1
|
Rosazza T, Eigentler L, Earl C, Davidson FA, Stanley‐Wall NR. Bacillus subtilis extracellular protease production incurs a context-dependent cost. Mol Microbiol 2023; 120:105-121. [PMID: 37380434 PMCID: PMC10952608 DOI: 10.1111/mmi.15110] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/30/2023]
Abstract
Microbes encounter a wide range of polymeric nutrient sources in various environmental settings, which require processing to facilitate growth. Bacillus subtilis, a bacterium found in the rhizosphere and broader soil environment, is highly adaptable and resilient due to its ability to utilise diverse sources of carbon and nitrogen. Here, we explore the role of extracellular proteases in supporting growth and assess the cost associated with their production. We provide evidence of the essentiality of extracellular proteases when B. subtilis is provided with an abundant, but polymeric nutrient source and demonstrate the extracellular proteases as a shared public good that can operate over a distance. We show that B. subtilis is subjected to a public good dilemma, specifically in the context of growth sustained by the digestion of a polymeric food source. Furthermore, using mathematical simulations, we uncover that this selectively enforced dilemma is driven by the relative cost of producing the public good. Collectively, our findings reveal how bacteria can survive in environments that vary in terms of immediate nutrient accessibility and the consequent impact on the population composition. These findings enhance our fundamental understanding of how bacteria respond to diverse environments, which has importance to contexts ranging from survival in the soil to infection and pathogenesis scenarios.
Collapse
Affiliation(s)
- Thibault Rosazza
- Division of Molecular Microbiology, School of Life ScienceUniversity of DundeeDundeeUK
| | - Lukas Eigentler
- Division of Molecular Microbiology, School of Life ScienceUniversity of DundeeDundeeUK
- Mathematics, School of Science and EngineeringUniversity of DundeeDundeeUK
- Present address:
Evolutionary Biology DepartmentUniversität BielefeldKonsequenz 45Bielefeld33615Germany
| | - Chris Earl
- Division of Molecular Microbiology, School of Life ScienceUniversity of DundeeDundeeUK
| | | | | |
Collapse
|
2
|
Sevillano E, Peña N, Lafuente I, Cintas LM, Muñoz-Atienza E, Hernández PE, Borrero J. Nisin S, a Novel Nisin Variant Produced by Ligilactobacillus salivarius P1CEA3. Int J Mol Sci 2023; 24:ijms24076813. [PMID: 37047785 PMCID: PMC10095417 DOI: 10.3390/ijms24076813] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023] Open
Abstract
Recently, the food industry and the animal farming field have been working on different strategies to reduce the use of antibiotics in animal production. The use of probiotic producers of antimicrobial peptides (bacteriocins) is considered to be a potential solution to control bacterial infections and to reduce the use of antibiotics in animal production. In this study, Ligilactobacillus salivarius P1CEA3, isolated from the gastrointestinal tract (GIT) of pigs, was selected for its antagonistic activity against Gram-positive pathogens of relevance in swine production. Whole genome sequencing (WGS) of L. salivarius P1ACE3 revealed the existence of two gene clusters involved in bacteriocin production, one with genes encoding the class II bacteriocins salivaricin B (SalB) and Abp118, and a second cluster encoding a putative nisin variant. Colony MALDI-TOF MS determinations and a targeted proteomics combined with massive peptide analysis (LC-MS/MS) of the antimicrobial peptides encoded by L. salivarius P1CEA3 confirmed the production of a 3347 Da novel nisin variant, termed nisin S, but not the production of the bacteriocins SalB and Abp118, in the supernatants of the producer strain. This is the first report of a nisin variant encoded and produced by L. salivarius, a bacterial species specially recognized for its safety and probiotic potential.
Collapse
Affiliation(s)
- Ester Sevillano
- Departamento de Nutrición y Ciencia de los Alimentos (NUTRYCIAL), Sección Departamental de Nutrición y Ciencia de los Alimentos (SD-NUTRYCIAL), Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040 Madrid, Spain
| | - Nuria Peña
- Departamento de Nutrición y Ciencia de los Alimentos (NUTRYCIAL), Sección Departamental de Nutrición y Ciencia de los Alimentos (SD-NUTRYCIAL), Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040 Madrid, Spain
| | - Irene Lafuente
- Departamento de Nutrición y Ciencia de los Alimentos (NUTRYCIAL), Sección Departamental de Nutrición y Ciencia de los Alimentos (SD-NUTRYCIAL), Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040 Madrid, Spain
| | - Luis M Cintas
- Departamento de Nutrición y Ciencia de los Alimentos (NUTRYCIAL), Sección Departamental de Nutrición y Ciencia de los Alimentos (SD-NUTRYCIAL), Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040 Madrid, Spain
| | - Estefanía Muñoz-Atienza
- Departamento de Nutrición y Ciencia de los Alimentos (NUTRYCIAL), Sección Departamental de Nutrición y Ciencia de los Alimentos (SD-NUTRYCIAL), Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040 Madrid, Spain
| | - Pablo E Hernández
- Departamento de Nutrición y Ciencia de los Alimentos (NUTRYCIAL), Sección Departamental de Nutrición y Ciencia de los Alimentos (SD-NUTRYCIAL), Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040 Madrid, Spain
| | - Juan Borrero
- Departamento de Nutrición y Ciencia de los Alimentos (NUTRYCIAL), Sección Departamental de Nutrición y Ciencia de los Alimentos (SD-NUTRYCIAL), Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040 Madrid, Spain
| |
Collapse
|
3
|
Auto- and Hetero-Catalytic Processing of the N-Terminal Propeptide Promotes the C-Terminal Fibronectin Type III Domain-Mediated Dimerization of a Thermostable Vpr-like Protease. Appl Environ Microbiol 2022; 88:e0150322. [PMID: 36250702 PMCID: PMC9642013 DOI: 10.1128/aem.01503-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microbial Vpr-like proteases are extracellular multidomain subtilases with diverse functions and can form oligomers, but their maturation and oligomerization mechanisms remain to be elucidated. Here, we report a novel Vpr-like protease (BTV) from thermophilic bacterium Brevibacillus sp. WF146. The BTV precursor comprises a signal peptide, an N-terminal propeptide, a subtilisin-like catalytic domain with an inserted protease-associated (PA) domain, two tandem fibronectin type III domains (Fn1 and Fn2), and a C-terminal propeptide. The BTV proform (pro-BTV) could be autoprocessed into the mature form (mBTV) via two intermediates lacking the N- or C-terminal propeptide, respectively, and the C-terminal propeptide delays the autocatalytic maturation of the enzyme. By comparison, pro-BTV is more efficiently processed into mBTV by protease TSS from strain WF146. Purified mBTV is a Ca2+-dependent thermostable protease, showing optimal activity at 60°C and retaining more than 60% of activity after incubation at 60°C for 8 h. The PA domain is important for enzyme stability and contributes to the substrate specificity of BTV by restricting the access of protein substrates to the active site. The proform and mature form of BTV exist as a monomer and a homodimer, respectively, and the dimerization is mediated by the Fn1 and Fn2 domains. The N-terminal propeptide of BTV not only acts as intramolecular chaperone and enzymatic inhibitor but also inhibits the homodimerization of the enzyme. The removal of the N-terminal propeptide leads to a structural adjustment of the enzyme and thus promotes enzyme dimerization. IMPORTANCE Vpr-like proteases are widely distributed in bacteria and fungi and are involved in processing lantibiotics, degrading collagen, keratin, and fibrin, and pathogenesis of microbes. The dissection of the roles of individual domains in enzyme maturation and oligomerization is crucial for understanding the action mechanisms of these multidomain proteases. Our results demonstrate that hetero-catalytic maturation of the extracellular Vpr-like protease BTV of Brevibacillus sp. WF146 is more efficient than autocatalytic maturation of the enzyme. Moreover, we found that the C-terminal tandem fibronectin type III domains rather than the PA domain mediate the dimerization of mature BTV, while the N-terminal propeptide inhibits the dimerization of the BTV proform. This study provides new insight into the activation and oligomerization mechanisms of Vpr-like proteases.
Collapse
|
4
|
Engineered endosymbionts that alter mammalian cell surface marker, cytokine and chemokine expression. Commun Biol 2022; 5:888. [PMID: 36042261 PMCID: PMC9427783 DOI: 10.1038/s42003-022-03851-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/16/2022] [Indexed: 11/29/2022] Open
Abstract
Developing modular tools that direct mammalian cell function and activity through controlled delivery of essential regulators would improve methods of guiding tissue regeneration, enhancing cellular-based therapeutics and modulating immune responses. To address this challenge, Bacillus subtilis was developed as a chassis organism for engineered endosymbionts (EES) that escape phagosome destruction, reside in the cytoplasm of mammalian cells, and secrete proteins that are transported to the nucleus to impact host cell response and function. Two synthetic operons encoding either the mammalian transcription factors Stat-1 and Klf6 or Klf4 and Gata-3 were recombined into the genome of B. subtilis expressing listeriolysin O (LLO) from Listeria monocytogenes and expressed from regulated promoters. Controlled expression of the mammalian proteins from B. subtilis LLO in the cytoplasm of J774A.1 macrophage/monocyte cells altered surface marker, cytokine and chemokine expression. Modulation of host cell fates displayed some expected patterns towards anti- or pro-inflammatory phenotypes by each of the distinct transcription factor pairs with further demonstration of complex regulation caused by a combination of the EES interaction and transcription factors. Expressing mammalian transcription factors from engineered intracellular B. subtilis as engineered endosymbionts comprises a new tool for directing host cell gene expression for therapeutic and research purposes. The establishment of non-pathogenic engineered endosymbionts through B. subtilis is presented, with the aim of delivering mammalian transcription factors to the host cell for therapeutics and research.
Collapse
|
5
|
Helfrich M, Entian KD, Stein T. Antibiotic profiling of wild-type bacilli led to the discovery of new lanthipeptide subtilin-producing Bacillus spizizenii strains whose 16S rDNA sequences differ from the B. spizizenii typing strain. INTERNATIONAL MICROBIOLOGY : THE OFFICIAL JOURNAL OF THE SPANISH SOCIETY FOR MICROBIOLOGY 2022; 25:839-850. [PMID: 35902452 PMCID: PMC9526687 DOI: 10.1007/s10123-022-00266-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/12/2022] [Accepted: 07/06/2022] [Indexed: 11/25/2022]
Abstract
Two dozen field-collected Bacillus and a dozen Bacillus spizizenii wild-type strains from strain collections were selected on the basis of their antagonistic properties against the Gram-positive strain Micrococcus luteus. Based on their genetic and antibiotic profiles, they were characterized (subtilin encoding spaS gene sequences, mass spectrometric, and quantitative-reversed phase liquid chromatographic analyses, as well as the presence of the lanthionine cyclase protein SpaC by western blotting), seven novel producers of the lanthipeptide subtilin. Phylogenetic analyses of the subtilin-producing wild-type strains based on their 16S rRNA sequences showed that all seven strains could be classified as B. spizizenii: The field-collected strains HS and N5, as well as strains DSM 618, 1087, 6395, 6405, and 8439 from the German Collection of Microorganisms and Cell Cultures. To the best of our knowledge, all B. spizizenii strains described so far are characterized by the fact that they can produce a lanthipeptide of the subtilin family. Both the lanthipeptide structures and the organization and sequences of the 16S rRNA-encoding genes suggest a subdivision of B. spizizenii into subspecies: The subtilin-producing B. spizizenii strains are distinctly different from the entianin-producing B. spizizenii typing strain TU-B-10 T (DSM 15029 T).
Collapse
Affiliation(s)
- Markus Helfrich
- Life Sciences, Johann Wolfgang-Goethe-University, Max v. Laue Str. 9, 60439, Frankfurt/Main, Germany
- Jennewein Biotechnologie GmbH, Maarweg 32, 53619, Rheinbreitbach, Germany
| | - Karl-Dieter Entian
- Life Sciences, Johann Wolfgang-Goethe-University, Max v. Laue Str. 9, 60439, Frankfurt/Main, Germany
| | - Torsten Stein
- Life Sciences, Johann Wolfgang-Goethe-University, Max v. Laue Str. 9, 60439, Frankfurt/Main, Germany.
- Chemistry & Molecular Biotechnology, Aalen University, Beethovenstraße 1, 73430, Aalen, Germany.
| |
Collapse
|
6
|
Viel JH, Kuipers OP. Mutational Studies of the Mersacidin Leader Reveal the Function of Its Unique Two-Step Leader Processing Mechanism. ACS Synth Biol 2022; 11:1949-1957. [PMID: 35504017 PMCID: PMC9127955 DOI: 10.1021/acssynbio.2c00088] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
![]()
The class II lanthipeptide
mersacidin, a ribosomally synthesized
and post-translationally modified peptide (RiPP), displays unique
intramolecular structures, including a very small lanthionine ring.
When applied in the growing field of RiPP engineering, these can add
unique features to new-to-nature compounds with novel properties.
Recently, a heterologous expression system for mersacidin in Escherichia coli was developed to add its modification
enzymes to the RiPP engineering toolbox and further explore mersacidin
biosynthesis and leader-processing. The dedicated mersacidin transporter
and leader protease MrsT was shown to cleave the leader peptide only
partially upon export, transporting GDMEAA-mersacidin out of the cell.
The extracellular Bacillus amyloliquefaciens protease AprE was shown to release active mersacidin in a second
leader-processing step after transport. The conserved LanT cleavage
site in the mersacidin leader is present in many other class II lanthipeptides.
In contrast to mersacidin, the leader of these peptides is fully processed
in one step. This difference with mersacidin leader-processing raises
fundamentally interesting questions about the specifics of mersacidin
modification and processing, which is also crucial for its application
in RiPP engineering. Here, mutational studies of the mersacidin leader–core
interface were performed to answer these questions. Results showed
the GDMEAA sequence is crucial for both mersacidin modification and
leader processing, revealing a unique leader layout in which a LanM
recognition site is positioned downstream of the conserved leader-protease
LanT cleavage site. Moreover, by identifying residues and regions
that are crucial for mersacidin-type modifications, the wider application
of mersacidin modifications in RiPP engineering has been enabled.
Collapse
Affiliation(s)
- Jakob H. Viel
- Department of Molecular Genetics, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Oscar P. Kuipers
- Department of Molecular Genetics, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
7
|
Zhang Q, Kobras CM, Gebhard S, Mascher T, Wolf D. Regulation of heterologous subtilin production in Bacillus subtilis W168. Microb Cell Fact 2022; 21:57. [PMID: 35392905 PMCID: PMC8991943 DOI: 10.1186/s12934-022-01782-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/25/2022] [Indexed: 11/30/2022] Open
Abstract
Background Subtilin is a peptide antibiotic (lantibiotic) natively produced by Bacillus subtilis ATCC6633. It is encoded in a gene cluster spaBTCSIFEGRK (spa-locus) consisting of four transcriptional units: spaS (subtilin pre-peptide), spaBTC (modification and export), spaIFEG (immunity) and spaRK (regulation). Despite the pioneer understanding on subtilin biosynthesis, a robust platform to facilitate subtilin research and improve subtilin production is still a poorly explored spot. Results In this work, the intact spa-locus was successfully integrated into the chromosome of Bacillus subtilis W168, which is the by far best-characterized Gram-positive model organism with powerful genetics and many advantages in industrial use. Through systematic analysis of spa-promoter activities in B. subtilis W168 wild type and mutant strains, our work demonstrates that subtilin is basally expressed in B. subtilis W168, and the transition state regulator AbrB strongly represses subtilin biosynthesis in a growth phase-dependent manner. The deletion of AbrB remarkably enhanced subtilin gene expression, resulting in comparable yield of bioactive subtilin production as for B. subtilis ATCC6633. However, while in B. subtilis ATCC6633 AbrB regulates subtilin gene expression via SigH, which in turn activates spaRK, AbrB of B. subtilis W168 controls subtilin gene expression in SigH-independent manner, except for the regulation of spaBTC. Furthermore, the work shows that subtilin biosynthesis in B. subtilis W168 is regulated by the two-component regulatory system SpaRK and strictly relies on subtilin itself as inducer to fulfill the autoregulatory circuit. In addition, by incorporating the subtilin-producing system (spa-locus) and subtilin-reporting system (PpsdA-lux) together, we developed “online” reporter strains to efficiently monitor the dynamics of subtilin biosynthesis. Conclusions Within this study, the model organism B. subtilis W168 was successfully established as a novel platform for subtilin biosynthesis and the underlying regulatory mechanism was comprehensively characterized. This work will not only facilitate genetic (engineering) studies on subtilin, but also pave the way for its industrial production. More broadly, this work will shed new light on the heterologous production of other lantibiotics. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01782-9.
Collapse
Affiliation(s)
- Qian Zhang
- Institute of Microbiology, Technische Universität Dresden, 01217, Dresden, Germany
| | - Carolin M Kobras
- Department Biology I, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany.,School of Biosciences, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Susanne Gebhard
- Department Biology I, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany.,Department of Biology & Biochemistry, Milner Centre for Evolution, University of Bath, Bath, BA2 7AY, UK
| | - Thorsten Mascher
- Institute of Microbiology, Technische Universität Dresden, 01217, Dresden, Germany
| | - Diana Wolf
- Institute of Microbiology, Technische Universität Dresden, 01217, Dresden, Germany.
| |
Collapse
|
8
|
Xue D, Older EA, Zhong Z, Shang Z, Chen N, Dittenhauser N, Hou L, Cai P, Walla MD, Dong SH, Tang X, Chen H, Nagarkatti P, Nagarkatti M, Li YX, Li J. Correlational networking guides the discovery of unclustered lanthipeptide protease-encoding genes. Nat Commun 2022; 13:1647. [PMID: 35347143 PMCID: PMC8960859 DOI: 10.1038/s41467-022-29325-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 02/21/2022] [Indexed: 11/09/2022] Open
Abstract
Bacterial natural product biosynthetic genes, canonically clustered, have been increasingly found to rely on hidden enzymes encoded elsewhere in the genome for completion of biosynthesis. The study and application of lanthipeptides are frequently hindered by unclustered protease genes required for final maturation. Here, we establish a global correlation network bridging the gap between lanthipeptide precursors and hidden proteases. Applying our analysis to 161,954 bacterial genomes, we establish 5209 correlations between precursors and hidden proteases, with 91 prioritized. We use network predictions and co-expression analysis to reveal a previously missing protease for the maturation of class I lanthipeptide paenilan. We further discover widely distributed bacterial M16B metallopeptidases of previously unclear biological function as a new family of lanthipeptide proteases. We show the involvement of a pair of bifunctional M16B proteases in the production of previously unreported class III lanthipeptides with high substrate specificity. Together, these results demonstrate the strength of our correlational networking approach to the discovery of hidden lanthipeptide proteases and potentially other missing enzymes for natural products biosynthesis.
Collapse
Affiliation(s)
- Dan Xue
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Ethan A Older
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Zheng Zhong
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Zhuo Shang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Nanzhu Chen
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Nolan Dittenhauser
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Lukuan Hou
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Peiyan Cai
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Michael D Walla
- The Mass Spectrometry Center, Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Shi-Hui Dong
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Xiaoyu Tang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Hexin Chen
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, USA
| | - Yong-Xin Li
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.
| | - Jie Li
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
9
|
Analysis of cross-functionality within LanBTC synthetase complexes from different bacterial sources with respect to production of fully modified lanthipeptides. Appl Environ Microbiol 2021; 88:e0161821. [PMID: 34788067 DOI: 10.1128/aem.01618-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lanthipeptides belong to a family of ribosomally synthesized and posttranslationally modified peptides (RiPPs) containing (methyl)lanthionine residues. Commonly, class I lanthipeptides are synthesized by a gene cluster encoding a precursor peptide (LanA), a biosynthetic machinery (LanBTC), a protease (LanP), a two-component regulatory system (LanRK), and an immunity system (LanI and LanFEG). Although nisin and subtilin are highly similar class I lanthipeptides, the cross-regulation by LanRK and the cross-immunity by LanI and LanFEG between the nisin and subtilin systems have been proven very low. Here, the possibility of the cross-functionality by LanBTC to modify and transport nisin precursor (NisA) and subtilin precursor (SpaS) was evaluated in Bacillus subtilis and Lactococcus lactis. Interestingly, we found that a promiscuous NisBC-SpaT complex is able to synthesize and export nisin precursor, as efficiently as the native nisin biosynthetic machinery NisBTC, in L. lactis, but not in B. subtilis. The assembly of the NisBC-SpaT complex at a single microdomain, close to the old cell pole, was observed by fluorescence microscopy in L. lactis. In contrast, such a complex was not formed in B. subtilis. Furthermore, the isolation of the NisBC-SpaT complex and its subcomplexes from the cytoplasmic membrane of L. lactis by pull-down assays was successfully conducted. Our work demonstrates that the association of LanBC with LanT is critical for the efficient biosynthesis and secretion of the lanthipeptide precursor with complete modifications, and suggests a cooperative mechanism between LanBC and LanT in the modification and transport processes. IMPORTANCE A multimeric synthetase LanBTC complex has been proposed for the in vivo production of class I lanthipeptides. However, it has been demonstrated that LanB, LanC, and LanT can perform their functionality in vivo and in vitro, independently of other Lan proteins. The role of protein-protein interactions, especially between the modification complex LanBC and the transport system LanT, in the biosynthesis process of lanthipeptides is still unclear. In this study, the importance of the presence of a well-installed LanBTC complex in the cell membrane for lanthipeptide biosynthesis and transport was reinforced. In L. lactis, the recruitment of SpaT from the peripheral cell membrane to the cell poles by the NisBC complex was observed, which may explain the mechanism by which secretion of premature peptide is prevented.
Collapse
|
10
|
Viel JH, van Tilburg AY, Kuipers OP. Characterization of Leader Processing Shows That Partially Processed Mersacidin Is Activated by AprE After Export. Front Microbiol 2021; 12:765659. [PMID: 34777321 PMCID: PMC8581636 DOI: 10.3389/fmicb.2021.765659] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/05/2021] [Indexed: 11/26/2022] Open
Abstract
The ribosomally synthesized and post-translationally modified peptide mersacidin is a class II lanthipeptide with good activity against Gram-positive bacteria. The intramolecular lanthionine rings, that give mersacidin its stability and antimicrobial activity, are specific structures with potential applications in synthetic biology. To add the mersacidin modification enzymes to the synthetic biology toolbox, a heterologous expression system for mersacidin in Escherichia coli has recently been developed. While this system was able to produce fully modified mersacidin precursor peptide that could be activated by Bacillus amyloliquefaciens supernatant and showed that mersacidin was activated in an additional proteolytic step after transportation out of the cell, it lacked a mechanism for clean and straightforward leader processing. Here, the protease responsible for activating mersacidin was identified and heterologously produced in E. coli, improving the previously reported heterologous expression system. By screening multiple proteases, the stringency of proteolytic activity directly next to a very small lanthionine ring is demonstrated, and the full two-step proteolytic activation of mersacidin was elucidated. Additionally, the effect of partial leader processing on diffusion and antimicrobial activity is assessed, shedding light on the function of two-step leader processing.
Collapse
Affiliation(s)
- Jakob H Viel
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Amanda Y van Tilburg
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| |
Collapse
|
11
|
Characterization of the Biosynthetic Gene Cluster of Enterocin F4-9, a Glycosylated Bacteriocin. Microorganisms 2021; 9:microorganisms9112276. [PMID: 34835402 PMCID: PMC8620827 DOI: 10.3390/microorganisms9112276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 02/02/2023] Open
Abstract
Enterocin F4-9 belongs to the glycocin family having post-translational modifications by two molecules of N-acetylglucosamine β-O-linked to Ser37 and Thr46. In this study, the biosynthetic gene cluster of enterocin F4-9 was cloned and expressed in Enterococcus faecalis JH2-2. Production of glycocin by the JH2-2 expression strain was confirmed by expression of the five genes. The molecular weight was greater than glycocin secreted by the wild strain, E. faecalis F4-9, because eight amino acids from the N-terminal leader sequence remained attached. This N-terminal extension was eliminated after treatment with the culture supernatant of strain F4-9, implying an extracellular protease from E. faecalis F4-9 cleaves the N-terminal sequence. Thus, leader sequences cleavage requires two steps: the first via the EnfT protease domain and the second via extracellular proteases. Interestingly, the long peptide, with N-terminal extension, demonstrated advanced antimicrobial activity against Gram-positive and Gram-negative bacteria. Furthermore, enfC was responsible for glycosylation, a necessary step prior to secretion and cleavage of the leader peptide. In addition, enfI was found to grant self-immunity to producer cells against enterocin F4-9. This report demonstrates specifications of the minimal gene set responsible for production of enterocin F4-9, as well as a new biosynthetic mechanism of glycocins.
Collapse
|
12
|
Isolation and Analysis of the Nisin Biosynthesis Complex NisBTC: further Insights into Their Cooperative Action. mBio 2021; 12:e0258521. [PMID: 34607454 PMCID: PMC8546558 DOI: 10.1128/mbio.02585-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Nisin is synthesized by a putative membrane-associated lantibiotic synthetase complex composed of the dehydratase NisB, the cyclase NisC, and the ABC transporter NisT in Lactococcus lactis. Earlier work has demonstrated that NisB and NisT are linked via NisC to form such a complex. Here, we conducted for the first time the isolation of the intact NisBTC complex and NisT-associated subcomplexes from the cytoplasmic membrane by affinity purification. A specific interaction of NisT, not only with NisC but also with NisB, was detected. The cellular presence of NisB and/or NisC in complex with precursor nisin (NisA) was determined, which shows a highly dynamic and transient assembly of the NisABC complex via an alternating binding mechanism during nisin dehydration and cyclization. Mutational analyses, with cysteine-to-alanine mutations in NisA, suggest a tendency for NisA to lose affinity to NisC concomitant with an increasing number of completed lanthionine rings. Split NisBs were able to catalyze glutamylation and elimination reactions in an alternating way as efficiently as full-length NisB, with no significant influence on the following cyclization and transport. Notably, the harvest of the leader peptide in complex with the independent elimination domain of NisB points to a second leader peptide binding motif that is located in the C-terminal region of NisB, giving rise to a model where the leader peptide binds to different sites in NisB for glutamylation and elimination. Overall, these combined studies provide new insights into the cooperative biosynthesis mechanism of nisin and thereby lay a foundation for further structural and functional characterization of the NisBTC complex.
Collapse
|
13
|
Harwood CR, Kikuchi Y. The ins and outs of Bacillus proteases: activities, functions and commercial significance. FEMS Microbiol Rev 2021; 46:6354784. [PMID: 34410368 PMCID: PMC8767453 DOI: 10.1093/femsre/fuab046] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/17/2021] [Indexed: 12/23/2022] Open
Abstract
Because the majority of bacterial species divide by binary fission, and do not have distinguishable somatic and germline cells, they could be considered to be immortal. However, bacteria ‘age’ due to damage to vital cell components such as DNA and proteins. DNA damage can often be repaired using efficient DNA repair mechanisms. However, many proteins have a functional ‘shelf life’; some are short lived, while others are relatively stable. Specific degradation processes are built into the life span of proteins whose activities are required to fulfil a specific function during a prescribed period of time (e.g. cell cycle, differentiation process, stress response). In addition, proteins that are irreparably damaged or that have come to the end of their functional life span need to be removed by quality control proteases. Other proteases are involved in performing a variety of specific functions that can be broadly divided into three categories: processing, regulation and feeding. This review presents a systematic account of the proteases of Bacillus subtilis and their activities. It reviews the proteases found in, or associated with, the cytoplasm, the cell membrane, the cell wall and the external milieu. Where known, the impacts of the deletion of particular proteases are discussed, particularly in relation to industrial applications.
Collapse
Affiliation(s)
- Colin R Harwood
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University NE2 4AX, Newcastle upon Tyne, UK
| | - Yoshimi Kikuchi
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki 210-8681, JAPAN
| |
Collapse
|
14
|
Visualization and Analysis of the Dynamic Assembly of a Heterologous Lantibiotic Biosynthesis Complex in Bacillus subtilis. mBio 2021; 12:e0121921. [PMID: 34281399 PMCID: PMC8406302 DOI: 10.1128/mbio.01219-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A membrane-associated lanthipeptide synthetase complex, consisting of the dehydratase NisB, the cyclase NisC, and the ABC transporter NisT, has been described for nisin biosynthesis in the coccoid bacterium Lactococcus lactis. Here, we used advanced fluorescence microscopy to visualize the functional nisin biosynthesis machinery in rod-shaped cells and analyzed its spatial distribution and dynamics employing a platform we developed for heterologous production of nisin in Bacillus subtilis. We observed that NisT, as well as NisB and NisC, were all distributed in a punctate pattern along the cell periphery, opposed to the situation in coccoid cells. NisBTC proteins were found to be highly colocalized, being visualized at the same spots by dual fluorescence microscopy. In conjunction with the successful isolation of the biosynthetic complex NisBTC from the cell membrane, this corroborated that the visual bright foci were the sites for nisin maturation and transportation. A strategy of differential timing of expression was employed to demonstrate the in vivo dynamic assembly of NisBTC, revealing the recruitment by NisT of NisBC to the membrane. Additionally, by use of mutated proteins, the nucleotide binding domain (NBD) of NisT was found to function as a membrane anchor for NisB and/or NisC. We also show that the nisin biosynthesis sites are static and likely associated with proteins residing in lipid rafts. Based on these data, we propose a model for a three-phase production of modified precursor nisin in rod-shaped bacteria, presenting the assembly dynamics of NisBTC and emphasizing the crucial role of NisBC, next to NisT, in the process of precursor nisin translocation.
Collapse
|
15
|
Castaldi S, Petrillo C, Donadio G, Piaz FD, Cimmino A, Masi M, Evidente A, Isticato R. Plant Growth Promotion Function of Bacillus sp. Strains Isolated from Salt-Pan Rhizosphere and Their Biocontrol Potential against Macrophomina phaseolina. Int J Mol Sci 2021; 22:3324. [PMID: 33805133 PMCID: PMC8036593 DOI: 10.3390/ijms22073324] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/11/2021] [Accepted: 03/18/2021] [Indexed: 11/17/2022] Open
Abstract
In recent decades, intensive crop management has involved excessive use of pesticides or fertilizers, compromising environmental integrity and public health. Accordingly, there has been worldwide pressure to find an eco-friendly and safe strategy to ensure agricultural productivity. Among alternative approaches, Plant Growth-Promoting (PGP) rhizobacteria are receiving increasing attention as suitable biocontrol agents against agricultural pests. In the present study, 22 spore-forming bacteria were selected among a salt-pan rhizobacteria collection for their PGP traits and their antagonistic activity against the plant pathogen fungus Macrophomina phaseolina. Based on the higher antifungal activity, strain RHFS10, identified as Bacillus vallismortis, was further examined and cell-free supernatant assays, column purification, and tandem mass spectrometry were employed to purify and preliminarily identify the antifungal metabolites. Interestingly, the minimum inhibitory concentration assessed for the fractions active against M. phaseolina was 10 times lower and more stable than the one estimated for the commercial fungicide pentachloronitrobenzene. These results suggest the use of B. vallismortis strain RHFS10 as a potential plant growth-promoting rhizobacteria as an alternative to chemical pesticides to efficiently control the phytopathogenic fungus M. phaseolina.
Collapse
Affiliation(s)
- Stefany Castaldi
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia 4, 80126 Naples, Italy; (S.C.); (C.P.)
| | - Claudia Petrillo
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia 4, 80126 Naples, Italy; (S.C.); (C.P.)
| | - Giuliana Donadio
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy;
| | - Fabrizio Dal Piaz
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy;
| | - Alessio Cimmino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia 4, 80126 Naples, Italy; (A.C.); (M.M.); (A.E.)
| | - Marco Masi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia 4, 80126 Naples, Italy; (A.C.); (M.M.); (A.E.)
| | - Antonio Evidente
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia 4, 80126 Naples, Italy; (A.C.); (M.M.); (A.E.)
| | - Rachele Isticato
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia 4, 80126 Naples, Italy; (S.C.); (C.P.)
| |
Collapse
|
16
|
Viel JH, Jaarsma AH, Kuipers OP. Heterologous Expression of Mersacidin in Escherichia coli Elucidates the Mode of Leader Processing. ACS Synth Biol 2021; 10:600-608. [PMID: 33689311 PMCID: PMC7985838 DOI: 10.1021/acssynbio.0c00601] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
The lanthipeptide
mersacidin is a ribosomally synthesized and post-translationally
modified peptide (RiPP) produced by Bacillus amyloliquefaciens. It has antimicrobial activity against a range of Gram-positive
bacteria, including methicillin-resistant Staphylococcus aureus, giving it potential therapeutic relevance. The structure and bioactivity
of mersacidin are derived from a unique combination of lanthionine
ring structures, which makes mersacidin also interesting from a lantibiotic-engineering
point of view. Until now, mersacidin and its derivatives have exclusively
been produced in Bacillus strains and purified from
the supernatant in their bioactive form. However, to fully exploit
its potential in lanthipeptide-engineering, mersacidin would have
to be expressed in a standardized expression system and obtained in
its inactive prepeptide form. In such a system, the mersacidin biosynthetic
enzymes could be employed to create novel peptides, enhanced by the
recent advancements in RiPP engineering, while the leader peptide
prevents activity against the expression host. This system would however
need a means of postpurification in vitro leader
processing to activate the obtained precursor peptides. While mersacidin’s
native leader processing mechanism has not been confirmed, the bifunctional
transporter MrsT and extracellular Bacillus proteases
have been suggested to be responsible. Here, a modular system is presented
for the heterologous expression of mersacidin in Escherichia
coli, which was successfully used to produce and purify inactive
premersacidin. The purified product was used to determine the cleavage
site of MrsT. Additionally, it was concluded from antimicrobial activity
tests that in a second processing step mersacidin is activated by
specific extracellular proteases from Bacillus amyloliquefaciens.
Collapse
Affiliation(s)
- Jakob H. Viel
- Department of Molecular Genetics, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Ate H. Jaarsma
- Department of Molecular Genetics, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Oscar P. Kuipers
- Department of Molecular Genetics, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
17
|
Yao Z, Meng Y, Le HG, Lee SJ, Jeon HS, Yoo JY, Kim HJ, Kim JH. Cloning of a Novel vpr Gene Encoding a Minor Fibrinolytic Enzyme from Bacillus subtilis SJ4 and the Properties of Vpr. J Microbiol Biotechnol 2020; 30:1720-1728. [PMID: 32830189 PMCID: PMC9728201 DOI: 10.4014/jmb.2006.06014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 12/15/2022]
Abstract
We have previously characterized AprESJ4, the major fibrinolytic enzyme from Bacillus subtilis SJ4 (Yao et al., 2019). During that study, we observed a 68 kDa protein with fibrinolytic activity. In this study, we cloned the gene (vprSJ4) encoding the 68 kDa protein, a mature Vpr and minor protease secreted by Bacillus species. vprSJ4 encodes a preproenzyme consisting of 810 amino acids (aa) including signal sequence (28 aa) and prosequence (132 aa). The mature enzyme (650 aa) has a predicted molecular weight of 68,467.35. Unlike Vprs from other B. subtilis strains, VprSJ4 has 4 additional amino acids (DEFA) at the C-terminus. vprSJ4 was overexpressed in Escherichia coli. PreproVprSJ4 was localized in inclusion bodies, and subjected to in vitro renaturation and purification by an affinity column. SDS-PAGE and western blot showed that autoprocessing of preproVprSJ4 occurred and 68 kDa and smaller proteins were produced. The optimum pH and temperature of the recombinant VprSJ4 were pH 7.0 and 40°C, respectively. Kinetic parameters of recombinant VprSJ4 were measured by using an artificial substrate, N-succinyl-ala-ala-pro-phe-p-nitroanilide. Coexpression of vprSJ4 and aprESJ4 using pHY300PLK increased the fibrinolytic activity a further 117% when compared with aprESJ4 single expression using the same vector in B. subtilis WB600.
Collapse
Affiliation(s)
- Zhuang Yao
- Division of Applied Life Science (BK2 Four), Graduate School, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Yu Meng
- Division of Applied Life Science (BK2 Four), Graduate School, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Huong Giang Le
- Division of Applied Life Science (BK2 Four), Graduate School, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Se Jin Lee
- Division of Applied Life Science (BK2 Four), Graduate School, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hye Sung Jeon
- Division of Applied Life Science (BK2 Four), Graduate School, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ji Yeon Yoo
- Division of Applied Life Science (BK2 Four), Graduate School, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hyun-Jin Kim
- Division of Applied Life Science (BK2 Four), Graduate School, Gyeongsang National University, Jinju 52828, Republic of Korea,Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 588, Republic of Korea
| | - Jeong Hwan Kim
- Division of Applied Life Science (BK2 Four), Graduate School, Gyeongsang National University, Jinju 52828, Republic of Korea,Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 588, Republic of Korea,Corresponding author Phone: +82-55-772-1904 Fax: +82-55-772-1909 E-mail:
| |
Collapse
|
18
|
Smits SHJ, Schmitt L, Beis K. Self-immunity to antibacterial peptides by ABC transporters. FEBS Lett 2020; 594:3920-3942. [PMID: 33040342 DOI: 10.1002/1873-3468.13953] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/22/2020] [Accepted: 10/05/2020] [Indexed: 01/17/2023]
Abstract
Bacteria produce under certain stress conditions bacteriocins and microcins that display antibacterial activity against closely related species for survival. Bacteriocins and microcins exert their antibacterial activity by either disrupting the membrane or inhibiting essential intracellular processes of the bacterial target. To this end, they can lyse bacterial membranes and cause subsequent loss of their integrity or nutrients, or hijack membrane receptors for internalisation. Both bacteriocins and microcins are ribosomally synthesised and several are posttranslationally modified, whereas others are not. Such peptides are also toxic to the producer bacteria, which utilise immunity proteins or/and dedicated ATP-binding cassette (ABC) transporters to achieve self-immunity and peptide export. In this review, we discuss the structure and mechanism of self-protection that is conferred by these ABC transporters.
Collapse
Affiliation(s)
- Sander H J Smits
- Institute of Biochemistry, Heinrich-Heine-University, Duesseldorf, Germany.,Center for Structural Studies, Heinrich-Heine-University, Duesseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich-Heine-University, Duesseldorf, Germany
| | - Konstantinos Beis
- Department of Life Sciences, Imperial College London, UK.,Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, UK
| |
Collapse
|
19
|
Su Y, Liu C, Fang H, Zhang D. Bacillus subtilis: a universal cell factory for industry, agriculture, biomaterials and medicine. Microb Cell Fact 2020; 19:173. [PMID: 32883293 PMCID: PMC7650271 DOI: 10.1186/s12934-020-01436-8] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 08/27/2020] [Indexed: 12/18/2022] Open
Abstract
Due to its clear inherited backgrounds as well as simple and diverse genetic manipulation systems, Bacillus subtilis is the key Gram-positive model bacterium for studies on physiology and metabolism. Furthermore, due to its highly efficient protein secretion system and adaptable metabolism, it has been widely used as a cell factory for microbial production of chemicals, enzymes, and antimicrobial materials for industry, agriculture, and medicine. In this mini-review, we first summarize the basic genetic manipulation tools and expression systems for this bacterium, including traditional methods and novel engineering systems. Secondly, we briefly introduce its applications in the production of chemicals and enzymes, and summarize its advantages, mainly focusing on some noteworthy products and recent progress in the engineering of B. subtilis. Finally, this review also covers applications such as microbial additives and antimicrobials, as well as biofilm systems and spore formation. We hope to provide an overview for novice researchers in this area, offering them a better understanding of B. subtilis and its applications.
Collapse
Affiliation(s)
- Yuan Su
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Chuan Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Huan Fang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China. .,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
20
|
Liu YC, Han LL, Chen TY, Lu YB, Feng H. Characterization of a Protease Hyper-Productive Mutant of Bacillus pumilus by Comparative Genomic and Transcriptomic Analysis. Curr Microbiol 2020; 77:3612-3622. [PMID: 32749522 DOI: 10.1007/s00284-020-02154-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 07/28/2020] [Indexed: 01/06/2023]
Abstract
Bacillus pumilus BA06 has great potential for the production of alkaline proteases. To improve the protease yield, classical mutagenesis to combine the physical and chemical mutagens was performed to obtain a protease hyper-productive mutant SCU11. The full genome sequences of BA06 and SCU11 strains were assembled through DNA sequencing using the PacBio sequencing platform. By comparative genomics analysis, 147 SNPs and 15 InDels were found between these two genomes, which lead to alternation of coding sequence in 15 genes. Noticeable, the gene (kinA) encoding sporulation kinase A is interrupted by introducing a stop codon in its coding region in BA06. Interestedly, this gene is reversely corrected in SCU11. Furthermore, comparative transcriptome analysis revealed that kinA and two positive regulatory genes (DegU and Spo0A) were upregulated in transcription in SCU11. In terms of the transcriptional data, upregulation of a phosphorylation cascade starting with KinA may enhance Spo0A phosphorylation, and thus activate expression of the gene aprE (encoding major extracellular protease) through repression of AbrB (a repressor of aprE) and activation of SinI, an antagonist of SinR (a repressor of aprE). In addition, the other genes involved in various metabolic pathways, especially of membrane transport and sporulation, were altered in transcription between these two strains. Conclusively, our transcriptome data suggested that upregulation degU and spo0A, as well as kinA, may at least partially contribute to the high production of alkaline protease in SCU11.
Collapse
Affiliation(s)
- Yong-Cheng Liu
- College of Life Sciences, Sichuan Key Laboratory of Molecular Biology and Biotechnology, Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Sichuan University, Chengdu, 610064, Sichuan, People's Republic of China
| | - Lin-Li Han
- College of Life Sciences, Sichuan Key Laboratory of Molecular Biology and Biotechnology, Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Sichuan University, Chengdu, 610064, Sichuan, People's Republic of China
| | - Tian-Yu Chen
- College of Life Sciences, Sichuan Key Laboratory of Molecular Biology and Biotechnology, Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Sichuan University, Chengdu, 610064, Sichuan, People's Republic of China
| | - Yan-Bing Lu
- College of Life Sciences, Sichuan Key Laboratory of Molecular Biology and Biotechnology, Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Sichuan University, Chengdu, 610064, Sichuan, People's Republic of China
| | - Hong Feng
- College of Life Sciences, Sichuan Key Laboratory of Molecular Biology and Biotechnology, Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Sichuan University, Chengdu, 610064, Sichuan, People's Republic of China.
| |
Collapse
|
21
|
van Tilburg AY, van Heel AJ, Stülke J, de Kok NAW, Rueff AS, Kuipers OP. Mini Bacillus PG10 as a Convenient and Effective Production Host for Lantibiotics. ACS Synth Biol 2020; 9:1833-1842. [PMID: 32551553 PMCID: PMC7372594 DOI: 10.1021/acssynbio.0c00194] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Efficient bacterial cell factories are important for the screening and characterization of potent antimicrobial peptides such as lantibiotics. Although lantibiotic production systems have been established in Lactococcus lactis and Escherichia coli, the industrial workhorse Bacillus subtilis has been left relatively unexplored as a lantibiotic production host. Therefore, we tested different B. subtilis strains for their ability to produce lantibiotic peptides by using the subtilin modification and transport enzymes derived from the natural subtilin producer B. subtilis ATCC 6633. Our study shows that although B. subtilis ATCC 6633 and 168 are able to produce various processed lantibiotic peptides, an evident advantage of using either the 8-fold protease-deficient strain WB800 or the genome-minimized B. subtilis 168 strain PG10 is the lack of extracellular serine protease activity. Consequently, leader processing of lantibiotic precursor peptides is circumvented and thus potential toxicity toward the production host is prevented. Furthermore, PG10 provides a clean secondary metabolic background and therefore appears to be the most promising B. subtilis lantibiotic production host. We demonstrate the production of various lantibiotic precursor peptides by PG10 and show different options for their in vitro activation. Our study thus provides a convenient B. subtilis-based lantibiotic production system, which facilitates the search for novel antimicrobial peptides.
Collapse
Affiliation(s)
- Amanda Y. van Tilburg
- Department of Molecular Genetics, University of Groningen, Groningen, 9747AG, The Netherlands
| | - Auke J. van Heel
- Department of Molecular Genetics, University of Groningen, Groningen, 9747AG, The Netherlands
| | - Jörg Stülke
- Institute of Microbiology and Genetics, Georg-August University Göttingen, Göttingen, 37077, Germany
| | - Niels A. W. de Kok
- Department of Molecular Genetics, University of Groningen, Groningen, 9747AG, The Netherlands
| | - Anne-Stéphanie Rueff
- Department of Molecular Genetics, University of Groningen, Groningen, 9747AG, The Netherlands
| | - Oscar P. Kuipers
- Department of Molecular Genetics, University of Groningen, Groningen, 9747AG, The Netherlands
| |
Collapse
|
22
|
Geiger C, Korn SM, Häsler M, Peetz O, Martin J, Kötter P, Morgner N, Entian KD. LanI-Mediated Lantibiotic Immunity in Bacillus subtilis: Functional Analysis. Appl Environ Microbiol 2019; 85:e00534-19. [PMID: 30952662 PMCID: PMC6532034 DOI: 10.1128/aem.00534-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 03/26/2019] [Indexed: 01/09/2023] Open
Abstract
Lantibiotics subtilin and nisin are produced by Bacillus subtilis and Lactococcus lactis, respectively. To prevent toxicity of their own lantibiotic, both bacteria express specific immunity proteins, called SpaI and NisI. In addition, ABC transporters SpaFEG and NisFEG prevent lantibiotic toxicity by transporting the respective peptides to the extracellular space. Although the three-dimensional structures of SpaI and NisI have been solved, very little is known about the molecular function of either lipoprotein. Using laser-induced liquid bead ion desorption (LILBID)-mass spectrometry, we show here that subtilin interacts with SpaI monomers. The expression of either SpaI or NisI in a subtilin-nonproducing B. subtilis strain resulted in the respective strain being more resistant against either subtilin or nisin. Furthermore, pore formation provided by subtilin and nisin was prevented specifically upon the expression of either SpaI or NisI. As shown with a nisin-subtilin hybrid molecule, the C-terminal part of subtilin but not any particular lanthionine ring was needed for SpaI-mediated immunity. With respect to growth, SpaI provided less immunity against subtilin than is provided by the ABC transporter SpaFEG. However, SpaI prevented pore formation much more efficiently than SpaFEG. Taken together, our data show the physiological function of SpaI as a fast immune response to protect the cellular membrane.IMPORTANCE The two lantibiotics nisin and subtilin are produced by Lactococcus lactis and Bacillus subtilis, respectively. Both peptides have strong antimicrobial activity against Gram-positive bacteria, and therefore, appropriate protection mechanisms are required for the producing strains. To prevent toxicity of their own lantibiotic, both bacteria express immunity proteins, called SpaI and NisI, and in addition, ABC transporters SpaFEG and NisFEG. Whereas it has been shown that the ABC transporters protect the producing strains by transporting the toxic peptides to the extracellular space, the exact mode of action and the physiological function of the lipoproteins during immunity are still unknown. Understanding the exact role of lantibiotic immunity proteins is of major importance for improving production rates and for the design of newly engineered peptide antibiotics. Here, we show (i) the specificity of each lipoprotein for its own lantibiotic, (ii) the specific physical interaction of subtilin with its lipoprotein SpaI, (iii) the physiological function of SpaI in protecting the cellular membrane, and (iv) the importance of the C-terminal part of subtilin for its interaction with SpaI.
Collapse
Affiliation(s)
- Christoph Geiger
- Molecular Genetics and Cellular Microbiology, Institute for Molecular Biosciences, University of Frankfurt, Frankfurt, Germany
| | - Sophie Marianne Korn
- Molecular Genetics and Cellular Microbiology, Institute for Molecular Biosciences, University of Frankfurt, Frankfurt, Germany
| | - Michael Häsler
- Molecular Genetics and Cellular Microbiology, Institute for Molecular Biosciences, University of Frankfurt, Frankfurt, Germany
| | - Oliver Peetz
- Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt, Germany
| | - Janosch Martin
- Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt, Germany
| | - Peter Kötter
- Molecular Genetics and Cellular Microbiology, Institute for Molecular Biosciences, University of Frankfurt, Frankfurt, Germany
| | - Nina Morgner
- Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt, Germany
| | - Karl-Dieter Entian
- Molecular Genetics and Cellular Microbiology, Institute for Molecular Biosciences, University of Frankfurt, Frankfurt, Germany
| |
Collapse
|
23
|
Inactivation of Polymyxin by Hydrolytic Mechanism. Antimicrob Agents Chemother 2019; 63:AAC.02378-18. [PMID: 30936102 DOI: 10.1128/aac.02378-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/19/2019] [Indexed: 11/20/2022] Open
Abstract
Polymyxins are nonribosomal peptide antibiotics used as the last-resort drug for treatment of multidrug-resistant Gram-negative bacteria. However, strains that are resistant to polymyxins have emerged in many countries. Although several mechanisms for polymyxin resistance have been well described, there is little knowledge on the hydrolytic mechanism of polymyxin. Here, we identified a polymyxin-inactivating enzyme from Bacillus licheniformis strain DC-1 which was produced and secreted into the medium during entry into stationary phase. After purification, sequencing, and heterologous expression, we found that the alkaline protease Apr is responsible for inactivation of polymyxins. Analysis of inactivation products demonstrated that Apr cleaves polymyxin E at two peptide bonds: one is between the tripeptide side chain and the cyclic heptapeptide ring, the other between l-Thr and l-α-γ-diaminobutyric acid (l-Dab) within the cyclic heptapeptide ring. Apr is highly conserved among several genera of Gram-positive bacteria, including Bacillus and Paenibacillus It is noteworthy that two peptidases S8 from Gram-negative bacteria shared high levels of sequence identity with Apr. Our results indicate that polymyxin resistance may result from inactivation of antibiotics by hydrolysis.
Collapse
|
24
|
Alkhalili RN, Canbäck B. Identification of Putative Novel Class-I Lanthipeptides in Firmicutes: A Combinatorial In Silico Analysis Approach Performed on Genome Sequenced Bacteria and a Close Inspection of Z-Geobacillin Lanthipeptide Biosynthesis Gene Cluster of the Thermophilic Geobacillus sp. Strain ZGt-1. Int J Mol Sci 2018; 19:E2650. [PMID: 30200662 PMCID: PMC6165006 DOI: 10.3390/ijms19092650] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/23/2018] [Accepted: 09/04/2018] [Indexed: 01/03/2023] Open
Abstract
Lanthipeptides are ribosomally synthesized and post-translationally modified polycyclic peptides. Lanthipeptides that have antimicrobial activity are known as lantibiotics. Accordingly, the discovery of novel lantibiotics constitutes a possible solution for the problem of antibiotic resistance. We utilized the publicly available genome sequences and the bioinformatic tools tailored for the detection of lanthipeptides. We designed our strategy for screening of 252 firmicute genomes and detecting class-I lanthipeptide-coding gene clusters. The designed strategy resulted in identifying 69 class-I lanthipeptide sequences, of which more than 10% were putative novel. The identified putative novel lanthipeptides have not been annotated on the original or the RefSeq genomes, or have been annotated merely as coding for hypothetical proteins. Additionally, we identified bacterial strains that have not been previously recognized as lanthipeptide-producers. Moreover, we suggest corrections for certain firmicute genome annotations, and recommend lanthipeptide records for enriching the bacteriocin genome mining tool (BAGEL) databases. Furthermore, we propose Z-geobacillin, a putative class-I lanthipeptide coded on the genome of the thermophilic strain Geobacillus sp. ZGt-1. We provide lists of putative novel lanthipeptide sequences and of the previously unrecognized lanthipeptide-producing bacterial strains, so they can be prioritized for experimental investigation. Our results are expected to benefit researchers interested in the in vitro production of lanthipeptides.
Collapse
Affiliation(s)
- Rawana N Alkhalili
- Biotechnology, Department of Chemistry, Lund University, SE-221 00 Lund, Sweden.
| | - Björn Canbäck
- Department of Biology, Lund University, SE-221 00 Lund, Sweden.
| |
Collapse
|
25
|
Gherghisan-Filip C, Saalbach G, Hatziioanou D, Narbad A, Mayer MJ. Processing and Structure of the Lantibiotic Peptide Nso From the Human Gut Bacterium Blautia obeum A2-162 analysed by Mass Spectrometry. Sci Rep 2018; 8:10077. [PMID: 29973605 PMCID: PMC6031655 DOI: 10.1038/s41598-018-28248-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 06/04/2018] [Indexed: 01/02/2023] Open
Abstract
A previously reported gene cluster encoding four nisin-like peptides, three with the same sequence (NsoA1-3) and the unique NsoA4, produced antimicrobial activity in the presence of trypsin after heterologous expression in Lactococcus lactis. Protein extracts were separated by SDS gel electrophoresis or immunoprecipitation using an antibody to the NsoA2 leader. Tryptic peptides observed by LC-MS/MS covered the complete sequence of preNsoA1-3 and part of the leader sequence of preNsoA4 and confirmed the expression and the predicted sequences of the preNsoA peptides. Further, the data revealed that the preNsoA1-3 peptides were partly modified with dehydrations and formation of lanthionine rings. A certain amount of fully modified preNsoA1-3 was observed. Details of modifications of the core peptide and the C-terminal tryptic peptide TATCGCHITGK covering rings D and E indicated that 22% of these preNsoA1-3 peptides were completely modified. A lower amount of ring formation is estimated for rings A-C. Intact masses of immunoprecipitation-derived peptides determined by LC-MS accurately matched the expected preNsoA precursor peptides. The most abundant peptides detected were preNsoA2-3-8H2O followed by preNsoA1-8H2O and other states of dehydration. The results confirm incomplete processing of preNsoA peptides in the heterologous system, with the formation of a certain amount of fully modified peptides.
Collapse
Affiliation(s)
- Cristina Gherghisan-Filip
- Quadram Institute Bioscience, Gut Microbes and Health Institute Strategic Programme, Norwich Research Park, Norwich, NR4 7UA, UK.,University of East Anglia, UEA, Norwich Medical School, Norwich, NR4 7TJ, UK
| | - Gerhard Saalbach
- John Innes Centre, Department of Biological Chemistry, Norwich Research Park, Norwich, NR4 7UH, UK.
| | - Diane Hatziioanou
- Quadram Institute Bioscience, Gut Microbes and Health Institute Strategic Programme, Norwich Research Park, Norwich, NR4 7UA, UK
| | - Arjan Narbad
- Quadram Institute Bioscience, Gut Microbes and Health Institute Strategic Programme, Norwich Research Park, Norwich, NR4 7UA, UK
| | - Melinda J Mayer
- Quadram Institute Bioscience, Gut Microbes and Health Institute Strategic Programme, Norwich Research Park, Norwich, NR4 7UA, UK.
| |
Collapse
|
26
|
Montalbán-López M, Deng J, van Heel AJ, Kuipers OP. Specificity and Application of the Lantibiotic Protease NisP. Front Microbiol 2018; 9:160. [PMID: 29479343 PMCID: PMC5812297 DOI: 10.3389/fmicb.2018.00160] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/24/2018] [Indexed: 01/03/2023] Open
Abstract
Lantibiotics are ribosomally produced and posttranslationally modified peptides containing several lanthionine residues. They exhibit substantial antimicrobial activity against Gram-positive bacteria, including relevant pathogens. The production of the model lantibiotic nisin minimally requires the expression of the modification and export machinery. The last step during nisin maturation is the cleavage of the leader peptide. This liberates the active compound and is catalyzed by the cell wall-anchored protease NisP. Here, we report the production and purification of a soluble variant of NisP. This has enabled us to study its specificity and test its suitability for biotechnological applications. The ability of soluble NisP to cleave leaders from various substrates was tested with two sets of nisin variants. The first set was designed to investigate the influence of amino acid variations in the leader peptide or variations around the cleavage site. The second set was designed to study the influence of the lanthionine ring topology on the proteolytic efficiency. We show that the substrate promiscuity is higher than has previously been suggested. Our results demonstrate the importance of the arginine residue at the end of the leader peptide and the importance of lanthionine rings in the substrate for specific cleavage. Collectively, these data indicate that NisP is a suitable protease for the activation of diverse heterologously expressed lantibiotics, which is required to release active antimicrobial compounds.
Collapse
Affiliation(s)
| | - Jingjing Deng
- Department Molecular Genetics, University of Groningen, Groningen, Netherlands
| | - Auke J van Heel
- Department Molecular Genetics, University of Groningen, Groningen, Netherlands
| | - Oscar P Kuipers
- Department Molecular Genetics, University of Groningen, Groningen, Netherlands
| |
Collapse
|
27
|
Park JE, Kim HR, Park SY, Choi SK, Park SH. Identification of the biosynthesis gene cluster for the novel lantibiotic paenilan fromPaenibacillus polymyxaE681 and characterization of its product. J Appl Microbiol 2017; 123:1133-1147. [DOI: 10.1111/jam.13580] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/12/2017] [Accepted: 08/21/2017] [Indexed: 12/26/2022]
Affiliation(s)
- J.-E. Park
- Infectious Disease Research Center; Korea Research Institute of Bioscience and Biotechnology (KRIBB); Yuseong-gu Daejeon Korea
- Department of Biosystems and Bioengineering; KRIBB School of Biotechnology; Korea University of Science and Technology (UST); Yuseong-gu Daejeon Korea
| | - H.-R. Kim
- Infectious Disease Research Center; Korea Research Institute of Bioscience and Biotechnology (KRIBB); Yuseong-gu Daejeon Korea
| | - S.-Y. Park
- Infectious Disease Research Center; Korea Research Institute of Bioscience and Biotechnology (KRIBB); Yuseong-gu Daejeon Korea
| | - S.-K. Choi
- Infectious Disease Research Center; Korea Research Institute of Bioscience and Biotechnology (KRIBB); Yuseong-gu Daejeon Korea
- Department of Biosystems and Bioengineering; KRIBB School of Biotechnology; Korea University of Science and Technology (UST); Yuseong-gu Daejeon Korea
| | - S.-H. Park
- Infectious Disease Research Center; Korea Research Institute of Bioscience and Biotechnology (KRIBB); Yuseong-gu Daejeon Korea
- Department of Biosystems and Bioengineering; KRIBB School of Biotechnology; Korea University of Science and Technology (UST); Yuseong-gu Daejeon Korea
| |
Collapse
|
28
|
Hatziioanou D, Gherghisan-Filip C, Saalbach G, Horn N, Wegmann U, Duncan SH, Flint HJ, Mayer MJ, Narbad A. Discovery of a novel lantibiotic nisin O from Blautia obeum A2-162, isolated from the human gastrointestinal tract. MICROBIOLOGY-SGM 2017; 163:1292-1305. [PMID: 28857034 DOI: 10.1099/mic.0.000515] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A novel lanC-like sequence was identified from the dominant human gut bacterium Blautia obeum strain A2-162. This sequence was extended to reveal a putative lantibiotic operon with biosynthetic and transport genes, two sets of regulatory genes, immunity genes, three identical copies of a nisin-like lanA gene with an unusual leader peptide, and a fourth putative lanA gene. Comparison with other nisin clusters showed that the closest relationship was to nisin U. B. obeum A2-162 demonstrated antimicrobial activity against Clostridium perfringens when grown on solid medium in the presence of trypsin. Fusions of predicted nsoA structural sequences with the nisin A leader were expressed in Lactococcus lactis containing the nisin A operon without nisA. Expression of the nisA leader sequence fused to the predicted structural nsoA1 produced a growth defect in L. lactis that was dependent upon the presence of biosynthetic genes, but failed to produce antimicrobial activity. Insertion of the nso cluster into L. lactis MG1614 gave an increased immunity to nisin A, but this was not replicated by the expression of nsoI. Nisin A induction of L. lactis containing the nso cluster and nisRK genes allowed detection of the NsoA1 pre-peptide by Western hybridization. When this heterologous producer was grown with nisin induction on solid medium, antimicrobial activity was demonstrated in the presence of trypsin against C. perfringens, Clostridium difficile and L. lactis. This research adds to evidence that lantibiotic production may be an important trait of gut bacteria and could lead to the development of novel treatments for intestinal diseases.
Collapse
Affiliation(s)
- Diane Hatziioanou
- Gut Health and Food Safety Institute Strategic Programme, Quadram Institute Bioscience, Colney, Norwich, NR4 7UA, UK
| | - Cristina Gherghisan-Filip
- Gut Health and Food Safety Institute Strategic Programme, Quadram Institute Bioscience, Colney, Norwich, NR4 7UA, UK
| | | | - Nikki Horn
- Gut Health and Food Safety Institute Strategic Programme, Quadram Institute Bioscience, Colney, Norwich, NR4 7UA, UK
| | - Udo Wegmann
- Gut Health and Food Safety Institute Strategic Programme, Quadram Institute Bioscience, Colney, Norwich, NR4 7UA, UK
| | - Sylvia H Duncan
- Gut Health Group, Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - Harry J Flint
- Gut Health Group, Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - Melinda J Mayer
- Gut Health and Food Safety Institute Strategic Programme, Quadram Institute Bioscience, Colney, Norwich, NR4 7UA, UK
| | - Arjan Narbad
- Gut Health and Food Safety Institute Strategic Programme, Quadram Institute Bioscience, Colney, Norwich, NR4 7UA, UK
| |
Collapse
|
29
|
Hohmann HP, van Dijl JM, Krishnappa L, Prágai Z. Host Organisms:Bacillus subtilis. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807796.ch7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Hans-Peter Hohmann
- Nutrition Innovation Center R&D Biotechnology; DSM Nutritional Products Ltd; Wurmisweg 576 CH-4303 Kaiseraugst Switzerland
| | - Jan M. van Dijl
- University of Groningen, University Medical Center Groningen; Department of Medical Microbiology; Hanzeplein 1 9700 RB Groningen The Netherlands
| | - Laxmi Krishnappa
- University of Groningen, University Medical Center Groningen; Department of Medical Microbiology; Hanzeplein 1 9700 RB Groningen The Netherlands
| | - Zoltán Prágai
- Nutrition Innovation Center R&D Biotechnology; DSM Nutritional Products Ltd; Wurmisweg 576 CH-4303 Kaiseraugst Switzerland
| |
Collapse
|
30
|
Zhao X, Kuipers OP. Identification and classification of known and putative antimicrobial compounds produced by a wide variety of Bacillales species. BMC Genomics 2016; 17:882. [PMID: 27821051 PMCID: PMC5100339 DOI: 10.1186/s12864-016-3224-y] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 10/27/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Gram-positive bacteria of the Bacillales are important producers of antimicrobial compounds that might be utilized for medical, food or agricultural applications. Thanks to the wide availability of whole genome sequence data and the development of specific genome mining tools, novel antimicrobial compounds, either ribosomally- or non-ribosomally produced, of various Bacillales species can be predicted and classified. Here, we provide a classification scheme of known and putative antimicrobial compounds in the specific context of Bacillales species. RESULTS We identify and describe known and putative bacteriocins, non-ribosomally synthesized peptides (NRPs), polyketides (PKs) and other antimicrobials from 328 whole-genome sequenced strains of 57 species of Bacillales by using web based genome-mining prediction tools. We provide a classification scheme for these bacteriocins, update the findings of NRPs and PKs and investigate their characteristics and suitability for biocontrol by describing per class their genetic organization and structure. Moreover, we highlight the potential of several known and novel antimicrobials from various species of Bacillales. CONCLUSIONS Our extended classification of antimicrobial compounds demonstrates that Bacillales provide a rich source of novel antimicrobials that can now readily be tapped experimentally, since many new gene clusters are identified.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Molecular Genetics, University of Groningen, Nijenborgh 7, Groningen, 9747AG, The Netherlands.,School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Oscar P Kuipers
- Department of Molecular Genetics, University of Groningen, Nijenborgh 7, Groningen, 9747AG, The Netherlands.
| |
Collapse
|
31
|
Interplay of CodY and ScoC in the Regulation of Major Extracellular Protease Genes of Bacillus subtilis. J Bacteriol 2016; 198:907-20. [PMID: 26728191 DOI: 10.1128/jb.00894-15] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 12/24/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED AprE and NprE are two major extracellular proteases in Bacillus subtilis whose expression is directly regulated by several pleiotropic transcriptional factors, including AbrB, DegU, ScoC, and SinR. In cells growing in a rich, complex medium, the aprE and nprE genes are strongly expressed only during the post-exponential growth phase; mutations in genes encoding the known regulators affect the level of post-exponential-phase gene expression but do not permit high-level expression during the exponential growth phase. Using DNA-binding assays and expression and mutational analyses, we have shown that the genes for both exoproteases are also under strong, direct, negative control by the global transcriptional regulator CodY. However, because CodY also represses scoC, little or no derepression of aprE and nprE was seen in a codY null mutant due to overexpression of scoC. Thus, CodY is also an indirect positive regulator of these genes by limiting the synthesis of a second repressor. In addition, in cells growing under conditions that activate CodY, a scoC null mutation had little effect on aprE or nprE expression; full effects of scoC or codY null mutations could be seen only in the absence of the other regulator. However, even the codY scoC double mutant did not show high levels of aprE and nprE gene expression during exponential growth phase in a rich, complex medium. Only a third mutation, in abrB, allowed such expression. Thus, three repressors can contribute to reducing exoprotease gene expression during growth in the presence of excess nutrients. IMPORTANCE The major Bacillus subtilis exoproteases, AprE and NprE, are important metabolic enzymes whose genes are subject to complex regulation by multiple transcription factors. We show here that expression of the aprE and nprE genes is also controlled, both directly and indirectly, by CodY, a global transcriptional regulator that responds to the intracellular pools of amino acids. Direct CodY-mediated repression explains a long-standing puzzle, that is, why exoproteases are not produced when cells are growing exponentially in a medium containing abundant quantities of proteins or their degradation products. Indirect regulation of aprE and nprE through CodY-mediated repression of the scoC gene, encoding another pleiotropic repressor, serves to maintain a significant level of repression of exoprotease genes when CodY loses activity.
Collapse
|
32
|
Barbosa J, Caetano T, Mendo S. Class I and Class II Lanthipeptides Produced by Bacillus spp. JOURNAL OF NATURAL PRODUCTS 2015; 78:2850-2866. [PMID: 26448102 DOI: 10.1021/np500424y] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The increasing number of multidrug-resistant pathogens, along with the small number of new antimicrobials under development, leads to an increased need for novel alternatives. Class I and class II lanthipeptides (also known as lantibiotics) have been considered promising alternatives to classical antibiotics. In addition to their relevant medical applications, they are used as probiotics, prophylactics, preservatives, and additives in cosmetics and personal-care products. The genus Bacillus is a prolific source of bioactive compounds including ribosomally and nonribosomally synthesized antibacterial peptides. Accordingly, there is significant interest in the biotechnological potential of members of the genus Bacillus as producers of antimicrobial lanthipeptides. The present review focuses on aspects of the biosynthesis, gene cluster organization, structure, antibacterial spectrum, and bioengineering approaches of lanthipeptides produced by Bacillus strains. Their efficacy and potency against some clinically relevant strains, including MRSA and VRE, are also discussed. Although no lanthipeptides are currently in clinical use, the information herein highlights the potential of these compounds.
Collapse
Affiliation(s)
- Joana Barbosa
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro , 3810-193 Aveiro, Portugal
| | - Tânia Caetano
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro , 3810-193 Aveiro, Portugal
| | - Sónia Mendo
- Department of Biology & Centre for Environmental and Marine Studies (CESAM), University of Aveiro , 3810-193 Aveiro, Portugal
| |
Collapse
|
33
|
Maturation of Fibrinolytic Bacillopeptidase F Involves both Hetero- and Autocatalytic Processes. Appl Environ Microbiol 2015; 82:318-27. [PMID: 26497454 DOI: 10.1128/aem.02673-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/19/2015] [Indexed: 11/20/2022] Open
Abstract
Bacillopeptidase F (Bpr) is a fibrinolytic serine protease produced by Bacillus subtilis. Its precursor is composed of a signal peptide, an N-terminal propeptide, a catalytic domain, and a long C-terminal extension (CTE). Several active forms of Bpr have been previously reported, but little is known about the maturation of this enzyme. Here, a gene encoding a Bpr (BprL) was cloned from B. subtilis LZW and expressed in B. subtilis WB700, and three fibrinolytic mature forms with apparent molecular masses of 45, 75, and 85 kDa were identified in the culture supernatant. After treatment with urea, the 75-kDa mature form had the same molecular mass as the 85-kDa mature form, from which we infer that they adopt different conformations. Mutational analysis revealed that while the 85-kDa mature form is generated via heterocatalytic processing of a BprL proform by an unidentified protease of B. subtilis, the production of the 75- and 45-kDa mature forms involves both hetero- and autocatalytic events. From in vitro analysis of BprL and its sequential C-terminal truncation variants, it appears that partial removal of the CTE is required for the initiation of autoprocessing of the N-terminal propeptide, which is composed of a core domain (N*) and a 15-residue linker peptide, thereby yielding the 45-kDa mature form. These data suggest that the differential processing of BprL, either heterocatalytically or autocatalytically, leads to the formation of multiple mature forms with different molecular masses or conformations.
Collapse
|
34
|
CodY regulates expression of the Bacillus subtilis extracellular proteases Vpr and Mpr. J Bacteriol 2015; 197:1423-32. [PMID: 25666135 DOI: 10.1128/jb.02588-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED CodY is a global transcriptional regulator in low-G+C Gram-positive bacteria that is responsive to GTP and branched-chain amino acids. By interacting with its two cofactors, it is able to sense the nutritional and energetic status of the cell and respond by regulating expression of adaptive genetic programs. In Bacillus subtilis, more than 200 genes, including those for peptide transporters, intracellular proteolytic enzymes, and amino acid degradative pathways, are controlled by CodY. In this study, we demonstrated that expression of two extracellular proteases, Vpr and Mpr, is negatively controlled by CodY. By gel mobility shift and DNase I footprinting assays, we showed that CodY binds to the regulatory regions of both genes, in the vicinity of their transcription start points. The mpr gene is also characterized by the presence of a second, higher-affinity CodY-binding site located at the beginning of its coding sequence. Using strains carrying vpr- or mpr-lacZ transcriptional fusions in which CodY-binding sites were mutated, we demonstrated that repression of both protease genes is due to the direct effect by CodY and that the mpr internal site is required for regulation. The vpr promoter is a rare example of a sigma H-dependent promoter that is regulated by CodY. In a codY null mutant, Vpr became one of the more abundant proteins of the B. subtilis exoproteome. IMPORTANCE CodY is a global transcriptional regulator of metabolism and virulence in low-G+C Gram-positive bacteria. In B. subtilis, more than 200 genes, including those for peptide transporters, intracellular proteolytic enzymes, and amino acid degradative pathways, are controlled by CodY. However, no role for B. subtilis CodY in regulating expression of extracellular proteases has been established to date. In this work, we demonstrate that by binding to the regulatory regions of the corresponding genes, B. subtilis CodY negatively controls expression of Vpr and Mpr, two extracellular proteases. Thus, in B. subtilis, CodY can now be seen to regulate the entire protein utilization pathway.
Collapse
|
35
|
Müller S, Garcia-Gonzalez E, Genersch E, Süssmuth RD. Involvement of secondary metabolites in the pathogenesis of the American foulbrood of honey bees caused by Paenibacillus larvae. Nat Prod Rep 2015; 32:765-78. [DOI: 10.1039/c4np00158c] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Gram-positive spore-forming bacterium Paenibacillus larvae is the causative agent of the fatal disease American Foulbrood of the western honey bee. This article highlights recent findings on secondary metabolites synthesized by P. larvae.
Collapse
Affiliation(s)
| | - Eva Garcia-Gonzalez
- Institute for Bee Research
- Department of Molecular Microbiology and Bee Diseases
- Hohen Neuendorf
- Germany
| | - Elke Genersch
- Institute for Bee Research
- Department of Molecular Microbiology and Bee Diseases
- Hohen Neuendorf
- Germany
| | | |
Collapse
|
36
|
Synthesis and succinylation of subtilin-like lantibiotics are strongly influenced by glucose and transition state regulator AbrB. Appl Environ Microbiol 2014; 81:614-22. [PMID: 25381239 DOI: 10.1128/aem.02579-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Subtilin and the closely related entianin are class I lantibiotics produced by different subspecies of Bacillus subtilis. Both molecules are ribosomally synthesized peptide antibiotics with unusual ring structures. Subtilin-like lantibiotics develop strong antibiotic activities against various Gram-positive organisms with an efficiency similar to that of nisin from Lactococcus lactis. In contrast to nisin, subtilin-like lantibiotics partially undergo an additional posttranslational modification, where the N-terminal tryptophan residue becomes succinylated, resulting in drastically reduced antibiotic activities. A highly sensitive high-performance liquid chromatography (HPLC)-based quantification method enabled us to determine entianin and succinylated entianin (S-entianin) concentrations in the supernatant during growth. We show that entianin synthesis and the degree of succinylation drastically change with culture conditions. In particular, increasing glucose concentrations resulted in higher entianin amounts and lower proportions of S-entianin in Landy-based media. In contrast, no succinylation was observed in medium A with 10% glucose. Interestingly, glucose retarded the expression of entianin biosynthesis genes. Furthermore, deletion of the transition state regulator AbrB resulted in a 6-fold increased entianin production in medium A with 10% glucose. This shows that entianin biosynthesis in B. subtilis is strongly influenced by glucose, in addition to its regulation by the transition state regulator AbrB. Our results suggest that the mechanism underlying the succinylation of subtilin-like lantibiotics is enzymatically catalyzed and occurs in the extracellular space or at the cellular membrane.
Collapse
|
37
|
Singh M, Sareen D. Novel LanT associated lantibiotic clusters identified by genome database mining. PLoS One 2014; 9:e91352. [PMID: 24621781 PMCID: PMC3951391 DOI: 10.1371/journal.pone.0091352] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 02/10/2014] [Indexed: 11/18/2022] Open
Abstract
Background Frequent use of antibiotics has led to the emergence of antibiotic resistance in bacteria. Lantibiotic compounds are ribosomally synthesized antimicrobial peptides against which bacteria are not able to produce resistance, hence making them a good alternative to antibiotics. Nisin is the oldest and the most widely used lantibiotic, in food preservation, without having developed any significant resistance against it. Having their antimicrobial potential and a limited number, there is a need to identify novel lantibiotics. Methodology/Findings Identification of novel lantibiotic biosynthetic clusters from an ever increasing database of bacterial genomes, can provide a major lead in this direction. In order to achieve this, a strategy was adopted to identify novel lantibiotic biosynthetic clusters by screening the sequenced genomes for LanT homolog, which is a conserved lantibiotic transporter specific to type IB clusters. This strategy resulted in identification of 54 bacterial strains containing the LanT homologs, which are not the known lantibiotic producers. Of these, 24 strains were subjected to a detailed bioinformatic analysis to identify genes encoding for precursor peptides, modification enzyme, immunity and quorum sensing proteins. Eight clusters having two LanM determinants, similar to haloduracin and lichenicidin were identified, along with 13 clusters having a single LanM determinant as in mersacidin biosynthetic cluster. Besides these, orphan LanT homologs were also identified which might be associated with novel bacteriocins, encoded somewhere else in the genome. Three identified gene clusters had a C39 domain containing LanT transporter, associated with the LanBC proteins and double glycine type precursor peptides, the only known example of such a cluster is that of salivaricin. Conclusion This study led to the identification of 8 novel putative two-component lantibiotic clusters along with 13 having a single LanM and 3 with LanBC genes. Putative lantibiotic clusters identified here hold the potential for the discovery of novel lantibiotic(s).
Collapse
Affiliation(s)
- Mangal Singh
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Dipti Sareen
- Department of Biochemistry, Panjab University, Chandigarh, India
- * E-mail:
| |
Collapse
|
38
|
Abstract
The sal lantibiotic locus plays an important role in the virulence of Streptococcus pyogenes. Our transcriptional analysis of the sal locus provides new information on the complex regulation of this operon. Transcription of the operon is regulated by a promoter upstream of the operon and by a second internal promoter upstream of the salKRZ genes. Here we identify the location of the internal promoter and provide information on how this promoter is autoregulated by proteins within the locus. We determined by primer extension that the salKR promoter is located within the salY gene and identified several regulatory regions important for expression. The higher activity of the promoter in a salKR deletion strain indicates a role in repression by the SalR response regulator. Further, this promoter had higher activity in a salA deletion strain, implicating corepression or a signaling role for the SalA peptide. Finally, we demonstrate that this promoter can be controlled by host factors. Analysis of transcriptional regulation of this locus provides a better understanding of the function of the sal locus in S. pyogenes pathogenesis.
Collapse
|
39
|
Krishnappa L, Dreisbach A, Otto A, Goosens VJ, Cranenburgh RM, Harwood CR, Becher D, van Dijl JM. Extracytoplasmic proteases determining the cleavage and release of secreted proteins, lipoproteins, and membrane proteins in Bacillus subtilis. J Proteome Res 2013; 12:4101-10. [PMID: 23937099 DOI: 10.1021/pr400433h] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gram-positive bacteria are known to export many proteins to the cell wall and growth medium, and accordingly, many studies have addressed the respective protein export mechanisms. In contrast, very little is known about the subsequent fate of these proteins. The present studies were therefore aimed at determining the fate of native exported proteins in the model organism Bacillus subtilis. Specifically, we employed a gel electrophoresis-based liquid chromatography-mass spectrometry approach to distinguish the roles of the membrane-associated quality control proteases HtrA and HtrB from those of eight other proteases that are present in the cell wall and/or growth medium of B. subtilis. Notably, HtrA and HtrB were previously shown to counteract potentially detrimental "protein export stresses" upon overproduction of membrane or secreted proteins. Our results show that many secreted proteins, lipoproteins, and membrane proteins of B. subtilis are potential substrates of extracytoplasmic proteases. Moreover, potentially important roles of HtrA and HtrB in the folding of native secreted proteins into a protease-resistant conformation, the liberation of lipoproteins from the membrane-cell wall interface, and the degradation of membrane proteins are uncovered. Altogether, our observations show that HtrA and HtrB are crucial for maintaining the integrity of the B. subtilis cell even under nonstress conditions.
Collapse
Affiliation(s)
- Laxmi Krishnappa
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB Groningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Krawczyk JM, Völler GH, Krawczyk B, Kretz J, Brönstrup M, Süssmuth RD. Heterologous expression and engineering studies of labyrinthopeptins, class III lantibiotics from Actinomadura namibiensis. ACTA ACUST UNITED AC 2013; 20:111-22. [PMID: 23352145 DOI: 10.1016/j.chembiol.2012.10.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 10/19/2012] [Accepted: 10/23/2012] [Indexed: 10/27/2022]
Abstract
Labyrinthopeptins are class III lantibiotics produced by the actinomycete Actinomadura namibiensis. The most characteristic structural feature is the posttranslationally installed triamino triacid labionin with a quaternary α-carbon. In addition to the unique structure, labyrinthopeptin A2 possess remarkable antiviral and antiallodynic biological activities. To harness the substrate tolerance of the biosynthetic machinery, we developed an efficient system for the generation of labyrinthopeptin analogs. Streptomyces lividans was used as a heterologous host since the natural producer Actinomadura namibiensis remained genetically intractable. Generation of a library of 39 mutants allowed identification of variable and invariable regions in the labyrinthopeptin structures. Additional data on the flexibility of the biosynthetic machinery were provided by in vitro experiments. This study is detailed investigation on the potential to generate analogs of class III lantibiotics by genetic engineering.
Collapse
Affiliation(s)
- Joanna M Krawczyk
- Institut für Chemie, Technische Universität Berlin, 10623 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Völler GH, Krawczyk B, Ensle P, Süssmuth RD. Involvement and Unusual Substrate Specificity of a Prolyl Oligopeptidase in Class III Lanthipeptide Maturation. J Am Chem Soc 2013; 135:7426-9. [DOI: 10.1021/ja402296m] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ginka H. Völler
- Institut für Chemie, Technische Universität Berlin, Strasse des 17 Juni 124,
10623 Berlin, Germany
| | - Bartlomiej Krawczyk
- Institut für Chemie, Technische Universität Berlin, Strasse des 17 Juni 124,
10623 Berlin, Germany
| | - Paul Ensle
- Institut für Chemie, Technische Universität Berlin, Strasse des 17 Juni 124,
10623 Berlin, Germany
| | - Roderich D. Süssmuth
- Institut für Chemie, Technische Universität Berlin, Strasse des 17 Juni 124,
10623 Berlin, Germany
| |
Collapse
|
42
|
Wladyka B, Wielebska K, Wloka M, Bochenska O, Dubin G, Dubin A, Mak P. Isolation, biochemical characterization, and cloning of a bacteriocin from the poultry-associated Staphylococcus aureus strain CH-91. Appl Microbiol Biotechnol 2012. [PMID: 23196985 PMCID: PMC3724985 DOI: 10.1007/s00253-012-4578-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Staphylococcus aureus strain CH-91, isolated from a broiler chicken with atopic dermatitis, has a highly proteolytic phenotype that is correlated with the disease. We describe the isolation and biochemical and molecular characterization of the AI-type lantibiotic BacCH91 from S. aureus CH-91 culture medium. The bacteriocin was purified using a three-stage procedure comprising precipitation with ammonium sulfate, extraction with organic solvents, and reversed-phase HPLC. The BacCH91 peptide is thermostable and highly resistant to cleavage by both prokaryotic and eukaryotic peptidases. The MIC for the Gram-positive bacteria ranged from 2.5 nM for Microococcus luteus through 1.3-6.0 μM for staphylococcal strains up to more than 100 μM for Lactococcus lactis. BacCH91 was ineffective against the Gram-negative strains tested at the maximal concentration (100 μM). The amino acid sequence of BacCH91 is similar to that of epidermin and gallidermin. The encoding gene (bacCH91) occurred in two allelic variants distinguishable in the restriction fragment length polymorphism assay. Variant I, identified in S. aureus CH-91, dominated in S. aureus strains of poultry origin, although strains with variant II were also identified in this group. S. aureus strains of human origin were characterized exclusively by variant II.
Collapse
Affiliation(s)
- Benedykt Wladyka
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | | | | | | | | | | | | |
Collapse
|
43
|
Cheng C, Wakefield MJ, Yang J, Tauschek M, Robins-Browne RM. Genome-wide analysis of the Pho regulon in a pstCA mutant of Citrobacter rodentium. PLoS One 2012; 7:e50682. [PMID: 23226353 PMCID: PMC3511308 DOI: 10.1371/journal.pone.0050682] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 10/26/2012] [Indexed: 11/19/2022] Open
Abstract
The phosphate-specific transport operon, pstSCAB-phoU, of Gram-negative bacteria is an essential part of the Pho regulon. Its key roles are to encode a high-affinity inorganic phosphate transport system and to prevent activation of PhoB in phosphate-rich environments. In general, mutations in pstSCAB-phoU lead to the constitutive expression of the Pho regulon. Previously, we constructed a pstCA deletion mutant of Citrobacter rodentium and found it to be attenuated for virulence in mice, its natural host. This attenuation was dependent on PhoB or PhoB-regulated gene(s) because a phoB mutation restored virulence for mice to the pstCA mutant. To investigate how downstream genes may contribute to the virulence of C. rodentium, we used microarray analysis to investigate global gene expression of C. rodentium strain ICC169 and its isogenic pstCA mutant when grown in phosphate-rich medium. Overall 323 genes of the pstCA mutant were differentially expressed by at least 1.5-fold compared to the wild-type C. rodentium. Of these 145 were up-regulated and 178 were down-regulated. Differentially expressed genes included some involved in phosphate homoeostasis, cellular metabolism and protein metabolism. A large number of genes involved in stress responses and of unknown function were also differentially expressed, as were some virulence-associated genes. Up-regulated virulence-associated genes in the pstCA mutant included that for DegP, a serine protease, which appeared to be directly regulated by PhoB. Down-regulated genes included those for the production of the urease, flagella, NleG8 (a type III-secreted protein) and the tad focus (which encodes type IVb pili in Yersinia enterocolitica). Infection studies using C57/BL6 mice showed that DegP and NleG8 play a role in bacterial virulence. Overall, our study provides evidence that Pho is a global regulator of gene expression in C. rodentium and indicates the presence of at least two previously unrecognized virulence determinants of C. rodentium, namely, DegP and NleG8.
Collapse
Affiliation(s)
- Catherine Cheng
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia
| | - Matthew J. Wakefield
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Genetics, The University of Melbourne, Parkville, Victoria, Australia
| | - Ji Yang
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia
| | - Marija Tauschek
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia
| | - Roy M. Robins-Browne
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia
- Murdoch Childrens Research Institute, Royal Children’s Hospital, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
44
|
Lohans CT, Huang Z, van Belkum MJ, Giroud M, Sit CS, Steels EM, Zheng J, Whittal RM, McMullen LM, Vederas JC. Structural characterization of the highly cyclized lantibiotic paenicidin A via a partial desulfurization/reduction strategy. J Am Chem Soc 2012; 134:19540-3. [PMID: 23167271 DOI: 10.1021/ja3089229] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lantibiotics are ribosomally synthesized antimicrobial peptides produced by bacteria that are increasingly of interest for food preservation and possible therapeutic uses. These peptides are extensively post-translationally modified, and are characterized by lanthionine and methyllanthionine thioether cross-links. Paenibacillus polymyxa NRRL B-30509 was found to produce polymyxins and tridecaptins, in addition to a novel lantibiotic termed paenicidin A. A bacteriocin termed SRCAM 602 previously reported to be produced by this organism and claimed to be responsible for inhibition of Campylobacter jejuni could not be detected either directly or by genomic analysis. The connectivities of the thioether cross-links of paenicidin A were solved using a novel partial desulfurization/reduction strategy in combination with tandem mass spectrometry. This approach overcame the limitations of NMR-based structural characterization that proved mostly unsuccessful for this peptide. Paenicidin A is a highly cyclized lantibiotic, containing six lanthionine and methyllanthionine rings, three of which are interlocking.
Collapse
Affiliation(s)
- Christopher T Lohans
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Phuong ND, Jeong YS, Selvaraj T, Kim SK, Kim YH, Jung KH, Kim J, Yun HD, Wong SL, Lee JK, Kim H. Production of XynX, a large multimodular protein of thermoanaerobacterium sp., by protease-deficient Bacillus subtilis strains [corrected]. Appl Biochem Biotechnol 2012; 168:375-82. [PMID: 22729758 DOI: 10.1007/s12010-012-9781-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Accepted: 06/14/2012] [Indexed: 11/28/2022]
Abstract
XynX of Thermoanaerobacterium sp. [corrected] is a large, multimodular xylanase of 116 kDa. An Escherichia coli transformant carrying the entire xynX produced three active truncated xylanase species of 105, 85, and 64 kDa intracellularly. The Bacillus subtilis WB700 transformant with the xynX, a strain deficient in seven proteases including Vpr, secreted two active truncated xylanase species of 65 and 44 kDa. The B. subtilis WB800 transformant with xynX, a strain deficient in eight proteases including Vpr and WprA, secreted more active enzymes, 8.46 U ml(-1), mostly in the form of 105 and 85 kDa, than the WB700 transformant, 6.93 U ml(-1). This indicates that the additional deletion of wprA enabled the WB800 to secrete XynX in its intact form. B. subtilis WB800 produced more total enzyme activity than E. coli (1,692 ± 274 U vs. 141.9 ± 27.1 U), and, more importantly, secreted almost all the enzyme activity. The results suggest the potential use of B. subtilis WB800 as a host system for the production of large multimodular proteins.
Collapse
Affiliation(s)
- Nguyen Dinh Phuong
- Department of Agricultural Chemistry, Sunchon National University, Suncheon 540-742, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Teng Y, Zhao W, Qian C, Li O, Zhu L, Wu X. Gene cluster analysis for the biosynthesis of elgicins, novel lantibiotics produced by Paenibacillus elgii B69. BMC Microbiol 2012; 12:45. [PMID: 22443157 PMCID: PMC3337247 DOI: 10.1186/1471-2180-12-45] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 03/26/2012] [Indexed: 11/30/2022] Open
Abstract
Background The recent increase in bacterial resistance to antibiotics has promoted the exploration of novel antibacterial materials. As a result, many researchers are undertaking work to identify new lantibiotics because of their potent antimicrobial activities. The objective of this study was to provide details of a lantibiotic-like gene cluster in Paenibacillus elgii B69 and to produce the antibacterial substances coded by this gene cluster based on culture screening. Results Analysis of the P. elgii B69 genome sequence revealed the presence of a lantibiotic-like gene cluster composed of five open reading frames (elgT1, elgC, elgT2, elgB, and elgA). Screening of culture extracts for active substances possessing the predicted properties of the encoded product led to the isolation of four novel peptides (elgicins AI, AII, B, and C) with a broad inhibitory spectrum. The molecular weights of these peptides were 4536, 4593, 4706, and 4820 Da, respectively. The N-terminal sequence of elgicin B was Leu-Gly-Asp-Tyr, which corresponded to the partial sequence of the peptide ElgA encoded by elgA. Edman degradation suggested that the product elgicin B is derived from ElgA. By correlating the results of electrospray ionization-mass spectrometry analyses of elgicins AI, AII, and C, these peptides are deduced to have originated from the same precursor, ElgA. Conclusions A novel lantibiotic-like gene cluster was shown to be present in P. elgii B69. Four new lantibiotics with a broad inhibitory spectrum were isolated, and these appear to be promising antibacterial agents.
Collapse
Affiliation(s)
- Yi Teng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, P.R. China
| | | | | | | | | | | |
Collapse
|
47
|
Alkhatib Z, Abts A, Mavaro A, Schmitt L, Smits SHJ. Lantibiotics: how do producers become self-protected? J Biotechnol 2012; 159:145-54. [PMID: 22329892 DOI: 10.1016/j.jbiotec.2012.01.032] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 01/13/2012] [Accepted: 01/24/2012] [Indexed: 01/22/2023]
Abstract
Lantibiotics are small peptides produced by Gram-positive bacteria, which are ribosomally synthesized as a prepeptide. Their genes are highly organized in operons containing all the genes required for maturation, transport, immunity and synthesis. The best-characterized lantibiotic is nisin from Lactococcus lactis. Nisin is active against other Gram-positive bacteria via various modes of actions. To prevent activity against its producer strain, an autoimmunity system has developed consisting of different proteins, the ABC transporter NisFEG and a membrane anchored protein NisI. Together, they circumvent the ability of nisin to fulfill its action and cause cell death of L. lactis. Within this review, the mechanism of regulation, biosynthesis and activity of the immunity machinery will be discussed. Furthermore a short description about the application of these immunity proteins in both medical and industrial fields is highlighted.
Collapse
Affiliation(s)
- Zainab Alkhatib
- Institute of Biochemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
48
|
Oman TJ, Lupoli TJ, Wang TSA, Kahne D, Walker S, van der Donk WA. Haloduracin α binds the peptidoglycan precursor lipid II with 2:1 stoichiometry. J Am Chem Soc 2011; 133:17544-7. [PMID: 22003874 PMCID: PMC3206492 DOI: 10.1021/ja206281k] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Indexed: 11/30/2022]
Abstract
The two-peptide lantibiotic haloduracin is composed of two post-translationally modified polycyclic peptides that synergistically act on gram-positive bacteria. We show here that Halα inhibits the transglycosylation reaction catalyzed by PBP1b by binding in a 2:1 stoichiometry to its substrate lipid II. Halβ and the mutant Halα-E22Q were not able to inhibit this step in peptidoglycan biosynthesis, but Halα with its leader peptide still attached was a potent inhibitor. Combined with previous findings, the data support a model in which a 1:2:2 lipid II:Halα:Halβ complex inhibits cell wall biosynthesis and mediates pore formation, resulting in loss of membrane potential and potassium efflux.
Collapse
Affiliation(s)
- Trent J. Oman
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Tania J. Lupoli
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Tsung-Shing Andrew Wang
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Daniel Kahne
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Suzanne Walker
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Wilfred A. van der Donk
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
49
|
Abriouel H, Franz CMAP, Ben Omar N, Gálvez A. Diversity and applications of Bacillus bacteriocins. FEMS Microbiol Rev 2011; 35:201-32. [PMID: 20695901 DOI: 10.1111/j.1574-6976.2010.00244.x] [Citation(s) in RCA: 303] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Members of the genus Bacillus are known to produce a wide arsenal of antimicrobial substances, including peptide and lipopeptide antibiotics, and bacteriocins. Many of the Bacillus bacteriocins belong to the lantibiotics, a category of post-translationally modified peptides widely disseminated among different bacterial clades. Lantibiotics are among the best-characterized antimicrobial peptides at the levels of peptide structure, genetic determinants and biosynthesis mechanisms. Members of the genus Bacillus also produce many other nonmodified bacteriocins, some of which resemble the pediocin-like bacteriocins of the lactic acid bacteria (LAB), while others show completely novel peptide sequences. Bacillus bacteriocins are increasingly becoming more important due to their sometimes broader spectra of inhibition (as compared with most LAB bacteriocins), which may include Gram-negative bacteria, yeasts or fungi, in addition to Gram-positive species, some of which are known to be pathogenic to humans and/or animals. The present review provides a general overview of Bacillus bacteriocins, including primary structure, biochemical and genetic characterization, classification and potential applications in food preservation as natural preservatives and in human and animal health as alternatives to conventional antibiotics. Furthermore, it addresses their environmental applications, such as bioprotection against the pre- and post-harvest decay of vegetables, or as plant growth promoters.
Collapse
Affiliation(s)
- Hikmate Abriouel
- Departamento de Ciencias de la Salud, Área de Microbiología, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain
| | | | | | | |
Collapse
|
50
|
Ghosh A, Chakrabarti K, Chattopadhyay D. Cloning of feather-degrading minor extracellular protease from Bacillus cereus DCUW: dissection of the structural domains. MICROBIOLOGY-SGM 2009; 155:2049-2057. [PMID: 19383694 DOI: 10.1099/mic.0.027573-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bacterial extracellular proteases play an important role in cell survival and cell-cell communication. A high-molecular-mass minor extracellular protease (Vpr) from a feather-degrading bacterium, Bacillus cereus DCUW, has been reported by our laboratory. In the present study, we cloned and expressed Vpr in Escherichia coli. Complete nucleotide sequencing of this gene predicted that the protease is a member of the serine protease family, and smart domain analysis revealed that the protease consists of an N-terminal signal sequence for secretion, a subtilisin_N sequence that is a signature for N-terminal processing, a catalytic S_8 peptidase domain, and finally a long C-terminal protease-associated (PA) region containing nine intrinsically disordered subdomains. Four truncated constructs of the Vpr protease were cloned and expressed in E. coli. We found that the catalytic domain (amino acid residues 172-583) is sufficient for protease activity. Maturation of the Vpr protease needed both N-terminal and C-terminal processing. We have demonstrated that the oligomerization property is associated with the C-terminal protease-associated domain and also shown that the substrate-binding specificity to raw feather resides in this domain.
Collapse
Affiliation(s)
- Abhrajyoti Ghosh
- Dr B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, India.,Department of Biochemistry, University of Calcutta, India
| | | | - Dhrubajyoti Chattopadhyay
- Dr B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, India.,Department of Biochemistry, University of Calcutta, India
| |
Collapse
|