1
|
Javanbakht P, Yazdi FR, Taghizadeh F, Khadivi F, Hamidabadi HG, Kashani IR, Zarini D, Mojaverrostami S. Quercetin as a possible complementary therapy in multiple sclerosis: Anti-oxidative, anti-inflammatory and remyelination potential properties. Heliyon 2023; 9:e21741. [PMID: 37954351 PMCID: PMC10638059 DOI: 10.1016/j.heliyon.2023.e21741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023] Open
Abstract
Multiple sclerosis (MS) is a complex autoimmune disorder of the central nervous system (CNS) which causes various symptoms such as fatigue, dyscoordination weakness and visual weakness. The intricacy of the immune system and obscure etiology are the main reasons for the lack of a definite treatment for MS. Oxidative stress is one of the most important key factors in MS pathogenesis. It can enhance inflammation, neurodegeneration and autoimmune-mediated processes, which can lead to excessive demyelination and axonal disruption. Recently, promising effects of Quercetin as a non-pharmacological anti-oxidant therapy have been reported in preclinical studies of MS disease. In this review, we provide a compendium of preclinical and clinical studies that have investigated the effects of Quercetin on MS disease to evaluate its potential utility as a complementary therapy in MS. Quercetin treatment in MS disease not only protects the CNS against oxidative stress and neuroinflammation, but it also declines the demyelination process and promotes remyelination potential. The present study clarifies the reported knowledge on the beneficial effects of Quercetin against MS, with future implication as a neuroprotective complementary therapy.
Collapse
Affiliation(s)
- Parinaz Javanbakht
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzane Rezaei Yazdi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Taghizadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farnaz Khadivi
- Department of Anatomy, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hatef Ghasemi Hamidabadi
- Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Iraj Ragerdi Kashani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Zarini
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sina Mojaverrostami
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Alsharif B, Hante N, Govoni B, Verli H, Kukula-Koch W, Jose Santos-Martinez M, Boylan F. Capparis cartilaginea decne (capparaceae): isolation of flavonoids by high-speed countercurrent chromatography and their anti-inflammatory evaluation. Front Pharmacol 2023; 14:1285243. [PMID: 37927588 PMCID: PMC10620733 DOI: 10.3389/fphar.2023.1285243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023] Open
Abstract
Introduction: Capparis cartilaginea Decne. (CC) originates from the dry regions of Asia and the Mediterranean basin. In traditional medicine, tea of CC leaves is commonly used to treat inflammatory conditions such as rheumatism, arthritis, and gout. Due to the limited studies on the phytochemistry and biological activity of CC compared to other members of the Capparaceae family, this work aims to: 1) Identify the chemical composition of CC extract and 2) Investigate the potential anti-inflammatory effect of CC extract, tea and the isolated compounds. Methods: To guarantee aim 1, high-speed countercurrent chromatography (HSCC) method; Nuclear Magnetic Resonance (NMR) and High-Performance Liquid Chromatography coupled to Electrospray Ionisation and Quadrupole Time-of-Flight Mass Spectrometry (HPLC-ESIQTOF-MS/MS) were employed for this purpose. To guarantee aim 2, we studied the effect of the isolated flavonoids on matrix metalloproteinases (MMPs) -9 and -2 in murine macrophages. Molecular docking was initially performed to assess the binding affinity of the isolated flavonoids to the active site of MMP-9. Results and discussion: In silico model was a powerful tool to predict the compounds that could strongly bind and inhibit MMPs. CC extract and tea have shown to possess a significant antioxidant and anti-inflammatory effect, which can partially explain their traditional medicinal use.
Collapse
Affiliation(s)
- Bashaer Alsharif
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Pharmacognosy, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Nadhim Hante
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Faculty of Pharmacy, University of Kufa, Al-Najaf, Iraq
| | - Bruna Govoni
- Center of Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Hugo Verli
- Center of Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, Lublin, Poland
| | - María Jose Santos-Martinez
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Fabio Boylan
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
3
|
Investigation of the effects of quercetin and xenograft on the healing of bone defects: An experimental study. J Oral Biol Craniofac Res 2023; 13:22-27. [PMCID: PMC9636472 DOI: 10.1016/j.jobcr.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 09/05/2022] [Accepted: 10/27/2022] [Indexed: 11/08/2022] Open
|
4
|
Saqib S, Ullah F, Naeem M, Younas M, Ayaz A, Ali S, Zaman W. Mentha: Nutritional and Health Attributes to Treat Various Ailments Including Cardiovascular Diseases. Molecules 2022; 27:molecules27196728. [PMID: 36235263 PMCID: PMC9572119 DOI: 10.3390/molecules27196728] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
A poor diet, resulting in malnutrition, is a critical challenge that leads to a variety of metabolic disorders, including obesity, diabetes, and cardiovascular diseases. Mentha species are famous as therapeutic herbs and have long served as herbal medicine. Recently, the demand for its products, such as herbal drugs, medicines, and natural herbal formulations, has increased significantly. However, the available literature lacks a thorough overview of Mentha phytochemicals' effects for reducing malnutritional risks against cardiovascular diseases. In this context, we aimed to review the recent advances of Mentha phytochemicals and future challenges for reducing malnutritional risks in cardiovascular patients. Current studies indicated that Mentha species phytochemicals possess unique antimicrobial, antidiabetic, cytotoxic, and antioxidant potential, which can be used as herbal medicine directly or indirectly (such as food ingredients) and are effective in controlling and curing cardiovascular diseases. The presence of aromatic and flavor compounds of Mentha species greatly enhance the nutritional values of the food. Further interdisciplinary investigations are pivotal to explore main volatile compounds, synergistic actions of phytochemicals, organoleptic effects, and stability of Mentha sp. phytochemicals.
Collapse
Affiliation(s)
- Saddam Saqib
- Department of Biotechnology, Mohi-ud-Din Islamic University, Nerian Sharif 12080, AJ&K, Pakistan
| | - Fazal Ullah
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Muhammad Naeem
- China Sinovita Bioengineering Group, Jinan 250000, China
| | - Muhammad Younas
- Department of Biotechnology, Mohi-ud-Din Islamic University, Nerian Sharif 12080, AJ&K, Pakistan
| | - Asma Ayaz
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Sajid Ali
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Korea
- Correspondence: (S.A.); (W.Z.)
| | - Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Korea
- Correspondence: (S.A.); (W.Z.)
| |
Collapse
|
5
|
A Comprehensive Analysis and Anti-Cancer Activities of Quercetin in ROS-Mediated Cancer and Cancer Stem Cells. Int J Mol Sci 2022; 23:ijms231911746. [PMID: 36233051 PMCID: PMC9569933 DOI: 10.3390/ijms231911746] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/16/2022] [Accepted: 09/28/2022] [Indexed: 12/12/2022] Open
Abstract
Reactive oxygen species (ROS) induce carcinogenesis by causing genetic mutations, activating oncogenes, and increasing oxidative stress, all of which affect cell proliferation, survival, and apoptosis. When compared to normal cells, cancer cells have higher levels of ROS, and they are responsible for the maintenance of the cancer phenotype; this unique feature in cancer cells may, therefore, be exploited for targeted therapy. Quercetin (QC), a plant-derived bioflavonoid, is known for its ROS scavenging properties and was recently discovered to have various antitumor properties in a variety of solid tumors. Adaptive stress responses may be induced by persistent ROS stress, allowing cancer cells to survive with high levels of ROS while maintaining cellular viability. However, large amounts of ROS make cancer cells extremely susceptible to quercetin, one of the most available dietary flavonoids. Because of the molecular and metabolic distinctions between malignant and normal cells, targeting ROS metabolism might help overcome medication resistance and achieve therapeutic selectivity while having little or no effect on normal cells. The powerful bioactivity and modulatory role of quercetin has prompted extensive research into the chemical, which has identified a number of pathways that potentially work together to prevent cancer, alongside, QC has a great number of evidences to use as a therapeutic agent in cancer stem cells. This current study has broadly demonstrated the function-mechanistic relationship of quercetin and how it regulates ROS generation to kill cancer and cancer stem cells. Here, we have revealed the regulation and production of ROS in normal cells and cancer cells with a certain signaling mechanism. We demonstrated the specific molecular mechanisms of quercetin including MAPK/ERK1/2, p53, JAK/STAT and TRAIL, AMPKα1/ASK1/p38, RAGE/PI3K/AKT/mTOR axis, HMGB1 and NF-κB, Nrf2-induced signaling pathways and certain cell cycle arrest in cancer cell death, and how they regulate the specific cancer signaling pathways as long-searched cancer therapeutics.
Collapse
|
6
|
Hong DW, Chen LB, Lin XJ, Attin T, Yu H. Dual function of quercetin as an MMP inhibitor and crosslinker in preventing dentin erosion and abrasion: An in situ/in vivo study. Dent Mater 2022; 38:e297-e307. [PMID: 36192276 DOI: 10.1016/j.dental.2022.09.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The aim of the present study was to evaluate the in situ/in vivo effect of quercetin on dentin erosion and abrasion. METHODS Human dentin blocks (2 × 2 × 2 mm) were embedded and assigned to 6 groups: 75 μg/mL, 150 μg/mL and 300 μg/mL quercetin (Q75, Q150, Q300); 120 μg/mL chlorhexidine (CHX, positive control); and deionized water and ethanol (the negative controls). The specimens were treated with the respective solutions for 2 min and then subjected to in situ/in vivo erosive/abrasive challenge for 7 d as follows: in vivo erosion 4 times a day and then in vivo toothbrush abrasion after the first and last erosive challenges of each day. Dentin loss was assessed by profilometry. An additional dentin specimen was used to evaluate the penetration depth of quercetin into dentin by tracking the spatial distribution of its characteristic Raman peak. Moreover, dentin blocks (7 × 1.7 × 0.7 mm) were used to detect the impact of quercetin on dentin-derived matrix metalloproteinase (MMP) inhibition by in situ zymography, and the inhibition percentage (%) was calculated. Additionally, the potential collagen crosslinking interactions with quercetin were detected by Raman spectroscopy, and the crosslinking degree was determined with a ninhydrin assay. Fully demineralized dentin beams (0.5 × 0.5 × 10 mm) were used to evaluate the impact of quercetin on the mechanical properties of dentin collagen fibre by the ultimate micro-tensile strength test (μUTS). The data were analysed by one-way analysis of variance and Tukey's test (α = 0.05). RESULTS Compared to the negative controls, all treatment solutions significantly reduced dentin loss. The dentin loss of Q150 and Q300 was significantly less than that of CHX (all P < 0.05). The amount of quercetin decreased with increasing dentin depth, and the maximum penetration depth was approximately 25-30 µm. In situ zymography showed that quercetin significantly inhibited the activities of dentin-derived MMPs. The inhibitory percentages of Q75 and Q150 were significantly lower than that of CHX (all P < 0.05), but no significant difference was found between Q300 and CHX (P = 0.58). The collagen crosslinking interactions with quercetin primarily involved hydrogen bonding and the degree of crosslinking increased in a concentration-dependent manner. Statistically significant increases in μUTS values were observed for demineralized dentin beams after quercetin treatment compared with those of the control treatments (all P < 0.05). SIGNIFICANCE This study provides the first direct evidence that quercetin could penetrate approximately 25-30 µm into dentin and further prevent dentin erosion and abrasion by inhibiting dentin-derived MMP activity as well as crosslinking collagen of the demineralized organic matrix.
Collapse
Affiliation(s)
- Deng-Wei Hong
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China; Department of Prosthodontics, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
| | - Li-Bing Chen
- Department of Prosthodontics, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
| | - Xiu-Jiao Lin
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China; Department of Prosthodontics, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
| | - Thomas Attin
- Clinic for Conservative and Preventive Dentistry, Center of Dental Medicine, University Zurich, Switzerland
| | - Hao Yu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China; Department of Prosthodontics, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China; Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
| |
Collapse
|
7
|
Vrânceanu M, Galimberti D, Banc R, Dragoş O, Cozma-Petruţ A, Hegheş SC, Voştinaru O, Cuciureanu M, Stroia CM, Miere D, Filip L. The Anticancer Potential of Plant-Derived Nutraceuticals via the Modulation of Gene Expression. PLANTS 2022; 11:plants11192524. [PMID: 36235389 PMCID: PMC9571524 DOI: 10.3390/plants11192524] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/07/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022]
Abstract
Current studies show that approximately one-third of all cancer-related deaths are linked to diet and several cancer forms are preventable with balanced nutrition, due to dietary compounds being able to reverse epigenetic abnormalities. An appropriate diet in cancer patients can lead to changes in gene expression and enhance the efficacy of therapy. It has been demonstrated that nutraceuticals can act as powerful antioxidants at the cellular level as well as anticarcinogenic agents. This review is focused on the best studies on worldwide-available plant-derived nutraceuticals: curcumin, resveratrol, sulforaphane, indole-3-carbinol, quercetin, astaxanthin, epigallocatechin-3-gallate, and lycopene. These compounds have an enhanced effect on epigenetic changes such as histone modification via HDAC (histone deacetylase), HAT (histone acetyltransferase) inhibition, DNMT (DNA methyltransferase) inhibition, and non-coding RNA expression. All of these nutraceuticals are reported to positively modulate the epigenome, reducing cancer incidence. Furthermore, the current review addresses the issue of the low bioavailability of nutraceuticals and how to overcome the drawbacks related to their oral administration. Understanding the mechanisms by which nutraceuticals influence gene expression will allow their incorporation into an “epigenetic diet” that could be further capitalized on in the therapy of cancer.
Collapse
Affiliation(s)
- Maria Vrânceanu
- Department of Toxicology, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Damiano Galimberti
- Italian Association of Anti-Ageing Physicians, Via Monte Cristallo, 1, 20159 Milan, Italy
| | - Roxana Banc
- Department of Bromatology, Hygiene, Nutrition, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
- Correspondence: (R.B.); (O.D.); Tel.: +40-744-367-958 (R.B.); +40-733-040-917 (O.D.)
| | - Ovidiu Dragoş
- Department of Kinetotheraphy and Special Motricity, “1 Decembrie 1918” University of Alba Iulia, 510009 Alba Iulia, Romania
- Correspondence: (R.B.); (O.D.); Tel.: +40-744-367-958 (R.B.); +40-733-040-917 (O.D.)
| | - Anamaria Cozma-Petruţ
- Department of Bromatology, Hygiene, Nutrition, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Simona-Codruţa Hegheş
- Department of Drug Analysis, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Oliviu Voştinaru
- Department of Pharmacology, Physiology and Physiopathology, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Magdalena Cuciureanu
- Department of Pharmacology, University of Medicine and Pharmacy “Grigore T. Popa” Iasi, 16 Universităţii Street, 700115 Iași, Romania
| | - Carmina Mariana Stroia
- Department of Pharmacy, Oradea University, 1 Universităţii Street, 410087 Oradea, Romania
| | - Doina Miere
- Department of Bromatology, Hygiene, Nutrition, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Lorena Filip
- Department of Bromatology, Hygiene, Nutrition, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| |
Collapse
|
8
|
Shi H, Sun L, Zheng D, Xu G, Shao G. Long Noncoding RNA HLA Complex Group 18 Improves the Cell Proliferation of Myocardial Fibroblasts by Regulating the Hsa-microRNA-133a/Epidermal Growth Factor Receptor Axis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:2668239. [PMID: 35958914 PMCID: PMC9357715 DOI: 10.1155/2022/2668239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/11/2022] [Indexed: 11/17/2022]
Abstract
Hsa-microRNA (has-miR)-133a inactivates the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway and suppresses the cell proliferation of myocardial fibroblasts by downregulation of the epidermal growth factor receptor (EGFR) expression. Bioinformatics analysis exhibits extended noncoding RNA HLA complex group 18 (lncRNA-HCG18) binds to hsa-miR-133a. The purpose of the current experiment is to explore whether lncRNA-HCG18 adsorbed hsa-miR-133a through sponging, resulting in decreased inhibition of hsa-miR-133a on EGFR and ultimately promoting the proliferation of myocardial fibroblasts. To verify and study the correlation and mechanism between lncRNA-HCG18, hsa-miR-133a, and their target genes. Firstly, after overexpression/silencing of lncRNA-HCG18 in myocardial fibroblasts, the level of hsa-miR-133a expression was evaluated by quantitative reverse transcription-polymerase chain reaction (RT-qPCR), and the EGFR, ERK1/2, and p-ERK1/2 expression levels were assessed by Western blotting to confirm that upregulation of EGFR and p-ERK1/2 protein levels by overexpression of lncRNA-HCG18, siRNA lncRNA-HCG18 (siHCG18) reduced the EGFR and p-ERK1/2 protein levels. Then, the luciferase reporter gene system was used to verify that lncRNA-HCG18 regulated EGFR expression by inhibiting the function of the hsa-miR-133a regulatory target gene. Then, a RAP assay was used to confirm that lncRNA-HCG18 interacted with hsa-miR-133a. Finally, the analysis of CCK-8 results indicated that the cell proliferation of myocardial fibroblasts was significantly reduced by siHCG18 while reversed by overexpression of lncRNA-HCG18. Thus, lncRNA-HCG18 inhibited cell viability of cardiac fibroblasts via the hsa-miR-133a/EGFR axis, which was regarded as a regulator of cell proliferation of cardiac fibroblasts in cardiovascular diseases.
Collapse
Affiliation(s)
- Huoshun Shi
- Department of Cardiothoracic Surgery, Lihuili Hospital, Ningbo 315048, Zhejiang Province, China
| | - Lebo Sun
- Department of Cardiothoracic Surgery, Lihuili Hospital, Ningbo 315048, Zhejiang Province, China
| | - Dawei Zheng
- Department of Cardiothoracic Surgery, Lihuili Hospital, Ningbo 315048, Zhejiang Province, China
| | - Guodong Xu
- Department of Cardiothoracic Surgery, Lihuili Hospital, Ningbo 315048, Zhejiang Province, China
| | - Guofeng Shao
- Department of Cardiothoracic Surgery, Lihuili Hospital, Ningbo 315048, Zhejiang Province, China
| |
Collapse
|
9
|
Mirazimi SMA, Dashti F, Tobeiha M, Shahini A, Jafari R, Khoddami M, Sheida AH, EsnaAshari P, Aflatoonian AH, Elikaii F, Zakeri MS, Hamblin MR, Aghajani M, Bavarsadkarimi M, Mirzaei H. Application of Quercetin in the Treatment of Gastrointestinal Cancers. Front Pharmacol 2022; 13:860209. [PMID: 35462903 PMCID: PMC9019477 DOI: 10.3389/fphar.2022.860209] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/02/2022] [Indexed: 02/06/2023] Open
Abstract
Many cellular signaling pathways contribute to the regulation of cell proliferation, division, motility, and apoptosis. Deregulation of these pathways contributes to tumor cell initiation and tumor progression. Lately, significant attention has been focused on the use of natural products as a promising strategy in cancer treatment. Quercetin is a natural flavonol compound widely present in commonly consumed foods. Quercetin has shown significant inhibitory effects on tumor progression via various mechanisms of action. These include stimulating cell cycle arrest or/and apoptosis as well as its antioxidant properties. Herein, we summarize the therapeutic effects of quercetin in gastrointestinal cancers (pancreatic, gastric, colorectal, esophageal, hepatocellular, and oral).
Collapse
Affiliation(s)
| | - Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Tobeiha
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Shahini
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Raha Jafari
- Department of Medicine, Mashhad Medical Sciences Branch, Islamic Azad University, Mashhad, Iran
| | - Mehrad Khoddami
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Amir Hossein Sheida
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Parastoo EsnaAshari
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Amir Hossein Aflatoonian
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fateme Elikaii
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Melika Sadat Zakeri
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Mohammad Aghajani
- Infectious Disease Research Center, School of Nursing and Midwifery, Kashan University of Medical Sciences, Kashan, Iran
| | - Minoodokht Bavarsadkarimi
- Clinical Research Development Center, Mahdiyeh Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
10
|
Quercetin as a Novel Therapeutic Approach for Lymphoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3157867. [PMID: 34381559 PMCID: PMC8352693 DOI: 10.1155/2021/3157867] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/15/2021] [Accepted: 07/12/2021] [Indexed: 11/19/2022]
Abstract
Lymphoma is a name for malignant diseases of the lymphatic system including Hodgkin's lymphoma and non-Hodgkin's lymphoma. Although several approaches are used for the treatment of these diseases, some of them are not successful and have serious adverse effects. Therefore, other effective treatment methods might be interesting. Studies have indicated that plant ingredients play a key role in treating several diseases. Some plants have already shown a potential therapeutic effect on many malignant diseases. Quercetin is a flavonoid found in different plants and could be useful in the treatment of different malignant diseases. Quercetin has its antimalignant effects through targeting main survival pathways activated in tumor cells. In vitro/in vivo experimental studies have demonstrated that quercetin possesses a cytotoxic effect on lymphoid cancer cells. Regardless of the optimum results that have been obtained from both in vitro/in vivo studies, few clinical studies have analyzed the antitumor effects of quercetin in lymphoid cancers. Thus, it seems that more clinical studies should introduce quercetin as a therapeutic, alone or in combination with other chemotherapy agents. Here, in this study, we reviewed the anticancer effects of quercetin and highlighted the potential therapeutic effects of quercetin in various types of lymphoma.
Collapse
|
11
|
Li Y, Feng L, Zhang X, Huang L, Song J, Chen G, Zhang Y, Zhang C, Li W, Feng Z. Intraoperative Vitamin C Reduces the Dosage of Propofol in Patients Undergoing Total Knee Replacement. J Pain Res 2021; 14:2201-2208. [PMID: 34321919 PMCID: PMC8302814 DOI: 10.2147/jpr.s319172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/30/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Propofol is commonly used as an intravenous anesthetic in surgical patients. However, its usage is associated with adverse effects. Auxiliary medication can reduce the dose of intravenous anesthetics. Hence, we investigated whether vitamin C could lower propofol dosage in elderly patients undergoing total knee replacement surgery. Patients and Methods The trial was carried out in PLA General Hospital in Beijing, China. We enrolled patients aged ≥50 years who were undergoing unilateral total knee arthroplasty with total intravenous anesthesia combined with lumbar sciatic nerve block. The patients were randomly assigned to either the vitamin C (Vc) group (0.067 g/kg) or the control group (an equivalent dose of normal saline). Nerve block was done for all the patients before the general anesthesia. The same depth of anesthesia was maintained during the operation. We compared the propofol dosage and adverse events (eg hypotension) during anesthesia between the two groups. This study was registered with the Chinese Clinical Trial Registry, www.chictr.org.cn, number ChiCTR-TRC-16010112. Results There were significant differences in the total infusion dose (Vc group: 704.3 ± 188.6 mg; control group: 888.6 ± 232.7 mg; p = 0.016) and the average maintenance dose of propofol (Vc group: 5.8 ± 1.0 mg/kg/h; control group: 6.9 ± 1.6 mg/kg/h; p = 0.013). But there were no significant differences in the induction dose of propofol (control group: 90 mg, range 80-115 mg; Vc group: 100 mg, range 90-110 mg, p = 0.379) between the Vc and control groups. Furthermore, there were no significant differences in the hemodynamics and the incidence of intraoperative hypotension. Conclusion Vitamin C can reduce the dosage of propofol in patients undergoing total knee replacement.
Collapse
Affiliation(s)
- Yang Li
- First Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Long Feng
- Department of Anesthesia, Hainan Hostipal of Chinese PLA General Hostipal, Beijing, People's Republic of China
| | - Xiaoying Zhang
- First Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Lianjun Huang
- First Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Jie Song
- First Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Guoqing Chen
- First Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Yu Zhang
- Peking Union Medical College Hospital, Beijing, People's Republic of China
| | - Chenggang Zhang
- Beijing Institute of Radiation Medicine, State Key Laboratory of Proteomics, Cognitive and Mental Health Research Center, Beijing, People's Republic of China
| | - Weiguang Li
- Beijing Institute of Radiation Medicine, State Key Laboratory of Proteomics, Cognitive and Mental Health Research Center, Beijing, People's Republic of China.,Faculty of Psychology, Beijing Normal University, Beijing, People's Republic of China
| | - Zeguo Feng
- Department of Pain Medicine, First Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
| |
Collapse
|
12
|
Lipotoxic Impairment of Mitochondrial Function in β-Cells: A Review. Antioxidants (Basel) 2021; 10:antiox10020293. [PMID: 33672062 PMCID: PMC7919463 DOI: 10.3390/antiox10020293] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/06/2021] [Accepted: 02/11/2021] [Indexed: 02/08/2023] Open
Abstract
Lipotoxicity is a major contributor to type 2 diabetes mainly promoting mitochondrial dysfunction. Lipotoxic stress is mediated by elevated levels of free fatty acids through various mechanisms and pathways. Impaired peroxisome proliferator-activated receptor (PPAR) signaling, enhanced oxidative stress levels, and uncoupling of the respiratory chain result in ATP deficiency, while β-cell viability can be severely impaired by lipotoxic modulation of PI3K/Akt and mitogen-activated protein kinase (MAPK)/extracellular-signal-regulated kinase (ERK) pathways. However, fatty acids are physiologically required for an unimpaired β-cell function. Thus, preparation, concentration, and treatment duration determine whether the outcome is beneficial or detrimental when fatty acids are employed in experimental setups. Further, ageing is a crucial contributor to β-cell decay. Cellular senescence is connected to loss of function in β-cells and can further be promoted by lipotoxicity. The potential benefit of nutrients has been broadly investigated, and particularly polyphenols were shown to be protective against both lipotoxicity and cellular senescence, maintaining the physiology of β-cells. Positive effects on blood glucose regulation, mitigation of oxidative stress by radical scavenging properties or regulation of antioxidative enzymes, and modulation of apoptotic factors were reported. This review summarizes the significance of lipotoxicity and cellular senescence for mitochondrial dysfunction in the pancreatic β-cell and outlines potential beneficial effects of plant-based nutrients by the example of polyphenols.
Collapse
|
13
|
Flavonoids in adipose tissue inflammation and atherosclerosis: one arrow, two targets. Clin Sci (Lond) 2020; 134:1403-1432. [PMID: 32556180 DOI: 10.1042/cs20200356] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023]
Abstract
Flavonoids are polyphenolic compounds naturally occurring in fruits and vegetables, in addition to beverages such as tea and coffee. Flavonoids are emerging as potent therapeutic agents for cardiovascular as well as metabolic diseases. Several studies corroborated an inverse relationship between flavonoid consumption and cardiovascular disease (CVD) or adipose tissue inflammation (ATI). Flavonoids exert their anti-atherogenic effects by increasing nitric oxide (NO), reducing reactive oxygen species (ROS), and decreasing pro-inflammatory cytokines. In addition, flavonoids alleviate ATI by decreasing triglyceride and cholesterol levels, as well as by attenuating inflammatory mediators. Furthermore, flavonoids inhibit synthesis of fatty acids and promote their oxidation. In this review, we discuss the effect of the main classes of flavonoids, namely flavones, flavonols, flavanols, flavanones, anthocyanins, and isoflavones, on atherosclerosis and ATI. In addition, we dissect the underlying molecular and cellular mechanisms of action for these flavonoids. We conclude by supporting the potential benefit for flavonoids in the management or treatment of CVD; yet, we call for more robust clinical studies for safety and pharmacokinetic values.
Collapse
|
14
|
Marvulli R, Ianieri G, De Venuto G, Falcicchio M, Gallo GA, Mennuni C, Gallone MF, Fiore P, Ranieri M, Megna M. Electrophysiological and Clinical Improvement in Non-Invasive Treatment of Carpal Tunnel Syndrome. Endocr Metab Immune Disord Drug Targets 2020; 21:345-351. [PMID: 32723265 DOI: 10.2174/1871530320666200728152953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/21/2020] [Accepted: 06/03/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND OBJECTIVE Carpal tunnel syndrome (CTS) is the most common form of nerve entrapment. Clinically, various signs and symptoms compare due to overexposure to mechanical vibrations transmitted to the wrist bones and cartilage, resulting in compression of the sensory and motor nerve fibers of the median nerve. Early symptoms include nocturnal paresthesia and electromyography reveals reduced sensory nerve conduction velocity. Aim of this study was to evaluate the efficacy of a dietary integrator composed of acetyl-L-carnitine, α-lipoic acid, quercetin, bromelain, pantothenic acid, C and B1 and B2 and B6 and B12 vitamins in patients with early (minimal) carpal tunnel syndrome. METHODS 36 patients (28 female and 8 male) with early CTS characterized by sensory nerve demyelination and inflammation of the transverse carpal ligament. Patients were divided into two groups, group A (18 patients received physical therapy) and group B (18 patients received physical therapy and an oral integrator). Clinical (sleep quality questionnaire to measure severity of paresthesia) and neurophysiological assessment (Sensory Nerve Conduction Velocity) performed at baseline, and then at 30 and 60 days after treatment. RESULTS Sleep quality and Sensory Nerve Conduction Velocity data analysis show improvement in both groups at 30 and 60 days, with statistical difference between them in both time of analysis. CONCLUSION In the early CTS, with sensory fibers damage, use of dietary integrator, such as Micronil Dol®, composed of acetyl-L-carnitine, α-lipoic acid, quercetin, bromelain, pantothenic acid, C and B1 and B2 and B6 and B12 vitamins can be effective in quick recovery of median nerve sensory.
Collapse
Affiliation(s)
- Riccardo Marvulli
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari "Aldo Moro", Policlinico of Bari, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Giancarlo Ianieri
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari "Aldo Moro", Policlinico of Bari, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Grazia De Venuto
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari "Aldo Moro", Policlinico of Bari, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Marta Falcicchio
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari "Aldo Moro", Policlinico of Bari, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Giulia A Gallo
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari "Aldo Moro", Policlinico of Bari, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Catia Mennuni
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari "Aldo Moro", Policlinico of Bari, Piazza G. Cesare 11, 70124 Bari, Italy
| | | | - Pietro Fiore
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari "Aldo Moro", Policlinico of Bari, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Maurizio Ranieri
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari "Aldo Moro", Policlinico of Bari, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Marisa Megna
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari "Aldo Moro", Policlinico of Bari, Piazza G. Cesare 11, 70124 Bari, Italy
| |
Collapse
|
15
|
Anticatabolic and Anti-Inflammatory Effects of Myricetin 3-O-β-d-Galactopyranoside in UVA-Irradiated Dermal Cells via Repression of MAPK/AP-1 and Activation of TGFβ/Smad. Molecules 2020; 25:molecules25061331. [PMID: 32183404 PMCID: PMC7144112 DOI: 10.3390/molecules25061331] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 12/13/2022] Open
Abstract
UV irradiation is one of the main causes of extrinsic skin aging. UV-mediated skin aging, also known as photoaging, causes excessive breakdown of extracellular matrix which leads skin to lose its elasticity and strength. Several phytochemicals are known to exert anti-photoaging effects via different mechanisms, partly due to their antioxidant properties. The current study has been carried out to determine the potential anti-photoaging properties of myricetin 3-O-β-d-galacto-pyranoside (M3G), a flavonol glycoside isolated from L. tetragonum, in UVA-irradiated in vitro models; HaCaT keratinocytes and human dermal fibroblasts (HDFs). UVA-induced changes in MMP-1 and collagen production have been observed in HaCaT keratinocytes and HDFs. Further, UVA-induced activation of MAPK signaling, and pro-inflammatory cytokine production have been investigated. TGFβ/Smad pathway has also been analyzed in UVA-irradiated HDFs. Treatment with M3G reversed the UVA-induced changes in MMP-1 and collagen production both in HaCaT keratinocytes and HDFs. UVA-mediated activation of p38, ERK and JNK MAPK activation was also inhibited by M3G treatment in HaCaT keratinocytes. In HDFs, M3G was able to upregulate the TGFβ/Smad pathway activation. In addition, M3G downregulated the UVA-induced pro-inflammatory cytokines in keratinocytes and HDFs. It has been suggested that the M3G has exerted potential antiphotoaging properties in vitro, by attenuating UVA-induced changes in MMP-1 and collagen production in keratinocytes and dermal fibroblasts.
Collapse
|
16
|
7- O-methylpunctatin, a Novel Homoisoflavonoid, Inhibits Phenotypic Switch of Human Arteriolar Smooth Muscle Cells. Biomolecules 2019; 9:biom9110716. [PMID: 31717401 PMCID: PMC6920859 DOI: 10.3390/biom9110716] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/09/2019] [Accepted: 10/09/2019] [Indexed: 12/12/2022] Open
Abstract
Remodeling of arterioles is a pivotal event in the manifestation of many inflammation-based cardio-vasculopathologies, such as hypertension. During these remodeling events, vascular smooth muscle cells (VSMCs) switch from a contractile to a synthetic phenotype. The latter is characterized by increased proliferation, migration, and invasion. Compounds with anti-inflammatory actions have been successful in attenuating this phenotypic switch. While the vast majority of studies investigating phenotypic modulation were undertaken in VSMCs isolated from large vessels, little is known about the effect of such compounds on phenotypic switch in VSMCs of microvessels (microVSMCs). We have recently characterized a novel homoisoflavonoid that we called 7-O-methylpunctatin (MP). In this study, we show that MP decreased FBS-induced cell proliferation, migration, invasion, and adhesion. MP also attenuated adhesion of THP-1 monocytes to microVSMCs, abolished FBS-induced expression of MMP-2, MMP-9, and NF-κB, as well as reduced activation of ERK1/2 and FAK. Furthermore, MP-treated VSMCs showed an increase in early (myocardin, SM-22α, SM-α) and mid-term (calponin and caldesmon) differentiation markers and a decrease in osteopontin, a protein highly expressed in synthetic VSMCs. MP also reduced transcription of cyclin D1, CDK4 but increased protein levels of p21 and p27. Taken together, these results corroborate an anti-inflammatory action of MP on human microVSMCs. Therefore, by inhibiting the synthetic phenotype of microVSMCs, MP may be a promising modulator for inflammation-induced arteriolar pathophysiology.
Collapse
|
17
|
Khazdair MR, Anaeigoudari A, Kianmehr M. Anti-Asthmatic Effects of Portulaca Oleracea and its Constituents, a Review. J Pharmacopuncture 2019; 22:122-130. [PMID: 31673441 PMCID: PMC6820471 DOI: 10.3831/kpi.2019.22.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 03/11/2019] [Accepted: 05/27/2019] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVES The medicinal plants are believed to enhance the natural resistance of the body to infections. Some of the main constituents of the plant and derived materials such as, proteins, lectins and polysaccharides have anti-inflammatory effects. Portulaca oleracea (P. oleracea) were used traditionally for dietary, food additive, spice and various medicinal purposes. This review article is focus on the anti-asthmatic effects of P. oleracea and its constituents. METHODS Various databases, such as the PubMed, Scopus, and Google Scholar, were searched the keywords including "Portulaca oleracea", "Quercetin", "Anti-inflammatory", "Antioxidant", "Cytokines", "Smooth muscle ", and " Relaxant effects " until the end of Jul 2018. RESULTS P. oleracea extracts and its constituents increased IFN-γ, IL-2, IFNγ/IL-4 and IL- 10/IL-4 ratio, but decreased secretion of TNF-α, IL-4 and chemokines in both in vitro and in vivo studies. P. oleracea extracts and quercetin also significantly decreased production of NO, stimulated β-adrenoceptor and/or blocking muscarinic receptors in tracheal smooth muscles. Conclusion: P. oleracea extracts and quercetin showed relatively potent anti-asthmatic effects due to decreased production of NO, inflammatory cytokines and chemokines, reduced oxidant while enhanced antioxidant markers, and also showed potent relaxant effects on tracheal smooth muscles via stimulatory on β-adrenoceptor or/and blocking muscarinic receptors.
Collapse
Affiliation(s)
| | - Akbar Anaeigoudari
- Department of Physiology, School of Medicine, Jiroft University of Medical Sciences, Jiroft,
Iran
| | | |
Collapse
|
18
|
Shafabakhsh R, Asemi Z. Quercetin: a natural compound for ovarian cancer treatment. J Ovarian Res 2019; 12:55. [PMID: 31202269 PMCID: PMC6570913 DOI: 10.1186/s13048-019-0530-4] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/04/2019] [Indexed: 01/09/2023] Open
Abstract
Ovarian cancer is the main cause of death among all reproductive cancers in females. In 2018, ovarian cancer was the seventh most common cancer of women entire the world. A wide variety of molecular and genetic alterations as well as different response to therapies in the different types of ovarian cancer lead to problems in design a common therapeutic strategy. Besides, ovarian cancer cells have tendency to acquire resistance to common cancer treatments through multiple mechanisms. Various factors, including cytokines, growth factors, proteases, adhesion molecules, coagulation factors, hormones and apoptotic agents have been examined to find effective cancer treatment. Phytochemicals have been indicated to have great potential anti-cancer properties against various types of cancers. Quercetin is one of the phytochemicals that exists extensively in daily foods. Wide evidences revealed that quercetin is able to inhibit various types of cancers including breast, lung, nasopharyngeal, kidney, colorectal, prostate, pancreatic, and ovarian cancer. Several in vitro and in vivo studied conducted to evaluate cytotoxic effects of quercetin on ovarian cancer. Since quercetin does not harm healthy cells and it is cytotoxic to cancer cells via various mechanisms, researchers suggest that it could be an ideal agent for ovarian cancer treatment or an adjuvant agent in combination with other anti-cancer drugs. Thus, in this review, we focused on chemo-preventive and curative attitude of quercetin for ovarian cancer and summarize some of the most recent findings which regard the possible molecular mechanisms by which this natural compound inhibits this cancer.
Collapse
Affiliation(s)
- Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, IR, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, IR, Iran.
| |
Collapse
|
19
|
Flavonoids from Chinese bayberry leaves induced apoptosis and G1 cell cycle arrest via Erk pathway in ovarian cancer cells. Eur J Med Chem 2018; 147:218-226. [PMID: 29438890 DOI: 10.1016/j.ejmech.2018.01.084] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 01/25/2018] [Accepted: 01/26/2018] [Indexed: 01/15/2023]
Abstract
Ovarian cancer is one of the leading causes of death related to the female reproductive system in western countries. Adverse side effects and resistance to platinum based chemotherapy have become the major obstacles for ovarian cancer treatment. Natural products have gained great attention in cancer treatment in recent years. Chinese bayberry leaves flavonoids (BLF) containing rich content of myricitrin (myricetin 3-O-rhamnoside) and a part of quercetrin (quercetin 3-rhamnoside) inhibited the growth of an ovarian cancer cell line A2780/CP70. Such inhibitory effects might be due to the induction of apoptosis and G1 cell cycle arrest. BLF treatment increased the expression of cleaved caspase-3 and -7 and induced apoptosis via a Erk-dependent caspase-9 activation intrinsic apoptotic pathway by up-regulating the pro-apoptotic proteins (Bad and Bax) and down-regulating the anti-apoptotic proteins (Bcl-xL and Bcl-2), which were also in consistency with the results from Hoechst 33342 staining and flow cytometry analysis. Furthermore, by reducing the expression of cyclin D1 and CDK4 and p-Erk, BLF elevated the distribution of G1 phase in cell cycle and thus caused G1 cell cycle arrest. Overall, these results indicated that BLPs could be a valuable resource of natural compound for ovarian cancer treatment.
Collapse
|
20
|
Pereira SC, Parente JM, Belo VA, Mendes AS, Gonzaga NA, do Vale GT, Ceron CS, Tanus-Santos JE, Tirapelli CR, Castro MM. Quercetin decreases the activity of matrix metalloproteinase-2 and ameliorates vascular remodeling in renovascular hypertension. Atherosclerosis 2018; 270:146-153. [PMID: 29425960 DOI: 10.1016/j.atherosclerosis.2018.01.031] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 12/13/2017] [Accepted: 01/18/2018] [Indexed: 01/25/2023]
Abstract
BACKGROUND AND AIMS Increased activity of matrix metalloproteinase (MMP)-2 is observed in aortas of different models of hypertension, and its activation is directly mediated by oxidative stress. As quercetin is an important flavonoid with significant antioxidant effects, the hypothesis here is that quercetin will reduce increased MMP-2 activity by decreasing oxidative stress in aortas of hypertensive rats and then ameliorate hypertension-induced vascular remodeling. METHODS Male two-kidney one-clip (2K1C) hypertensive Wistar rats and controls were treated with quercetin (10 mg/kg/day) or its vehicle for three weeks by gavage. Rats were then analyzed at five weeks of hypertension. Systolic blood pressure (SBP) was determined by tail-cuff plethysmography. Aortas were used to determine MMP activity by in situ zymography and reactive oxygen species (ROS) levels by dihydroethidium. Western blot was performed to detect focal adhesion kinase (FAK) and phosphorylated-FAK levels. RESULTS SBP was increased in 2K1C rats and only a borderline reduction in SBP was observed after treating 2K1C rats with quercetin. Cross-sectional area and the number of vascular smooth muscle cells were significantly increased in aortas of hypertensive rats, and quercetin reduced them. Quercetin reduced ROS levels in aortas of 2K1C rats and the increased activity of gelatinases in situ. However, quercetin did not affect the levels of tissue inhibitor of MMP (TIMP)-2 and did not interfere with FAK and p-FAK levels in aortas of hypertensive rats. Furthermore, different concentrations of quercetin did not directly reduce the activity of human recombinant MMP-2 in vitro. CONCLUSIONS Quercetin reduces hypertension-induced vascular remodeling, oxidative stress and MMP-2 activity in aortas.
Collapse
Affiliation(s)
- Sherliane C Pereira
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao, Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil
| | - Juliana M Parente
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao, Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil
| | - Vanessa A Belo
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao, Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil
| | - Atlante S Mendes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao, Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil
| | - Natália A Gonzaga
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao, Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil; Laboratory of Pharmacology, DEPCH, College of Nursing of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, 3900, 14040-902, Ribeirao Preto, Brazil
| | - Gabriel T do Vale
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao, Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil; Laboratory of Pharmacology, DEPCH, College of Nursing of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, 3900, 14040-902, Ribeirao Preto, Brazil
| | - Carla S Ceron
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao, Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil; Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Gabriel Monteiro da Silva, 700, 37130001, Alfenas, MG, Brazil
| | - José Eduardo Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao, Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil
| | - Carlos R Tirapelli
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao, Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil; Laboratory of Pharmacology, DEPCH, College of Nursing of Ribeirao Preto, University of Sao Paulo, Av. Bandeirantes, 3900, 14040-902, Ribeirao Preto, Brazil
| | - Michele M Castro
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao, Paulo, Av. Bandeirantes, 3900, 14049-900, Ribeirao Preto, SP, Brazil.
| |
Collapse
|
21
|
Jin YH, Kim SA. 2-Methoxycinnamaldehyde inhibits the TNF-α-induced proliferation and migration of human aortic smooth muscle cells. Int J Mol Med 2016; 39:191-198. [PMID: 27922672 DOI: 10.3892/ijmm.2016.2818] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 11/24/2016] [Indexed: 11/06/2022] Open
Abstract
The abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) is a crucial event in the development of atherosclerosis, and tumor necrosis factor-α (TNF-α) is actively involved in this process by enhancing the proliferation and migration of VSMCs. 2-Methoxycinnamaldehyde (MCA) is a natural compound of Cinnamomum cassia. Although 2-hydroxycinnamaldehyde (HCA), another compound from Cinnamomum cassia, has been widely studied with regard to its antitumor activity, MCA has not attracted researchers' interest due to its mild toxic effects on cancer cells and its mechanisms of action remain unknown. In this study, we examined the effects of MCA on the TNF-α-induced proliferation and migration of human aortic smooth muscle cells (HASMCs). As shown by our results, MCA inhibited TNF-α-induced cell proliferation by reducing the levels of cyclin D1, cyclin D3, CDK4 and CDK6, and increasing the levels of the cyclin-dependent kinase inhibitors, p21 and p27, without resulting in cellular cytotoxicity. Furthermore, MCA decreased the level of secreted matrix metalloproteinase (MMP)-9 by inhibiting MMP-9 transcription. Unexpectedly, MCA did not affect the TNF-α-induced levels of mitogen-activated protein kinases (MAPKs). However, by showing that MCA potently inhibited the degradation of IκBα and the subsequent nuclear translocation of nuclear factor-κB (NF-κB), we demonstrated that MCA exerts its effects through the NF-κB signaling pathway. MCA also effectively inhibited platelet-derived growth factor (PDGF)-induced HASMC migration. Taken together, these observations suggest that MCA has the potential for use as an anti-atherosclerotic agent.
Collapse
Affiliation(s)
- Young-Hee Jin
- Department of Biochemistry, Dongguk University College of Oriental Medicine, Gyeongju 780-714, Republic of Korea
| | - Soo-A Kim
- Department of Biochemistry, Dongguk University College of Oriental Medicine, Gyeongju 780-714, Republic of Korea
| |
Collapse
|
22
|
Nam MH, Son WR, Lee YS, Lee KW. Glycolaldehyde-derived advanced glycation end products (glycol-AGEs)-induced vascular smooth muscle cell dysfunction is regulated by the AGES-receptor (RAGE) axis in endothelium. ACTA ACUST UNITED AC 2016; 22:67-78. [DOI: 10.1080/15419061.2016.1225196] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mi-Hyun Nam
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, South Korea
| | - Won-Rak Son
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, South Korea
| | - Young Sik Lee
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Kwang-Won Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, South Korea
| |
Collapse
|
23
|
Kashyap D, Mittal S, Sak K, Singhal P, Tuli HS. Molecular mechanisms of action of quercetin in cancer: recent advances. Tumour Biol 2016; 37:12927-12939. [PMID: 27448306 DOI: 10.1007/s13277-016-5184-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 07/13/2016] [Indexed: 02/06/2023] Open
Abstract
In the last few decades, the scientific community has discovered an immense potential of natural compounds in the treatment of dreadful diseases such as cancer. Besides the availability of a variety of natural bioactive molecules, efficacious cancer therapy still needs to be developed. So, to design an efficacious cancer treatment strategy, it is essential to understand the interactions of natural molecules with their respective cellular targets. Quercetin (Quer) is a naturally occurring flavonol present in many commonly consumed food items. It governs numerous intracellular targets, including the proteins involved in apoptosis, cell cycle, detoxification, antioxidant replication, and angiogenesis. The weight of available synergistic studies vigorously fortifies the utilization of Quer as a chemoprevention drug. This extensive review covers various therapeutic interactions of Quer with their recognized cellular targets involved in cancer treatment.
Collapse
Affiliation(s)
- Dharambir Kashyap
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, Punjab, 160012, India
| | - Sonam Mittal
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Katrin Sak
- Department of Hematology and Oncology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Paavan Singhal
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana, Ambala, 133203, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana, Ambala, 133203, India.
| |
Collapse
|
24
|
Choi JH, Kim KJ, Kim S. Comparative Effect of Quercetin and Quercetin-3-O-β-d-Glucoside on Fibrin Polymers, Blood Clots, and in Rodent Models. J Biochem Mol Toxicol 2016; 30:548-558. [PMID: 27271803 DOI: 10.1002/jbt.21822] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/03/2016] [Accepted: 05/12/2016] [Indexed: 11/06/2022]
Abstract
The present study evaluates the in vitro, in vivo, and ex vivo antithrombotic and anticoagulant effect of two flavonoids: quercetin and quercetin-3-O-β-d-glucoside (isoquercetin). The present results have shown that quercetin and isoquercetin inhibit the enzymatic activity of thrombin and FXa and suppress fibrin clot formation and blood clotting. The prolongation effect of quercetin and isoquercetin against epinephrine and collagen-induced platelet activation may have been caused by intervention in intracellular signaling pathways including coagulation cascade and aggregation response on platelets and blood. The in vivo and ex vivo anticoagulant efficacy of quercetin and isoquercetin was evaluated in thrombin-induced acute thromboembolism model and in ICR mice. Our findings showed that in vitro and in vivo inhibitory effects of quercetin were slightly higher than that of quercetin glucoside, whereas in vitro and ex vivo anticoagulant effects of quercetin were weaker than that of quercetin glucoside because of their structural characteristics.
Collapse
Affiliation(s)
- Jun-Hui Choi
- Department of Bio-Health Science, Gwangju University, Gwangju, 503-703, Republic of Korea
| | - Kyung-Je Kim
- Jangheung Research Institute for Mushroom Industry, Jangheung-gun, 529-851, Republic of Korea
| | - Seung Kim
- Department of Bio-Health Science, Gwangju University, Gwangju, 503-703, Republic of Korea
| |
Collapse
|
25
|
Dajas F, Abin-Carriquiry JA, Arredondo F, Blasina F, Echeverry C, Martínez M, Rivera F, Vaamonde L. Quercetin in brain diseases: Potential and limits. Neurochem Int 2015; 89:140-8. [DOI: 10.1016/j.neuint.2015.07.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 05/07/2015] [Accepted: 07/01/2015] [Indexed: 01/09/2023]
|
26
|
Chan KC, Huang HP, Ho HH, Huang CN, Lin MC, Wang CJ. Mulberry polyphenols induce cell cycle arrest of vascular smooth muscle cells by inducing NO production and activating AMPK and p53. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.03.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
27
|
Chymase inhibition improves vascular dysfunction and survival in stroke-prone spontaneously hypertensive rats. J Hypertens 2015; 32:1637-48; discussion 1649. [PMID: 24886822 DOI: 10.1097/hjh.0000000000000231] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To clarify the role of chymase in hypertension, we evaluated the effect of a chymase inhibitor, TY-51469, on vascular dysfunction and survival in stroke-prone spontaneously hypertensive rats (SHR-SP). METHODS SHR-SP were treated with TY-51469 (1 mg/kg per day) or placebo from 4 to 12 weeks old or until death. Wistar-Kyoto rats were used as a normal group. RESULTS SBP was significantly higher in both the placebo and TY-51469 groups than in the normal group, but there was no significant difference between the two treatment groups. Plasma renin, angiotensin-converting enzyme activity and angiotensin II levels were not different between the placebo and TY-51469 groups. In contrast, vascular chymase-like activity was significantly higher in the placebo than in the normal group, but it was reduced by TY-51469. Acetylcholine-induced vascular relaxation was significantly higher in the TY-51469 group than in the placebo group. There was significant augmentation of the number of monocytes/macrophages and matrix metalloproteinase-9 activity in aortic tissue from the placebo group compared with the normal group, and these changes were attenuated by TY-51469. There were also significant increases in mRNA levels of monocyte chemoattractant protein-1 and tumor necrosis factor-α in the placebo group that were attenuated by TY-51469. Cumulative survival was significantly prolonged in the TY-51469 group compared with the placebo group. CONCLUSION Chymase might play an important role in vascular dysfunction via augmentation both of matrix metalloproteinase-9 activity and monocyte/macrophage accumulation in SHR-SP, and its inhibition may be useful for preventing vascular remodeling and prolonging survival.
Collapse
|
28
|
Freise C, Querfeld U. The lignan (+)-episesamin interferes with TNF-α-induced activation of VSMC via diminished activation of NF-ĸB, ERK1/2 and AKT and decreased activity of gelatinases. Acta Physiol (Oxf) 2015; 213:642-52. [PMID: 25267105 DOI: 10.1111/apha.12400] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/03/2014] [Accepted: 09/24/2014] [Indexed: 12/15/2022]
Abstract
AIM Activation of vascular smooth muscle cells (VSMC), a key event in the pathogenesis of atherosclerosis, is triggered by inflammatory stimuli such as tumour necrosis factor-alpha (TNF-α) causing a mitogenic VSMC response. The polyphenol (+)-episesamin (ES) was shown to counteract TNF-α-induced effects, for example in macrophages. Aiming for novel therapeutic options, we here investigated whether ES protects VSMC from TNF-α-induced growth and migration, which both contribute to the onset and progression of atherosclerosis. METHODS Human and murine VSMC were treated with combinations of ES and TNF-α. Expressions of mRNA were analyzed by RT-PCR. Enzymatic activities and proliferation were determined by specific substrate assays. Cell signalling was analyzed by Western blot and reporter gene assays. Migration was assessed by wound healing assays. RESULTS ES at 1-10 μm reduced basal and TNF-α-induced VSMC proliferation and migration due to impaired activation of extracellular signal-regulated kinases (ERK)1/2, Akt (protein kinase B), nuclear factor-kappa B (NF-ĸB) and vascular cell adhesion molecule (VCAM)-1. This was accompanied by reduced expression and secretion of matrix metalloproteinases (MMP)-2/-9, which are known to promote VSMC migration. Specific inhibitors of Akt, NF-ĸB and MMP-2/-9 reduced TNF-α-induced VSMC proliferation, confirming ES-specific effects. Besides, ES reduced TNF-α- and H₂O₂ -induced oxidative stress and in parallel induces anti-inflammatory haem oxygenase (HO)-1 expression. CONCLUSION ES interferes with inflammation-associated VSMC activation and subsequent decreased proliferation and migration due to anti-oxidative properties and impaired activation of NF-ĸB, known contributors to atherogenesis. These results suggest ES as a complemental treatment of VSMC specific vascular diseases such as atherosclerosis.
Collapse
Affiliation(s)
- C. Freise
- Department of Pediatric Nephrology and Center for Cardiovascular Research; Charité - University Medicine; Campus Virchow Clinic; Berlin Germany
| | - U. Querfeld
- Department of Pediatric Nephrology; Charité - University Medicine; Campus Virchow Clinic; Berlin Germany
| |
Collapse
|
29
|
Zaitsu M, Yamashita K, Shibasaki S, Tsunetoshi Y, Fukai M, Ogura M, Yoshida T, Igarashi R, Kobayashi N, Umezawa K, Todo S. 3-[(dodecylthiocarbonyl)methyl]-glutarimide attenuates graft arterial disease by suppressing alloimmune responses and vascular smooth muscle cell proliferation. Transplantation 2015; 99:948-56. [PMID: 25675200 DOI: 10.1097/tp.0000000000000576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Graft arterial disease (GAD) is a major cause of late graft loss after organ transplantation. Alloimmune responses and vascular remodeling eventually cause the transplant organ to develop GAD. In this study, we aimed to limit the development of GAD by inhibiting alloimmune responses and vascular smooth muscle cell (VSMC) proliferation with a new compound, 3-[(dodecylthiocarbonyl)methyl]-glutarimide ([DTCM]-glutarimide), in a murine cardiac model of GAD. METHODS The hearts from B6.CH-2 mice were transplanted into C57BL/6 mouse recipients to examine the extent of GAD. The recipients were treated with either vehicle or DTCM-glutarimide intraperitoneally (40 mg/kg per day) for 4 weeks. RESULTS The administration of DTCM-glutarimide attenuated GAD formation (luminal occlusion: 37.9 ± 5.9% vs 14.8 ± 5.4%, P < 0.05) by inhibiting the number of graft-infiltrating cells and decreasing alloreactive interferon (IFN)-γ production compared with control mice, as measured by the Enzyme-linked ImmunoSpot assay. In vitro, VSMCs proliferated on stimulation with either basic fibroblast growth factor or IFN-γ and splenocytes after transplantation, but the addition of DTCM-glutarimide resulted in the inhibition of VSMC proliferation. Moreover, DTCM-glutarimide suppressed cyclin D1 expression and inhibited cell cycle progression from G1 to S in VSMCs. CONCLUSIONS The compound DTCM-glutarimide suppressed GAD development by inhibiting not only alloimmune responses but also VSMC proliferation in the graft.
Collapse
Affiliation(s)
- Masaaki Zaitsu
- 1 Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan. 2 Department of Transplant Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan. 3 Department of Molecular Target Medicine Screening, Aichi Medical University School of Medicine, Nagakude, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Hur SJ, Lee SY, Lee SJ. Effect of biopolymer encapsulation on the digestibility of lipid and cholesterol oxidation products in beef during in vitro human digestion. Food Chem 2015; 166:254-260. [DOI: 10.1016/j.foodchem.2014.06.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 04/25/2014] [Accepted: 06/03/2014] [Indexed: 11/28/2022]
|
31
|
Morales-Cano D, Menendez C, Moreno E, Moral-Sanz J, Barreira B, Galindo P, Pandolfi R, Jimenez R, Moreno L, Cogolludo A, Duarte J, Perez-Vizcaino F. The flavonoid quercetin reverses pulmonary hypertension in rats. PLoS One 2014; 9:e114492. [PMID: 25460361 PMCID: PMC4252144 DOI: 10.1371/journal.pone.0114492] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 11/10/2014] [Indexed: 11/19/2022] Open
Abstract
Quercetin is a dietary flavonoid which exerts vasodilator, antiplatelet and antiproliferative effects and reduces blood pressure, oxidative status and end-organ damage in humans and animal models of systemic hypertension. We hypothesized that oral quercetin treatment might be protective in a rat model of pulmonary arterial hypertension. Three weeks after injection of monocrotaline, quercetin (10 mg/kg/d per os) or vehicle was administered for 10 days to adult Wistar rats. Quercetin significantly reduced mortality. In surviving animals, quercetin decreased pulmonary arterial pressure, right ventricular hypertrophy and muscularization of small pulmonary arteries. Classic biomarkers of pulmonary arterial hypertension such as the downregulated expression of lung BMPR2, Kv1.5, Kv2.1, upregulated survivin, endothelial dysfunction and hyperresponsiveness to 5-HT were unaffected by quercetin. Quercetin significantly restored the decrease in Kv currents, the upregulation of 5-HT2A receptors and reduced the Akt and S6 phosphorylation. In vitro, quercetin induced pulmonary artery vasodilator effects, inhibited pulmonary artery smooth muscle cell proliferation and induced apoptosis. In conclusion, quercetin is partially protective in this rat model of PAH. It delayed mortality by lowering PAP, RVH and vascular remodeling. Quercetin exerted effective vasodilator effects in isolated PA, inhibited cell proliferation and induced apoptosis in PASMCs. These effects were associated with decreased 5-HT2A receptor expression and Akt and S6 phosphorylation and partially restored Kv currents. Therefore, quercetin could be useful in the treatment of PAH.
Collapse
Affiliation(s)
- Daniel Morales-Cano
- Department of Pharmacology, School of Medicine, University Complutense of Madrid, Madrid, Spain
- Ciber Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Carmen Menendez
- Department of Pharmacology, School of Medicine, University Complutense of Madrid, Madrid, Spain
- Ciber Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - Enrique Moreno
- Department of Pharmacology, School of Medicine, University Complutense of Madrid, Madrid, Spain
- Ciber Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Javier Moral-Sanz
- Department of Pharmacology, School of Medicine, University Complutense of Madrid, Madrid, Spain
- Ciber Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Bianca Barreira
- Department of Pharmacology, School of Medicine, University Complutense of Madrid, Madrid, Spain
- Ciber Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Pilar Galindo
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain
| | - Rachele Pandolfi
- Department of Pharmacology, School of Medicine, University Complutense of Madrid, Madrid, Spain
- Ciber Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Rosario Jimenez
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain
| | - Laura Moreno
- Department of Pharmacology, School of Medicine, University Complutense of Madrid, Madrid, Spain
- Ciber Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Angel Cogolludo
- Department of Pharmacology, School of Medicine, University Complutense of Madrid, Madrid, Spain
- Ciber Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Juan Duarte
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain
| | - Francisco Perez-Vizcaino
- Department of Pharmacology, School of Medicine, University Complutense of Madrid, Madrid, Spain
- Ciber Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
32
|
Miles SL, McFarland M, Niles RM. Molecular and physiological actions of quercetin: need for clinical trials to assess its benefits in human disease. Nutr Rev 2014; 72:720-34. [PMID: 25323953 DOI: 10.1111/nure.12152] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Sarah L Miles
- Department of Biochemistry and Microbiology; Joan C. Edwards School of Medicine; Marshall University; Huntington West Virginia USA
| | - Margaret McFarland
- Department of Biochemistry and Microbiology; Joan C. Edwards School of Medicine; Marshall University; Huntington West Virginia USA
| | - Richard M Niles
- Department of Biochemistry and Microbiology; Joan C. Edwards School of Medicine; Marshall University; Huntington West Virginia USA
| |
Collapse
|
33
|
Retinal neuroprotective effects of quercetin in streptozotocin-induced diabetic rats. Exp Eye Res 2014; 125:193-202. [PMID: 24952278 DOI: 10.1016/j.exer.2014.06.009] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 06/10/2014] [Accepted: 06/11/2014] [Indexed: 12/18/2022]
Abstract
The aim of the present study was to evaluate the effects of Quercetin (Qctn), a plant based flavonol, on retinal oxidative stress, neuroinflammation and apoptosis in streptozotocin-induced diabetic rats. Qctn treatment (25- and 50 mg/kg body weight) was given orally for six months in diabetic rats. Retinal glutathione (GSH) and antioxidant enzymes [superoxide dismutase (SOD) and catalase (CAT)] were estimated using commercially available assays, and inflammatory cytokines levels [tumor necrosis factor-α (TNF-α), Interleukin-1β (IL-1β)] were estimated by ELISA method. Immunofluorescence and western blot studies were performed for nuclear factor kappa B (NF-kB), caspase-3, glial fibrillary acidic protein (GFAP) and aquaporin-4 (AQP4) expressions. Structural changes were evaluated by light microscopy. In the present study, retinal GSH levels and antioxidant enzyme (SOD and CAT) activities were significantly decreased in diabetic group as compared to normal group. However, in Qctn-treated rats, retinal GSH levels were restored close to normal levels and positive modulation of antioxidant enzyme activities was observed. Diabetic retinas showed significantly increased expression of pro-inflammatory cytokines (TNF-α and IL-1β) as compared to that in normal retinas, while Qctn-treated retinas showed significantly lower levels of cytokines as compared to diabetic retinas. Light microscopy showed significantly increased number of ganglion cell death and decreased retinal thickness in diabetic group compared to those in normal retina; however, protective effect of Qctn was seen. Increased apoptosis in diabetic retina is proposed to be mediated by overexpression of NF-kB and caspase-3. However, Qctn showed inhibitory effects on NF-kB and caspase-3 expression. Microglia showed upregulated GFAP expression, and inflammation of Müller cells resulted in edema in their endfeet and around perivascular space in nerve fiber layer in diabetic retina, as observed through AQP4 expression. However, Qctn treatments inhibited diabetes-induced increases in GFAP and AQP4 expression. Based on these findings, it can be concluded that bioflavonoids, such as Qctn can be effective for protection of diabetes induced retinal neurodegeneration and oxidative stress.
Collapse
|
34
|
Hur SJ, Lee SJ, Kim DH, Chun SC, Lee SK. Onion extract structural changes during in vitro digestion and its potential antioxidant effect on brain lipids obtained from low- and high-fat-fed mice. Free Radic Res 2013; 47:1009-15. [PMID: 24074442 DOI: 10.3109/10715762.2013.845664] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This study investigated the effects of onion (Allium cepa, L.) extract on the antioxidant activity of lipids in low-and high-fat-fed mouse brain lipids and its structural change during in vitro human digestion. The onion extracts were passed through an in vitro human digestion model that simulated the composition of the mouth, stomach, and small intestine juice. The brain lipids were collected from low- and high-fat-fed mouse brain and then incubated with the in vitro-digested onion extracts to determine the lipid oxidation. The results confirmed that the main phenolics of onion extract were kaempferol, myricetin, quercetin, and quercitrin. The quercetin content increased with digestion of the onion extract. Antioxidant activity was strongly influenced by in vitro human digestion of both onion extract and quercetin standard. After digestion by the small intestine, the antioxidant activity values were dramatically increased, whereas the antioxidant activity was less influenced by digestion in the stomach for both onion extract and quercetin standard. The inhibitory effect of lipid oxidation of onion extract in mouse brain lipids increased after digestion in the stomach. The inhibitory effect of lipid oxidation of onion extract was higher in the high-fat-fed mouse brain lipids than that in the low-fat-fed mouse brain lipids. The major study finding is that the antioxidative effect of onion extract may be higher in high-fat-fed mouse brain lipids than that in low-fat-fed mouse brain lipids. Thus, dietary onion may have important applications as a natural antioxidant agent in a high-fat diet.
Collapse
Affiliation(s)
- S J Hur
- Department of Bioresources and Food Science, Konkuk University , Gwangjin-gu, Seoul , Republic of Korea
| | | | | | | | | |
Collapse
|
35
|
Chen P, Chen J, Zheng Q, Chen W, Wang Y, Xu X. Pioglitazone, extract of compound Danshen dripping pill, and quercetin ameliorate diabetic nephropathy in diabetic rats. J Endocrinol Invest 2013; 36:422-7. [PMID: 23211366 DOI: 10.3275/8763] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Oxidative stress appears to play a role in the pathogenesis of diabetes mellitus (DM), and disruption of the ubiquitin-proteasome system may underlie these pathological changes. We tested the effect of pioglitazone (PIO), an extract of Danshen dripping pill (DSP), and quercetin (QUE) on the pathogenesis of DM in a rat model. METHODS Male Sprague Dawley rats were maintained in a normal control (NC) group or given a modified diet and streptozotocin (STZ) to induce DM. After STZ treatment, rats were given intragastric placebo, PIO, DSP, or QUE for 8 weeks. At the end of the treatment period, serum and urine chemistry, renal hypertrophy, renal histopathology, and renal expression of ubiquitin and nuclear factor (NF)-κB p65 were analyzed. RESULTS DM rats had altered body and kidney weight, altered serum and urine chemistry, increased accumulation of glomerular extracellular matrix (ECM), and increased renal expression of ubiquitin and NF-κB p65, indicating successful establishment of our DM model. Treatment with PIO, DSP, or QUE significantly ameliorated these pathological changes, although treated rats still had some symptoms of DM. CONCLUSION DM rats have increased expression of ubiquitin and NF-κB p65 in their renal tubules and glomeruli. PIO, DSP, and QUE ameliorated the pathological changes associated with DM and also reduced the renal expression of ubiquitin and NF-κB p65. These agents may provide protection from renal pathology associated with DM due to their anti-oxidant effects.
Collapse
Affiliation(s)
- P Chen
- Department of Endocrinology, Fuzhou General Hospital of Nanjing Military Command, No.156 Xi'er huan North Road, Fuzhou, Fujian, China
| | | | | | | | | | | |
Collapse
|
36
|
Cho HJ, Suh DS, Moon SH, Song YJ, Yoon MS, Park DY, Choi KU, Kim YK, Kim KH. Silibinin inhibits tumor growth through downregulation of extracellular signal-regulated kinase and Akt in vitro and in vivo in human ovarian cancer cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:4089-4096. [PMID: 23570653 DOI: 10.1021/jf400192v] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Anticancer activity of silibinin, a flavonoid, has been demonstrated in various cancer cell types. However, the underlying mechanisms were not elucidated in human ovarian cancer cells. The present study was undertaken to examine the effect of silibinin in vitro and in vivo on tumor growth in human ovarian cancer cells. Silibinin decreased cell viability in a dose- and time-dependent manner. Silibinin caused an increase in reactive oxygen species (ROS) generation, and the silibinin-induced cell death was prevented by the antioxidant N-acetylcysteine (NAC). Western blot analysis showed silibinin-induced downregulation of extracellular signal-regulated kinase (ERK) and Akt. Transfection of constitutively active forms of MEK and Akt prevented the silibinin-induced cell death. Oral administration of silibinin in animals with subcutaneous A2780 cells reduced tumor volume. Subsequent tumor tissue analysis showed that silibinin treatment induced a decrease in Ki-67-positive cells, an increase in transferase-mediated dUTP nick end labeling (TUNEL)-positive cells, activation of caspase-3, and inhibition of p-ERK and p-Akt. These results indicate that silibinin reduces tumor growth through inhibition of ERK and Akt in human ovarian cancer cells. These data suggest that silibinin may serve as a potential therapeutic agent for human ovarian cancers.
Collapse
Affiliation(s)
- Hyun Jin Cho
- Department of Medicine, Graduate School of Medicine, Pusan National University , Busan 602-739, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Denis MC, Furtos A, Dudonné S, Montoudis A, Garofalo C, Desjardins Y, Delvin E, Levy E. Apple peel polyphenols and their beneficial actions on oxidative stress and inflammation. PLoS One 2013; 8:e53725. [PMID: 23372666 PMCID: PMC3553108 DOI: 10.1371/journal.pone.0053725] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 12/04/2012] [Indexed: 01/29/2023] Open
Abstract
Since gastrointestinal mucosa is constantly exposed to reactive oxygen species from various sources, the presence of antioxidants may contribute to the body’s natural defenses against inflammatory diseases.
Collapse
Affiliation(s)
- Marie Claude Denis
- Research Centre, Sainte-Justine Hospital, Montreal, Quebec, Canada
- Department of Nutrition, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Alexandra Furtos
- Department of Biochemistry, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Stéphanie Dudonné
- Institute of Nutraceuticals and Functional foods, Université Laval, Quebec, Quebec, Canada
| | - Alain Montoudis
- Research Centre, Sainte-Justine Hospital, Montreal, Quebec, Canada
| | - Carole Garofalo
- Research Centre, Sainte-Justine Hospital, Montreal, Quebec, Canada
| | - Yves Desjardins
- Institute of Nutraceuticals and Functional foods, Université Laval, Quebec, Quebec, Canada
| | - Edgard Delvin
- Research Centre, Sainte-Justine Hospital, Montreal, Quebec, Canada
- Department of Biochemistry, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Emile Levy
- Research Centre, Sainte-Justine Hospital, Montreal, Quebec, Canada
- Department of Nutrition, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Institute of Nutraceuticals and Functional foods, Université Laval, Quebec, Quebec, Canada
- * E-mail:
| |
Collapse
|
38
|
Choi HJ, Chung TW, Kim JE, Jeong HS, Joo M, Cha J, Kim CH, Ha KT. Aesculin inhibits matrix metalloproteinase-9 expression via p38 mitogen activated protein kinase and activator protein 1 in lipopolysachride-induced RAW264.7 cells. Int Immunopharmacol 2012; 14:267-74. [DOI: 10.1016/j.intimp.2012.07.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 06/24/2012] [Accepted: 07/20/2012] [Indexed: 11/16/2022]
|
39
|
Rodrigues S, Calhelha RC, Barreira JC, Dueñas M, Carvalho AM, Abreu RM, Santos-Buelga C, Ferreira IC. Crataegus monogyna buds and fruits phenolic extracts: Growth inhibitory activity on human tumor cell lines and chemical characterization by HPLC–DAD–ESI/MS. Food Res Int 2012. [DOI: 10.1016/j.foodres.2012.07.046] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Melittin has an inhibitory effect on TNF-α-induced migration of human aortic smooth muscle cells by blocking the MMP-9 expression. Food Chem Toxicol 2012; 50:3996-4002. [PMID: 22926441 DOI: 10.1016/j.fct.2012.08.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 08/11/2012] [Accepted: 08/12/2012] [Indexed: 12/28/2022]
Abstract
Matrix metalloproteinases-9 (MMP-9) plays an important role in the pathogenesis of atherosclerosis and migration of vascular smooth muscle cells (VSMCs) after an arterial injury. In this study, we investigated the potential molecular mechanisms underlying the anti-atheroscleroic effects of melittin, a major component of bee venom, in human aortic smooth muscle cells (HASMCs). Melttin significantly suppressed MMP-9 and MMP-2 secretion, as well as TNF-α-induced MMP-9 expression in the HASMCs. In addition, we found that the inhibitory effects of melittin on TNF-α-induced MMP-9 protein expression are associated with the inhibition of MMP-9 transcription levels. Mechanistically, Melittin suppressed TNF-α-induced MMP-9 activity by inhibiting the phosphorylation of p38 and ERK1/2, but did not affect the phosphorylation of JNK and Akt. Reporter gene and western blotting assays showed that melittin inhibits MMP-9 transcriptional activity by blocking the activation of NF-κB via IκBα signaling pathway. Moreover, the matrigel migration assay showed that melittin reduced TNF-α-induced HASMC migration. These results suggest that melittin suppresses TNF-α-induced HASMC migration through the selective inhibition of MMP-9 expression and provide a novel role of melittin in the anti-atherosclerotic action.
Collapse
|
41
|
Lee SJ, Park SS, Kim WJ, Moon SK. Gleditsia sinensis thorn extract inhibits proliferation and TNF-α-induced MMP-9 expression in vascular smooth muscle cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2012; 40:373-86. [PMID: 22419430 DOI: 10.1142/s0192415x12500292] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The thorns of Gleditsia sinensis, which are extensively used as a medicinal herb in Asian countries, have been reported to exert various pharmacological effects. However, the anti-atherogenic effect of Gleditsia sinensis thorns has never been investigated. In the present study, we investigated the role and effect of the ethanol extract of Gleditsia sinensis thorns (EEGS) on cultured vascular smooth muscle cells (VSMC). Treatment of VSMC with EEGS led to a significant decrease in cell growth by arresting cells in the G2/M-phase of the cell cycle, which was associated with up-regulated p21WAF1 levels and suppression of G2/M cell cycle regulators, cyclinB1, Cdc2 and Cdc25c. In addition, EEGS treatment led to the induction of extracellular signal-regulated kinase1/2 (ERK1/2), p38 MAPK, and JNK (c-Jun N-terminal kinases) activation. EEGS-induced p21WAF1 expression was blocked by treatment with the p38 MAPK-specific inhibitor SB203580. SB203580 also markedly recovered the inhibition of cell growth and decrease in cell cycle proteins in EEGS-treated VSMC. Moreover, EEGS inhibited matrix metalloproteinase-9 (MMP-9) expression induced by tumor necrosis factor-α (TNF-α) in VSMC. Finally, an electrophoresis mobility shift assay demonstrated that EEGS suppressed expression of transcription factor, nuclear factor kappaB (NF-κB) and activator protein-1 (AP-1), which are essential cis-elements for the MMP-9 promoter in TNF-α-treated VSMC. These results demonstrate that EEGS exerts a potent inhibitory effect on cell proliferation and MMP-9 expression in VSMC. These unexpected novel findings represent theoretical data for the preventive and therapeutic use of EEGS for the treatment of atherosclerosis disease.
Collapse
Affiliation(s)
- Se-Jung Lee
- Department of Biotechnology, Chungju National University, Chungju, Chungbuk, South Korea
| | | | | | | |
Collapse
|
42
|
In situ–forming quercetin-conjugated heparin hydrogels for blood compatible and antiproliferative metal coating. J BIOACT COMPAT POL 2012. [DOI: 10.1177/0883911512448246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this study, in situ–forming quercetin-conjugated heparin hydrogels to be used to coat metal surfaces for blood compatibility were developed and characterized. Four units of quercetin and poly(ethylene glycol)–tyramine were conjugated per heparin for blood compatibility and hydrogel formation, respectively. The product, quercetin-conjugated heparin–poly(ethylene glycol)–tyramine, was cross-linked in situ via an enzymatic reaction using horseradish peroxidase and hydrogen peroxide to form a hydrogel. The physicochemical properties, such as the gelation time and swelling/degradation time as well as the release kinetics of quercetin, were controlled by changing the catalytic concentrations. The quercetin-conjugated heparin hydrogel, when adhered to a metal surface, enhanced blood compatibility and reduced platelet adhesion by 77%. The release of quercetin inhibited the proliferation of smooth muscle cells. The quercetin-conjugated heparin–poly(ethylene glycol)–tyramine hydrogel is a promising biomaterial with a stable-coated metal surface, with enhanced blood compatibility and antiproliferation effects.
Collapse
|
43
|
Lee J, Mitchell AE. Pharmacokinetics of quercetin absorption from apples and onions in healthy humans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:3874-3881. [PMID: 22439822 DOI: 10.1021/jf3001857] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A high-throughput method for the extraction and analysis of quercetin in human plasma using 96-well SPE and LC-(ESI)MS/MS (7 min/run) is described. Quercetin exists as a range of glycosides in foods. The dominant types of quercetin glycosides vary depending on genetics (i.e., species and cultivar). Dietary sources include onions and apples (i.e., the peel). Herein the quercetin glycoside composition was determined in a composite standard of dried apple peel and in onion powder. The predominant forms of quercetin in apple peel include quercetin O-arabinoside, 3-O-galactoside, 3-O-glucoside, and 3-O-rhamnoside. In the onion powder, quercetin occurred as the quercetin 3,4'-O-glucoside and 4'-O-glucoside. Pharmacokinetics relating to absorption (C(max), t(max), and AUC(0-24 h)) and elimination (k(el) and t(1/2)) were compared after the consumption of apple peel powder (AP), onion powder (OP), or a mixture of the apple peel and onion powder enriched applesauce (MP) by healthy volunteers (eight females and eight males). The enriched applesauce delivered ∼100 mg of quercetin aglycone equivalents. Consumption of the OP resulted in C(max) = 273.2 ± 93.7 ng/mL, t(max) = 2.0 ± 1.7 h, and t(1/2) = 14.8 ± 4.8 h, whereas the AP resulted in C(max) = 63.8 ± 22.4 ng/mL, t(max) = 2.9 ± 2.0 h, and t(1/2) = 65.4 ± 80.0 h. The MP resulted in an intermediate response with C(max) = 136.5 ± 45.8 ng/mL, t(max) = 2.4 ± 1.5 h, and t(1/2) = 18.7 ± 6.8 h. Consumption of the OP led to faster absorption, higher concentration, and greater bioavailability as compared to the AP. No significant gender-related differences were observed in the absorption of quercetin, whereas significant gender-related differences in the elimination half-time (t(1/2)) were observed.
Collapse
Affiliation(s)
- Jihyun Lee
- Department of Food Science and Technology, One Shields Avenue, University of California-Davis, CA 95616, USA
| | | |
Collapse
|
44
|
Moon J, Lee SM, Do HJ, Cho Y, Chung JH, Shin MJ. Quercetin up-regulates LDL receptor expression in HepG2 cells. Phytother Res 2012; 26:1688-94. [PMID: 22388943 DOI: 10.1002/ptr.4646] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 01/25/2012] [Accepted: 01/29/2012] [Indexed: 11/08/2022]
Abstract
Quercetin, an abundant flavonol found in fruits and vegetable, has been implicated in lowering the risk of cardiovascular disease that is often associated with high plasma levels of low density lipoprotein (LDL) cholesterol. Here we investigated whether quercetin could modulate the expression of LDL receptors (LDLR) in HepG2 cells and the possible underlying mechanisms to exert quercetin's effects. We found that quercetin was able to induce LDLR expression with at least a 75 µ m concentration, which was accompanied by an increase in nuclear sterol regulatory element binding protein 2 (SREBP2). This effect was mediated by activation of c-jun-N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) signalling pathways as implicated by experiments using chemical inhibitors of each pathway. When cells were challenged with protein synthesis inhibitors in quercetin-activated LDLR transcription, LDL mRNA levels were not significantly affected by cycloheximide but puromycin abolished quercetin-induced LDLR transcription. Taken together, we conclude that quercetin can initiate LDLR transcription by enhancing SREBP2 processing, but new protein synthesis might be necessary to exert a maximum effect of quercetin in the up-regulation of the LDLR gene. Our findings demonstrate that quercetin strongly up-regulated LDLR gene expression, which might elicit hypolipidemic effects by increasing the clearance of circulating LDL cholesterol levels from the blood.
Collapse
Affiliation(s)
- Jiyoung Moon
- Department of Food and Nutrition and Institute of Health Sciences, Korea University, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
45
|
Arumugam S, Thandavarayan RA, Arozal W, Sari FR, Giridharan VV, Soetikno V, Palaniyandi SS, Harima M, Suzuki K, Nagata M, Tagaki R, Kodama M, Watanabe K. Quercetin offers cardioprotection against progression of experimental autoimmune myocarditis by suppression of oxidative and endoplasmic reticulum stress via endothelin-1/MAPK signalling. Free Radic Res 2012; 46:154-63. [PMID: 22145946 DOI: 10.3109/10715762.2011.647010] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In order to test the hypothesis that treatment with quercetin at a dose of 10 mg/kg protects from the progression of experimental autoimmune myocarditis (EAM) to dilated cardiomyopathy (DCM), we have used the rat model of EAM induced by porcine cardiac myosin. Our results identified that the post-myocarditis rats suffered from elevated endoplasmic reticulum (ER) stress and adverse cardiac remodelling in the form of myocardial fibrosis, whereas the rats treated with quercetin have been protected from these changes as evidenced by the decreased myocardial levels of ER stress and fibrosis markers when compared with the vehicle-treated DCM rats. In addition, the myocardial dimensions and cardiac function were preserved significantly in the quercetin-treated rats in comparison with the DCM rats treated with vehicle alone. Interestingly, the rats treated with quercetin showed significant suppression of the myocardial endothelin-1 and also the mitogen activated protein kinases (MAPK) suggesting that the protection offered by quercetin treatment against progression of EAM involves the modulation of MAPK signalling cascade. Collectively, the present study provides data to support the role of quercetin in protecting the hearts of the rats with post myocarditis DCM.
Collapse
Affiliation(s)
- Somasundaram Arumugam
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata City, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Novel nanocomposite stent coating releasing resveratrol and quercetin reduces neointimal hyperplasia and promotes re-endothelialization. J Control Release 2012; 159:27-33. [PMID: 22269665 DOI: 10.1016/j.jconrel.2012.01.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 01/04/2012] [Accepted: 01/10/2012] [Indexed: 11/21/2022]
Abstract
Late-term thrombosis associated with drug-eluting stents may be due to the non-selective actions of antimitogenic drugs on endothelial cells, leading to delayed vascular healing after stenting angioplasty. Currently, there is a need for stent-based therapies that can both attenuate neointimal hyperplasia and promote re-endothelialization. The aim of this study was to compare the effects of a resveratrol (R)- and quercetin (Q)-eluting stent with that of a bare metal stent (BMS) on neointimal hyperplasia and re-endothelialization in a rat model of arterial angioplasty and stenting. Miniature stents (2.5×1.25mm) were sprayed with nanocomposite coatings containing two concentrations of R:Q (50:25μg/cm(2) (RQ1) or 150:75μg/cm(2) (RQ2)). The stents were deployed into the common carotid artery of rats and their impact on vascular remodeling was compared to that of BMS. Luminal stenosis in arteries stented with RQ2-eluting stents was reduced by 64.6% (p<0.05) compared to arteries stented with BMS. Accompanying this effect was a 59.8% reduction in macrophage infiltration (p<0.05). There were no differences found between RQ1 and BMS. Finally, the RQ2-coated stent accelerated re-endothelialization by 50% compared with BMS (p<0.05). Thus, compared with BMS, local delivery of R and Q from a stent platform significantly reduced in-stent stenosis, while promoting re-endothelialization. These data suggest that R and Q may be favorable candidates for novel stent coatings, potentially reducing the risk of late thrombosis associated with drug-eluting stents.
Collapse
|
47
|
Kim Y, Kim WJ, Cha EJ. Quercetin-induced Growth Inhibition in Human Bladder Cancer Cells Is Associated with an Increase in Ca-activated K Channels. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2011; 15:279-83. [PMID: 22128260 DOI: 10.4196/kjpp.2011.15.5.279] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 10/03/2011] [Accepted: 10/09/2011] [Indexed: 12/25/2022]
Abstract
Quercetin (3,3',4',5,7-pentahydroxyflavone) is an attractive therapeutic flavonoid for cancer treatment because of its beneficial properties including apoptotic, antioxidant, and antiproliferative effects on cancer cells. However, the exact mechanism of action of quercetin on ion channel modulation is poorly understood in bladder cancer 253J cells. In this study, we demonstrated that large conductance Ca(2+)-activated K(+) (BK(Ca)) or MaxiK channels were functionally expressed in 253J cells, and quercetin increased BK(Ca) current in a concentration dependent and reversible manner using a whole cell patch configuration. The half maximal activation concentration (IC(50)) of quercetin was 45.5±7.2 µM. The quercetin-evoked BK(Ca) current was inhibited by tetraethylammonium (TEA; 5 mM) a non-specific BK(Ca) blocker and iberiotoxin (IBX; 100 nM) a BK(Ca)-specific blocker. Quercetin-induced membrane hyperpolarization was measured by fluorescence-activated cell sorting (FACS) with voltage sensitive dye, bis (1,3-dibutylbarbituric acid) trimethine oxonol (DiBAC(4)(3); 100 nM). Quercetin-evoked hyperpolarization was prevented by TEA. Quercetin produced an antiproliferative effect (30.3±13.5%) which was recovered to 53.3±10.5% and 72.9±3.7% by TEA and IBX, respectively. Taken together our results indicate that activation of BK(Ca) channels may be considered an important target related to the action of quercetin on human bladder cancer cells.
Collapse
Affiliation(s)
- Yangmi Kim
- Department of Physiology, Chungbuk National University, Cheongju 361-763, Korea
| | | | | |
Collapse
|
48
|
GM3 Upregulation of matrix metalloproteinase-9 possibly through PI3K, AKT, RICTOR, RHOGDI-2, and TNF-A pathways in mouse melanoma B16 cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 705:335-48. [PMID: 21618116 DOI: 10.1007/978-1-4419-7877-6_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
49
|
Hur SJ, Park SJ, Jeong CH. Effect of buckwheat extract on the antioxidant activity of lipid in mouse brain and its structural change during in vitro human digestion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:10699-10704. [PMID: 21882888 DOI: 10.1021/jf202279r] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This study was conducted to investigate the effects of buckwheat ( Fagopyrum esculentum Moench cv. Yangjul No. 2) extract on the antioxidant activity of lipids in mouse brain and the structural change during in vitro human digestion. Buckwheat was collected from a wild farm and extracted with water. The buckwheat extracts were then passed through an in vitro human digestion model that simulated the composition of the mouth, stomach, and small intestine juice. The results confirmed that the main phenolics of buckwheat extract were rutin, quercitrin, and quercetin. The rutin content increased with digestion of the buckwheat (from 48.82 to 96.34 μg/g) and rutin standard samples (from 92.76 to 556.56 μg/g). Antioxidant activity was more strongly influenced by in vitro human digestion of both buckwheat and rutin standard. After digestion by the small intestine, the antioxidant activity values were dramatically increased (from 5.06 to 87.82%), whereas the antioxidant activity was not influenced by digestion in the stomach for both buckwheat extract and rutin standard. Inhibition of lipid oxidation of buckwheat in mouse brain lipids increased after digestion in the stomach for both buckwheat extract and the rutin standard. The major finding of this study was that in vitro human digestion may be an important modulator of the antioxidant capacity of buckwheat and that this may be because in vitro human digestion increased the antioxidative activity via an increase in antioxidants such as rutin and quercetin.
Collapse
Affiliation(s)
- Sun-Jin Hur
- Department of Applied Biochemistry, Konkuk University , Chungju 380-701, Korea
| | | | | |
Collapse
|
50
|
Lin CP, Huang PH, Tsai HS, Wu TC, Leu HB, Liu PL, Chen YH. Monascus purpureus-fermented rice inhibits tumor necrosis factor-α-induced upregulation of matrix metalloproteinase 2 and 9 in human aortic smooth muscle cells. J Pharm Pharmacol 2011; 63:1587-94. [PMID: 22060290 DOI: 10.1111/j.2042-7158.2011.01364.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Inflammation is associated with atherosclerosis. Cholestin (Monascus purpureus-fermented rice) contains a naturally occurring statin, which has lipid-modulating, anti-inflammatory and antioxidative effects. This study aimed to investigate the effects of Cholestin extract on the expression of matrix metalloproteinase (MMP)-2 and MMP-9 by tumor necrosis factor (TNF)-α-treated human aortic smooth muscle cells (HASMCs). METHODS Zymography, reverse transcription polymerase chain reaction and immunoblot analyses were used for analysis of MMP expression of TNF-α-stimulated HASMCs. Gel shift assay was used for analysis of transcription factor nuclear factor-κB (NF-κB) activation. Intracellular reactive oxygen species (ROS) generation was also analysed. KEY FINDINGS The supplement of HASMCs with Cholestin extract significantly suppresses enzymatic activities of MMP-2 and MMP-9 in TNF-α-stimulated HASMCs. RT-PCR and immunoblot analyses show that Cholestin extract significantly attenuates TNF-α-induced mRNA and protein expressions of MMP-2 and MMP-9. Gel shift assays show that Cholestin treatment reduces TNF-α-activated NF-κB. Furthermore, Cholestin also attenuates intracellular ROS generation in TNF-α-treated HASMCs. The supplement with an ROS scavenger N-acetyl-cysteine (glutathione precursor) gives similar results to Cholestin. CONCLUSIONS Cholestin reduces TNF-α-stimulated MMP-2 and MMP-9 expression as well as downregulating NF-κB activation and intracellular ROS formation in HASMCs, supporting the notion that the natural compound Cholestin may have potential application in clinical atherosclerosis disease.
Collapse
Affiliation(s)
- Chih-Pei Lin
- Department of Pathology and Laboratory Medicine, Division of General, Laboratory, Taipei Veterans General Hospital, Institute of Biotechnology in Medicine, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|