1
|
Barzegar S, Pirouzpanah S. Zinc finger proteins and ATP-binding cassette transporter-dependent multidrug resistance. Eur J Clin Invest 2024; 54:e14120. [PMID: 37930002 DOI: 10.1111/eci.14120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/12/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Multidrug resistance (MDR) remains a significant challenge in cancer treatment, leading to poor clinical outcomes. Dysregulation of ATP-binding cassette (ABC) transporters has been identified as a key contributor to MDR. Zinc finger proteins (ZNPs) are key regulators of transcription and have emerged as potential contributors to cancer drug resistance. Bridging the knowledge gap between ZNPs and MDR is essential to understand a source of heterogeneity in cancer treatment. This review sought to elucidate how different ZNPs modulate the transcriptional regulation of ABC genes, contributing to resistance to cancer therapies. METHODS The search was conducted using PubMed, Google Scholar, EMBASE and Web of Science. RESULTS In addition to ABC-blockers, the transcriptional features regulated by ZNP are expected to play a role in reversing ABC-mediated MDR and predicting the efficacy of anticancer treatments. Among the ZNP-induced epithelial to mesenchymal transition, SNAIL, SLUG and Zebs have been identified as important factors in promoting MDR through activation of ATM, NFκB and PI3K/Akt pathways, exposing the metabolism to potential ZNP-MDR interactions. Additionally, nuclear receptors, such as VDR, ER and PXR have been found to modulate certain ABC regulations. Other C2H2-type zinc fingers, including Kruppel-like factors, Gli and Sp also have the potential to contribute to MDR. CONCLUSION Besides reviewing evidence on the effects of ZNP dysregulation on ABC-related chemoresistance in malignancies, significant markers of ZNP functions are discussed to highlight the clinical implications of gene-to-gene and microenvironment-to-gene interactions on MDR prospects. Future research on ZNP-derived biomarkers is crucial for addressing heterogeneity in cancer therapy.
Collapse
Affiliation(s)
- Sanaz Barzegar
- Shahid Madani Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Pirouzpanah
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Wu S, Chen N, Tong X, Xu X, Chen Q, Wang F. Selenium attenuates the cadmium-induced placenta glucocorticoid barrier damage by up-regulating the expression of specificity protein 1. J Biochem Mol Toxicol 2022; 36:e23056. [PMID: 35384129 DOI: 10.1002/jbt.23056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 01/26/2022] [Accepted: 03/02/2022] [Indexed: 11/09/2022]
Abstract
Cadmium (Cd) is an environmental pollutant and pregnant women are especially susceptible to the effects of exposure to Cd. Our previous study found Cd can be accumulated in the placenta and causes fetal growth restriction (FGR) through damage the placental glucocorticoid barrier. Selenium (Se), as an essential micronutrient, can allivate Cd-induced toxicity. In this study, we aim to explore the protective mechanism of Se against Cd-induced the placental glucocorticoid barrier damage and FGR. Pregnant Sprague Dawley (SD) rats were exposed to CdCl2 (1 mg/kg/day) and Na2 SeO3 (0.1-0.2-0.3 mg/kg/day) by gavage from gestational day (GD) 0 to GD 19. The results showed that reduced fetal weight, increased corticosterone concentrations in the maternal and fetal serum, and impaired placental labyrinth layer blood vessel development, appeared in pregnant rats after Cd exposure and improved after treated with Se. In cell experiments, we confirmed that Se reduces Cd-induced apoptosis. Moreover, Se can abolish Cd-induced 11β-HSD2 and specificity protein 1 (Sp1) decreasing in vivo and vitro. In human JEG-3 cells, the knockdown of Sp1 expression by small interfering RNA can suppressed the protective effect of Se on Cd-induced 11β-HSD2 decreasing. In general, our results demonstrated that Se is resistant to Cd-induced FGR through upregulating the placenta barrier via activation of the transcription factor Sp1.
Collapse
Affiliation(s)
- Sisi Wu
- Departments of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- The Second Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Na Chen
- Departments of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- The Second Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xia Tong
- Departments of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- The Second Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xu Xu
- Departments of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- The Second Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qihui Chen
- Departments of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- The Second Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fan Wang
- Departments of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- The Second Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
3
|
Neuhaus D. Zinc finger structure determination by NMR: Why zinc fingers can be a handful. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 130-131:62-105. [PMID: 36113918 PMCID: PMC7614390 DOI: 10.1016/j.pnmrs.2022.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/09/2022] [Accepted: 07/10/2022] [Indexed: 06/07/2023]
Abstract
Zinc fingers can be loosely defined as protein domains containing one or more tetrahedrally-co-ordinated zinc ions whose role is to stabilise the structure rather than to be involved in enzymatic chemistry; such zinc ions are often referred to as "structural zincs". Although structural zincs can occur in proteins of any size, they assume particular significance for very small protein domains, where they are often essential for maintaining a folded state. Such small structures, that sometimes have only marginal stability, can present particular difficulties in terms of sample preparation, handling and structure determination, and early on they gained a reputation for being resistant to crystallisation. As a result, NMR has played a more prominent role in structural studies of zinc finger proteins than it has for many other types of proteins. This review will present an overview of the particular issues that arise for structure determination of zinc fingers by NMR, and ways in which these may be addressed.
Collapse
Affiliation(s)
- David Neuhaus
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
4
|
Role of Zinc and Selenium in Oxidative Stress and Immunosenescence: Implications for Healthy Aging and Longevity. HANDBOOK OF IMMUNOSENESCENCE 2019. [PMCID: PMC7121636 DOI: 10.1007/978-3-319-99375-1_66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aging is a complex process that includes gradual and spontaneous biochemical and physiological changes which contributes to a decline in performance and increased susceptibility to diseases. Zn and Se are essential trace elements that play a pivotal role in immune functions and antioxidant defense and, consequently, are claimed to play also a role in successful aging trajectories. Consistently with their nature of essential trace elements, a plethora of data obtained “in vitro” and “in vivo” (in humans and animal models) support the relevance of Zn and Se for both the innate and adoptive immune response. Moreover, Zn and Se are strictly involved in the synthesis and regulation of activity of proteins and enzymes, e.g., metallothioneins (MT) and glutathione peroxidase (GPX), that are necessary for our endogenous antioxidant response. This is clearly important to protect our cells from oxidative damage and to slow the decline of our immune system with aging. Age-related changes affecting tissue levels of Zn and Se may indicate that the risk of Zn and Se deficiency increases with aging. However, it is still unclear which of these changes can be the consequence of a “real deficiency” and which can be part of our physiological compensatory response to the accumulating damage occurring in aging. Furthermore, the upregulation of antioxidant proteins (Zn and Se dependent) may be a manifestation of self-induced oxidative stress. By the way, Zn and Se dependent proteins are modulated not only by nutritional status, but also by well-known hallmarks of aging that play antagonistic functions, such as the deregulated nutrient sensing pathways and cellular senescence. Thus, it is not an easy task to conduct Zn or Se supplementation in elderly and it is emerging consistent that these kind of supplementation requires an individualized approach. Anyway, there is consistent support that supplementation with Zn using doses around 10 mg/day is generally safe in elderly and may even improve part of immune performances in those subjects with a baseline deficiency. Regarding Se supplementation, it may induce both beneficial and detrimental effects on cellular immunity depending on the form of Se, supplemental dose, and delivery matrix. The nutritional association of supplements based on “Zn plus Se” is hypothesized to provide additional benefits, but this will likely need a more complex individualized approach. The improvement of our knowledge around screening and detection of Zn and Se deficiency in aging could lead to substantial benefits in terms of efficacy of nutritional supplements aimed at ameliorate performance and health in aging.
Collapse
|
5
|
Reversal of Sp1 transactivation and TGFβ1/SMAD1 signaling by H 2S prevent nickel-induced fibroblast activation. Toxicol Appl Pharmacol 2018; 356:25-35. [PMID: 30055191 DOI: 10.1016/j.taap.2018.07.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/18/2018] [Accepted: 07/25/2018] [Indexed: 01/17/2023]
Abstract
Nickel as a heavy metal is known to bring threat to human health, and nickel exposure is associated with changes in fibroblast activation which may contribute to its fibrotic properties. H2S has recently emerged as an important gasotransmitter involved in numerous cellular signal transduction and pathophysiological responses. Interaction of nickel and H2S on fibroblast cell activation has not been studied so far. Here, we showed that a lower dose of nickel (200 μM) induced the activation of human fibroblast cells, as evidenced by increased cell growth, migration and higher expressions of α-smooth muscle actin (αSMA) and fibronectin, while high dose of nickel (1 mM) inhibited cell viability. Nickel reduced intracellular thiol contents and stimulated oxidative stress. Nickel also repressed the mRNA and protein expression of cystathionine gamma-lyase (CSE, a H2S-generating gene) and blocked the endogenous production of H2S. Exogenously applied NaHS (a H2S donor) had no effect on nickel-induced cell viability but significantly attenuated nickel-stimulated cell migration and the expression of αSMA and fibronectin. In contrast, CSE deficiency worsened nickel-induced αSMA expression. Moreover, H2S incubation reversed nickel-stimulated TGFβ1/SMAD1 signal and blocked TGFβ1-initiated expressions of αSMA and fibronectin. Nickel inhibited the interaction of Sp1 with CSE promoter but strengthened the binding of Sp1 with TGFβ1 promoter, which was reversed by exogenously applied NaHS. These data reveal that H2S protects from nickel-stimulated fibroblast activation and CSE/H2S system can be a potential target for the treatment of tissue fibrosis induced by nickel.
Collapse
|
6
|
Tokarsky EJ, Wallenmeyer PC, Phi KK, Suo Z. Significant impact of divalent metal ions on the fidelity, sugar selectivity, and drug incorporation efficiency of human PrimPol. DNA Repair (Amst) 2016; 49:51-59. [PMID: 27989484 DOI: 10.1016/j.dnarep.2016.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 11/24/2016] [Accepted: 11/24/2016] [Indexed: 01/17/2023]
Abstract
Human PrimPol is a recently discovered bifunctional enzyme that displays DNA template-directed primase and polymerase activities. PrimPol has been implicated in nuclear and mitochondrial DNA replication fork progression and restart as well as DNA lesion bypass. Published evidence suggests that PrimPol is a Mn2+-dependent enzyme as it shows significantly improved primase and polymerase activities when binding Mn2+, rather than Mg2+, as a divalent metal ion cofactor. Consistently, our fluorescence anisotropy assays determined that PrimPol binds to a primer/template DNA substrate with affinities of 29 and 979nM in the presence of Mn2+ and Mg2+, respectively. Our pre-steady-state kinetic analysis revealed that PrimPol incorporates correct dNTPs with 100-fold higher efficiency with Mn2+ than with Mg2+. Notably, the substitution fidelity of PrimPol in the presence of Mn2+ was determined to be in the range of 3.4×10-2 to 3.8×10-1, indicating that PrimPol is an error-prone polymerase. Furthermore, we kinetically determined the sugar selectivity of PrimPol to be 57-1800 with Mn2+ and 150-4500 with Mg2+, and found that PrimPol was able to incorporate the triphosphates of two anticancer drugs (cytarabine and gemcitabine), but not two antiviral drugs (emtricitabine and lamivudine).
Collapse
Affiliation(s)
- E John Tokarsky
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; The Ohio State Biophysics Program, The Ohio State University, Columbus, OH 43210, USA
| | - Petra C Wallenmeyer
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Kenneth K Phi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Zucai Suo
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; The Ohio State Biophysics Program, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
7
|
Ruiter S, Sippel J, Bouwmeester MC, Lommelaars T, Beekhof P, Hodemaekers HM, Bakker F, van den Brandhof EJ, Pennings JLA, van der Ven LTM. Programmed Effects in Neurobehavior and Antioxidative Physiology in Zebrafish Embryonically Exposed to Cadmium: Observations and Hypothesized Adverse Outcome Pathway Framework. Int J Mol Sci 2016; 17:ijms17111830. [PMID: 27827847 PMCID: PMC5133831 DOI: 10.3390/ijms17111830] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/14/2016] [Accepted: 10/24/2016] [Indexed: 02/02/2023] Open
Abstract
Non-communicable diseases (NCDs) are a major cause of premature mortality. Recent studies show that predispositions for NCDs may arise from early-life exposure to low concentrations of environmental contaminants. This developmental origins of health and disease (DOHaD) paradigm suggests that programming of an embryo can be disrupted, changing the homeostatic set point of biological functions. Epigenetic alterations are a possible underlying mechanism. Here, we investigated the DOHaD paradigm by exposing zebrafish to subtoxic concentrations of the ubiquitous contaminant cadmium during embryogenesis, followed by growth under normal conditions. Prolonged behavioral responses to physical stress and altered antioxidative physiology were observed approximately ten weeks after termination of embryonal exposure, at concentrations that were 50–3200-fold below the direct embryotoxic concentration, and interpreted as altered developmental programming. Literature was explored for possible mechanistic pathways that link embryonic subtoxic cadmium to the observed apical phenotypes, more specifically, the probability of molecular mechanisms induced by cadmium exposure leading to altered DNA methylation and subsequently to the observed apical phenotypes. This was done using the adverse outcome pathway model framework, and assessing key event relationship plausibility by tailored Bradford-Hill analysis. Thus, cadmium interaction with thiols appeared to be the major contributor to late-life effects. Cadmium-thiol interactions may lead to depletion of the methyl donor S-adenosyl-methionine, resulting in methylome alterations, and may, additionally, result in oxidative stress, which may lead to DNA oxidation, and subsequently altered DNA methyltransferase activity. In this way, DNA methylation may be affected at a critical developmental stage, causing the observed apical phenotypes.
Collapse
Affiliation(s)
- Sander Ruiter
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven 3720BA-1, The Netherlands; (P.B.); (H.M.H.); (F.B.); (J.L.A.P.)
| | - Josefine Sippel
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven 3720BA-1, The Netherlands; (P.B.); (H.M.H.); (F.B.); (J.L.A.P.)
| | - Manon C. Bouwmeester
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven 3720BA-1, The Netherlands; (P.B.); (H.M.H.); (F.B.); (J.L.A.P.)
| | - Tobias Lommelaars
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven 3720BA-1, The Netherlands; (P.B.); (H.M.H.); (F.B.); (J.L.A.P.)
| | - Piet Beekhof
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven 3720BA-1, The Netherlands; (P.B.); (H.M.H.); (F.B.); (J.L.A.P.)
| | - Hennie M. Hodemaekers
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven 3720BA-1, The Netherlands; (P.B.); (H.M.H.); (F.B.); (J.L.A.P.)
| | - Frank Bakker
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven 3720BA-1, The Netherlands; (P.B.); (H.M.H.); (F.B.); (J.L.A.P.)
| | - Evert-Jan van den Brandhof
- Centre for Environmental Quality, National Institute for Public Health and the Environment (RIVM), Bilthoven 3720BA-1, The Netherlands;
| | - Jeroen L. A. Pennings
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven 3720BA-1, The Netherlands; (P.B.); (H.M.H.); (F.B.); (J.L.A.P.)
| | - Leo T. M. van der Ven
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven 3720BA-1, The Netherlands; (P.B.); (H.M.H.); (F.B.); (J.L.A.P.)
- Correspondence: ; Tel.: +31-30-2742681
| |
Collapse
|
8
|
Huang T, Ditzel EJ, Perrera AB, Broka DM, Camenisch TD. Arsenite Disrupts Zinc-Dependent TGFβ2-SMAD Activity During Murine Cardiac Progenitor Cell Differentiation. Toxicol Sci 2015; 148:409-20. [PMID: 26354774 PMCID: PMC5009438 DOI: 10.1093/toxsci/kfv191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
TGFβ2 (transforming growth factor-β2) is a key growth factor regulating epithelial to mesenchymal transition (EMT). TGFβ2 triggers cardiac progenitor cells to differentiate into mesenchymal cells and give rise to the cellular components of coronary vessels as well as cells of aortic and pulmonary valves. TGFβ signaling is dependent on a dynamic on and off switch in Smad activity. Arsenite exposure of 1.34 μM for 24-48 h has been reported to disrupt Smad phosphorylation leading to deficits in TGFβ2-mediated cardiac precursor differentiation and transformation. In this study, the molecular mechanism of acute arsenite toxicity on TGFβ2-induced Smad2/3 nuclear shuttling and TGFβ2-mediated cardiac EMT was investigated. A 4-h exposure to 5 μM arsenite blocks nuclear accumulation of Smad2/3 in response to TGFβ2 without disrupting Smad phosphorylation or nuclear importation. The depletion of nuclear Smad is restored by knocking-down Smad-specific exportins, suggesting that arsenite augments Smad2/3 nuclear exportation. The blockage in TGFβ2-Smad signaling is likely due to the loss of Zn(2+) cofactor in Smad proteins, as Zn(2+) supplementation reverses the disruption in Smad2/3 nuclear translocation and transcriptional activity by arsenite. This coincides with Zn(2+) supplementation rescuing arsenite-mediated deficits in cardiac EMT. Thus, zinc partially protects cardiac EMT from developmental toxicity by arsenite.
Collapse
Affiliation(s)
- Tianfang Huang
- *Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721
| | - Eric J. Ditzel
- *Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721
| | - Alec B. Perrera
- *Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721
| | - Derrick M. Broka
- *Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721
| | - Todd D. Camenisch
- *Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721,Southwest Environmental Health Sciences Center, University of Arizona, Tucson, Arizona 85721,Sarver Heart Center, University of Arizona, Tucson, Arizona 85721,Bio5 Institute, University of Arizona, Tucson, Arizona 85721,To whom correspondence should be addressed at College of Pharmacy, University of Arizona, 1703 East Mabel Street, Tucson, AZ 85721. Fax: (520) 626-2466. E-mail:
| |
Collapse
|
9
|
Jancsó A, Gyurcsik B, Mesterházy E, Berkecz R. Competition of zinc(II) with cadmium(II) or mercury(II) in binding to a 12-mer peptide. J Inorg Biochem 2013; 126:96-103. [PMID: 23796441 DOI: 10.1016/j.jinorgbio.2013.05.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 05/29/2013] [Accepted: 05/29/2013] [Indexed: 11/15/2022]
Abstract
Speciation of the complexes of zinc(II) with a dodecapeptide (Ac-SCPGDQGSDCSI-NH2), inspired by the metal binding domain of MerR metalloregulatory proteins, have been studied by pH-potentiometric titrations, UV, SRCD (synchrotron radiation circular dichroism) and (1)H NMR experiments. (MerR is a family of transcriptional regulators the archetype of which is the Hg(2+)-responsive transcriptional repressor-activator MerR protein.) The aim of the ligand-design was to retain the advantageous metal binding features of MerR proteins in a model peptide for the efficient capture of toxic metal ions. The peptide binds zinc(II) via two deprotonated Cys-thiol groups and one of the Asp-carboxylates in the ZnL parent complex, possessing a remarkably high stability (logK=9.93). In spite of the relatively long peptide loop, bis-complexes are also formed with the metal ion under basic conditions. In a competition with cadmium(II) or mercury(II), zinc(II) cannot prevent the binding of toxic metal ions by the thiolate donor groups of the ligand. Around neutral pH one equivalent of mercury(II) was shown to fully replace zinc(II) from the ZnL species. Partial replacement of zinc(II) from the peptide by one equivalent of cadmium(II), relative to zinc(II) and the ligand, is also presumable, nevertheless, spectroscopic data may suggest the formation of mixed metal ion complexes, as well. Based on the obtained results the investigated dodecapeptide can be a promising candidate for capturing toxic metal ions in practical applications.
Collapse
Affiliation(s)
- Attila Jancsó
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, Szeged H-6720, Hungary.
| | | | | | | |
Collapse
|
10
|
Deegan BJ, Bona AM, Bhat V, Mikles DC, McDonald CB, Seldeen KL, Farooq A. Structural and thermodynamic consequences of the replacement of zinc with environmental metals on estrogen receptor α-DNA interactions. J Mol Recognit 2012; 24:1007-17. [PMID: 22038807 DOI: 10.1002/jmr.1148] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Estrogen receptor α (ERα) acts as a transcription factor by virtue of the ability of its DNA-binding (DB) domain, comprised of a tandem pair of zinc fingers, to recognize the estrogen response element within the promoters of target genes. Herein, using an array of biophysical methods, we probe the structural consequences of the replacement of zinc within the DB domain of ERα with various environmental metals and their effects on the thermodynamics of binding to DNA. Our data reveal that whereas the DB domain reconstituted with divalent ions of zinc, cadmium, mercury, and cobalt binds to DNA with affinities in the nanomolar range, divalent ions of barium, copper, iron, lead, manganese, nickel, and tin are unable to regenerate DB domain with DNA-binding potential, although they can compete with zinc for coordinating the cysteine ligands within the zinc fingers. We also show that the metal-free DB domain is a homodimer in solution and that the binding of various metals only results in subtle secondary and tertiary structural changes, implying that metal coordination may only be essential for binding to DNA. Collectively, our findings provide mechanistic insights into how environmental metals may modulate the physiological function of a key nuclear receptor involved in mediating a plethora of cellular functions central to human health and disease.
Collapse
Affiliation(s)
- Brian J Deegan
- Department of Biochemistry and Molecular Biology and USylvester Braman Family Breast Cancer Institute, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Watson HM, Vincent JB, Cassady CJ. Effects of transition metal ion coordination on the collision-induced dissociation of polyalanines. JOURNAL OF MASS SPECTROMETRY : JMS 2011; 46:1099-1107. [PMID: 22124980 DOI: 10.1002/jms.1992] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Transition metal-polyalanine complexes were analyzed in a high-capacity quadrupole ion trap after electrospray ionization. Polyalanines have no polar amino acid side chains to coordinate metal ions, thus allowing the effects metal ion interaction with the peptide backbone to be explored. Positive mode mass spectra produced from peptides mixed with salts of the first row transition metals Cr(III), Fe(II), Fe(III), Co(II), Ni(II), Cu(I), and Cu(II) yield singly and doubly charged metallated ions. These precursor ions undergo collision-induced dissociation (CID) to give almost exclusively metallated N-terminal product ions whose types and relative abundances depend on the identity of the transition metal. For example, Cr(III)-cationized peptides yield CID spectra that are complex and have several neutral losses, whereas Fe(III)-cationized peptides dissociate to give intense non-metallated products. The addition of Cu(II) shows the most promise for sequencing. Spectra obtained from the CID of singly and doubly charged Cu-heptaalanine ions, [M + Cu - H](+) and [M + Cu](2+) , are complimentary and together provide cleavage at every residue and no neutral losses. (This contrasts with [M + H](+) of heptaalanine, where CID does not provide backbone ions to sequence the first three residues.) Transition metal cationization produces abundant metallated a-ions by CID, unlike protonated peptides that produce primarily b- and y-ions. The prominence of metallated a-ions is interesting because they do not always form from b-ions. Tandem mass spectrometry on metallated (Met = metal) a- and b-ions indicate that [b(n) + Met - H](2+) lose CO to form [a(n) + Met - H](2+), mimicking protonated structures. In contrast, [a(n) + Met - H](2+) eliminate an amino acid residue to form [a(n-1) + Met - H](2+), which may be useful in sequencing.
Collapse
Affiliation(s)
- Heather M Watson
- Department of Chemistry, The University of Alabama, Tuscaloosa, AL, USA
| | | | | |
Collapse
|
12
|
Quintal SM, dePaula QA, Farrell NP. Zinc finger proteins as templates for metal ion exchange and ligand reactivity. Chemical and biological consequences. Metallomics 2011; 3:121-39. [PMID: 21253649 DOI: 10.1039/c0mt00070a] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Zinc finger reactions with inorganic ions and coordination compounds are as diverse as the zinc fingers themselves. Use of metal ions such as Co(2+) and Cd(2+) has given structural, thermodynamic and kinetic information on zinc fingers and zinc-finger-DNA/RNA interactions. It is a general truism that alteration of the coordination sphere in the finger environment will disrupt the recognition with DNA/RNA and this has implications for mechanism of toxicity and carcinogenesis of metal ions. Structural zinc fingers are susceptible to electrophilic attack and the recognition that the coordination sphere of inorganic compounds may be modulated for control of electrophilic attack on zinc fingers raises the possibility of systematic studies of zinc fingers as drug targets using inorganic chemistry. Some inorganic compounds such as those of As(III) and Au(I) may exert their biological effects through inactivation of zinc fingers and novel approaches to specifically attack the zinc-bound ligands using Co(III)-Schiff bases and Platinum(II)-Nucleobase compounds have been proposed. The genomic importance of zinc fingers suggests that the "coordination chemistry" of zinc fingers themselves is ripe for exploration to design new targets for medicinal inorganic chemistry.
Collapse
Affiliation(s)
- Susana M Quintal
- Department of Chemistry, Virginia Commonwealth University, 1001 W. Main St., Richmond, VA 23284-2006, USA
| | | | | |
Collapse
|
13
|
Rabbani-Chadegani III A, Fani N, Abdossamadi S, Shahmir N. Toxic effects of lead and nickel nitrate on rat liver chromatin components. J Biochem Mol Toxicol 2010; 25:127-34. [DOI: 10.1002/jbt.20368] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 06/13/2010] [Accepted: 07/07/2010] [Indexed: 01/28/2023]
|
14
|
Kothinti RK, Blodgett AB, Petering DH, Tabatabai NM. Cadmium down-regulation of kidney Sp1 binding to mouse SGLT1 and SGLT2 gene promoters: possible reaction of cadmium with the zinc finger domain of Sp1. Toxicol Appl Pharmacol 2010; 244:254-62. [PMID: 20060848 DOI: 10.1016/j.taap.2009.12.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 12/19/2009] [Accepted: 12/21/2009] [Indexed: 02/04/2023]
Abstract
Cadmium (Cd) exposure causes glucosuria (glucose in the urine). Previously, it was shown that Cd exposure of primary cultures of mouse kidney cells (PMKC) decreased mRNA levels of the glucose transporters, SGLT1 and SGLT2 and that Sp1 from Cd-exposed cells displayed reduced binding to the GC boxes of the mouse SGLT1 promoter in vitro. Here, we identified a GC box upstream of mouse SGLT2 gene. ChIP assays on PMKC revealed that exposure to 5 microM Cd abolished Sp1 binding to SGLT1 GC box while it decreased Sp1 binding to SGLT2 GC sequence by 30% in vivo. The in vitro DNA binding assay, EMSA, demonstrated that binding of Sp1 from Cd (7.5 microM)-treated PMKC to the SGLT2 GC probe was 86% lower than in untreated cells. Sp1 is a zinc finger protein. Compared to PMKC exposed to 5 microM Cd alone, inclusion of 5 microM Zn restored SGLT1 and 2 mRNA levels by 15% and 30%, respectively. Cd (10 microM) decreased the binding of recombinant Sp1 (rhSp1) to SGLT1 and SGLT2 GC probes to 12% and 8% of untreated controls. Cd exerted no effect on GC-bound rhSp1. Co-treatment with Cd and Zn showed that added Zn significantly restored rhSp1 binding to the SGLT1 and SGLT2. Addition of Zn post Cd treatment was not stimulatory. We conclude that Cd can replace Zn in Sp1 DNA binding domain to reduce its binding to GC sites in mouse SGLT1 and SGLT2 promoters.
Collapse
Affiliation(s)
- Rajendra K Kothinti
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
| | | | | | | |
Collapse
|
15
|
Cobalt distribution in keratinocyte cells indicates nuclear and perinuclear accumulation and interaction with magnesium and zinc homeostasis. Toxicol Lett 2009; 188:26-32. [PMID: 19433266 DOI: 10.1016/j.toxlet.2009.02.024] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 01/26/2009] [Accepted: 02/28/2009] [Indexed: 11/20/2022]
Abstract
Cobalt is known to be toxic at high concentration, to induce contact dermatosis, and occupational radiation skin damage because of its use in nuclear industry. We investigated the intracellular distribution of cobalt in HaCaT human keratinocytes as a model of skin cells, and its interaction with endogenous trace elements. Direct micro-chemical imaging based on ion beam techniques was applied to determine the quantitative distribution of cobalt in HaCaT cells. In addition, synchrotron radiation X-ray fluorescence microanalysis in tomography mode was performed, for the first time on a single cell, to determine the 3D intracellular distribution of cobalt. Results obtained with these micro-chemical techniques were compared to a more classical method based on cellular fractionation followed by inductively coupled plasma atomic emission spectrometry (ICP-AES) measurements. Cobalt was found to accumulate in the cell nucleus and in perinuclear structures indicating the possible direct interaction with genomic DNA, and nuclear proteins. The perinuclear accumulation in the cytosol suggests that cobalt could be stored in the endoplasmic reticulum or the Golgi apparatus. The multi-elemental analysis revealed that cobalt exposure significantly decreased magnesium and zinc content, with a likely competition of cobalt for magnesium and zinc binding sites in proteins. Overall, these data suggest a multiform toxicity of cobalt related to interactions with genomic DNA and nuclear proteins, and to the alteration of zinc and magnesium homeostasis.
Collapse
|
16
|
A comparison of the effect of lead nitrate on rat liver chromatin, DNA and histone proteins in solution. Arch Toxicol 2008; 83:565-70. [PMID: 18839148 DOI: 10.1007/s00204-008-0362-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 09/08/2008] [Indexed: 10/21/2022]
Abstract
Although lead is widely recognized as a toxic substance in the environment and directly damage DNA, no studies are available on lead interaction with chromatin and histone proteins. In this work, we have examined the effect of lead nitrate on EDTA-soluble chromatin (SE chromatin), DNA and histones in solution using absorption and fluorescence spectroscopy, thermal denaturation and gel electrophoresis techniques. The results demonstrate that lead nitrate binds with higher affinity to chromatin than to DNA and produces an insoluble complex as monitored at 400 nm. Binding of lead to DNA decreases its Tm, increases its fluorescence intensity and exhibits hypochromicity at 210 nm which reveal that both DNA bases and the backbone participate in the lead-DNA interaction. Lead also binds strongly to histone proteins in the absence of DNA. The results suggest that although lead destabilizes DNA structure, in the chromatin, the binding of lead introduces some sort of compaction and aggregation, and the histone proteins play a key role in this aspect. This chromatin condensation, upon lead exposure, in turn may decrease fidelity of DNA, and inhibits DNA and RNA synthesis, the process that introduces lead toxicity at the chromatin level.
Collapse
|
17
|
Song IS, Chen HHW, Aiba I, Hossain A, Liang ZD, Klomp LWJ, Kuo MT. Transcription factor Sp1 plays an important role in the regulation of copper homeostasis in mammalian cells. Mol Pharmacol 2008; 74:705-13. [PMID: 18483225 PMCID: PMC2574735 DOI: 10.1124/mol.108.046771] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Copper is an essential metal nutrient, yet copper overload is toxic. Here, we report that human copper transporter (hCtr) 1 plays an important role in the maintenance of copper homeostasis by demonstrating that expression of hCtr1 mRNA was up-regulated under copper-depleted conditions and down-regulated under copper-replete conditions. Overexpression of full-length hCtr1 by transfection with a recombinant hCtr1 cDNA clone reduced endogenous hCtr1 mRNA levels, whereas overexpression of N terminus-deleted hCtr1 did not change endogenous hCtr1 mRNA levels, suggesting that increased functional hCtr1 transporter, which leads to increased intracellular copper content, down-regulates the endogenous hCtr1 mRNA. A luciferase assay using reporter constructs containing the hCtr1 promoter sequences revealed that three Sp1 binding sites are involved in the basal and copper concentration-dependent regulation of hCtr1 expression. Modulation of Sp1 levels affected the expression of hCtr1. We further demonstrated that the zinc-finger domain of Sp1 functions as a sensor of copper that regulates hCtr1 up and down in response to copper concentration variations. Our results demonstrate that mammalian copper homeostasis is maintained at the hCtr1 mRNA level, which is regulated by the Sp1 transcription factor.
Collapse
Affiliation(s)
- Im-Sook Song
- Department of Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Role of Zinc and Selenium in Oxidative Stress and Immunosenescence: Implications for Healthy Ageing and Longevity. HANDBOOK ON IMMUNOSENESCENCE 2008. [PMCID: PMC7122608 DOI: 10.1007/978-1-4020-9063-9_66] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Ageing is an inevitable biological process with gradual and spontaneous biochemical and physiological changes and increased susceptibility to diseases. Some nutritional factors (zinc and selenium) may remodel these changes leading to a possible escaping of diseases with subsequent healthy ageing, because they are especially involved in improving immune functions as well as antioxidant defense. Experiments performed “in vitro” (human lymphocytes exposed to endotoxins) and “in vivo” (old mice or young mice fed with low zinc dietary intake) show that zinc is important for immune response both innate and adoptive. Selenium provokes zinc release by Metallothioneins (MT), via reduction of glutathione peroxidase. This fact is crucial in ageing because high MT may be unable to release zinc with subsequent low intracellular free zinc ion availability for immune response. Taking into account the existence of zinc transporters (ZnT and ZIP family) for cellular zinc efflux and influx, respectively, the association between ZnT and MT is important in maintaining satisfactory intracellular zinc homeostasis in ageing. Improved immune performance occur in elderly after physiological zinc supplementation, which also induces prolonged survival in old, nude and neonatal thymectomized mice. The association “zinc plus selenium” improves humoral immunity in old subjects after influenza vaccination. Therefore, zinc and selenium are relevant for immunosenescence in order to achieve healthy ageing and longevity.
Collapse
|
19
|
Shen H, Arzuaga X, Toborek M, Hennig B. Zinc nutritional status modulates expression of ahr-responsive p450 enzymes in vascular endothelial cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2008; 25:197-201. [PMID: 19255596 PMCID: PMC2346446 DOI: 10.1016/j.etap.2007.10.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Zinc has anti-inflammatory properties and is crucial for the integrity of vascular endothelial cells, and the development and homeostasis of the cardiovascular system. The aryl hydrocarbon receptor (AhR) which is expressed in the vascular endothelium also plays an important role in responses to xenobiotic exposure and cardiovascular development. We hypothesize that cellular zinc can modulate induction of AhR responsive genes in endothelial cells. To determine if zinc deficiency can alter responses to AhR ligands, aortic endothelial cells were exposed to the AhR ligands 3,3',4,4'-tetrachlorobiphenyl (PCB77) or beta-naphthoflavone (beta-NF) alone or in combination with the membrane permeable zinc chelator TPEN, followed by measurements of the AhR responsive cytochrome P450 enzymes CYP1A1 and 1B1. Compared to vehicle treated cells, both PCB77-induced CYP1A1 activity (EROD) and mRNA expression were significantly reduced during zinc deficiency. In addition, PCB77 and beta-NF-mediated upregulation of CYP1A1 and CYP1B1 protein expression was significantly reduced in zinc-deficient endothelial cells. The inhibition of CYP1A1 and CYP1B1 protein expression caused by zinc deficiency was reversible by cellular zinc supplementation. Overall, our results strongly suggest that nutrition can modulate an environmental toxicant-induced biological outcome and that adequate levels of individual nutrients such as zinc are necessary for induction of AhR responsive genes in vascular endothelial cells.
Collapse
Affiliation(s)
- Huiyun Shen
- Molecular and Cell Nutrition Laboratory, College of Agriculture, University of Kentucky, Lexington, KY, 40536
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY, 40536
| | - Xabier Arzuaga
- Molecular and Cell Nutrition Laboratory, College of Agriculture, University of Kentucky, Lexington, KY, 40536
| | - Michal Toborek
- Molecular and Cell Nutrition Laboratory, College of Agriculture, University of Kentucky, Lexington, KY, 40536
- Graduate Center for Nutrition, University of Kentucky, Lexington, KY, 40536
| | - Bernhard Hennig
- Molecular and Cell Nutrition Laboratory, College of Agriculture, University of Kentucky, Lexington, KY, 40536
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY, 40536
- Graduate Center for Nutrition, University of Kentucky, Lexington, KY, 40536
| |
Collapse
|
20
|
Veenstra TD. Electrospray ionization mass spectrometry in the study of biomolecular non-covalent interactions. Biophys Chem 2007; 79:63-79. [PMID: 17030314 DOI: 10.1016/s0301-4622(99)00037-x] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/1998] [Revised: 03/17/1999] [Accepted: 03/17/1999] [Indexed: 11/16/2022]
Abstract
In the past mass spectrometry has been limited to the study of small, stable molecules, however, with the emergence of electrospray ionization mass spectrometry (ESI-MS) large biomolecules as well as non-covalent biomolecular complexes can be studied. ESI-MS has been used to study non-covalent interactions involving proteins with metals, ligands, peptides, oligonucleotides, as well as other proteins. Although complementary to other well-established techniques such as circular dichroism and fluorescence spectroscopy, ESI-MS offers some advantages in speed, sensitivity, and directness particularly in the determination of the stoichiometry of the complex. One major advantage is the ability of ESI-MS to provide multiple signals each arising from a distinct population within the sample. In this review I will discuss some of the different types of non-covalent biomolecular interactions that have been studied using ESI-MS, highlighting examples which show the efficacy of using ESI-MS to probe the structure of biomolecular complexes.
Collapse
Affiliation(s)
- T D Veenstra
- Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratories, PO Box 999, MSIN K8-98, Richland, WA 99352, USA.
| |
Collapse
|
21
|
Yokoyama S, Takeda K, Shibahara S. Functional Difference of the SOX10 Mutant Proteins Responsible for the Phenotypic Variability in Auditory-Pigmentary Disorders. ACTA ACUST UNITED AC 2006; 140:491-9. [PMID: 16921166 DOI: 10.1093/jb/mvj177] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Waardenburg syndrome (WS) is an inherited disorder, characterized by auditory-pigmentary abnormalities. SOX10 transcription factor and endothelin receptor type B (EDNRB) are responsible for WS type 4 (WS4), which also exhibits megacolon, while microphthalmia-associated transcription factor (MITF) is responsible for WS2, which is not associated with megacolon. Here, we investigated the functions of SOX10 mutant proteins using the target promoters, EDNRB and MITF. The SOX10 mutations chosen were E189X, Q377X, and 482ins6, which are associated with WS4, and S135T that is associated with Yemenite deaf-blind hypopigmentation syndrome (YDBS), which does not manifest megacolon. These SOX10 mutant proteins showed impaired transactivation activity on the MITF promoter. In contrast, E189X and Q377X proteins, each of which lacks its C-terminal portion, activated the EDNRB promoter, whereas no activation was detected with the SOX10 proteins mutated at the DNA-binding domain, 482ins6 and S135T. However, unlike 482ins6 protein, S135T protein synergistically activated EDNRB promoter with a transcription factor Sp1, indicating that Sp1 could compensate the impaired function of a SOX10 mutant protein. We suggest that the variability in transactivation ability of SOX10 mutant proteins may account for the different phenotypes between WS4 and YDBS and that Sp1 is a potential modifier gene of WS4.
Collapse
Affiliation(s)
- Satoru Yokoyama
- Department of Molecular Biology and Applied Physiology, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575
| | | | | |
Collapse
|
22
|
Kazi TG, Afridi HI, Kazi GH, Jamali MK, Arain MB, Jalbani N. Evaluation of essential and toxic metals by ultrasound-assisted acid leaching from scalp hair samples of children with macular degeneration patients. Clin Chim Acta 2006; 369:52-60. [PMID: 16473343 DOI: 10.1016/j.cca.2006.01.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Revised: 01/07/2006] [Accepted: 01/09/2006] [Indexed: 11/26/2022]
Abstract
BACKGROUND The causes of night blindness in children are multifactorial and particular consideration has been given to childhood nutritional deficiency, which is the most common problem found in underdeveloped countries. Such deficiency can result in physiological and pathological processes that in turn influence hair composition. METHOD An ultrasonic-assisted acid leaching procedure was developed as a sample pretreatment for the determination of Zn, Cu, Cd, As and Pb in human scalp hair samples of night blindness male children with age between 5 to 15 y and compared with the children without vision anomalies that lived in the same localities. The effects of different factors on acid leaching of metals, such as preintensification time (without ultrasonic stirring) after treatment of acid mixture, exposure time to ultrasound and temperature of the ultrasonic bath have been investigated. The proposed method was validated by certified reference samples of scalp hair CRM 397. The wet acid digestion method was used to obtain the total metal concentration in both scalp hair and CRM samples. Cu and Zn in leachates and digests were measured by flame atomic absorption spectrometry (FAAS) using a conventional air/acetylene flame, while Cd and Pb were determined by electrothermal atomic absorption spectrometry (ETAAS) under optimized conditions. RESULTS It was observed that at optimal conditions, the recovery for Zn, Cd, Pb, As and Cu were 98%, 98.5%, 96%, 97.2% and 94% respectively. The mean values of Zn and Cu in scalp hair samples of children having night blindness were significantly lower as compared to normal healthy children (p for Zn<0.001 and Cu<0.003), while the level of toxic metals As, Cd and Pb were significantly higher in children having ocular problems as related to normal children (p As<0.0074, Cd<0.001 and lead<0.004). CONCLUSION These data present guidance to clinicians and other professional investigating deficiency of essential trace metals and excessive level of toxic metals in biological samples.
Collapse
Affiliation(s)
- Tasneem G Kazi
- Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan.
| | | | | | | | | | | |
Collapse
|
23
|
Yokoyama S, Takeda K, Shibahara S. SOX10, in combination with Sp1, regulates the endothelin receptor type B gene in human melanocyte lineage cells. FEBS J 2006; 273:1805-20. [PMID: 16623715 DOI: 10.1111/j.1742-4658.2006.05200.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Waardenburg syndrome (WS) is an auditory-pigmentary disorder that exhibits varying combinations of sensorineural hearing loss and abnormal pigmentation of the hair and skin. WS type 4 (WS4), a subtype of WS, is characterized by the presence of the aganglionic megacolon and is associated with mutations in the gene encoding either endothelin 3, endothelin receptor type B (EDNRB), or Sry-box 10 (SOX10). Here, we provide evidence that SOX10 regulates the expression of EDNRB gene in human melanocyte-lineage cells, as judged by RNA interference and chromatin immunoprecipitation analyses. Human melanocytes preferentially express the EDNRB transcripts derived from the conventional EDNRB promoter. SOX10 transactivates the EDNRB promoter through the cis-acting elements, the two CA-rich sequences and the GC box. Moreover, a transcription factor Sp1 enhances the degree of the SOX10-mediated transactivation of the EDNRB promoter through these cis-acting elements. Furthermore, we have shown that the EDNRB promoter is heavily methylated in HeLa human cervical cancer cells, lacking EDNRB expression, but not in melanocytes and HMV-II melanoma cells. The expression of EDNRB became detectable in HeLa cells after treatment with a demethylating reagent, 5'-aza-2'-deoxycytidine, which was further enhanced in the transformed cells over-expressing SOX10. We therefore suggest that SOX10, alone or in combination with Sp1, regulates transcription of the EDNRB gene, thereby ensuring appropriate expression level of EDNRB in human melanocytes.
Collapse
Affiliation(s)
- Satoru Yokoyama
- Department of Molecular Biology and Applied Physiology, Tohoku University School of Medicine, Seiryo-machi, Aoba-ku, Sendai, Miyagi, Japan
| | | | | |
Collapse
|
24
|
Cerulli N, Campanella L, Grossi R, Politi L, Scandurra R, Soda G, Soda G, Gallo F, Damiani S, Alimonti A, Alimonti A, Petrucci F, Caroli S. Determination of Cd, Cu, Pb and Zn in neoplastic kidneys and in renal tissue of fetuses, newborns and corpses. J Trace Elem Med Biol 2006; 20:171-9. [PMID: 16959594 DOI: 10.1016/j.jtemb.2006.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Accepted: 03/24/2006] [Indexed: 10/24/2022]
Abstract
The incidence of kidney tumors in USA and Europe (in particular, Central Europe and Italy) has been dramatically increasing since the 1970s, possibly as a consequence of ongoing environmental pollution. Environmental factors have been considered responsible for at least 80% of the incidence of neoplastic diseases. To shed some light on this issue, the amounts of Cd and Pb were measured in neoplastic tissue and adjacent normal part of kidney excised for carcinoma and compared with those in renal tissues of fetuses, newborns and subjects that died of non-neoplastic diseases. Cd and Pb were determined by Inductively Coupled Plasma Atomic Emission Spectrometry and Atomic Absorption Spectrometry with Electrothermal Atomization. Metallothionein immunoperoxidase staining technique was used to localize the accumulation of Cd and Zn in the nephrons. Content of Cd and Pb in kidneys of fetuses and newborns was extremely low. However, it was significantly increased in adjacent-normal tissues of kidneys with carcinomas, and significantly higher compared to kidneys of individuals that died of non-neoplastic diseases. In tumoral tissues of the excised kidneys, Cd content was very low, while that of Pb significantly elevated. High amounts of Cd and Pb in the adjacent-normal parts of kidneys with carcinomas are suggestive of possible, individual or synergistic, effects of these pollutants on enzymatic systems, priming an oncogenic pathway. Detection of metallothioneins, primary ligands of Cd, exclusively in the cells of proximal tubuli, i.e. wherein renal carcinoma develops in over 80% of cases, strongly supports the assumption that Cd exerts a carcinogenic effect.
Collapse
Affiliation(s)
- Nicola Cerulli
- Department of Urology, La Sapienza University, P.le A.Moro 5, 00185 Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Wang Y, Lorenzi I, Georgiev O, Schaffner W. Metal-responsive transcription factor-1 (MTF-1) selects different types of metal response elements at low vs. high zinc concentration. Biol Chem 2004; 385:623-32. [PMID: 15318811 DOI: 10.1515/bc.2004.077] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Metal-responsive transcription factor-1 (MTF-1) is a zinc finger protein with a central role in heavy metal homeostasis/detoxification. MTF-1 binds to DNA sequence motifs known as metal response elements (MREs) with a core consensus TGCRCNC. Since MTF-1 is also involved in other stress responses, we tested whether it is able to recognize different types of DNA sequence motifs. To this end we selected MTF-1-binding oligonucleotides from a collection of random sequences. Since MTF-1 binds to known target sequences at relatively high zinc concentrations, oligonucleotide selection was performed in a mammalian cell nuclear extract both at high and low zinc concentrations. Irrespective of zinc concentration, we find a robust representation of MRE consensus sequences, however with specific features. Selection was most efficient at 100 microM zinc, yielding many oligonucleotides with two MRE motifs in divergent orientation of the sequence GTGTGCATCACTTTGCGCAC (core consensus underlined). Oligonucleotides selected without zinc supplement contain a single high-affinity MRE with an extended flanking sequence of consensus TTTTGCGCACGGCACTAAAT (core consensus underlined). This low-zinc MRE motif can bind MTF-1 and induce transcription in vivo, and is less dependent on zinc than the classical MREd motif from the mouse metallothionein-I promoter. At low zinc, we also found evidence for a negative role of nuclear factor-I (NF-I/CTF-I) in MTF-1-dependent transcription. Finally, a selection in the presence of cadmium yielded no specific binding site for MTF-1, strongly supporting the concept of an indirect activation of MTF-1 by cadmium within a living cell.
Collapse
Affiliation(s)
- Ying Wang
- Institute of Molecular Biology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | | | |
Collapse
|
26
|
Abstract
Exposure to various chemicals and environmental hazards elicits changes in the expression of a variety of genes. The study of gene expression and transcriptional regulation is an important aspect of understanding the mechanisms associated with neurotoxicity. The availability of whole genome sequences and the development of new tools to identify and monitor transcriptional activity have accelerated the rate of discovery. This review surveys the historical steps taken to study gene expression in the brain and deals with recent advances in our understanding and classification of the roles of transcription factors. Disturbances in the regulation of gene expression associated with the neurotoxic response are also presented. Specific focus and detail is presented on the effects of heavy metals on the integrity and function of zinc finger proteins.
Collapse
Affiliation(s)
- Nasser H Zawia
- Department of Biomedical Sciences, University of Rhode Island, Kingston, RI 02881, USA.
| |
Collapse
|
27
|
Basha MR, Wei W, Brydie M, Razmiafshari M, Zawia NH. Lead-induced developmental perturbations in hippocampal Sp1 DNA-binding are prevented by zinc supplementation: in vivo evidence for Pb and Zn competition. Int J Dev Neurosci 2003; 21:1-12. [PMID: 12565691 DOI: 10.1016/s0736-5748(02)00137-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Zinc finger protein (ZFP) transcription factors are essential for regulation of gene expression in the developing brain. We previously reported that Pb exposure perturbed the DNA-binding of ZFP such as Sp1 and Egr-1 in the cerebellum, which play critical role in CNS development. In this study, we focused on hippocampal Sp1 DNA-binding and mRNA expression in neonatal Pb-exposed animals. The expression pattern of an Sp1 target (NMDAR1) gene was also monitored. To study in vivo and in vitro competition between Pb and Zn, we supplemented animals with Zn, and examined the effects of both metals on hippocampal Sp1 DNA-binding and the DNA-binding of a recombinant Sp1 protein (rhSp1). Tissue metal analysis revealed that only the disposition of Pb in the brain but not its distribution in the blood was influenced by the presence of Zn. The developmental profile of Sp1 DNA-binding exhibited a peak on PND 15 which subsequently declined to adult levels. Consistent with earlier studies, Pb exposure produced premature peaks of Sp1 DNA-binding on PND 5 which later returned to adult levels. The basal and Pb-induced developmental patterns of Sp1 mRNA departed from its DNA-binding profiles. However, the expression patterns of the NMDAR1 gene were relative to Sp1 DNA-binding. Supplementation with zinc provided a protective effect on Pb-induced changes in Sp1 DNA-binding. Moreover, Pb and Zn directly interfered with the DNA-binding of rhSp1 in vitro. These data suggest that Pb and Zn can compete both in vivo and in vitro at the zinc finger domain of Sp1 with a consequential effect on Sp1 DNA-binding, subsequent gene expression and brain development.
Collapse
Affiliation(s)
- Md Riyaz Basha
- Department of Biomedical Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | | | | | | | | |
Collapse
|
28
|
Hartwig A. Zinc finger proteins as potential targets for toxic metal ions: differential effects on structure and function. Antioxid Redox Signal 2001; 3:625-34. [PMID: 11554449 DOI: 10.1089/15230860152542970] [Citation(s) in RCA: 194] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Zinc finger structures are frequently found in transcription factors and DNA repair proteins, mediating DNA-protein and protein-protein binding. As low concentrations of transition metal compounds, including those of cadmium, nickel, and cobalt, have been shown to interfere with DNA transcription and repair, several studies have been conducted to elucidate potential interactions of toxic metal ions with zinc-binding protein domains. Various effects have been identified, including the displacement of zinc, e.g., by cadmium or cobalt, the formation of mixed complexes, incomplete coordination of toxic metal ions, as well as the oxidation of cysteine residues within the metal-binding domain. Besides the number of cysteine and/or histidine ligands, unique structural features of the respective protein under investigation determine whether or not zinc finger structures are disrupted by one or more transition metals. As improper folding of zinc finger domains is mostly associated with the loss of correct protein function, disruption of zinc finger structures may result in interference with manifold cellular processes involved in gene expression, growth regulation, and maintenance of the genomic integrity.
Collapse
Affiliation(s)
- A Hartwig
- University of Karlsruhe, Institute of Food Chemistry and Toxicology, Germany.
| |
Collapse
|
29
|
Wilcox DE, Schenk AD, Feldman BM, Xu Y. Oxidation of zinc-binding cysteine residues in transcription factor proteins. Antioxid Redox Signal 2001; 3:549-64. [PMID: 11554444 DOI: 10.1089/15230860152542925] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Recent results on the oxidation of cysteine residues that bind zinc in transcription factors and their analogous peptides and in related proteins and model systems are reviewed. Two classes of oxidants, the transition metals and dioxygen, hydrogen peroxide, and related species, are considered, and the role of metal ions in suppressing or enhancing Cys oxidation is a major focus. Cysteines in the zinc-bound structures of transcription factors are less susceptible to oxidation than in the metal-free form, and this appears to correlate with reduced accessibility of the thiolates to oxidants. Substitution of other metal ions for Zn(II) increases the rate of Cys oxidation, apparently through increased oxidant accessibility. Reactions that result in reversible or irreversible oxidation of these zinc-binding cysteines under biological conditions are identified in the context of deleterious implications for gene expression.
Collapse
Affiliation(s)
- D E Wilcox
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA.
| | | | | | | |
Collapse
|
30
|
Razmiafshari M, Kao J, d'Avignon A, Zawia NH. NMR identification of heavy metal-binding sites in a synthetic zinc finger peptide: toxicological implications for the interactions of xenobiotic metals with zinc finger proteins. Toxicol Appl Pharmacol 2001; 172:1-10. [PMID: 11264017 DOI: 10.1006/taap.2001.9132] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lead (Pb), mercury (Hg), and cadmium (Cd) are toxic and interfere with protein metal-binding sites. The Cys(2)/His(2) zinc finger is a structural motif required for sequence-specific DNA binding and is present in zinc finger transcription factors (ZFP): Sp1, Egr-1, and TFIIIA. Neurotoxic studies have shown that heavy metals directly inhibit the DNA binding of ZFP and result in adverse cellular effects. Recently, we demonstrated the ability of heavy metals to alter the DNA binding of a synthetic Cys(2)/His(2) finger peptide (Razmiafshari and Zawia, Toxicol. Appl. Pharmacol. 166, 1-12, 2000). To determine the precise site of interactions between heavy metals and this protein domain, Pb, Hg, Cd, and Ca were reconstituted with the synthetic apopeptide and studied by one- and two-dimensional NMR spectroscopy. In the presence of Zn, Cd, Hg, and Pb, but not Ca, distinct peptide NMR signal changes in the aliphatic region were observed and attributed to metal-cystiene interactions. However, chemical shifts indicative of metal-histidine binding were elicited by all the metals in the peptide's aromatic region. Chemical shift assignments and sequential connectivity were established in the presence and absence of Zn, Pb, and Ca through TOCSY and NOESY spectra. Cysteine and histidine residues showed a distinct change in their amide and beta resonances in the presence of Zn and Pb, suggesting the metal-ligand binding sites were near these residues. However, Ca led to no significant spectral changes in these regions, suggesting that it is not actively involved in the binding site. These studies reveal this structure as a mediator of metal-induced alterations in protein function.
Collapse
Affiliation(s)
- M Razmiafshari
- Community and Environmental Medicine, University of California, Irvine, California, 92697-1820, USA
| | | | | | | |
Collapse
|
31
|
Crumpton T, Atkins DS, Zawia NH, Barone S. Lead exposure in pheochromocytoma (PC12) cells alters neural differentiation and Sp1 DNA-binding. Neurotoxicology 2001; 22:49-62. [PMID: 11307851 DOI: 10.1016/s0161-813x(00)00008-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Previous studies have revealed that lead modulates the DNA-binding profile of the transcription factor Sp1 both in vivo and in vitro (Dev Brain Res 1998;107:291). Sp1 is a zinc finger protein, that is selectively up-regulated in certain developing cell types and plays a regulatory role during development and differentiation (Mol Cell Biol 1991;11:2189). In NGF-stimulated PC12 cells, Sp1 DNA-binding activity was induced within 48 h of exposure of NGF naïve cells. Exposure of undifferentiated PC12 cells to lead alone (0.1 microM) also produced a similar increase in Sp1 DNA-binding. Since lead altered the DNA-binding profile of Sp1 in newly differentiating cells, neurite outgrowth was assessed as a morphological marker of differentiation to determine whether or not the effects of lead on differentiation were restricted to the initiation phase (unprimed) or the elaboration phase of this process (NGF-primed). NGF-primed and unprimed PC12 cells were prepared for bioassay following exposure to various concentrations of NGF and/or lead. Neurite outgrowth was measured at 48 and 72 h during early stages of NGF-induced differentiation and at 14 h in NGF primed/replated cells. In the absence of NGF, exposure to lead alone (0.025, 0.05, 0.1 microM) promoted measurable neurite outgrowth in unprimed PC12 cells at 48 and 72 h. A similar phenomenon was also observed in primed/replated PC12 cells at 14 h. However, this effect was two to five times greater than unprimed control cells. In the presence of NGF, a similar trend was apparent at lower concentrations, although the magnitude and temporal nature was different from lead alone. In most cases, the administration of higher lead concentrations (1 and 10 microM), in both the absence or presence of NGF, was less effective than the lower concentrations in potentiating neurite outgrowth. These results suggest that lead alone at low doses may initiate premature stimulation of morphological differentiation that may be related to lead-induced alterations in Sp1 binding to DNA.
Collapse
Affiliation(s)
- T Crumpton
- Department of Pharmacology, Meharry Medical College, Nashville, TN, USA
| | | | | | | |
Collapse
|
32
|
Mocchegiani E, Giacconi R, Muzzioli M, Cipriano C. Zinc, infections and immunosenescence. Mech Ageing Dev 2000; 121:21-35. [PMID: 11164457 PMCID: PMC7126297 DOI: 10.1016/s0047-6374(00)00194-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2000] [Revised: 07/25/2000] [Accepted: 08/12/2000] [Indexed: 10/25/2022]
Abstract
Infections may cause mortality in old age due to damaged immune responses. As zinc is required as a catalyst, structural (zinc fingers) and regulatory ion, it is involved in many biological functions, including immune responses. Low zinc ion bioavailability and impaired cell-mediated immunity are common in ageing and may be restored by physiological supplementation with zinc for 1-2 months, impacting upon morbidity and survival. This article reviews the role of zinc in immune efficacy during ageing, and also describes the main biochemical pathways involved in the role of zinc in resistance to infections in ageing in order to better understand the possible causes of immunosenescence.
Collapse
Affiliation(s)
- E Mocchegiani
- Immunology Centre (Section Nutrition, Immunity and Ageing) Research Department Nino Masera, Italian National Research Centres on Ageing (I.N.R.C.A.), Via Birarelli 8, 60121 Ancona, Italy.
| | | | | | | |
Collapse
|
33
|
Méplan C, Richard MJ, Hainaut P. Metalloregulation of the tumor suppressor protein p53: zinc mediates the renaturation of p53 after exposure to metal chelators in vitro and in intact cells. Oncogene 2000; 19:5227-36. [PMID: 11077439 DOI: 10.1038/sj.onc.1203907] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The tumor suppressor p53 is a transcription factor which binds DNA through a structurally complex domain stabilized by a zinc atom. Zinc chelation disrupts the architecture of this domain, inducing the protein to adopt an immunological phenotype identical to that of many mutant forms of p53. In this report, we used 65Zn to show that incorporation of zinc within the protein was required for folding in the 'wild-type' conformation capable of specific DNA-binding. Using a cellular assay, we show that addition of extracellular zinc at concentrations within the physiological range (5 microM) was required for renaturation and reactivation of wild-type p53. Among other divalent metals tested (Cd2+, Cu2+, Co2+, Fe2+ and Ni2+), only Co2+ at 125 microM had a similar effect. Recombinant metallothionein (MT), a metal chelator protein, was found to modulate p53 conformation in vitro. In cultured cells, overexpression of MT by transfection could modulate p53 transcriptional activity. Taken together, these results suggest that zinc binding plays a regulatory role in the control of p53 folding and DNA-binding activity.
Collapse
Affiliation(s)
- C Méplan
- Group of Molecular Carcinogenesis, International Agency for Research on Cancer, 150 cours Albert Thomas, F-69372, Lyon Cedex 08, France
| | | | | |
Collapse
|
34
|
Abstract
BACKGROUND Lead impairs male fertility and may affect offspring of exposed males, but the mechanisms for this impairment are not completely clear. Protamine P1 and P2 families pack and protect mammalian sperm DNA. Human HP2 is a zinc-protein and may have an important role in fertility. As lead has affinity for zinc-containing proteins, we evaluated its ability in vitro to bind to HP2 and its effects on HP2-DNA binding. Methods and Results UV/VIS spectroscopic data indicated that HP2 binds both Pb(2+) and Zn(2+)(as chloride salts). They also provided evidence that thiol groups mainly participate for Zn(2+)-binding; however, HP2 has additional binding sites for Pb(2+). The mobility shift assay showed that lead interaction with HP2 caused a dose-dependent decrease on HP2 binding to DNA, suggesting that lead may alter chromatin stability. CONCLUSIONS These in vitro results demonstrate that lead can interact with HP2 altering the DNA-protamine binding. This chemical interaction of lead with protamines may result in chromatin alterations, which in turn may lead to male fertility problems and eventually to DNA damage.
Collapse
Affiliation(s)
- B Quintanilla-Vega
- National Cancer Institute at the National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Razmiafshari M, Zawia NH. Utilization of a synthetic peptide as a tool to study the interaction of heavy metals with the zinc finger domain of proteins critical for gene expression in the developing brain. Toxicol Appl Pharmacol 2000; 166:1-12. [PMID: 10873713 DOI: 10.1006/taap.2000.8950] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The zinc finger motif belonging to the Cys(2)/His(2) family provides a structural framework for a number of critical proteins which are essential for cellular function. To determine whether these domains are potential targets for heavy metal perturbation, we examined the interaction between various metals and a synthetic Cys(2)/His(2) finger peptide, of the type present in the transcription factor Sp1 and an intact recombinant human Sp1 protein (rhSp1). Sp1 has a DNA-binding domain composed of three contiguous zinc finger motifs which requires Zn(II) for its activity, and may be modulated by other transition metals. Using spectrophotometric methods, the incorporation of Zn(II) and a variety of other divalent metals into this zinc finger peptide was monitored, and their ability to displace zinc ion was evaluated. Furthermore, the DNA-binding activity of these various metal-peptide complexes and rhSp1 to their cognate DNA consensus sequence was examined electrophoretically. Our results suggested that group IIb metals [Zn(II), Cd(II), and Hg(II)] were able to complex with the peptide and bind the double-stranded DNA with high affinity as well as inhibiting Sp1 DNA-binding activity in a concentration-dependent manner. With the exception of Pb(II), non-transition-metal-peptide mixtures with Ca(II), Ba(II), and Sn(II) neither exhibited the binding spectra typical of zinc finger motifs nor bound the DNA; they also had little effect on DNA-binding ability of rhSp1. Therefore, we postulate that heavy metals may modulate zinc finger proteins through structural alterations of their zinc finger motifs and ultimately alter their function in terms of regulation of gene expression.
Collapse
Affiliation(s)
- M Razmiafshari
- Community and Environmental Medicine, University of California, Irvine 92697-1820, USA
| | | |
Collapse
|
36
|
Mocchegiani E, Muzzioli M, Giacconi R. Zinc and immunoresistance to infection in aging: new biological tools. Trends Pharmacol Sci 2000; 21:205-8. [PMID: 10838605 DOI: 10.1016/s0165-6147(00)01476-0] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Infections can cause mortality when the immune system is damaged. The catalytic, structural (in zinc-finger proteins) and regulatory roles of zinc mean that this ion is involved in the maintenance of an effective immune response. Both zinc deficiency and impaired cell-mediated immunity combine during aging to result in increased susceptibility to infection. Dietary supplementation with the recommended daily allowance of zinc for between one and two months decreases the incidence of infection and increases the survival rate following infection in the elderly. This article reviews the biochemical pathways through which zinc might act to increase immunoresistance to infection in the elderly.
Collapse
Affiliation(s)
- E Mocchegiani
- Immunology Centre, Research Department 'Nino Masera', Italian National Research Centres on Aging (I.N.R.C.A.), Via Birarelli 8, 60121, Ancona, Italy.
| | | | | |
Collapse
|
37
|
Méplan C, Mann K, Hainaut P. Cadmium induces conformational modifications of wild-type p53 and suppresses p53 response to DNA damage in cultured cells. J Biol Chem 1999; 274:31663-70. [PMID: 10531375 DOI: 10.1074/jbc.274.44.31663] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The p53 tumor suppressor protein is a transcription factor that binds DNA in a sequence-specific manner through a protein domain stabilized by the coordination of zinc within a tetrahedral cluster of three cysteine residues and one histidine residue. We show that cadmium, a metal that binds thiols with high affinity and substitutes for zinc in the cysteinyl clusters of many proteins, inhibits the binding of recombinant, purified murine p53 to DNA. In human breast cancer MCF7 cells (expressing wild-type p53), exposure to cadmium (5-40 microM) disrupts native (wild-type) p53 conformation, inhibits DNA binding, and down-regulates transcriptional activation of a reporter gene. Cadmium at 10-30 microM impairs the p53 induction in response to DNA-damaging agents such as actinomycin D, methylmethane sulfonate, and hydrogen peroxide. Exposure to cadmium at 20 microM also suppresses the p53-dependent cell cycle arrest in G(1) and G(2)/M phases induced by gamma-irradiation. These observations indicate that cadmium at subtoxic levels impairs p53 function by inducing conformational changes in the wild-type protein. There is evidence that cadmium is carcinogenic to humans, in particular for lung and prostate, and cadmium is known to accumulate in several organs. This inhibition of p53 function could play a role in cadmium carcinogenicity.
Collapse
Affiliation(s)
- C Méplan
- International Agency for Research on Cancer, Unit of Mechanisms of Carcinogenesis, 150 Cours Albert Thomas, 69372 Lyon cedex 08, France
| | | | | |
Collapse
|
38
|
Ramon O, Sauvaigo S, Gasparutto D, Faure P, Favier A, Cadet J. Effects of 8-oxo-7,8-dihydro-2'-deoxyguanosine on the binding of the transcription factor Sp1 to its cognate target DNA sequence (GC box). Free Radic Res 1999; 31:217-29. [PMID: 10499779 DOI: 10.1080/10715769900300781] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Emphasis was placed in this work on the assessment of the role of guanine bases in the interaction of transcription factor SP1 with its cognate DNA sequence. For this purpose, each guanine residue of the 5'-GGGGCG-GGG-3' (GC box) target DNA sequence was substituted in turn by 8-oxo-7,8-dihydro-2'-deoxyguanosine. The latter oxidized nucleotide which is likely to be present in mammalian DNA and exhibit mutogenic features is expected to be involved in age-related diseases and cancer. The effect of the incorporation of 8-oxodGuo into DNA on the binding of transcription factor Sp1 was studied using electrophoretic mobility shift assays with nuclear extracts from HeLa cells. When guanines at position G '2, G '3, G '4, G '5 and G'6 were replaced with 8-oxodGuo, binding of Sp1 was only 28%, 30%, 7%, 5% and 21%, respectively, to that of the non-substituted oligonucleotide. The binding is less affected when guanines at position G'1, G'7, G'8 and G'9 were substituted by 8-oxodGuo. Results show up the importance of the core of the GC box and the stronger contribution of the second and the third zinc finger to the binding with DNA. All together, this suggests that incorporation of 8-oxodGuo may alter the expression of the gene regulated by Sp1 and affect the response of the cell.
Collapse
Affiliation(s)
- O Ramon
- LBSO/LCR no 8, Faculté de Pharmacie de Grenoble, Domaine de la Merci, La Tronche, France
| | | | | | | | | | | |
Collapse
|
39
|
Kaltreider RC, Pesce CA, Ihnat MA, Lariviere JP, Hamilton JW. Differential effects of arsenic(III) and chromium(VI) on nuclear transcription factor binding. Mol Carcinog 1999. [DOI: 10.1002/(sici)1098-2744(199907)25:3<219::aid-mc8>3.0.co;2-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
40
|
Caguiat JJ, Watson AL, Summers AO. Cd(II)-responsive and constitutive mutants implicate a novel domain in MerR. J Bacteriol 1999; 181:3462-71. [PMID: 10348859 PMCID: PMC93814 DOI: 10.1128/jb.181.11.3462-3471.1999] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of the Tn21 mercury resistance (mer) operon is controlled by a metal-sensing repressor-activator, MerR. When present, MerR always binds to the same position on the DNA (the operator merO), repressing transcription of the structural genes merTPCAD in the absence of Hg(II) and inducing their transcription in the presence of Hg(II). Although it has two potential binding sites, the purified MerR homodimer binds only one Hg(II) ion, employing Cys82 from one monomer and Cys117 and Cys126 from the other. When MerR binds Hg(II), it changes allosterically and also distorts the merO DNA to facilitate transcriptional initiation by sigma70 RNA polymerase. Wild-type MerR is highly specific for Hg(II) and is 100- and 1, 000-fold less responsive to the chemically related group 12 metals, Cd(II) and Zn(II), respectively. We sought merR mutants that respond to Cd(II) and obtained 11 Cd(II)-responsive and 5 constitutive mutants. The Cd(II)-responsive mutants, most of which had only single-residue replacements, were also repression deficient and still Hg(II) responsive but, like the wild type, were completely unresponsive to Zn(II). None of the Cd(II)-responsive mutations occurred in the DNA binding domain or replaced any of the key Cys residues. Five Cd(II)-responsive single mutations lie in the antiparallel coiled-coil domain between Cys82 and Cys117 which constitutes the dimer interface. These mutations identify 10 new positions whose alteration significantly affect MerR's metal responsiveness or its repressor function. They give rise to specific predictions for how MerR distinguishes group 12 metals, and they refine our model of the novel domain structure of MerR. Secondary-structure predictions suggest that certain elements of this model also apply to other MerR family regulators.
Collapse
Affiliation(s)
- J J Caguiat
- Department of Microbiology and the Center for Metalloenzyme Studies, University of Georgia, Athens, Georgia 30602-2605, USA
| | | | | |
Collapse
|
41
|
Veenstra TD. Electrospray ionization mass spectrometry: a promising new technique in the study of protein/DNA noncovalent complexes. Biochem Biophys Res Commun 1999; 257:1-5. [PMID: 10092500 DOI: 10.1006/bbrc.1998.0103] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
With the emergence of electrospray ionization mass spectrometry (ESI-MS), mass spectrometry is no longer restricted to the study of small, stable molecules, but has become a viable technique to study large biomolecules as well as noncovalent biomolecular complexes. ESI-MS has been used to study noncovalent interactions involving proteins with metals, ligands, peptides, oligonucleotides, and other proteins. An area where ESI-MS holds significant promise is in the study of protein/DNA interactions. The most common technique employed to study protein/DNA interactions is the electrophoretic gel mobility shift assay (EMSA). Although this technique has and will continue to provide excellent results, ESI-MS has shown the ability to provide detailed results not easily obtainable by EMSA. In this review I will discuss some of the protein/DNA noncovalent interactions that have been measured using ESI-MS, and contrast the results obtained by ESI-MS to those obtained by EMSA.
Collapse
Affiliation(s)
- T D Veenstra
- Pacific Northwest National Laboratory, Richland, Washington 99352, USA.
| |
Collapse
|
42
|
Koizumi S, Suzuki K, Ogra Y, Yamada H, Otsuka F. Transcriptional activity and regulatory protein binding of metal-responsive elements of the human metallothionein-IIA gene. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 259:635-42. [PMID: 10092847 DOI: 10.1046/j.1432-1327.1999.00069.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Multiple copies of a cis-acting DNA element, metal-responsive element (MRE) are required for heavy metal-induced transcriptional activation of mammalian metallothionein genes. To approach the regulatory mechanism mediated by these multiple elements, we studied the properties of seven MREs located upstream of the human metallothionein-IIA (hMT-IIA) gene in detail. Transfection assays of reporter gene constructs each containing one of these MREs as the promoter element revealed that only four MREs can mediate zinc response. With respect to the distribution of active MREs over the promoter region, the hMT-IIA gene is largely different from the mouse metallothionein-I gene, suggesting that MRE arrangement is not an important factor for metal regulation. Experiments using various model promoters showed that multiple MRE copies act highly synergistically, supporting the biological significance of the multiplicity. Only the four active MREs efficiently bound the purified transcription factor human MTF-1, and MRE mutants defective in binding this protein lost the ability to support zinc-induced reporter gene expression, strongly suggesting that the direct interaction between human MTF-1 and a set of the selected MREs plays the major role in heavy metal regulation. In protein/DNA binding reactions in vitro, the purified human MTF-1 was activated by zinc but not by other metallothionein-inducing heavy metals, supporting the idea that zinc is the direct modulator of human MTF-1.
Collapse
Affiliation(s)
- S Koizumi
- Division of Hazard Assessment, National Institute of Industrial Health, Kawasaki, Japan.
| | | | | | | | | |
Collapse
|
43
|
Poncelet DA, Bellefroid EJ, Bastiaens PV, Demoitié MA, Marine JC, Pendeville H, Alami Y, Devos N, Lecocq P, Ogawa T, Muller M, Martial JA. Functional analysis of ZNF85 KRAB zinc finger protein, a member of the highly homologous ZNF91 family. DNA Cell Biol 1998; 17:931-43. [PMID: 9839802 DOI: 10.1089/dna.1998.17.931] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We previously identified the ZNF85 (HPF4) KRAB zinc finger gene, a member of the human ZNF91 family. Here, we show that the ZNF85 gene is highly expressed in normal adult testis, in seminomas, and in the NT2/D1 teratocarcinoma cell line. Immunocytochemical localization of a panel of beta-Gal/ZNF85 fusion proteins revealed that ZNF85 contains at least one nuclear localization signal located in the spacer region connecting the KRAB domain with the zinc finger repeats. Bacterially expressed ZNF85 zinc finger domain bound strongly and exclusively to DNA in vitro in a zinc-dependent manner. The KRAB(A) domain of the ZNF85 protein and of several other members of the ZNF91 family exhibited repressing activity when tested in Gal4 fusion protein assays. The repression was significantly enhanced by the addition of the KRAB (B) domain, whereas further addition of other conserved regions had no effect. The ZNF85 KRAB(A) and (B) domains in vitro bound several nuclear proteins that might constitute critical cofactors for repression.
Collapse
Affiliation(s)
- D A Poncelet
- Laboratoire de Biologie Moléculaire et de Génie Génétique, Université de Liège, Institut de Chimie B6, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Roesijadi G, Bogumil R, Vasák M, Kägi JH. Modulation of DNA binding of a tramtrack zinc finger peptide by the metallothionein-thionein conjugate pair. J Biol Chem 1998; 273:17425-32. [PMID: 9651329 DOI: 10.1074/jbc.273.28.17425] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ability of metallothionein (MT) to modulate DNA binding by a two-finger peptide of Tramtrack (TTK), a CCHH zinc transcription factor, was investigated using metal-bound and metal-deficient forms of rabbit MT-2 and the TTK peptide. Thionein inhibited DNA binding by zinc-bound TTK, and Zn-MT restored DNA-binding by zinc-deficient apo-TTK. "Free" zinc at low concentrations was as effective as Zn-MT in restoring DNA binding by apopeptide but was inhibitory at concentrations equal to zinc bound to 2 mol eq and higher of Zn-MT. Substitution of cadmium for zinc reduced the affinity of the peptide for its DNA binding site. This effect was reversed by incubation with Zn-MT. The circular dichroic spectra of the TTK peptide indicated that zinc removal resulted in loss of alpha-helical structures, which are sites of DNA contact points. Reconstitution with cadmium resulted in stoichiometric substitution of 2 mol of Cd/mol of peptide but not recovery of alpha-helical structures. Incubation of Cd-TTK with Zn-MT restored the secondary structure expected for zinc-bound TTK. The ability of Zn-MT and thionein to restore or inhibit DNA-binding by TTK was associated with effects on the metallation status of the peptide and related alterations in its secondary structure.
Collapse
Affiliation(s)
- G Roesijadi
- University of Maryland Center for Environmental Science, Chesapeake Biological Laboratory, Solomons, Maryland 20688, USA.
| | | | | | | |
Collapse
|
45
|
Veenstra TD, Benson LM, Craig TA, Tomlinson AJ, Kumar R, Naylor S. Metal mediated sterol receptor-DNA complex association and dissociation determined by electrospray ionization mass spectrometry. Nat Biotechnol 1998; 16:262-6. [PMID: 9528006 DOI: 10.1038/nbt0398-262] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The vitamin D receptor (VDR) binds to specific DNA sequences termed vitamin D response elements (VDREs) thereby enhancing or repressing transcription. We have used electrospray ionization mass spectrometry to examine the interaction between the DNA-binding domain of the vitamin D receptor (VDR DBD) with a double-stranded DNA (dsDNA) sequence containing the VDRE from the mouse osteopontin gene. The VDR DBD was shown to bind to the appropriate DNA sequence only when bound to 2 moles of zinc (Zn2+) or cadmium (Cd2+) per mole of protein. Additional binding of Zn2+ or Cd2+ by the protein caused the protein to dissociate from the dsDNA. These results show that the VDR DBD/DNA metal-dependent association occurs when the receptor is occupied by 2 moles of Zn2+ per mole of protein and that further binding of Zn2+ to the protein causes dissociation of the complex.
Collapse
Affiliation(s)
- T D Veenstra
- Nephrology Research Unit, Mayo Clinic/Foundation, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
46
|
Hustavová H, Havraneková D. The role of thiamine in Yersinia kristensenii resistance to antibiotics and heavy metals. Folia Microbiol (Praha) 1998; 42:569-73. [PMID: 9438358 DOI: 10.1007/bf02815467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The resistance to divalent metal ions, antibiotics and H2O2 was investigated in Yersinia kristensenii strains 13, 15, 18 by performing subcultivations with CdSO4 (20 and 100 mg/L) in nutrient agar (NA) and M9 medium with thiamine. Metal resistance of all three strains in NA was the same and decreased in the following sequence: Ni > Zn = Co > Cd. The chloramphenicol (Cmp) resistance ranged between 32 and 256 mg/L and the H2O2 sensitivity was very low or even zero. In the presence of thiamine the metal resistance sequence changed to Zn = Cd > Ni, Co, Ni and Co tolerance being 10-20 mg/L. Cmp resistance of all strains increased to 256 mg/L and H2O2 sensitivity also rose. In Cd-treated cultures, the ratio of glucose to thiamine in culture medium affected Cd resistance. At normal content of glucose and thiamine (5 g/L and 5 mg/L), Cd resistance markedly decreased coincident with thiamine exhaustion in these slowly-growing cultures. The Cmp resistance decreased to 16 mg/L, Ni and Co intolerance and H2O2 hypersensitivity appeared. At lowered glucose or thiamine levels (5 g/L and 2.5 mg/L or 2.5 g/L and 5 mg/L) a marginal decrease of Cd resistance took place in response to limited glucose uptake. Low thiamine or low-glucose cultures were resistant to H2O2, and exhibited a small decrease in Cmp resistance and a low Ni, Co tolerance. The adaptation of strain 15 to Cd induced only a small decrease of Cd resistance. Lowered glucose-to-thiamine ratio in culture medium probably induced in Cd-treated cultures a response triggering Cd resistance.
Collapse
Affiliation(s)
- H Hustavová
- Institute of Preventive and Clinical Medicine, Bratislava
| | | |
Collapse
|
47
|
Remondelli P, Moltedo O, Leone A. Regulation of ZiRF1 and basal SP1 transcription factor MRE-binding activity by transition metals. FEBS Lett 1997; 416:254-8. [PMID: 9373164 DOI: 10.1016/s0014-5793(97)01212-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The metal-dependent activation of metallothionein (MT) genes requires the interaction of positive trans-activators (MRFs) with metal-regulatory (MRE) regions of MT promoters. In this report, we examined the role of transition metals in modulating the MRE-binding activities of two different MRE-binding proteins: the metal-regulated factor ZiRF1 and the basal factor SP1. We showed the ability of both proteins to interact with a similar sequence specificity with the cognate target site (MRE-S) of another known MRE-binding protein, mMTF1. We next evaluated the role of metal ions in modulating the MRE-binding activity of recombinant ZiRF1 and basal SP1 proteins by measuring the effect of different metal chelators on DNA interaction. We observed a dose-dependent inhibition of the GST-ZiRF1/MRE-binding activity using three different metal chelators: EDTA, 1,10 PHE and TPEN. Interestingly, EDTA treatment failed to inhibit the recombinant SP1 MRE-binding activity while the effect of 1,10 PHE was comparable to that obtained analyzing 1,10 PHE-treated GST-ZiRF1. The MRE-binding complexes detected in cell extracts showed a response to metal chelator treatment very similar to that displayed by the recombinant ZiRF1 and SP1 proteins. The hypothesis of mutual interactions of both basal and metal-regulated transcription factors with the same metal-regulatory regions is discussed.
Collapse
Affiliation(s)
- P Remondelli
- Dipartimento di Biochimica e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy.
| | | | | |
Collapse
|
48
|
Worrad DM, Schultz RM. Regulation of gene expression in the preimplantation mouse embryo: temporal and spatial patterns of expression of the transcription factor Sp1. Mol Reprod Dev 1997; 46:268-77. [PMID: 9041129 DOI: 10.1002/(sici)1098-2795(199703)46:3<268::aid-mrd5>3.0.co;2-n] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Activation of the embryonic genome during preimplantation mouse development entails a dramatic reprogramming of the pattern of gene expression. The complement of transcription factors that are present in the early embryo and that must intrinsically be involved in this reprogramming is essentially uncharacterized. We and others have demonstrated that transcription factor Sp1 is present in the mouse oocyte and early cleavage stage preimplantation embryo. Due to Sp1's prominent role in regulating the expression of a vast array of genes that are involved in cell proliferation and differentiation, as well as in general housekeeping functions, we characterized the temporal and spatial patterns of Sp1 expression during preimplantation development. The relative abundance of Sp1 transcripts, as well as transcripts for the TATA box-binding protein TBP, decreases during oocyte maturation and reaches a minimum level in the two-cell stage, after which time the abundance of these transcripts increases progressively to the blastocyst stage. Immunoblotting experiments detect Sp1 species of Mr = 95,000 and 105,000 at all stages of preimplantation development. The amount of Sp1 increases about 8-fold during preimplantation development, and an alpha-amanitin-insensitive increase is observed between G1 and G2 of the one-cell embryo; this increase may reflect the mobilization of a maternal Sp1 transcript. Immunocytochemical experiments also reveal a similar increase in the amount of Sp1 during preimplantation; the nuclear concentration of Sp1 is greater in the trophectoderm cells than in the inner cell mass cells. Finally, gel-shift experiments document an increase during preimplantation development of a DNA-binding activity that is likely due to Sp1. These increases in the abundance of the Sp1 protein and an Sp1-like DNA-binding activity parallel increases in the rate of transcription that occur during preimplantation development.
Collapse
Affiliation(s)
- D M Worrad
- Department of Biology, University of Pennsylvania, Philadelphia 19104-6018, USA
| | | |
Collapse
|
49
|
Cohen HT, Bossone SA, Zhu G, McDonald GA, Sukhatme VP. Sp1 is a critical regulator of the Wilms' tumor-1 gene. J Biol Chem 1997; 272:2901-13. [PMID: 9006935 DOI: 10.1074/jbc.272.5.2901] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We performed deletion analysis of WT1-reporter constructs containing up to 24 kilobases of 5'-flanking and first intron WT1 sequence in stably transfected cultured cells as an unbiased approach to identify cis elements critical for WT1 transcription. Although not a tissue-specific element, a proximate 9-base pair CTC repeat accounted for approximately 80% of WT1 transcription in this assay. Enhancer activity of the element and mutated versions correlated completely with their ability to form a DNA-protein complex in gel shifts. Antibody supershift, oligonucleotide competition, and Southwestern studies indicated that the CTC-binding factor is the transcriptional activator Sp1. Sp1 binds the CTC repeat with an affinity, KD = 0.37 nM, at least as high as the consensus GC box. Similar CTC repeats are found in promoters of other growth-related genes. Because Sp1 is important for WT1 expression, we examined Sp1 immunohistochemistry in fetal and adult kidney. In a pattern that precedes that of WT1 message, Sp1 immunostaining was highest in uninduced mesenchyme, early tubules, developing podocytes, and mature glomeruli, but was minimal in mature proximal tubules. This work suggests abundant Sp1 may be a prerequisite for WT1 expression, and that Sp1 may have a wider role in nephrogenesis.
Collapse
Affiliation(s)
- H T Cohen
- Renal Division, Beth Israel Hospital and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | |
Collapse
|
50
|
Merchant JL, Shiotani A, Mortensen ER, Shumaker DK, Abraczinskas DR. Epidermal growth factor stimulation of the human gastrin promoter requires Sp1. J Biol Chem 1995; 270:6314-9. [PMID: 7890769 DOI: 10.1074/jbc.270.11.6314] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Growth factors coordinately regulate a variety of different genes to stimulate cellular proliferation. In the stomach, gastrin, epidermal growth factor (EGF), and transforming growth factor-alpha all mediate gastric mucosal homeostasis by promoting cell renewal. We have previously shown that EGF and phorbol esters stimulate the human gastrin promoter through a novel GC-rich DNA element 5'-(68)GGGGCGGGGTGGGGGG-53 called gERE (gastrin EGF response element). In this report, we show that three factors bind to this element, the transcription factor Sp1 and two fast migrating complexes designated gastrin EGF response proteins (gERP 1 and 2). To understand how these factors bind and confer EGF responsiveness, mutations of gERE were tested in vitro for protein binding and in vivo for promoter activation. Both gel shift assays and UV cross-linking studies revealed that the factors bind to overlapping domains, Sp1 to the 5' half-site and gERP 1 and 2 to the 3' half-site. Placing either the 5' or 3' mutations upstream of a minimal gastrin promoter abolished EGF induction. Therefore both the 5' and 3' domains were required to confer EGF induction. Collectively, these results demonstrate that complex interactions between Sp1 and other factors binding to overlapping gERE half-sites confer EGF responsiveness to the gastrin promoter.
Collapse
Affiliation(s)
- J L Merchant
- Department of Internal Medicine, University of Michigan, Ann Arbor
| | | | | | | | | |
Collapse
|