1
|
Khan MM, Yalamarty SSK, Rajmalani BA, Filipczak N, Torchilin VP. Recent strategies to overcome breast cancer resistance. Crit Rev Oncol Hematol 2024; 197:104351. [PMID: 38615873 DOI: 10.1016/j.critrevonc.2024.104351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 01/24/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024] Open
Abstract
Breast cancer is potentially a lethal disease and a leading cause of death in women. Chemotherapy and radiotherapy are the most frequently used treatment options. Drug resistance in advanced breast cancer limits the therapeutic output of treatment. The leading cause of resistance in breast cancer is endocrine and hormonal imbalance, particularly in triple negative and HER2 positive breast cancers. The efflux of drugs due to p-gp's activity is another leading cause of resistance. Breast cancer resistant protein also contributes significantly. Strategies used to combat resistance include the use of nanoparticles to target drug delivery by co-delivery of chemotherapeutic drugs and genes (siRNA and miRNA) that help to down-regulate genes causing resistance. The siRNA is specific and effectively silences p-gp and other proteins causing resistance. The use of chemosensitizers is also effective in overcoming resistance. Chemo-sensitizers sensitize cancer cells to the effects of chemotherapeutic drugs. Novel anti-neoplastic agents such as antibody-drug conjugates and mesenchymal stem cells are also effective tools used to improve the therapeutic response in breast cancer. Similarly, combination of photo/thermal ablation with chemotherapy can act to overcome breast cancer resistance. In this review, we focus on the mechanism of breast cancer resistance and the nanoparticle-based strategies used to combat resistance in breast cancer.
Collapse
Affiliation(s)
- Muhammad Muzamil Khan
- Center of Nanomedicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Bharat Ashok Rajmalani
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA
| | - Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Gantner ME, Peroni RN, Morales JF, Villalba ML, Ruiz ME, Talevi A. Development and Validation of a Computational Model Ensemble for the Early Detection of BCRP/ABCG2 Substrates during the Drug Design Stage. J Chem Inf Model 2017; 57:1868-1880. [DOI: 10.1021/acs.jcim.7b00016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Melisa E. Gantner
- Laboratorio
de Investigación y Desarrollo de Bioactivos (LIDeB), Departamento
de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) − Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, B1900AJI Buenos Aires, Argentina
| | - Roxana N. Peroni
- Instituto
de Investigaciones Farmacológicas (ININFA UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín
956 5°, 1113 Ciudad Autónoma de Buenos Aires, Argentina
| | - Juan F. Morales
- Laboratorio
de Investigación y Desarrollo de Bioactivos (LIDeB), Departamento
de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) − Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, B1900AJI Buenos Aires, Argentina
| | - María L. Villalba
- Laboratorio
de Investigación y Desarrollo de Bioactivos (LIDeB), Departamento
de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) − Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, B1900AJI Buenos Aires, Argentina
| | - María E. Ruiz
- Laboratorio
de Investigación y Desarrollo de Bioactivos (LIDeB), Departamento
de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) − Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, B1900AJI Buenos Aires, Argentina
| | - Alan Talevi
- Laboratorio
de Investigación y Desarrollo de Bioactivos (LIDeB), Departamento
de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) − Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, B1900AJI Buenos Aires, Argentina
| |
Collapse
|
3
|
Mao Q, Unadkat JD. Role of the breast cancer resistance protein (BCRP/ABCG2) in drug transport--an update. AAPS JOURNAL 2014; 17:65-82. [PMID: 25236865 DOI: 10.1208/s12248-014-9668-6] [Citation(s) in RCA: 439] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 09/03/2014] [Indexed: 01/12/2023]
Abstract
The human breast cancer resistance protein (BCRP, gene symbol ABCG2) is an ATP-binding cassette (ABC) efflux transporter. It was so named because it was initially cloned from a multidrug-resistant breast cancer cell line where it was found to confer resistance to chemotherapeutic agents such as mitoxantrone and topotecan. Since its discovery in 1998, the substrates of BCRP have been rapidly expanding to include not only therapeutic agents but also physiological substances such as estrone-3-sulfate, 17β-estradiol 17-(β-D-glucuronide) and uric acid. Likewise, at least hundreds of BCRP inhibitors have been identified. Among normal human tissues, BCRP is highly expressed on the apical membranes of the placental syncytiotrophoblasts, the intestinal epithelium, the liver hepatocytes, the endothelial cells of brain microvessels, and the renal proximal tubular cells, contributing to the absorption, distribution, and elimination of drugs and endogenous compounds as well as tissue protection against xenobiotic exposure. As a result, BCRP has now been recognized by the FDA to be one of the key drug transporters involved in clinically relevant drug disposition. We published a highly-accessed review article on BCRP in 2005, and much progress has been made since then. In this review, we provide an update of current knowledge on basic biochemistry and pharmacological functions of BCRP as well as its relevance to drug resistance and drug disposition.
Collapse
Affiliation(s)
- Qingcheng Mao
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Box 357610, Seattle, Washington, 98195-7610, USA,
| | | |
Collapse
|
4
|
Saito H, An R, Hirano H, Ishikawa T. Emerging New Technology: QSAR Analysis and MO Calculation to Characterize Interactions of Protein Kinase Inhibitors with the Human ABC Transporter, ABCG2 (BCRP). Drug Metab Pharmacokinet 2010; 25:72-83. [DOI: 10.2133/dmpk.25.72] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Lee JK, Abe K, Bridges AS, Patel NJ, Raub TJ, Pollack GM, Brouwer KLR. Sex-dependent disposition of acetaminophen sulfate and glucuronide in the in situ perfused mouse liver. Drug Metab Dispos 2009; 37:1916-21. [PMID: 19487254 PMCID: PMC2729328 DOI: 10.1124/dmd.109.026815] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Accepted: 05/27/2009] [Indexed: 01/16/2023] Open
Abstract
Breast cancer resistance protein (BCRP, ABCG2) is expressed in the hepatic canalicular membrane and mediates biliary excretion of xenobiotics including sulfate and glucuronide metabolites of some compounds. Hepatic Bcrp expression is sex-dependent, with higher expression in male mice. The hypothesis that sex-dependent Bcrp expression influences the hepatobiliary disposition of phase II metabolites was tested in the present study using acetaminophen (APAP) and the generated APAP glucuronide (AG) and sulfate (AS) metabolites in single-pass in situ perfused livers from male and female wild-type and Abcg(-/-) (Bcrp-deficient) mice. Pharmacokinetic modeling was used to estimate parameters governing the hepatobiliary disposition of APAP, AG, and AS. In wild-type mice, the biliary excretion rate constant was 2.5- and 7-fold higher in males than in females for AS and AG, respectively, reflecting male-predominant Bcrp expression. Sex-dependent differences in AG biliary excretion were not observed in Bcrp-deficient mice, and AS biliary excretion was negligible. Interestingly, sex-dependent basolateral excretion of AG (higher in males) and AS (higher in females) was noted in wild-type mice with a similar trend in Bcrp-deficient mouse livers, reflecting an increased rate constant for AG formation in male and AS formation in female mouse livers. In addition, the rate constant for AS basolateral excretion was increased significantly in female mouse livers compared with that in male mouse livers. It is interesting to note that multidrug resistance-associated protein 4 was higher in female than in male mouse livers. In conclusion, sex-dependent differences in conjugation and transporter expression result in profound differences in the hepatobiliary disposition of AG and AS in male and female mouse livers.
Collapse
Affiliation(s)
- Jin Kyung Lee
- The University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, Kerr Hall, CB#7360, Chapel Hill, NC, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Robey RW, Obrzut T, Shukla S, Polgar O, Macalou S, Bahr JC, Di Pietro A, Ambudkar SV, Bates SE. Becatecarin (rebeccamycin analog, NSC 655649) is a transport substrate and induces expression of the ATP-binding cassette transporter, ABCG2, in lung carcinoma cells. Cancer Chemother Pharmacol 2009; 64:575-83. [PMID: 19132374 DOI: 10.1007/s00280-008-0908-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Accepted: 12/15/2008] [Indexed: 10/21/2022]
Abstract
PURPOSE ABCG2 overexpression has been linked to resistance to topoisomerase inhibitors, leading us to examine the potential interaction between ABCG2 and becatecarin. METHODS Interaction with ABCG2 was determined by ATPase assay, competition of [(125)I]iodoarylazidoprazosin (IAAP) photolabeling and flow cytometry. Cellular resistance was measured in 4-day cytotoxicity assays. ABCG2 expression was measured by fluorescent-substrate transport assays and immunoblot. RESULTS Becatecarin competed [(125)I]-IAAP labeling of ABCG2, stimulated ATPase activity and, at concentrations greater than 10 microM, inhibited ABCG2-mediated transport. Becatecarin-selected A549 Bec150 lung carcinoma cells were 3.1-, 15-, 8-, and 6.8-fold resistant to becatecarin, mitoxantrone, SN-38 and topotecan, respectively. A549 Bec150 cells transported the ABCG2 substrates pheophorbide a, mitoxantrone and BODIPY-prazosin and displayed increased staining with the anti-ABCG2 antibody 5D3 compared to parental cells. Increased ABCG2 expression was confirmed by immunoblot. CONCLUSIONS Our results suggest that becatecarin is transported by ABCG2 and can induce ABCG2 expression in cancer cells.
Collapse
Affiliation(s)
- Robert W Robey
- Medical Oncology Branch, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Polgar O, Robey RW, Bates SE. ABCG2: structure, function and role in drug response. Expert Opin Drug Metab Toxicol 2008; 4:1-15. [PMID: 18370855 DOI: 10.1517/17425255.4.1.1] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
ABCG2 was discovered in multi-drug-resistant cancer cells, with the identification of chemotherapeutic agents, such as mitoxantrone, flavopiridol, methotrexate and irinotecan as substrates. Later, drugs from other therapeutic groups were also described as substrates, including antibiotics, antivirals, HMG-CoA reductase inhibitors and flavonoids. An expanding list of compounds inhibiting ABCG2 has also been generated. The wide variety of drugs transported by ABCG2 and its normal tissue distribution with highest levels in the placenta, intestine and liver, suggest a role in protection against xenobiotics. ABCG2 also has an important role in the pharmacokinetics of its substrates. Single nucleotide polymorphisms of the gene were shown to alter either plasma concentrations of substrate drugs or levels of resistance against chemotherapeutic agents in cell lines. ABCG2 was also described as the determinant of the side population of stem cells. All these aspects of the transporter warrant further research aimed at understanding ABCG2's structure, function and regulation of expression.
Collapse
Affiliation(s)
- Orsolya Polgar
- National Cancer Institute, Medical Oncology Branch, Center for Cancer Research, NIH, 9000 Rockville Pike, Building 10, Room 13N240, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
8
|
Köck K, Grube M, Jedlitschky G, Oevermann L, Siegmund W, Ritter CA, Kroemer HK. Expression of adenosine triphosphate-binding cassette (ABC) drug transporters in peripheral blood cells: relevance for physiology and pharmacotherapy. Clin Pharmacokinet 2007; 46:449-70. [PMID: 17518506 DOI: 10.2165/00003088-200746060-00001] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Adenosine triphosphate-binding cassette (ABC)-type transport proteins were initially described for their ability to reduce intracellular concentrations of anticancer compounds, thereby conferring drug resistance. In recent years, expression of this type of proteins has also been reported in numerous cell types under physiological conditions; here, these transporters are often reported to alter systemic and local drug disposition (e.g. in the brain or the gastrointestinal tract). In this context, peripheral blood cells have also been found to express several ABC-type transporters. While erythrocytes mainly express multidrug resistance protein (MRP) 1, MRP4 and MRP5, which are discussed with regard to their involvement in glutathione homeostasis (MRP1) and in the efflux of cyclic nucleotides (MRP4 and MRP5), leukocytes also express P-glycoprotein and breast cancer resistance protein. In the latter cell types, the main function of efflux transporters may be protection against toxins, as these cells demonstrate a very high turnover rate. In platelets, only two ABC transporters have been described so far. Besides MRP1, platelets express relatively high amounts of MRP4 not only in the plasma membrane but also in the membrane of dense granules, suggesting relevance for mediator storage. In addition to its physiological function, ABC transporter expression in these structures can be of pharmacological relevance since all systemic drugs reach their targets via circulation, thereby enabling interaction of the therapeutic agent with peripheral blood cells. Moreover, both intended effects and unwanted side effects occur in peripheral blood cells, and intracellular micropharmacokinetics can be affected by these transport proteins. The present review summarises the data available on expression of ABC transport proteins in peripheral blood cells.
Collapse
Affiliation(s)
- Kathleen Köck
- Department of Pharmacology, Research Center of Pharmacology and Experimental Therapeutics, Ernst Moritz Arndt University, Greifswald, Germany
| | | | | | | | | | | | | |
Collapse
|
9
|
Robey RW, Shukla S, Steadman K, Obrzut T, Finley EM, Ambudkar SV, Bates SE. Inhibition of ABCG2-mediated transport by protein kinase inhibitors with a bisindolylmaleimide or indolocarbazole structure. Mol Cancer Ther 2007; 6:1877-85. [PMID: 17575116 DOI: 10.1158/1535-7163.mct-06-0811] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
ABCG2 is a transporter with potential importance in cancer drug resistance, drug oral absorption, and stem cell biology. In an effort to identify novel inhibitors of ABCG2, we examined the ability of commercially available bisindolylmaleimides (BIM) and indolocarbazole protein kinase inhibitors (PKI) to inhibit ABCG2, given the previous demonstration that the indolocarbazole PKI UCN-01 interacted with the transporter. At a concentration of 10 micromol/L, all of the compounds tested increased intracellular fluorescence of the ABCG2-specific substrate pheophorbide a in ABCG2-transfected HEK-293 cells by 1.3- to 6-fold as measured by flow cytometry; the ABCG2-specific inhibitor fumitremorgin C increased intracellular fluorescence by 6.6-fold. In 4-day cytotoxicity assays, wild-type ABCG2-transfected cells were not more than 2-fold resistant to any of the compounds, suggesting that the PKIs are not significantly transported by ABCG2. BIMs I, II, III, IV, and V, K252c, and arcyriaflavin A were also able to inhibit [(125)I]iodoarylazidoprazosin labeling of ABCG2 by 65% to 80% at 20 micromol/L, compared with a 50% to 70% reduction by 20 micromol/L fumitremorgin C. K252c and arcyriaflavin A were the most potent compounds, with IC(50) values for inhibition of [(125)I]iodoarylazidoprazosin labeling of 0.37 and 0.23 micromol/L, respectively. K252c and arcyriaflavin A did not have any effect on the ATPase activity of ABCG2. Four minimally toxic compounds--BIM IV, BIM V, arcyriaflavin A, and K252c-reduced the relative resistance of ABCG2-transfected cells to SN-38 in cytotoxicity assays. We find that indolocarbazole and BIM PKIs directly interact with the ABCG2 protein and may thus increase oral bioavailability of ABCG2 substrates.
Collapse
Affiliation(s)
- Robert W Robey
- Medical Oncology Branch and Laboratory of Cell Biology, Center for Cancer Research, NIH, Bethesda, Maryland, USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
Kim HS, Sunwoo YE, Ryu JY, Kang HJ, Jung HE, Song IS, Kim EY, Shim JC, Shon JH, Shin JG. The effect of ABCG2 V12M, Q141K and Q126X, known functional variants in vitro, on the disposition of lamivudine. Br J Clin Pharmacol 2007; 64:645-54. [PMID: 17509035 PMCID: PMC2203270 DOI: 10.1111/j.1365-2125.2007.02944.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
AIMS To evaluate the effects of three ABCG2 variants (Q141K, V12M and Q126X), which are known to have altered transport properties in vitro, on the disposition of lamivudine in healthy subjects. METHODS To evaluate whether lamivudine is a substrate of ABCG2, intracellular accumulation and vectorial transport of 3H-lamivudine were determined in MDCK-ABCG2 cells. The pharmacokinetic parameters of lamivudine were compared among subjects with four different ABCG2 genotypes, including wild type (seven subjects), K141/K141 (six subjects), Q126/Stop126 (four subjects) and M12/M12 (five subjects) after a single oral dose of 100 mg lamivudine. RESULTS The intracellular accumulation of lamivudine in MDCK-ABCG2 cells was significantly lower than that in MDCK-mock cells, but fumitremorgin C reversed the intracellular lamivudine concentration to that of MDCK-mock cells. The ABCG2-mediated transport of lamivudine was saturable and the values of Km and Vmax were 216.5 +/- 58 microm and 20.42 +/- 2.9 nmol h(-1) per 10(6) cells, respectively. After lamivudine administration to healthy subjects, the AUC of lamivudine showed no difference among subjects with different ABCG2 genotypes; 2480 +/- 502, 2207 +/- 1019, 2422 +/- 239, 2552 +/- 698 ng h(-1) ml(-1) for wild type, K141/K141, Q126/Stop126 and M12/M12 genotype, respectively (P = 0.85). The estimated 95% confidence intervals for the mean difference between K141/K141, Q126/Stop126, M12/M12 and wild as reference were (-1053, 507), (-555, 439) and (-552, 696), respectively. No other pharmacokinetic parameters were estimated to be significantly different among four different ABCG2 genotypes tested. CONCLUSIONS Lamivudine appeared to be a substrate of ABCG2 in vitro, but the disposition of lamivudine was not significantly influenced by known in vitro functional variants of ABCG2, Q141K, V12M and Q126X in healthy subjects.
Collapse
Affiliation(s)
- Ho-Sook Kim
- Department of Pharmacology and Pharmacogenomics Research Centre, Inje University College of MedicineBusan, Korea
| | - Yu Eun Sunwoo
- Department of Pharmacology and Pharmacogenomics Research Centre, Inje University College of MedicineBusan, Korea
| | - Ji Young Ryu
- Department of Pharmacology and Pharmacogenomics Research Centre, Inje University College of MedicineBusan, Korea
| | - Ho-Jin Kang
- Department of Pharmacology and Pharmacogenomics Research Centre, Inje University College of MedicineBusan, Korea
| | - Hye-Eun Jung
- Department of Pharmacology and Pharmacogenomics Research Centre, Inje University College of MedicineBusan, Korea
| | - Im-Sook Song
- Department of Pharmacology and Pharmacogenomics Research Centre, Inje University College of MedicineBusan, Korea
| | - Eun-Young Kim
- Department of Pharmacology and Pharmacogenomics Research Centre, Inje University College of MedicineBusan, Korea
- Department of Clinical Pharmacology, Inje University Busan Paik HosptialBusan, Korea
| | - Joo-Cheol Shim
- Department of Pharmacology and Pharmacogenomics Research Centre, Inje University College of MedicineBusan, Korea
- Department of Psychiatry, Inje University Busan Paik HosptialBusan, Korea
| | - Ji-Hong Shon
- Department of Pharmacology and Pharmacogenomics Research Centre, Inje University College of MedicineBusan, Korea
- Department of Clinical Pharmacology, Inje University Busan Paik HosptialBusan, Korea
| | - Jae-Gook Shin
- Department of Pharmacology and Pharmacogenomics Research Centre, Inje University College of MedicineBusan, Korea
- Department of Clinical Pharmacology, Inje University Busan Paik HosptialBusan, Korea
| |
Collapse
|
11
|
Sarkadi B, Homolya L, Szakács G, Váradi A. Human multidrug resistance ABCB and ABCG transporters: participation in a chemoimmunity defense system. Physiol Rev 2006; 86:1179-236. [PMID: 17015488 DOI: 10.1152/physrev.00037.2005] [Citation(s) in RCA: 551] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In this review we give an overview of the physiological functions of a group of ATP binding cassette (ABC) transporter proteins, which were discovered, and still referred to, as multidrug resistance (MDR) transporters. Although they indeed play an important role in cancer drug resistance, their major physiological function is to provide general protection against hydrophobic xenobiotics. With a highly conserved structure, membrane topology, and mechanism of action, these essential transporters are preserved throughout all living systems, from bacteria to human. We describe the general structural and mechanistic features of the human MDR-ABC transporters and introduce some of the basic methods that can be applied for the analysis of their expression, function, regulation, and modulation. We treat in detail the biochemistry, cell biology, and physiology of the ABCB1 (MDR1/P-glycoprotein) and the ABCG2 (MXR/BCRP) proteins and describe emerging information related to additional ABCB- and ABCG-type transporters with a potential role in drug and xenobiotic resistance. Throughout this review we demonstrate and emphasize the general network characteristics of the MDR-ABC transporters, functioning at the cellular and physiological tissue barriers. In addition, we suggest that multidrug transporters are essential parts of an innate defense system, the "chemoimmunity" network, which has a number of features reminiscent of classical immunology.
Collapse
Affiliation(s)
- Balázs Sarkadi
- National Medical Center, Institute of Hematology and Immunology, Membrane Research Group, Budapest, Hungary.
| | | | | | | |
Collapse
|
12
|
Nakagawa H, Saito H, Ikegami Y, Aida-Hyugaji S, Sawada S, Ishikawa T. Molecular modeling of new camptothecin analogues to circumvent ABCG2-mediated drug resistance in cancer. Cancer Lett 2006; 234:81-9. [PMID: 16309825 DOI: 10.1016/j.canlet.2005.05.052] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Revised: 04/26/2005] [Accepted: 05/05/2005] [Indexed: 11/29/2022]
Abstract
Irinotecan (CPT-11) is a widely used potent antitumor drug that inhibits mammalian DNA topoisomerase I (Topo I). However, overexpression of ABCG2 (BCRP/MXR/ABCP) reportedly confers cancer cells resistance to SN-38, the active form of CPT-11. To circumvent the ABCG2-associated drug resistance, the structure-activity-relationship (SAR) of 14 new camptothecin (CPT) analogues has been studied with respect to the substrate specificity of ABCG2. While the lactone E ring is a prerequisite for anticancer activity, modifications of the A or B rings do not significantly affect Topo I inhibition. Based on the substrate specificity of ABCG2, it is strongly suggested that CPT analogues with a hydroxyl group at position 10 or 11 of the A ring are recognized by ABCG2 and are thereby effectively extruded from cancer cells. To develop a platform for the molecular modeling to circumvent anticancer drug resistance, we have carried out quantum chemical calculations and neural network SAR analysis. Electrostatic potential iso-surfaces generated by ab initio MO calculations using restricted Hartree-Fock method have revealed that negative potential localized at positions 10 or 11 in the A ring is important for recognition by ABCG2.
Collapse
Affiliation(s)
- Hiroshi Nakagawa
- Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta 4259, Yokohama 226-8501, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Mao Q, Unadkat JD. Role of the breast cancer resistance protein (ABCG2) in drug transport. AAPS JOURNAL 2005; 7:E118-33. [PMID: 16146333 PMCID: PMC2751502 DOI: 10.1208/aapsj070112] [Citation(s) in RCA: 287] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The 72-kDa breast cancer resistance protein (BCRP) is the second member of the subfamily G of the human ATP binding cassette (ABC) transporter superfamily and thus also designated as ABCG2. Unlike P-glycoprotein and MRP1, which are arranged in 2 repeated halves, BCRP is a half-transporter consisting of only 1 nucleotide binding domain followed by 1 membrane-spanning domain. Current experimental evidence suggests that BCRP may function as a homodimer or homotetramer. Overexpression of BCRP is associated with high levels of resistance to a variety of anticancer agents, including anthracyclines, mitoxantrone, and the camptothecins, by enhancing drug efflux. BCRP expression has been detected in a large number of hematological malignancies and solid tumors, indicating that this transporter may play an important role in clinical drug resistance of cancers. In addition to its role to confer resistance against chemotherapeutic agents, BCRP actively transports structurally diverse organic molecules, conjugated or unconjugated, such as estrone-3-sulfate, 17beta-estradiol 17-(beta-D-glucuronide), and methotrexate. BCRP is highly expressed in the placental syncytiotrophoblasts, in the apical membrane of the epithelium in the small intestine, in the liver canalicular membrane, and at the luminal surface of the endothelial cells of human brain microvessels. This strategic and substantial tissue localization indicates that BCRP also plays an important role in absorption, distribution, and elimination of drugs that are BCRP substrates. This review summarizes current knowledge of BCRP and its relevance to multidrug resistance and drug disposition.
Collapse
Affiliation(s)
- Qingcheng Mao
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, USA.
| | | |
Collapse
|
14
|
Wang X, Nitanda T, Shi M, Okamoto M, Furukawa T, Sugimoto Y, Akiyama SI, Baba M. Induction of cellular resistance to nucleoside reverse transcriptase inhibitors by the wild-type breast cancer resistance protein. Biochem Pharmacol 2004; 68:1363-70. [PMID: 15345326 DOI: 10.1016/j.bcp.2004.05.052] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2004] [Accepted: 05/26/2004] [Indexed: 10/26/2022]
Abstract
Breast cancer resistance protein (BCRP/ABCG2) is a novel member of ATP-binding cassette transporters, which induce multidrug resistance in cancer cells. We previously reported that a high level of BCRP expression in CD4(+) T cells conferred cellular resistance to nucleoside reverse transcriptase inhibitors (NRTIs) of human immunodeficiency virus type 1 (HIV-1). However, this BCRP was found to have a mutation of Arg to Met at position 482 (BCRP(R482M)). The present study demonstrated that the wild-type BCRP (BCRP(WT)) also conferred cellular resistance to NRTIs. MT-4 cells (a CD4(+) T-cell line) highly expressing BCRP(WT) (MT-4/BCRP) were generated and the expression of BCRP(WT) was confirmed by genotypic and phenotypic analyses. Compared to the parental MT-4 cells, MT-4/BCRP cells displayed resistance to zidovudine (AZT) in terms of antiviral activity as well as drug cytotoxicity. In addition, other NRTIs were also less inhibitory to HIV-1 replication in MT-4/BCRP cells than in MT-4 cells. Significant reduction of intracellular AZT accumulation was observed in MT-4/BCRP cells. An analysis for intracellular metabolism of AZT suggested that the resistance was attributed to the increased efflux of AZT and its metabolites in MT-4/BCRP cells. Furthermore, the BCRP-specific inhibitor fumitremorgin C completely restored the reduction of AZT in MT-4/BCRP cells. These results indicate that, like BCRP(R482M), BCRP(WT) also plays an important role in cellular resistance to NRTIs.
Collapse
Affiliation(s)
- Xin Wang
- Division of Antiviral Chemotherapy, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Sarkadi B, Ozvegy-Laczka C, Német K, Váradi A. ABCG2 -- a transporter for all seasons. FEBS Lett 2004; 567:116-20. [PMID: 15165903 DOI: 10.1016/j.febslet.2004.03.123] [Citation(s) in RCA: 202] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Accepted: 03/14/2004] [Indexed: 11/30/2022]
Abstract
The human ABCG2 (ABCP/MXR/BCRP) protein is a recently recognized ABC half-transporter, which forms homodimers in the plasma membrane and actively extrudes a wide variety of chemically unrelated compounds from the cells. This protein protects our cells and tissues against various xenobiotics, with a crucial role in the intestine, liver, placenta, and the blood-brain barrier. Moreover, ABCG2 seems to have a key function in stem cell protection/regulation, and also in hypoxic defense mechanisms. Widely occurring single nucleotide polymorphisms in ABCG2 may affect absorption and distribution, altering the effectiveness and toxicity of drugs in large populations. At the clinics, overexpression of ABCG2 in tumor cells confers cancer multidrug resistance to a variety of newly developed anticancer agents. On the other hand, specific substrate mutants of ABCG2 are advocated for use as selectable markers in stem-cell based gene therapy.
Collapse
Affiliation(s)
- Balázs Sarkadi
- National Medical Center, Institute of Haematology and Immunology, Membrane Research Group of the Hungarian Academy of Sciences, Diószegi u. 64, H-1113 Budapest, Hungary.
| | | | | | | |
Collapse
|
16
|
Mizuarai S, Aozasa N, Kotani H. Single nucleotide polymorphisms result in impaired membrane localization and reduced atpase activity in multidrug transporter ABCG2. Int J Cancer 2004; 109:238-46. [PMID: 14750175 DOI: 10.1002/ijc.11669] [Citation(s) in RCA: 234] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
ABCG2/MXR/ABCP1/BCRP is a member of the ATP-binding cassette membrane transporter, which consists of six transmembrane regions and one ATP-binding cassette. The transporter is known to be involved in the efflux of various anticancer compounds such as mitoxantrone, doxorubicin and topoisomerase I inhibitor. In this study, we analyzed the effects of polymorphisms in ABCG2, V12M and Q141K on transporter function. When polarized LLC-PK1 cells were transfected with variant ABCG2, drug-resistance to topoisomerase I inhibitor of cells expressing V12M or Q141K was less than 1/10 that of wild-type ABCG2 transfected cells, and was accompanied by increased drug accumulation and decreased drug efflux in the variant ABCG2-expressing cells. We further elucidated the molecular mechanisms of the transport dysfunction by investigating membrane localization and ATPase activity. Confocal microscopic analysis revealed that apical plasma membrane localization of V12M was disturbed, while the localization of wild-type transporters occurred specifically in the apical plasma membrane of polarized LLC-PK1 cells. Also, ATPase activities measured in the membrane of SF9 cells infected with variant ABCG2 showed that Q141K decreased activity by 1.3 below that of wild-type ABCG2. In addition, kinetic analysis of ATPase activity showed that the K(m) value in Q141K was 1.4-fold higher than that of wild-type ABCG2. These results indicated that naturally occurring SNPs alter transport functions of ABCG2 transporter and analysis of SNPs in ABCG2 may hold great importance in understanding the response/metabolism of chemotherapy compounds that act as substrates for ABCG2.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily G, Member 2
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Adenosine Triphosphatases/metabolism
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Animals
- Biological Transport
- Case-Control Studies
- Cell Membrane/enzymology
- Drug Resistance, Multiple/genetics
- Drug Screening Assays, Antitumor
- Female
- Gene Expression Regulation, Neoplastic
- Gene Frequency
- Humans
- LLC-PK1 Cells
- Male
- Middle Aged
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Polymorphism, Single Nucleotide/physiology
- Protein Transport
- RNA, Messenger/analysis
- RNA, Neoplasm/genetics
- Swine
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Shinji Mizuarai
- Banyu Tsukuba Research Institute in collaboration with Merck Research Laboratories, Tsukuba, Ibaraki, Japan
| | | | | |
Collapse
|
17
|
Ishikawa T, Tsuji A, Inui K, Sai Y, Anzai N, Wada M, Endou H, Sumino Y. The genetic polymorphism of drug transporters: functional analysis approaches. Pharmacogenomics 2004; 5:67-99. [PMID: 14683421 DOI: 10.1517/phgs.5.1.67.25683] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Evidence is accumulating to strongly suggest that drug transporters are one of the determining factors governing the pharmacokinetic profile of drugs. To date, a variety of drug transporters have been cloned and classified as solute carriers and ATP-binding cassette transporters. Such drug transporters are expressed in various tissues such as the intestine, brain, liver, and kidney, and play critical roles in the absorption, distribution and excretion of drugs. However, at the present time, information is limited regarding the genetic polymorphism of drug transporters and its impact on their function. In this context, we have undertaken the functional analyses of the polymorphisms identified in drug transporter genes. This article aims to provide an overview on the functional aspects of the non-synonymous polymorphisms of drug transporters and to present standard methods for the evaluation of the effect of polymorphisms on their function.
Collapse
Affiliation(s)
- Toshihisa Ishikawa
- Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Mitomo H, Kato R, Ito A, Kasamatsu S, Ikegami Y, Kii I, Kudo A, Kobatake E, Sumino Y, Ishikawa T. A functional study on polymorphism of the ATP-binding cassette transporter ABCG2: critical role of arginine-482 in methotrexate transport. Biochem J 2003; 373:767-74. [PMID: 12741957 PMCID: PMC1223553 DOI: 10.1042/bj20030150] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2003] [Revised: 04/22/2003] [Accepted: 05/13/2003] [Indexed: 11/17/2022]
Abstract
Overexpression of the ATP-binding cassette transporter ABCG2 reportedly causes multidrug resistance, whereas altered drug-resistance profiles and substrate specificity are implicated for certain variant forms of ABCG2. At least three variant forms of ABCG2 have been hitherto documented on the basis of their amino acid moieties (i.e., arginine, glycine and threonine) at position 482. In the present study we have generated those ABCG2 variants by site-directed mutagenesis and expressed them in HEK-293 cells. Exogenous expression of the Arg(482), Gly(482), and Thr(482) variant forms of ABCG2 conferred HEK-293 cell resistance toward mitoxantrone 15-, 47- and 54-fold, respectively, as compared with mock-transfected HEK-293 cells. The transport activity of those variants was examined by using plasma-membrane vesicles prepared from ABCG2-overexpressing HEK-293 cells. [Arg(482)]ABCG2 transports [(3)H]methotrexate in an ATP-dependent manner; however, no transport activity was observed with the other variants (Gly(482) and Thr(482)). Transport of methotrexate by [Arg(482)]ABCG2 was significantly inhibited by mitoxantrone, doxorubicin and rhodamine 123, but not by S -octylglutathione. Furthermore, ABCG2 was found to exist in the plasma membrane as a homodimer bound via cysteinyl disulphide bond(s). Treatment with mercaptoethanol decreased its apparent molecular mass from 140 to 70 kDa. Nevertheless, ATP-dependent transport of methotrexate by [Arg(482)]ABCG2 was little affected by such mercaptoethanol treatment. It is concluded that Arg(482) is a critical amino acid moiety in the substrate specificity and transport of ABCG2 for certain drugs, such as methotrexate.
Collapse
Affiliation(s)
- Hideyuki Mitomo
- Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ishikawa T, Kasamatsu S, Hagiwara Y, Mitomo H, Kato R, Sumino Y. Expression and Functional Characterization of Human ABC Transporter ABCG2 Variants in Insect Cells. Drug Metab Pharmacokinet 2003; 18:194-202. [PMID: 15618735 DOI: 10.2133/dmpk.18.194] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hitherto three variant forms of ABCG2 have been documented on the basis of their amino acid moieties (i.e., Arg, Gly, and Thr) at the position 482. In the present study, we have generated those variants of ABCG2 by site-directed mutagenesis and expressed them in Sf9 insect cells. The apparent molecular weight of the expressed ABCG2 variants was 130,000 under non-reductive conditions, whereas it was reduced to 65, 000 by treatment with mercaptoethanol. It is suggested that ABCG2 exists in the plasma membrane of Sf9 cells as a homodimer bound through cysteinyl disulfide bond(s). Both ATPase activity and drug transport of ABCG2 variants were examined by using plasma membrane fractions prepared from ABCG2-overexpressing Sf9 cells. The ATPase activity of the plasma membrane expressing ABCG2 (Gly-482) was significantly enhanced by prazosin. In contrast, ABCG2 (Arg-482) transports [(3)H]methotrexate in an ATP-dependent manner; however, no transport activity was observed with the other variants (Gly-482 and Thr-482). It is strongly suggested that the amino acid moiety at the position of 482 is critical for the substrate specificity of ABCG2.
Collapse
Affiliation(s)
- Toshihisa Ishikawa
- Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Kanagawa, Japan.
| | | | | | | | | | | |
Collapse
|