsaturated fatty acids. In addition, increased expression of genes involved in the citric acid cycle and oxidative phosphorylation was observed for gravid fish. This muscle transcriptomic signature of fish fed on a high nutritional plane is quite distinct from that previously described for fish at terminal stages of maturity and suggest that female rainbow trout approaching spawning, on high nutritional planes, likely mobilize intramuscular fat rather than protein to support gonadal maturation.
Collapse
Affiliation(s)
- Mohamed Salem
- Department of Biology, Middle Tennessee State University Murfreesboro, Tennessee, 37132 ; Division of Animal and Nutritional Science, West Virginia University Morgantown, West Virginia, 26506-6108
| | | | | | | | | | | |
Collapse
|
35
|
Lienhart WD, Gudipati V, Macheroux P. The human flavoproteome. Arch Biochem Biophys 2013; 535:150-62. [PMID: 23500531 PMCID: PMC3684772 DOI: 10.1016/j.abb.2013.02.015] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 02/21/2013] [Accepted: 02/23/2013] [Indexed: 11/26/2022]
Abstract
Vitamin B2 (riboflavin) is an essential dietary compound used for the enzymatic biosynthesis of FMN and FAD. The human genome contains 90 genes encoding for flavin-dependent proteins, six for riboflavin uptake and transformation into the active coenzymes FMN and FAD as well as two for the reduction to the dihydroflavin form. Flavoproteins utilize either FMN (16%) or FAD (84%) while five human flavoenzymes have a requirement for both FMN and FAD. The majority of flavin-dependent enzymes catalyze oxidation-reduction processes in primary metabolic pathways such as the citric acid cycle, β-oxidation and degradation of amino acids. Ten flavoproteins occur as isozymes and assume special functions in the human organism. Two thirds of flavin-dependent proteins are associated with disorders caused by allelic variants affecting protein function. Flavin-dependent proteins also play an important role in the biosynthesis of other essential cofactors and hormones such as coenzyme A, coenzyme Q, heme, pyridoxal 5'-phosphate, steroids and thyroxine. Moreover, they are important for the regulation of folate metabolites by using tetrahydrofolate as cosubstrate in choline degradation, reduction of N-5.10-methylenetetrahydrofolate to N-5-methyltetrahydrofolate and maintenance of the catalytically competent form of methionine synthase. These flavoenzymes are discussed in detail to highlight their role in health and disease.
Collapse
Affiliation(s)
| | | | - Peter Macheroux
- Graz University of Technology, Institute of Biochemistry, Petersgasse 12, A-8010 Graz, Austria
| |
Collapse
|
36
|
Abstract
Cancer biologists seem to have overlooked tumor metabolism in their research endeavors over the last 80 years of the last century, only to have "rediscovered Warburg" (Warburg et al. 1930; Warburg, Science 123(3191):309-314, 1956) within the first decade of the twenty-first century, as well as to suggest the importance of other, non-glucose-dependent, metabolic pathways such as such as fatty acid de novo synthesis and catabolism (β-oxidation) (Mashima et al., Br J Cancer 100:1369-1372, 2009) and glutamine catabolism (glutaminolysis) (DeBerardinis et al., Proc Nat Acad Sci 104(49):19345-19350, 2007). These non-glucose metabolic pathways seem to be just as important as the Warburg effect, if not potentially more so in human cancer. The purpose of this review is to highlight the importance of fatty acid metabolism in cancer cells and, where necessary, identify gaps in current knowledge and postulate hypothesis based upon findings in the cellular physiology of metabolic diseases and normal cells.
Collapse
Affiliation(s)
- Swethajit Biswas
- Sarcoma Research Group, Northern Institute for Cancer Research & North of England Bone & Soft Tissue Sarcoma Service, Paul O'Gorman Building, Newcastle University, Framlington Place, Newcastle-Upon-Tyne NE2 4HH, UK.
| | | | | |
Collapse
|
37
|
Schiff M, Mohsen AW, Karunanidhi A, McCracken E, Yeasted R, Vockley J. Molecular and cellular pathology of very-long-chain acyl-CoA dehydrogenase deficiency. Mol Genet Metab 2013; 109:21-7. [PMID: 23480858 PMCID: PMC3628282 DOI: 10.1016/j.ymgme.2013.02.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 02/05/2013] [Accepted: 02/05/2013] [Indexed: 12/31/2022]
Abstract
BACKGROUND Very-long-chain acyl-CoA dehydrogenase (VLCAD) deficiency (VLCADD) is diagnosed in the US through newborn screening (NBS). NBS often unequivocally identifies affected individuals, but a growing number of variant patterns can represent mild disease or heterozygous carriers. AIMS To evaluate the validity of standard diagnostic procedures for VLCADD by using functional in vitro tools. METHODS We retrospectively investigated 13 patient samples referred to our laboratory because of a suspicion of VLCADD but with some uncertainty to the diagnosis. All 13 patients were suspected of having VLCADD either because of abnormal NBS or suggestive clinical findings. ACADVL genomic DNA sequencing data were available for twelve of them. Ten of the patients had an abnormal NBS suggestive of VLCADD, with three samples showing equivocal results. Three exhibited suggestive clinical findings and blood acylcarnitine profile (two of them had a normal NBS and the third one was unscreened). Assay of VLCAD activity and immunoblotting or immunohistologic staining for VLCAD were performed on fibroblasts. Prokaryotic mutagenesis and expression studies were performed for nine uncharacterized ACADVL missense mutations. RESULTS VLCAD activity was abnormal in fibroblast cells from 9 patients (8 identified through abnormal NBS, 1 through clinical symptoms). For these 9 patients, immunoblotting/staining showed the variable presence of VLCAD; all but one had two mutated alleles. Two patients with equivocal NBS results (and a heterozygous genotype) and the two patients with normal NBS exhibited normal VLCAD activity and normal VLCAD protein on immunoblotting/staining thus ruling out VLCAD deficiency. Nine pathogenic missense mutations were characterized with prokaryotic expression studies and showed a decrease in enzyme activity and variable stability of VLCAD antigen. CONCLUSIONS These results emphasize the importance of functional investigation of abnormal NBS or clinical testing suggestive but not diagnostic of VLCADD. A larger prospective study is necessary to better define the clinical and metabolic ramifications of the defects identified in such patients.
Collapse
MESH Headings
- Acyl-CoA Dehydrogenase, Long-Chain/deficiency
- Acyl-CoA Dehydrogenase, Long-Chain/genetics
- Acyl-CoA Dehydrogenase, Long-Chain/metabolism
- Adult
- Alleles
- Cells, Cultured
- Congenital Bone Marrow Failure Syndromes
- Female
- Fibroblasts/cytology
- Fibroblasts/metabolism
- Genotype
- Heterozygote
- Humans
- Infant, Newborn
- Lipid Metabolism, Inborn Errors/diagnosis
- Lipid Metabolism, Inborn Errors/genetics
- Lipid Metabolism, Inborn Errors/metabolism
- Lipid Metabolism, Inborn Errors/physiopathology
- Male
- Mitochondrial Diseases/diagnosis
- Mitochondrial Diseases/genetics
- Mitochondrial Diseases/metabolism
- Mitochondrial Diseases/physiopathology
- Muscular Diseases/diagnosis
- Muscular Diseases/genetics
- Muscular Diseases/metabolism
- Muscular Diseases/physiopathology
- Mutation, Missense
- Neonatal Screening
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Manuel Schiff
- Department of Pediatrics, University of Pittsburgh School of Medicine, University of Pittsburgh, Children’s Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Al-Walid Mohsen
- Department of Pediatrics, University of Pittsburgh School of Medicine, University of Pittsburgh, Children’s Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Anuradha Karunanidhi
- Department of Pediatrics, University of Pittsburgh School of Medicine, University of Pittsburgh, Children’s Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Elizabeth McCracken
- Department of Pediatrics, Children’s Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Renita Yeasted
- Department of Pediatrics, University of Pittsburgh School of Medicine, University of Pittsburgh, Children’s Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Jerry Vockley
- Department of Pediatrics, University of Pittsburgh School of Medicine, University of Pittsburgh, Children’s Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
- Department of Pediatrics, Children’s Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
- Department of Human Genetics, University of Pittsburgh, Graduate School of Public Health, Pittsburgh, PA 15213, USA
| |
Collapse
|
38
|
Thomas ST, Sampson NS. Mycobacterium tuberculosis utilizes a unique heterotetrameric structure for dehydrogenation of the cholesterol side chain. Biochemistry 2013; 52:2895-904. [PMID: 23560677 DOI: 10.1021/bi4002979] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Compounding evidence supports the important role in pathogenesis that the metabolism of cholesterol by Mycobacterium tuberculosis plays. Elucidating the pathway by which cholesterol is catabolized is necessary to understand the molecular mechanism by which this pathway contributes to infection. On the basis of early metabolite identification studies in multiple actinomycetes, it has been proposed that cholesterol side chain metabolism requires one or more acyl-CoA dehydrogenases (ACADs). There are 35 genes annotated as encoding ACADs in the M. tuberculosis genome. Here we characterize a heteromeric ACAD encoded by Rv3544c and Rv3543c, formerly named fadE28 and fadE29, respectively. We now refer to genes Rv3544c and Rv3543c as chsE1 and chsE2, respectively, in recognition of their validated activity in cholesterol side chain dehydrogenation. Analytical ultracentrifugation and liquid chromatography-ultraviolet experiments establish that ChsE1-ChsE2 forms an α(2)β(2) heterotetramer, a new architecture for an ACAD. Our bioinformatic analysis and mutagenesis studies reveal that heterotetrameric ChsE1-ChsE2 has only two active sites. E241 in ChsE2 is required for catalysis of dehydrogenation by ChsE1-ChsE2. Steady state kinetic analysis establishes the enzyme is specific for an intact steroid ring system versus hexahydroindanone substrates with specificity constants (k(cat)/K(M)) of (2.5 ± 0.5) × 10(5) s(-1) M(-1) versus 9.8 × 10(2) s(-1) M(-1), respectively, at pH 8.5. The characterization of a unique ACAD quaternary structure involved in sterol metabolism that is encoded by two distinct cistronic ACAD genes opens the way to identification of additional sterol-metabolizing ACADs in M. tuberculosis and other actinomycetes through bioinformatic analysis.
Collapse
Affiliation(s)
- Suzanne T Thomas
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
| | | |
Collapse
|
39
|
Slayden RA, Jackson M, Zucker J, Ramirez MV, Dawson CC, Crew R, Sampson NS, Thomas ST, Jamshidi N, Sisk P, Caspi R, Crick DC, McNeil MR, Pavelka MS, Niederweis M, Siroy A, Dona V, McFadden J, Boshoff H, Lew JM. Updating and curating metabolic pathways of TB. Tuberculosis (Edinb) 2013; 93:47-59. [PMID: 23375378 DOI: 10.1016/j.tube.2012.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 11/25/2012] [Indexed: 01/08/2023]
Abstract
The sequencing of complete genomes has accelerated biomedical research by providing information about the overall coding capacity of bacterial chromosomes. The original TB annotation resulted in putative functional assignment of ∼60% of the genes to specific metabolic functions, however, the other 40% of the encoded ORFs where annotated as conserved hypothetical proteins, hypothetical proteins or encoding proteins of unknown function. The TB research community is now at the beginning of the next phases of post-genomics; namely reannotation and functional characterization by targeted experimentation. Arguably, this is the most significant time for basic microbiology in recent history. To foster basic TB research, the Tuberculosis Community Annotation Project (TBCAP) jamboree exercise began the reannotation effort by providing additional information for previous annotations, and refining and substantiating the functional assignment of ORFs and genes within metabolic pathways. The overall goal of the TBCAP 2012 exercise was to gather and compile various data types and use this information with oversight from the scientific community to provide additional information to support the functional annotations of encoding genes. Another objective of this effort was to standardize the publicly accessible Mycobacterium tuberculosis reference sequence and its annotation. The greatest benefit of functional annotation information of genome sequence is that it fuels TB research for drug discovery, diagnostics, vaccine development and epidemiology.
Collapse
|
40
|
Kormanik K, Kang H, Cuebas D, Vockley J, Mohsen AW. Evidence for involvement of medium chain acyl-CoA dehydrogenase in the metabolism of phenylbutyrate. Mol Genet Metab 2012; 107:684-9. [PMID: 23141465 PMCID: PMC3504130 DOI: 10.1016/j.ymgme.2012.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 10/12/2012] [Indexed: 11/28/2022]
Abstract
Sodium phenylbutyrate is used for treating urea cycle disorders, providing an alternative for ammonia excretion. Following conversion to its CoA ester, phenylbutyryl-CoA is postulated to undergo one round of β-oxidation to phenylacetyl-CoA, the active metabolite. Molecular modeling suggests that medium chain acyl-CoA dehydrogenase (MCAD; EC 1.3.99.3), a key enzyme in straight chain fatty acid β-oxidation, could utilize phenylbutyryl-CoA as substrate. Moreover, phenylpropionyl-CoA has been shown to be a substrate for MCAD and its intermediates accumulate in patients with MCAD deficiency. We have examined the involvement of MCAD and other acyl-CoA dehydrogenases (ACADs) in the metabolism of phenylbutyryl-CoA. Anaerobic titration of purified recombinant human MCAD with phenylbutyryl-CoA caused changes in the MCAD spectrum that are similar to those induced by octanoyl-CoA, its bona fide substrate, and unique to the development of the charge transfer ternary complex. The calculated apparent dissociation constant (K(D app)) for these substrates was 2.16 μM and 0.12 μM, respectively. The MCAD reductive and oxidative half reactions were monitored using the electron transfer flavoprotein (ETF) fluorescence reduction assay. The catalytic efficiency and the K(m) for phenylbutyryl-CoA were 0.2 mM 34(-1)·sec(-1) and 5.3 μM compared to 4.0 mM(-1)·sec(-1) and 2.8 μM for octanoyl-CoA. Extracts of wild type and MCAD-deficient lymphoblast cells were tested for the ability to reduce ETF using phenylbutyryl-CoA as substrate. While ETF reduction activity was detected in extracts of wild type cells, it was undetectable in extracts of cells deficient in MCAD. The results are consistent with MCAD playing a key role in phenylbutyrate metabolism.
Collapse
Affiliation(s)
- Kaitlyn Kormanik
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, 15224
- Department of Human Genetics, University of Pittsburgh, Graduate School of Public Health, Pittsburgh, PA 15213, United States
| | - Heejung Kang
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, 15224
- Department of Human Genetics, University of Pittsburgh, Graduate School of Public Health, Pittsburgh, PA 15213, United States
| | - Dean Cuebas
- Department of Chemistry, Missouri State University, Springfield, MO 65897, United States
| | - Jerry Vockley
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, 15224
- Department of Human Genetics, University of Pittsburgh, Graduate School of Public Health, Pittsburgh, PA 15213, United States
| | - Al-Walid Mohsen
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, 15224
| |
Collapse
|
41
|
Karlstädt A, Fliegner D, Kararigas G, Ruderisch HS, Regitz-Zagrosek V, Holzhütter HG. CardioNet: a human metabolic network suited for the study of cardiomyocyte metabolism. BMC SYSTEMS BIOLOGY 2012; 6:114. [PMID: 22929619 PMCID: PMC3568067 DOI: 10.1186/1752-0509-6-114] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Accepted: 08/16/2012] [Indexed: 02/08/2023]
Abstract
Background Availability of oxygen and nutrients in the coronary circulation is a crucial determinant of cardiac performance. Nutrient composition of coronary blood may significantly vary in specific physiological and pathological conditions, for example, administration of special diets, long-term starvation, physical exercise or diabetes. Quantitative analysis of cardiac metabolism from a systems biology perspective may help to a better understanding of the relationship between nutrient supply and efficiency of metabolic processes required for an adequate cardiac output. Results Here we present CardioNet, the first large-scale reconstruction of the metabolic network of the human cardiomyocyte comprising 1793 metabolic reactions, including 560 transport processes in six compartments. We use flux-balance analysis to demonstrate the capability of the network to accomplish a set of 368 metabolic functions required for maintaining the structural and functional integrity of the cell. Taking the maintenance of ATP, biosynthesis of ceramide, cardiolipin and further important phospholipids as examples, we analyse how a changed supply of glucose, lactate, fatty acids and ketone bodies may influence the efficiency of these essential processes. Conclusions CardioNet is a functionally validated metabolic network of the human cardiomyocyte that enables theorectical studies of cellular metabolic processes crucial for the accomplishment of an adequate cardiac output.
Collapse
Affiliation(s)
- Anja Karlstädt
- Institute of Biochemistry, Charité-Universitätsmedizin Berlin, Charitéplatz 1/Virchowweg 6, 10117 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
42
|
Nouws J, Nijtmans LGJ, Smeitink JA, Vogel RO. Assembly factors as a new class of disease genes for mitochondrial complex I deficiency: cause, pathology and treatment options. Brain 2011; 135:12-22. [DOI: 10.1093/brain/awr261] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
43
|
Wu L, Qiao Y, Gao J, Deng G, Yu W, Chen G, Li D. Functional characterization of rat glutaryl-CoA dehydrogenase and its comparison with straight-chain acyl-CoA dehydrogenase. Bioorg Med Chem Lett 2011; 21:6667-73. [PMID: 21974953 DOI: 10.1016/j.bmcl.2011.09.062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 09/13/2011] [Accepted: 09/16/2011] [Indexed: 11/17/2022]
Abstract
Glutaryl-CoA dehydrogenase catalyzes the oxidative decarboxylation of the γ-carboxylate of the substrate, glutaryl-CoA, to yield crotonyl-CoA and CO(2). The enzyme is a member of the acyl-CoA dehydrogenase (ACD) family of flavoproteins. In the present study, the catalytic properties of this enzyme, including its substrate specificity, isomerase activity, and interactions with inhibitors, were systematically studied. Our results indicated that the enzyme has its catalytic properties very similar to those of short-chain and medium-chain acyl-CoA dehydrogenase except its additional decarboxylation reaction. Therefore, the inhibitors of fatty acid oxidation targeting straight chain acyl-CoA dehydrogenase could also function as inhibitors for amino acid metabolism of lysine, hydroxylysine, and tryptophan.
Collapse
Affiliation(s)
- Long Wu
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, PR China
| | | | | | | | | | | | | |
Collapse
|
44
|
Understanding mitochondrial complex I assembly in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:851-62. [PMID: 21924235 DOI: 10.1016/j.bbabio.2011.08.010] [Citation(s) in RCA: 312] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Revised: 08/17/2011] [Accepted: 08/27/2011] [Indexed: 12/12/2022]
Abstract
Complex I (NADH:ubiquinone oxidoreductase) is the largest multimeric enzyme complex of the mitochondrial respiratory chain, which is responsible for electron transport and the generation of a proton gradient across the mitochondrial inner membrane to drive ATP production. Eukaryotic complex I consists of 14 conserved subunits, which are homologous to the bacterial subunits, and more than 26 accessory subunits. In mammals, complex I consists of 45 subunits, which must be assembled correctly to form the properly functioning mature complex. Complex I dysfunction is the most common oxidative phosphorylation (OXPHOS) disorder in humans and defects in the complex I assembly process are often observed. This assembly process has been difficult to characterize because of its large size, the lack of a high resolution structure for complex I, and its dual control by nuclear and mitochondrial DNA. However, in recent years, some of the atomic structure of the complex has been resolved and new insights into complex I assembly have been generated. Furthermore, a number of proteins have been identified as assembly factors for complex I biogenesis and many patients carrying mutations in genes associated with complex I deficiency and mitochondrial diseases have been discovered. Here, we review the current knowledge of the eukaryotic complex I assembly process and new insights from the identification of novel assembly factors. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.
Collapse
|
45
|
Exome sequencing identifies ACAD9 mutations as a cause of complex I deficiency. Nat Genet 2010; 42:1131-4. [PMID: 21057504 DOI: 10.1038/ng.706] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 10/08/2010] [Indexed: 11/08/2022]
Abstract
An isolated defect of respiratory chain complex I activity is a frequent biochemical abnormality in mitochondrial disorders. Despite intensive investigation in recent years, in most instances, the molecular basis underpinning complex I defects remains unknown. We report whole-exome sequencing of a single individual with severe, isolated complex I deficiency. This analysis, followed by filtering with a prioritization of mitochondrial proteins, led us to identify compound heterozygous mutations in ACAD9, which encodes a poorly understood member of the mitochondrial acyl-CoA dehydrogenase protein family. We demonstrated the pathogenic role of the ACAD9 variants by the correction of the complex I defect on expression of the wildtype ACAD9 protein in fibroblasts derived from affected individuals. ACAD9 screening of 120 additional complex I-defective index cases led us to identify two additional unrelated cases and a total of five pathogenic ACAD9 alleles.
Collapse
|
46
|
Houten SM, Wanders RJA. A general introduction to the biochemistry of mitochondrial fatty acid β-oxidation. J Inherit Metab Dis 2010; 33:469-77. [PMID: 20195903 PMCID: PMC2950079 DOI: 10.1007/s10545-010-9061-2] [Citation(s) in RCA: 620] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 10/14/2009] [Accepted: 01/28/2010] [Indexed: 12/30/2022]
Abstract
Over the years, the mitochondrial fatty acid β-oxidation (FAO) pathway has been characterised at the biochemical level as well as the molecular biological level. FAO plays a pivotal role in energy homoeostasis, but it competes with glucose as the primary oxidative substrate. The mechanisms behind this so-called glucose-fatty acid cycle operate at the hormonal, transcriptional and biochemical levels. Inherited defects for most of the FAO enzymes have been identified and characterised and are currently included in neonatal screening programmes. Symptoms range from hypoketotic hypoglycaemia to skeletal and cardiac myopathies. The pathophysiology of these diseases is still not completely understood, hampering optimal treatment. Studies of patients and mouse models will contribute to our understanding of the pathogenesis and will ultimately lead to better treatment.
Collapse
Affiliation(s)
- Sander Michel Houten
- Department of Clinical Chemistry, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | |
Collapse
|
47
|
Spiekerkoetter U. Mitochondrial fatty acid oxidation disorders: clinical presentation of long-chain fatty acid oxidation defects before and after newborn screening. J Inherit Metab Dis 2010; 33:527-32. [PMID: 20449660 DOI: 10.1007/s10545-010-9090-x] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2009] [Revised: 01/29/2010] [Accepted: 03/24/2010] [Indexed: 12/27/2022]
Abstract
The different long-chain fatty acid oxidation defects present with similar heterogeneous clinical phenotypes of different severity. Organs mainly affected comprise the heart, liver, and skeletal muscles. All symptoms are reversible with sufficient energy supply. In some long-chain fatty acid oxidation defects, disease-specific symptoms occur. Only in disorders of the mitochondrial trifunctional protein (TFP) complex, including long-chain 3-hydroxyacyl-coenzyme A (CoA) dehydrogenase (LCHAD) deficiency, neuropathy and retinopathy develop that are progressive and irreversible despite current treatment measures. In most long-chain fatty acid oxidation defects, no clear genotype-phenotype correlation exists due to molecular heterogeneity. However, some isolated mutations have been identified to be associated with only mild phenotypes, e.g., the V243A mutation in very-long-chain acyl-CoA dehydrogenase (VLCAD) deficiency. LCHAD deficiency is due to the prevalent homozygous 1528G>C mutation and presents with heterogeneous clinical phenotypes, suggesting the importance of other environmental and genetic factors. For some disorders, it was shown that residual enzyme activity measured in fibroblasts or lymphocytes correlated with severity of clinical phenotype. Implementation of newborn screening has significantly reduced morbidity and mortality of long-chain fatty acid oxidation defects. However, the severest forms of TFP deficiency are still highly associated with neonatal death. Newborn screening also identifies a great number of mildly affected patients who may never develop clinical symptoms throughout life. However, later-onset exercise-induced myopathic symptoms remain characteristic clinical features of long-chain fatty acid oxidation defects. Disease prevalence has increased with newborn screening.
Collapse
Affiliation(s)
- Ute Spiekerkoetter
- Department of General Pediatrics, University Children's Hospital, Duesseldorf, Germany.
| |
Collapse
|
48
|
Abstract
Acyl-Co dehydrogenase 9 (ACAD9) was thought to play a role in fatty acid oxidation. Nouws et al. (2010) reveal a novel and essential role for this enzyme in mitochondrial complex I assembly. A mutation in ACAD9 causes an isolated complex I deficiency in a subset of patients with mitochondrial disease.
Collapse
|
49
|
Acyl-CoA dehydrogenase 9 is required for the biogenesis of oxidative phosphorylation complex I. Cell Metab 2010; 12:283-94. [PMID: 20816094 DOI: 10.1016/j.cmet.2010.08.002] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 04/29/2010] [Accepted: 06/14/2010] [Indexed: 11/24/2022]
Abstract
Acyl-CoA dehydrogenase 9 (ACAD9) is a recently identified member of the acyl-CoA dehydrogenase family. It closely resembles very long-chain acyl-CoA dehydrogenase (VLCAD), involved in mitochondrial beta oxidation of long-chain fatty acids. Contrary to its previously proposed involvement in fatty acid oxidation, we describe a role for ACAD9 in oxidative phosphorylation. ACAD9 binds complex I assembly factors NDUFAF1 and Ecsit and is specifically required for the assembly of complex I. Furthermore, ACAD9 mutations result in complex I deficiency and not in disturbed long-chain fatty acid oxidation. This strongly contrasts with its evolutionary ancestor VLCAD, which we show is not required for complex I assembly and clearly plays a role in fatty acid oxidation. Our results demonstrate that two closely related metabolic enzymes have diverged at the root of the vertebrate lineage to function in two separate mitochondrial metabolic pathways and have clinical implications for the diagnosis of complex I deficiency.
Collapse
|
50
|
Alfardan J, Mohsen AW, Copeland S, Ellison J, Keppen-Davis L, Rohrbach M, Powell BR, Gillis J, Matern D, Kant J, Vockley J. Characterization of new ACADSB gene sequence mutations and clinical implications in patients with 2-methylbutyrylglycinuria identified by newborn screening. Mol Genet Metab 2010; 100:333-8. [PMID: 20547083 PMCID: PMC2906669 DOI: 10.1016/j.ymgme.2010.04.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 04/23/2010] [Indexed: 12/19/2022]
Abstract
Short/branched chain acyl-CoA dehydrogenase (SBCAD) deficiency, also known as 2-methylbutyryl-CoA dehydrogenase deficiency, is a recently described autosomal recessive disorder of isoleucine metabolism. Most patients reported thus far have originated from a founder mutation in the Hmong Chinese population. While the first reported patients had severe disease, most of the affected Hmong have remained asymptomatic. In this study, we describe 11 asymptomatic non-Hmong patients brought to medical attention by elevated C5-carnitine found by newborn screening and one discovered because of clinical symptoms. The diagnosis of SBCAD deficiency was determined by metabolite analysis of blood, urine, and fibroblast samples. PCR and bidirectional sequencing were performed on genomic DNA from five of the patients covering the entire SBCAD (ACADSB) gene sequence of 11 exons. Sequence analysis of genomic DNA from each patient identified variations in the SBCAD gene not previously reported. Escherichia coli expression studies revealed that the missense mutations identified lead to inactivation or instability of the mutant SBCAD enzymes. These findings confirm that SBCAD deficiency can be identified through newborn screening by acylcarnitine analysis. Our patients have been well without treatment and call for careful follow-up studies to learn the true clinical impact of this disorder.
Collapse
Affiliation(s)
| | | | | | | | | | - Marianne Rohrbach
- Hospital for Sick Children and University of Toronto, Ontario, Canada
- University Children‘s Hospital Zürich, Switzerland
| | | | - Jane Gillis
- IWK Health Centre and Dalhousie University, Halifax, Canada
| | | | - Jeffrey Kant
- University of Pittsburgh School of Medicine, USA
| | - Jerry Vockley
- University of Pittsburgh School of Medicine, USA
- University of Pittsburgh Graduate School of Public Health, USA
- Correspondence to: Jerry Vockley, University of Pittsburgh School of Medicine, The Children’s Hospital of Pittsburgh, Department of Pediatrics, 4401 Penn Avenue, Pittsburgh, PA 15224.
| |
Collapse
|