1
|
Ballard CJ, Paserba MR, Paul Daniel EJ, Hurtado-Guerrero R, Gerken TA. Polypeptide N-acetylgalactosaminyltransferase (GalNAc-T) isozyme surface charge governs charge substrate preferences to modulate mucin type O-glycosylation. Glycobiology 2023; 33:817-836. [PMID: 37555669 PMCID: PMC10629720 DOI: 10.1093/glycob/cwad066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/21/2023] [Accepted: 08/03/2023] [Indexed: 08/10/2023] Open
Abstract
A large family of polypeptide N-acetylgalactosaminyltransferases (GalNAc-Ts) initiate mucin type O-glycosylation transferring α-GalNAc from a UDP-GalNAc donor to the hydroxyl groups of Ser and Thr residues of peptides and proteins, thereby defining sites of O-glycosylation. Mutations and differential expression of several GalNAc-Ts are associated with many disease states including cancers. The mechanisms by which these isozymes choose their targets and their roles in disease are not fully understood. We previously showed that the GalNAc-Ts possess common and unique specificities for acceptor type, peptide sequence and prior neighboring, and/or remote substrate GalNAc glycosylation. In the present study, the role of flanking charged residues was investigated using a library of charged peptide substrates containing the central -YAVTPGP- acceptor sequence. Eleven human and one bird GalNAc-T were initially characterized revealing a range of preferences for net positive, net negative, or unique combinations of flanking N- and/or C-terminal charge, correlating to each isozyme's different electrostatic surface potential. It was further found that isoforms with high sequence identity (>70%) within a subfamily can possess vastly different charge specificities. Enzyme kinetics, activities obtained at elevated ionic strength, and molecular dynamics simulations confirm that the GalNAc-Ts differently recognize substrate charge outside the common +/-3 residue binding site. These electrostatic interactions impact how charged peptide substrates bind/orient on the transferase surface, thus modulating their activities. In summary, we show the GalNAc-Ts utilize more extended surfaces than initially thought for binding substrates based on electrostatic, and likely other hydrophobic/hydrophilic interactions, furthering our understanding of how these transferases select their target.
Collapse
Affiliation(s)
- Collin J Ballard
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Miya R Paserba
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | - Ramón Hurtado-Guerrero
- Department of Biomedical Engineering, The Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza 50018, Spain
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
- Fundación ARAID, Zaragoza 50018, Spain
| | - Thomas A Gerken
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
2
|
Yang W, Tian E, Chernish A, McCluggage P, Dalal K, Lara A, Ten Hagen KG, Tabak LA. Quantitative mapping of the in vivo O-GalNAc glycoproteome in mouse tissues identifies GalNAc-T2 O-glycosites in metabolic disorder. Proc Natl Acad Sci U S A 2023; 120:e2303703120. [PMID: 37862385 PMCID: PMC10614836 DOI: 10.1073/pnas.2303703120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 09/03/2023] [Indexed: 10/22/2023] Open
Abstract
The family of GalNAc-Ts (GalNAcpolypeptide:N-Acetylgalactosaminyl transferases) catalyzes the first committed step in the synthesis of O-glycans, which is an abundant and biologically important protein modification. Abnormalities in the activity of individual GalNAc-Ts can result in congenital disorders of O-glycosylation (CDG) and influence a broad array of biological functions. How site-specific O-glycans regulate biology is unclear. Compiling in vivo O-glycosites would be an invaluable step in determining the function of site-specific O-glycans. We integrated chemical and enzymatic conditions that cleave O-glycosites, a higher-energy dissociation product ions-triggered electron-transfer/higher-energy collision dissociation mass spectrometry (MS) workflow and software to study nine mouse tissues and whole blood. We identified 2,154 O-glycosites from 595 glycoproteins. The O-glycosites and glycoproteins displayed consensus motifs and shared functions as classified by Gene Ontology terms. Limited overlap of O-glycosites was observed with protein O-GlcNAcylation and phosphorylation sites. Quantitative glycoproteomics and proteomics revealed a tissue-specific regulation of O-glycosites that the differential expression of Galnt isoenzymes in tissues partly contributes to. We examined the Galnt2-null mouse model, which phenocopies congenital disorder of glycosylation involving GALNT2 and revealed a network of glycoproteins that lack GalNAc-T2-specific O-glycans. The known direct and indirect functions of these glycoproteins appear consistent with the complex metabolic phenotypes observed in the Galnt2-null animals. Through this study and interrogation of databases and the literature, we have compiled an atlas of experimentally identified mouse O-glycosites consisting of 2,925 O-glycosites from 758 glycoproteins.
Collapse
Affiliation(s)
- Weiming Yang
- Section on Biological Chemistry, National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, MD20892
| | - E. Tian
- Developmental Glycobiology Section, National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, MD20892
| | - Aliona Chernish
- Section on Biological Chemistry, National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, MD20892
| | - Peggy McCluggage
- Section on Biological Chemistry, National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, MD20892
| | - Kruti Dalal
- Section on Biological Chemistry, National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, MD20892
| | - Alexander Lara
- Section on Biological Chemistry, National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, MD20892
| | - Kelly G. Ten Hagen
- Developmental Glycobiology Section, National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, MD20892
| | - Lawrence A. Tabak
- Section on Biological Chemistry, National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, MD20892
| |
Collapse
|
3
|
Gastaldello A, Alocci D, Baeriswyl JL, Mariethoz J, Lisacek F. GlycoSiteAlign: Glycosite Alignment Based on Glycan Structure. J Proteome Res 2016; 15:3916-3928. [DOI: 10.1021/acs.jproteome.6b00481] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Alessandra Gastaldello
- Proteome
Informatics Group, SIB Swiss Institute of Bioinformatics, 7 route
de Drize, 1227 Geneva, Switzerland
- Computer
Science Department CUI, University of Geneva, 1227 Geneva, Switzerland
| | - Davide Alocci
- Proteome
Informatics Group, SIB Swiss Institute of Bioinformatics, 7 route
de Drize, 1227 Geneva, Switzerland
- Computer
Science Department CUI, University of Geneva, 1227 Geneva, Switzerland
| | - Jean-Luc Baeriswyl
- Proteome
Informatics Group, SIB Swiss Institute of Bioinformatics, 7 route
de Drize, 1227 Geneva, Switzerland
- Section
of Biology, Faculty of Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Julien Mariethoz
- Proteome
Informatics Group, SIB Swiss Institute of Bioinformatics, 7 route
de Drize, 1227 Geneva, Switzerland
- Computer
Science Department CUI, University of Geneva, 1227 Geneva, Switzerland
| | - Frederique Lisacek
- Proteome
Informatics Group, SIB Swiss Institute of Bioinformatics, 7 route
de Drize, 1227 Geneva, Switzerland
- Computer
Science Department CUI, University of Geneva, 1227 Geneva, Switzerland
- Section
of Biology, Faculty of Sciences, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
4
|
Solecka BA, Weise C, Laffan MA, Kannicht C. Site-specific analysis of von Willebrand factor O-glycosylation. J Thromb Haemost 2016; 14:733-46. [PMID: 26784534 DOI: 10.1111/jth.13260] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/30/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND O-glycosylation of von Willebrand factor (VWF) affects many of its functions; however, there is currently no information on the occupancy of the 10 putative O-glycosylation sites. OBJECTIVES The aim of this study was the site-specific analysis of VWF O-glycosylation. METHODS Tryptic VWF-O-glycopeptides were isolated by lectin affinity chromatography and/or by reverse-phase high-performance liquid chromatography. Subsequently, the purified glycopeptides were analyzed by glycosidase digestion and mass spectrometry. RESULTS We found that all 10 predicted O-glycosylation sites in VWF are occupied. The majority of the glycan structures on all glycosylation sites is represented by disialyl core 1 O-glycan. The presence of core 2 O-glycan was also confirmed; interestingly, this structure was not evenly distributed among all 10 glycosylation sites. Analysis of the glycopeptides flanking the A1 domain revealed that generally more core-2-type O-glycan was present on the C-terminal Cluster 2 glycopeptide (encompassing T(1468) , T(1477) , S(1486) and T(1487) ) compared with the N-terminal Cluster 1 glycopeptide (encompassing T(1248) , T(1255) , T(1256) and S(1263) ). Disialosyl motifs were present on both glycopeptides flanking the A1 domain and on the glycosylation site T(2298) in the C1 domain. In addition, we identify sulfation of core 2 O-glycans and the presence of the rare Tn antigen. CONCLUSIONS This is the first study to describe the qualitative and semi-quantitative distribution of O-glycan structures on all 10 O-glycosylation sites, which will provide a valuable starting point for further studies exploring the functional and structural implications of O-glycosylation in VWF.
Collapse
Affiliation(s)
- B A Solecka
- Molecular Biochemistry, Octapharma, Berlin, Germany
| | - C Weise
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - M A Laffan
- Department of Haematology, Faculty of Medicine, Hammersmith Hospital Campus, Imperial College, London, UK
| | - C Kannicht
- Molecular Biochemistry, Octapharma, Berlin, Germany
| |
Collapse
|
5
|
K.M. Ip C, Yin J, K.S. Ng P, Lin SY, B. Mills G. Genomic-Glycosylation Aberrations in Tumor Initiation, Progression and Management. AIMS MEDICAL SCIENCE 2016. [DOI: 10.3934/medsci.2016.4.386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
6
|
Naser SA, Thanigachalam S, Spinelli N, Safavi MM, Naser N, Khan O. The 19 kDa Protein from <i>Mycobacterium avium subspecies paratuberculosis</i> Is a Glycolipoprotein. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/aim.2013.37070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Schjoldager KTBG, Clausen H. Site-specific protein O-glycosylation modulates proprotein processing - deciphering specific functions of the large polypeptide GalNAc-transferase gene family. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1820:2079-94. [PMID: 23022508 DOI: 10.1016/j.bbagen.2012.09.014] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 09/17/2012] [Accepted: 09/19/2012] [Indexed: 01/18/2023]
Abstract
BACKGROUND Posttranslational modifications (PTMs) greatly expand the function and regulation of proteins, and glycosylation is the most abundant and diverse PTM. Of the many different types of protein glycosylation, one is quite unique; GalNAc-type (or mucin-type) O-glycosylation, where biosynthesis is initiated in the Golgi by up to twenty distinct UDP-N-acetyl-α-d-galactosamine:polypeptide N-acetylgalactosaminyltransferases (GalNAc-Ts). These GalNAc-Ts are differentially expressed in cells and have different (although partly overlapping) substrate specificities, which provide for both unique functions and considerable redundancy. Recently we have begun to uncover human diseases associated with deficiencies in GalNAc-T genes (GALNTs). Thus deficiencies in individual GALNTs produce cell and protein specific effects and subtle distinct phenotypes such as hyperphosphatemia with hyperostosis (GALNT3) and dysregulated lipid metabolism (GALNT2). These phenotypes appear to be caused by deficient site-specific O-glycosylation that co-regulates proprotein convertase (PC) processing of FGF23 and ANGPTL3, respectively. SCOPE OF REVIEW Here we summarize recent progress in uncovering the interplay between human O-glycosylation and protease regulated processing and describes other important functions of site-specific O-glycosylation in health and disease. MAJOR CONCLUSIONS Site-specific O-glycosylation modifies pro-protein processing and other proteolytic events such as ADAM processing and thus emerges as an important co-regulator of limited proteolytic processing events. GENERAL SIGNIFICANCE Our appreciation of this function may have been hampered by our sparse knowledge of the O-glycoproteome and in particular sites of O-glycosylation. New strategies for identification of O-glycoproteins have emerged and recently the concept of SimpleCells, i.e. human cell lines made deficient in O-glycan extension by zinc finger nuclease gene targeting, was introduced for broad O-glycoproteome analysis.
Collapse
|
8
|
Zhou K, Ai C, Dong P, Fan X, Yang L. A novel model to predict O-glycosylation sites using a highly unbalanced dataset. Glycoconj J 2012; 29:551-64. [DOI: 10.1007/s10719-012-9434-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 07/11/2012] [Accepted: 07/17/2012] [Indexed: 10/28/2022]
|
9
|
Bennett EP, Mandel U, Clausen H, Gerken TA, Fritz TA, Tabak LA. Control of mucin-type O-glycosylation: a classification of the polypeptide GalNAc-transferase gene family. Glycobiology 2012; 22:736-56. [PMID: 22183981 PMCID: PMC3409716 DOI: 10.1093/glycob/cwr182] [Citation(s) in RCA: 612] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 12/14/2011] [Accepted: 12/14/2011] [Indexed: 12/15/2022] Open
Abstract
Glycosylation of proteins is an essential process in all eukaryotes and a great diversity in types of protein glycosylation exists in animals, plants and microorganisms. Mucin-type O-glycosylation, consisting of glycans attached via O-linked N-acetylgalactosamine (GalNAc) to serine and threonine residues, is one of the most abundant forms of protein glycosylation in animals. Although most protein glycosylation is controlled by one or two genes encoding the enzymes responsible for the initiation of glycosylation, i.e. the step where the first glycan is attached to the relevant amino acid residue in the protein, mucin-type O-glycosylation is controlled by a large family of up to 20 homologous genes encoding UDP-GalNAc:polypeptide GalNAc-transferases (GalNAc-Ts) (EC 2.4.1.41). Therefore, mucin-type O-glycosylation has the greatest potential for differential regulation in cells and tissues. The GalNAc-T family is the largest glycosyltransferase enzyme family covering a single known glycosidic linkage and it is highly conserved throughout animal evolution, although absent in bacteria, yeast and plants. Emerging studies have shown that the large number of genes (GALNTs) in the GalNAc-T family do not provide full functional redundancy and single GalNAc-T genes have been shown to be important in both animals and human. Here, we present an overview of the GalNAc-T gene family in animals and propose a classification of the genes into subfamilies, which appear to be conserved in evolution structurally as well as functionally.
Collapse
Affiliation(s)
- Eric P Bennett
- Department of Odontology, Copenhagen Center for Glycomics, University of Copenhagen, Nørre Alle 20, DK-2200 Copenhagen N, Denmark.
| | | | | | | | | | | |
Collapse
|
10
|
Tarp MA, Clausen H. Mucin-type O-glycosylation and its potential use in drug and vaccine development. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1780:546-63. [PMID: 17988798 DOI: 10.1016/j.bbagen.2007.09.010] [Citation(s) in RCA: 221] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 09/14/2007] [Indexed: 01/03/2023]
Abstract
Mucin-type O-glycans are found on mucins as well as many other glycoproteins. The initiation step in synthesis is catalyzed by a large family of polypeptide GalNAc-transferases attaching the first carbohydrate residue, GalNAc, to selected serine and threonine residues in proteins. During the last decade an increasing number of GalNAc-transferase isoforms have been cloned and their substrate-specificities partly characterized. These differences in substrate specificities have been exploited for in vitro site-directed O-glycosylation. In GlycoPEGylation, polyehylene glycol (PEG) is transferred to recombinant therapeutics to specific acceptor sites directed by GalNAc-transferases. GalNAc-transferases have also been used to control density of glycosylation in the development of glycopeptide-based cancer vaccines. The membrane-associated mucin-1 (MUC1) has long been considered a target for immunotherapeutic and immunodiagnostic measures, since it is highly overexpressed and aberrantly O-glycosylated in most adenocarcinomas, including breast, ovarian, and pancreatic cancers. By using vaccines mimicking the glycosylation pattern of cancer-cells, it is possible to overcome tolerance in transgenic animals expressing the human MUC1 protein as a self-antigen providing important clues for an improved MUC1 vaccine design. The present review will highlight some of the potential applications of site-directed O-glycosylation.
Collapse
Affiliation(s)
- Mads Agervig Tarp
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, The Panum Institute, 6.4, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| | | |
Collapse
|
11
|
|
12
|
Fritz TA, Raman J, Tabak LA. Dynamic association between the catalytic and lectin domains of human UDP-GalNAc:polypeptide alpha-N-acetylgalactosaminyltransferase-2. J Biol Chem 2006; 281:8613-9. [PMID: 16434399 DOI: 10.1074/jbc.m513590200] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The family of UDP-GalNAc:polypeptide alpha-N-acetylgalactosaminyltransferases (ppGalNAcTs) is unique among glycosyltransferases, containing both catalytic and lectin domains that we have previously shown to be closely associated. Here we describe the x-ray crystal structures of human ppGalNAcT-2 (hT2) bound to the product UDP at 2.75 A resolution and to UDP and an acceptor peptide substrate EA2 (PTTDSTTPAPTTK) at 1.64 A resolution. The conformations of both UDP and residues Arg362-Ser372 vary greatly between the two structures. In the hT2-UDP-EA2 complex, residues Arg362-Ser373 comprise a loop that forms a lid over UDP, sealing it in the active site, whereas in the hT2-UDP complex this loop is folded back, exposing UDP to bulk solvent. EA2 binds in a shallow groove with threonine 7 positioned consistent with in vitro data showing it to be the preferred site of glycosylation. The relative orientations of the hT2 catalytic and lectin domains differ dramatically from that of murine ppGalNAcT-1 and also vary considerably between the two hT2 complexes. Indeed, in the hT2-UDP-EA2 complex essentially no contact is made between the catalytic and lectin domains except for the peptide bridge between them. Thus, the hT2 structures reveal an unexpected flexibility between the catalytic and lectin domains and suggest a new mechanism used by hT2 to capture glycosylated substrates. Kinetic analysis of hT2 lacking the lectin domain confirmed the importance of this domain in acting on glycopeptide but not peptide substrates. The structure of the hT2-UDP-EA2 complex also resolves long standing questions regarding ppGalNAcT acceptor substrate specificity.
Collapse
Affiliation(s)
- Timothy A Fritz
- Section on Biological Chemistry, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
13
|
Doyle CK, Nethery KA, Popov VL, McBride JW. Differentially expressed and secreted major immunoreactive protein orthologs of Ehrlichia canis and E. chaffeensis elicit early antibody responses to epitopes on glycosylated tandem repeats. Infect Immun 2006; 74:711-20. [PMID: 16369028 PMCID: PMC1346619 DOI: 10.1128/iai.74.1.711-720.2006] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ehrlichia canis major immunoreactive proteins of 36 and 19 kDa elicit the earliest detectable antibody responses during the acute phase of canine monocytic ehrlichiosis. Genes encoding the major immunoreactive 36-kDa protein of E. canis and the corresponding ortholog of E. chaffeensis (47 kDa) were identified and the proteins characterized. The molecular masses of the strongly immunoreactive recombinant proteins were larger than predicted (26.7 and 32.9 kDa, respectively) but were consistent with those of the corresponding native proteins (36 and 47 kDa). Similar to other reported ehrlichial immunoreactive glycoproteins, carbohydrate was detected on the recombinant expressed proteins, indicating that they were glycoproteins. Both glycoproteins (gp36 and gp47) have carboxy-terminal serine/threonine-rich tandem repeat regions containing repeats that vary in number (4 to 16 repeats) and amino acid sequence among different isolates of each species. E. canis gp36 was recognized by early acute-phase antibodies (day 14), and species-specific antibody epitopes were mapped to C-terminal nonhomologous repeat units of gp36 and gp47. Periodate treatment of recombinant gp36 reduced the antibody reactivity, and nonglycosylated synthetic peptide repeat units from E. canis gp36 and E. chaffeensis gp47 were substantially less immunoreactive than corresponding recombinant peptides, demonstrating that glycans are important epitope determinants that are structurally conserved on the recombinant proteins expressed in Escherichia coli. E. canis gp36 and E. chaffeensis gp47 were differentially expressed only on the surface of dense-cored ehrlichiae and detected in the Ehrlichia-free supernatants, indicating that these proteins are released extracellularly during infection.
Collapse
Affiliation(s)
- C Kuyler Doyle
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | |
Collapse
|
14
|
Julenius K, Mølgaard A, Gupta R, Brunak S. Prediction, conservation analysis, and structural characterization of mammalian mucin-type O-glycosylation sites. Glycobiology 2004; 15:153-64. [PMID: 15385431 DOI: 10.1093/glycob/cwh151] [Citation(s) in RCA: 688] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
O-GalNAc-glycosylation is one of the main types of glycosylation in mammalian cells. No consensus recognition sequence for the O-glycosyltransferases is known, making prediction methods necessary to bridge the gap between the large number of known protein sequences and the small number of proteins experimentally investigated with regard to glycosylation status. From O-GLYCBASE a total of 86 mammalian proteins experimentally investigated for in vivo O-GalNAc sites were extracted. Mammalian protein homolog comparisons showed that a glycosylated serine or threonine is less likely to be precisely conserved than a nonglycosylated one. The Protein Data Bank was analyzed for structural information, and 12 glycosylated structures were obtained. All positive sites were found in coil or turn regions. A method for predicting the location for mucin-type glycosylation sites was trained using a neural network approach. The best overall network used as input amino acid composition, averaged surface accessibility predictions together with substitution matrix profile encoding of the sequence. To improve prediction on isolated (single) sites, networks were trained on isolated sites only. The final method combines predictions from the best overall network and the best isolated site network; this prediction method correctly predicted 76% of the glycosylated residues and 93% of the nonglycosylated residues. NetOGlyc 3.1 can predict sites for completely new proteins without losing its performance. The fact that the sites could be predicted from averaged properties together with the fact that glycosylation sites are not precisely conserved indicates that mucin-type glycosylation in most cases is a bulk property and not a very site-specific one. NetOGlyc 3.1 is made available at www.cbs.dtu.dk/services/netoglyc.
Collapse
Affiliation(s)
- Karin Julenius
- Center for Biological Sequence Analysis, BioCentrum, Building 208, Technical University of Denmark, DK-2800 Lyngby, Denmark.
| | | | | | | |
Collapse
|
15
|
Isordia-Salas I, Pixley RA, Parekh H, Kunapuli SP, Li F, Stadnicki A, Lin Y, Sartor RB, Colman RW. The mutation Ser511Asn leads to N-glycosylation and increases the cleavage of high molecular weight kininogen in rats genetically susceptible to inflammation. Blood 2003; 102:2835-42. [PMID: 12842992 DOI: 10.1182/blood-2003-02-0661] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Crohn disease is immunologically mediated and characterized by intestinal and systemic chronic inflammation. In a rat model, injection of peptidoglycan-polysaccharide complexes into the intestinal wall induced chronic inflammation in Lewis but neither Fischer nor Buffalo rats, indicating a differential genetic susceptibility. Proteolysis of plasma high molecular weight kininogen (HK) yielding bradykinin and cleaved HK (HKa) was faster in Lewis than in Fischer or Buffalo rat plasma. A single point mutation at nucleotide 1586 was found translating from Ser511 (Buffalo and Fisher) to Asn511 (Lewis). The latter defines an Asn-Xaa-Thr consensus sequence for N-glycosylation. We expressed these domains in Escherichia coli and found no differences in the rate of cleavage by purified kallikrein in the 3 strains in the absence of N-glycosylation. We then expressed these domains in Chinese hamster ovary (CHO) cells, which are capable of glycosylation, and found an increased rate of cleavage of Lewis HK. The Lewis mutation is associated with N-glycosylation as evidenced by a more rapid migration after treatment with N-glycosidase F. When CHO cells were cultured in the presence of tunicamycin, the kallikrein-induced cleavage rate of Lewis HK was not increased. This molecular alteration might be one contributing factor resulting in chronic inflammation in Lewis rats.
Collapse
Affiliation(s)
- Irma Isordia-Salas
- The Sol Sherry Thrombosis Research Center, Temple University School of Medicine, 3400 North Broad St, Philadelphia, PA 19140, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Williams Z, Litscher ES, Wassarman PM. Conversion of Ser to Thr residues at the sperm combining-site of mZP3 does not affect sperm receptor activity. Biochem Biophys Res Commun 2003; 301:813-8. [PMID: 12589785 DOI: 10.1016/s0006-291x(03)00044-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Mammalian eggs are surrounded by a thick extracellular coat, the zona pellucida, that is composed of three glycoproteins, called ZP1-3. Sperm recognize and bind to O-linked oligosaccharides attached to Ser-332 and Ser-334 at the sperm combining-site of mouse ZP3 (mZP3). Mutation of either of these Ser residues to a small aliphatic amino acid results in the loss of sperm binding to mZP3 in vitro. Here, we converted both Ser-332 and Ser-334 to Thr residues by site-directed mutagenesis. Recombinant mutant glycoprotein made by stably transfected EC cells was purified and then assayed for its ability to inhibit binding of sperm to ovulated eggs in vitro. Results of these experiments suggest that Thr residues can replace the two evolutionarily conserved Ser residues as acceptors for essential O-linked oligosaccharides at the sperm combining-site of mZP3 without affecting the glycoprotein's sperm receptor activity.
Collapse
Affiliation(s)
- Zev Williams
- Brookdale Department of Molecular, Cell and Developmental Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029-6574, USA
| | | | | |
Collapse
|
17
|
Leuenberger B, Hahn D, Pischitzis A, Hansen MK, Sterchi EE. Human meprin beta: O-linked glycans in the intervening region of the type I membrane protein protect the C-terminal region from proteolytic cleavage and diminish its secretion. Biochem J 2003; 369:659-65. [PMID: 12387727 PMCID: PMC1223113 DOI: 10.1042/bj20021398] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2002] [Revised: 10/17/2002] [Accepted: 10/21/2002] [Indexed: 12/19/2022]
Abstract
Human meprin (hmeprin; N -benzoyl-L-tyrosyl-p-aminobenzoic acid hydrolase; EC 3.4.24.18) is a member of the astacin family of zinc metalloendopeptidases. The major site of expression is the brush border membrane of small intestinal and kidney epithelial cells. The enzyme is a type I integral membrane protein composed of two distinct subunits, alpha and beta, which are linked by disulphide bridges. The enzyme complex is attached to the plasma membrane only via the beta-subunit. The alpha-subunit is cleaved in the endoplasmic reticulum in a constitutive manner to remove the C-terminal membrane anchor which leads to secretion of the protein. While the beta-subunit of hmeprin remains largely attached to the brush-border membrane some proteolytic processing occurs intracellularly as well as at the cell surface and results in the release of this subunit from the cell. In the present paper, we report that the beta-subunit bears multiple O-linked sugar residues in the intervening domain. In contrast, the alpha-subunit does not contain O-linked oligosaccharides. Our results show that the O-linked carbohydrate side chains in hmeprinbeta are clustered around a 13 amino acid sequence that contains the main cleavage site for proteolytic processing of the subunit. Prevention of O-glycosylation by specific inhibitors leads to enhanced proteolytic processing and the consequence is an increased release of hmeprinbeta into the culture medium.
Collapse
Affiliation(s)
- Boris Leuenberger
- Institute of Biochemistry and Molecular Biology and Department of Pediatrics, Faculty of Medicine, University of Berne, Switzerland
| | | | | | | | | |
Collapse
|
18
|
Takeuchi H, Kato K, Hassan H, Clausen H, Irimura T. O-GalNAc incorporation into a cluster acceptor site of three consecutive threonines. Distinct specificity of GalNAc-transferase isoforms. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:6173-83. [PMID: 12473113 DOI: 10.1046/j.1432-1033.2002.03334.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
O-Glycosylation of three consecutive Thr residues in a fluorescein-conjugated peptide PTTTPLK - which mimics a portion of mucin 2 - by four isozymes of UDP-N-acetylgalactosaminyltransferases (pp-GalNAc-T1, T2, T3, or T4) was investigated. Partially glycosylated versions of this peptide, PT*TTPLK, PTTT*PLK, PT*TT*PLK, PTT*T*PLK, PT* degrees TTPLK, and PTTT* degrees PLK (*, N-acetylgalactosamine; degrees, galactose), were also tested. The products were separated by RP-HPLC and characterized by MALDI-TOF MS and peptide sequencing. The first and the third Thr residues act as the peptide's initial glycosylation sites for pp-GalNAc-T4, which were different from the sites for pp-GalNAc-T1 and T2 (the first Thr residue) or T3 (the third Thr residue) shown in our previous report. All pp-GalNAc-T isozymes tested exhibited distinct specificities toward glycopeptides. The most notable findings were: (a) prior incorporation of an N-acetylgalactosamine residue at the third Thr greatly enhanced N-acetylgalactosamine incorporation into the other Thr residues when pp-GalNAc-T2, T3, or T4 were used; (b) the enhancing effect of the N-acetylgalactosamine residue on the third Thr was completely abrogated by galactosylation of this N-acetylgalactosamine; (c) prior incorporation of an N-acetylgalactosamine at the first Thr did not have any enhancing effect; (d) pp-GalNAc-T2 was unique as it transferred N-acetylgalactosamine into the second Thr residue only when N-acetylgalactosamine was attached to the third one.
Collapse
Affiliation(s)
- Hideyuki Takeuchi
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan
| | | | | | | | | |
Collapse
|
19
|
Silverman HS, Parry S, Sutton-Smith M, Burdick MD, McDermott K, Reid CJ, Batra SK, Morris HR, Hollingsworth MA, Dell A, Harris A. In vivo glycosylation of mucin tandem repeats. Glycobiology 2001; 11:459-71. [PMID: 11445551 DOI: 10.1093/glycob/11.6.459] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The biochemical and biophysical properties of mucins are largely determined by extensive O-glycosylation of serine- and threonine-rich tandem repeat (TR) domains. In a number of human diseases aberrant O-glycosylation is associated with variations in the properties of the cell surface-associated and secreted mucins. To evaluate in vivo the O-glycosylation of mucin TR domains, we generated recombinant chimeric mucins with TR sequences from MUC2, MUC4, MUC5AC, or MUC5B, which were substituted for the native TRs of epitope-tagged MUC1 protein (MUC1F). These hybrid mucins were extensively O-glycosylated and showed the expected association with the cell surface and release into culture media. The presence of different TR domains within the chimeric mucins appears to have limited influence on their posttranslational processing. Alterations in glycosylation were detailed by fast atom bombardment mass spectrometry and reactivity with antibodies against particular blood-group and tumor-associated carbohydrate antigens. Future applications of these chimeras will include investigations of mucin posttranslational modification in the context of disease.
Collapse
Affiliation(s)
- H S Silverman
- Paediatric Molecular Genetics, Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Statistical analysis was carried out to study the sequential aspects of amino acids around the O-glycosylated Ser/Thr. 992 sequences containing O-glycosylated Ser/Thr were selected from the O-GLYCBASE database of O-glycosylated proteins. The frequency of occurrence of amino acid residues around the glycosylated Ser/Thr revealed that there is an increased number of proline residues around the O-glycosylation sites in comparison with the nonglycosylated serine and threonine residues. The deviation parameter calculated as a measure of preferential and nonpreferential occurrence of amino acid residues around the glycosylation site shows that Pro has the maximum preference around the O-glycosylation site. Pro at +3 and/or -1 positions strongly favors glycosylation irrespective of single and multiple glycosylation sites. In addition, serine and threonine are preferred around the multiple glycosylation sites due to the effect of clusters of closely spaced glycosylated Ser/Thr. The preference of amino acids around the sites of mucin-type glycosylation is found likely to be similar to that of the O-glycosylation sites when taken together, but the acidic amino acids are more preferred around Ser/Thr in mucin-type glycosylation when compared totally. Aromatic amino acids hinder O-glycosylation in contrast to N-glycosylation. Cysteine and amino acids with bulky side chains inhibit O-glycosylation. The preference of certain potential sequence motifs of glycosylation has been discussed.
Collapse
Affiliation(s)
- T H Thanka Christlet
- Department of Physics, Manonmaniam Sundaranar University, Tirunelveli 627 012, Tamil Nadu, India
| | | |
Collapse
|
21
|
Hanisch FG, Müller S, Hassan H, Clausen H, Zachara N, Gooley AA, Paulsen H, Alving K, Peter-Katalinic J. Dynamic epigenetic regulation of initial O-glycosylation by UDP-N-Acetylgalactosamine:Peptide N-acetylgalactosaminyltransferases. site-specific glycosylation of MUC1 repeat peptide influences the substrate qualities at adjacent or distant Ser/Thr positions. J Biol Chem 1999; 274:9946-54. [PMID: 10187769 DOI: 10.1074/jbc.274.15.9946] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In search of possible epigenetic regulatory mechanisms ruling the initiation of O-glycosylation by polypeptide:N-acetylgalactosaminyltransferases, we studied the influences of mono- and disaccharide substituents of glycopeptide substrates on the site-specific in vitro addition of N-acetylgalactosamine (GalNAc) residues by recombinant GalNAc-Ts (rGalNAc-T1, -T2, and -T3). The substrates were 20-mers (HGV20) or 21-mers (AHG21) of the MUC1 tandem repeat peptide carrying GalNAcalpha or Galbeta1-3GalNAcalpha at different positions. The enzymatic products were analyzed by MALDI mass spectrometry and Edman degradation for the number and sites of incorporated GalNAc. Disaccharide placed on the first position of the diad Ser-16-Thr-17 prevents glycosylation of the second, whereas disaccharide on the second position of Ser-16-Thr-17 and Thr-5-Ser-6 does not prevent GalNAc addition to the first. Multiple disaccharide substituents suppress any further glycosylation at the remaining sites. Glycosylation of Ser-16 is negatively affected by glycosylation at position -6 (Thr-10) or -10 (Ser-6) and is inhibited by disaccharide at position -11 (Thr-5), suggesting the occurrence of glycosylation-induced effects on distant acceptor sites. Kinetic studies revealed the accelerated addition of GalNAc to Ser-16 adjacent to GalNAc-substituted Thr-17, demonstrating positive regulatory effects induced by glycosylation on the monosaccharide level. These antagonistic effects of mono- and disaccharides could underlie a postulated regulatory mechanism.
Collapse
Affiliation(s)
- F G Hanisch
- Institute of Biochemistry, University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Cologne, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Pajot-Augy E, Bozon V, Remy JJ, Couture L, Salesse R. Critical relationship between glycosylation of recombinant lutropin receptor ectodomain and its secretion from baculovirus-infected insect cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 260:635-48. [PMID: 10102991 DOI: 10.1046/j.1432-1327.1999.00241.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The lutropin receptor ectodomain overexpressed under the control of the powerful polyhedrin promoter in baculovirus-infected Sf9 insect cells, is mainly found in an inactive, intracellularly-aggregated form. It is secreted in an active form under the control of the P10 promoter, a somewhat weaker and earlier promoter, at the price of a lower production. The apparent molecular masses of the two species encoded by the same cDNA are 48 kDa and 60-68 kDa, respectively. The relationship between the extent and type of glycosylation and the extracellular targeting for the recombinant lutropin receptor ectodomains was investigated precisely with endoglycosidases, lectins of various specificities, and a glycosylation inhibitor, and tested with monoclonal and polyclonal antibodies. The results indicate that the strong polyhedrin promoter probably overwhelms the processing capacity of the ER in Sf9 cells, so that only a high-mannose precursor is expressed in large amounts. Only a minute amount of protein is secreted, which has been processed by Sf9 exoglycosidases/glycosyltransferases and bears complex/hybrid oligosaccharides. The weaker P10 promoter allows secretion of a mature and active receptor ectodomain, bearing complex glycosylation. An important O-linked glycosylation is also added post-translationally on this species. In particular, beta-galactose and sialic acid residues were specifically detected in the secreted species, evidence of the induction of the corresponding glycosyltransferases or of their genes. These results suggest that Sf9 cells should eventually be engineered with chaperones and glycosyltransferases in order to improve the production of demanding glycoproteins such as the porcine lutropin ectodomain, so as to open the way to resolution of the three-dimensional structures of these receptors.
Collapse
Affiliation(s)
- E Pajot-Augy
- Unité Récepteurs et Communication Cellulaire, Biologie Cellulaire et Moléculaire, INRA-Biotechnologies, Jouy-en-Josas, France.
| | | | | | | | | |
Collapse
|
23
|
Elhammer AP, Kézdy FJ, Kurosaka A. The acceptor specificity of UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases. Glycoconj J 1999; 16:171-80. [PMID: 10612416 DOI: 10.1023/a:1026465232149] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The in vitro and in vivo specificity of the family of peptide:N-acetylgalactosaminyltransferases (GalNAcT) is analyzed on the basis of the reactivity and/or inhibitory activity of peptides and protein segments. The transferases appear to be multi-substrate enzymes with extended active sites containing a least nine subsites that interact cooperatively with a linear segment of at least nine amino acid residues on the acceptor polypeptide. Functional acceptor sites are located on the surface of the protein and extended conformations (beta-strand conformation) are preferred. The acceptor specificity of GalNAc-T can be predicted from the primary structure of the acceptor peptide with an accuracy of 70 to 80%. The same GalNAc-T enzymes catalyze the glycosylation of both serine and threonine residues. The higher in vitro catalytic efficiency toward threonine versus serine is the result of enhanced binding as well as increased reaction velocity, both effects being the result of steric interactions between the active site of the enzyme and the methyl group of threonine. Results from substrate binding studies suggest that GalNAc-T catalyzed transfer proceeds via an ordered sequential mechanism.
Collapse
|
24
|
Gupta R, Birch H, Rapacki K, Brunak S, Hansen JE. O-GLYCBASE version 4.0: a revised database of O-glycosylated proteins. Nucleic Acids Res 1999; 27:370-2. [PMID: 9847232 PMCID: PMC148187 DOI: 10.1093/nar/27.1.370] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
O-GLYCBASE is a database of glycoproteins with O-linked glycosylation sites. Entries with at least one experimentally verified O-glycosylation site have been compiled from protein sequence databases and literature. Each entry contains information about the glycan involved, the species, sequence, a literature reference and http-linked cross-references to other databases. Version 4.0 contains 179 protein entries, an approximate 15% increase over the last version. Sequence logos representing the acceptor specificity patterns for GalNAc, GlcNAc, mannosyl and xylosyl transferases are shown. The O-GLYCBASE database is available through the WWW at http://www.cbs.dtu.dk/databases/OGLYCBASE/
Collapse
Affiliation(s)
- R Gupta
- Center for Biological Sequence Analysis, The Technical University of Denmark, DK-2800 Lyngby, Denmark.
| | | | | | | | | |
Collapse
|
25
|
de Haan CA, Roestenberg P, de Wit M, de Vries AA, Nilsson T, Vennema H, Rottier PJ. Structural requirements for O-glycosylation of the mouse hepatitis virus membrane protein. J Biol Chem 1998; 273:29905-14. [PMID: 9792708 DOI: 10.1074/jbc.273.45.29905] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mouse hepatitis virus (MHV) membrane (M) protein contains only O-linked oligosaccharides. We have used this protein as a model to study the structural requirements for O-glycosylation. We show that MHV M is modified by the addition of a single oligosaccharide side chain at the cluster of 4 hydroxylamino acids present at its extreme amino terminus and identified Thr at position 5 as the functional acceptor site. The hydroxylamino acid cluster, which is quite conserved among O-glycosylated coronavirus M proteins, is not in itself sufficient for O-glycosylation. Downstream amino acids are required to introduce a functional O-glycosylation site into a foreign protein. In a mutagenic analysis O-glycosylation was found to be sensitive to some particular changes but no unique sequence motif for O-glycosylation could be identified. Expression of mutant M proteins in cells revealed that substitution of any 1 residue was tolerated, conceivably due to the occurrence of multiple UDP-N-acetylgalactosamine:polypeptide N-acetylgalactosaminyltransferases (GalNAc transferases). Indeed, MHV M served as a substrate for GalNac-T1, -T2, and -T3, as was demonstrated using an in situ glycosylation assay based on the co-expression of endoplasmic reticulum-retained forms of the GalNAc transferases with endoplasmic reticulum-resident MHV M mutants. The GalNAc transferases were found to have largely overlapping, but distinct substrate specificities. The requirement for a threonine as acceptor rather than a serine residue and the requirement for a proline residue three positions downstream of the acceptor site were found to be distinctive features.
Collapse
Affiliation(s)
- C A de Haan
- Institute of Virology, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, and the Institute of Biomembranes, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
26
|
Gururaja TL, Ramasubbu N, Venugopalan P, Reddy MS, Ramalingam K, Levine MJ. Structural features of the human salivary mucin, MUC7. Glycoconj J 1998; 15:457-67. [PMID: 9881747 DOI: 10.1023/a:1006978818555] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Human salivary mucin (MUC7) is characterized by a single polypeptide chain of 357 aa. Detailed analysis of the derived MUC7 peptide sequence reveals five distinct regions or domains: (1) an N-terminal basic, histatin-like domain which has a leucine-zipper segment, (2) a moderately glycosylated domain, (3) six heavily glycosylated tandem repeats each consisting of 23 aa, (4) another heavily glycosylated MUC1- and MUC2-like domain, and (5) a C-terminal leucine-zipper segment. Chemical analysis and semi-empirical prediction algorithms for O-glycosylation suggested that 86/105 (83%) Ser/Thr residues were O-glycosylated with the majority located in the tandem repeats. The high (approximately 25%) proline content of MUC7 including 19 diproline segments suggested the presence of polyproline type structures. CD studies of natural and synthetic diproline-rich peptides and glycopeptides indicated that polyproline type structures do play a significant role in the conformational dynamics of MUC7. In addition, crystal structure analysis of a synthetic diproline segment (Boc-Ala-Pro-OBzl) revealed a polyproline type II extended structure. Collectively, the data indicate that the polyproline type II structure, dispersed throughout the tandem repeats, may impart a stiffening of the backbone and could act in consort with the glycosylated segments to keep MUC7 in a semi-rigid, rod shaped conformation resembling a 'bottle-brush' model.
Collapse
Affiliation(s)
- T L Gururaja
- Department of Oral Biology and Research Center in Oral Biology, School of Dental Medicine, State University of New York at Buffalo, 14214, USA
| | | | | | | | | | | |
Collapse
|
27
|
Hennebicq S, Tetaert D, Soudan B, Boersma A, Briand G, Richet C, Gagnon J, Degand P. Influence of the amino acid sequence on the MUC5AC motif peptide O-glycosylation by human gastric UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase(s). Glycoconj J 1998; 15:275-82. [PMID: 9579804 DOI: 10.1023/a:1006949129456] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The present work was carried out to study the role of the peptide moiety in the addition of O-linked N-acetylgalactosamineto human apomucin using human crude microsomal homogenates from gastric mucosa (as enzyme source) and a series of peptide acceptors representative of tandem repeat domains deduced from the MUC5AC mucin gene (expressed in the gastric mucosa). Being rich in threonine and serine placed in clusters, these peptides provided several potential sites for O-glycosylation. The glycosylated products were analysed by a combination of electrospray mass spectrometry and capillary electrophoresis in order to isolate the glycopeptides and to determine their sequence by Edman degradation. The O-glycosylation of our MUC5AC motif peptides gave information on the specificity and activity of the gastric microsomal UDP-N-acetylgalactosamine:polypeptide N-acetylgalactosaminyltransferase(s). The proline residues and the induced-conformations are of great importance for the recognition of MUC5AC peptides but they are not the only factors for the choice of the O-glycosylation sites. Moreover, for the di-glycosylated peptides, the flanking regions of the proline residues strongly influence the site of the second O-glycosylation.
Collapse
|
28
|
Hansen JE, Lund O, Tolstrup N, Gooley AA, Williams KL, Brunak S. NetOglyc: prediction of mucin type O-glycosylation sites based on sequence context and surface accessibility. Glycoconj J 1998; 15:115-30. [PMID: 9557871 DOI: 10.1023/a:1006960004440] [Citation(s) in RCA: 403] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The specificities of the UDP-GalNAc:polypeptide Nacetylgalactosaminyltransferases which link the carbohydrate GalNAc to the side-chain of certain serine and threonine residues in mucin type glycoproteins, are presently unknown. The specificity seems to be modulated by sequence context, secondary structure and surface accessibility. The sequence context of glycosylated threonines was found to differ from that of serine, and the sites were found to cluster. Non-clustered sites had a sequence context different from that of clustered sites. Charged residues were disfavoured at position -1 and +3. A jury of artificial neural networks was trained to recognize the sequence context and surface accessibility of 299 known and verified mucin type O-glycosylation sites extracted from O-GLYCBASE. The cross-validated NetOglyc network system correctly found 83% of the glycosylated and 90% of the non-glycosylated serine and threonine residues in independent test sets, thus proving more accurate than matrix statistics and vector projection methods. Predictions of O-glycosylation sites in the envelope glycoprotein gp120 from the primate lentiviruses HIV-1, HIV-2 and SIV are presented. The most conserved O-glycosylation signals in these evolutionary-related glycoproteins were found in their first hypervariable loop, V1. However, the strain variation for HIV-1 gp120 was significant. A computer server, available through WWW or E-mail, has been developed for prediction of mucin type O-glycosylation sites in proteins based on the amino acid sequence. The server addresses are http://www.cbs.dtu.dk/services/NetOGlyc/ and netOglyc@cbs.dtu.dk.
Collapse
Affiliation(s)
- J E Hansen
- Center for Biological Sequence Analysis, The Technical University of Denmark, Lyngby.
| | | | | | | | | | | |
Collapse
|
29
|
Hansen JE, Lund O, Nilsson J, Rapacki K, Brunak S. O-GLYCBASE Version 3.0: a revised database of O-glycosylated proteins. Nucleic Acids Res 1998; 26:387-9. [PMID: 9399880 PMCID: PMC147183 DOI: 10.1093/nar/26.1.387] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
O-GLYCBASE is a revised database of information on glycoproteins and their O-linked glycosylation sites. Entries are compiled and revised from the literature, and from the sequence databases. Entries include information about species, sequence, glycosylation sites and glycan type and is fully cross-referenced. Compared to version 2.0 the number of entries has increased by 20%. Sequence logos displaying the acceptor specificity patterns for the GalNAc, mannose and GlcNAc transferases are shown. The O-GLYCBASE database is available through the WWW at http://www.cbs.dtu. dk/databases/OGLYCBASE/
Collapse
Affiliation(s)
- J E Hansen
- Center for Biological Sequence Analysis, The Technical University of Denmark, DK-2800 Lyngby, Denmark.
| | | | | | | | | |
Collapse
|
30
|
Müller S, Goletz S, Packer N, Gooley A, Lawson AM, Hanisch FG. Localization of O-glycosylation sites on glycopeptide fragments from lactation-associated MUC1. All putative sites within the tandem repeat are glycosylation targets in vivo. J Biol Chem 1997; 272:24780-93. [PMID: 9312074 DOI: 10.1074/jbc.272.40.24780] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Since there is no consensus sequence directing the initial GalNAc incorporation into mucin peptides, O-glycosylation sites are not reliably predictable. We have developed a mass spectrometric sequencing strategy that allows the identification of in vivo O-glycosylation sites on mucin-derived glycopeptides. Lactation-associated MUC1 was isolated from human milk and partially deglycosylated by trifluoromethanesulfonic acid to the level of core GalNAc residues. The product was fragmented by the Arg-C-specific endopeptidase clostripain to yield tandem repeat icosapeptides starting with the PAP motif. PAP20 glycopeptides were subjected to sequencing by post-source decay matrix-assisted laser desorption ionization mass spectrometry or by solid phase Edman degradation to localize the glycosylation sites. The masses of C- or N-terminal fragments registered for the mono- to pentasubstituted PAP20 indicated that GalNAc was linked to the peptide at Ser5,Thr6 (GSTA) and Thr14 (VTSA) but contrary to previous in vitro glycosylation studies also at Thr19 and Ser15 located within the PDTR or VTSA motifs, respectively. Quantitative data from solid phase Edman sequencing revealed no preferential glycosylation of the threonines. These discrepancies between in vivo and in vitro glycosylation patterns may be explained by assuming that O-glycosylation of adjacent peptide positions is a dynamically regulated process that depends on changes of the substrate qualities induced by glycosylation at vicinal sites.
Collapse
Affiliation(s)
- S Müller
- Institute of Biochemistry, Medical Faculty of the University, 50931 Cologne, Federal Republic of Germany
| | | | | | | | | | | |
Collapse
|
31
|
Wandall HH, Hassan H, Mirgorodskaya E, Kristensen AK, Roepstorff P, Bennett EP, Nielsen PA, Hollingsworth MA, Burchell J, Taylor-Papadimitriou J, Clausen H. Substrate specificities of three members of the human UDP-N-acetyl-alpha-D-galactosamine:Polypeptide N-acetylgalactosaminyltransferase family, GalNAc-T1, -T2, and -T3. J Biol Chem 1997; 272:23503-14. [PMID: 9295285 DOI: 10.1074/jbc.272.38.23503] [Citation(s) in RCA: 238] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Mucin-type O-glycosylation is initiated by UDP-N-acetylgalactosamine:polypeptide N-acetylgalactosaminyltransferases (GalNAc-transferases). The role each GalNAc-transferase plays in O-glycosylation is unclear. In this report we characterized the specificity and kinetic properties of three purified recombinant GalNAc-transferases. GalNAc-T1, -T2, and -T3 were expressed as soluble proteins in insect cells and purified to near homogeneity. The enzymes have distinct but partly overlapping specificities with short peptide acceptor substrates. Peptides specifically utilized by GalNAc-T2 or -T3, or preferentially by GalNAc-T1 were identified. GalNAc-T1 and -T3 showed strict donor substrate specificities for UDP-GalNAc, whereas GalNAc-T2 also utilized UDP-Gal with one peptide acceptor substrate. Glycosylation of peptides based on MUC1 tandem repeat showed that three of five potential sites in the tandem repeat were glycosylated by all three enzymes when one or five repeat peptides were analyzed. However, analysis of enzyme kinetics by capillary electrophoresis and mass spectrometry demonstrated that the three enzymes react at different rates with individual sites in the MUC1 repeat. The results demonstrate that individual GalNAc-transferases have distinct activities and the initiation of O-glycosylation in a cell is regulated by a repertoire of GalNAc-transferases.
Collapse
Affiliation(s)
- H H Wandall
- School of Dentistry, University of Copenhagen, Norre Allé 20, 2200 Copenhagen N, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Yoshida A, Suzuki M, Ikenaga H, Takeuchi M. Discovery of the shortest sequence motif for high level mucin-type O-glycosylation. J Biol Chem 1997; 272:16884-8. [PMID: 9201996 DOI: 10.1074/jbc.272.27.16884] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The consensus primary amino acid sequence for mucin-type O-glycosylation sites has not been identified. To determine the shortest motif sequence required for high level mucin-type O-glycosylation, we prepared more than 100 synthetic peptides and assayed in vitro O-GalNAc transfer to serine or threonine in these peptides using a bovine colostrum UDP-N-acetylgalactosamine:polypeptide N-acetylgalactosaminyl transferase (O-GalNAcT). We chose the sequence PDAASAAP from human erythropoietin (hEPO) for further systematic substitutions because it accepted GalNAc and was a fairly simple sequence consisting only of four kinds of amino acids. Several substitutions showed that threonine is approximately 40-fold better than serine as the glycosylated amino acid and a proline at position +3 on the C-terminal side is very important. To define the effect of proline residues around the glycosylation site, we analyzed a series of peptides containing one to three proline residues in a parent peptide AAATAAA. The results clearly indicated that prolines at positions +1 and +3 had a positive effect. The O-GalNAc transfer level of AAATPAP was increased approximately 90-fold from AAATAAA. The deletion of amino acids from the N-terminal side of the glycosylation site suggested that five amino acids from position -1 to +3 were especially important for glycosylation. Moreover, the influence of all 20 amino acids at positions -1, +2, and +4 was analyzed. Uncharged amino acids were preferred at position -1, and small or positively charged amino acids were preferred at position +2. No preference was observed at position +4. We propose a mucin-type O-glycosylation motif, XTPXP, which may be suitable as a signal for protein O-glycosylation. The features observed in this study also appear to be very useful for prediction of mucin-type O-glycosylation sites in glycoproteins.
Collapse
Affiliation(s)
- A Yoshida
- Central Laboratories for Key Technology, Kirin Brewery Co., Ltd., 1-13-5, Fukuura, Kanazawa-ku, Yokohama 236, Japan
| | | | | | | |
Collapse
|
33
|
Gerken TA, Owens CL, Pasumarthy M. Determination of the site-specific O-glycosylation pattern of the porcine submaxillary mucin tandem repeat glycopeptide. Model proposed for the polypeptide:galnac transferase peptide binding site. J Biol Chem 1997; 272:9709-19. [PMID: 9092502 DOI: 10.1074/jbc.272.15.9709] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The heterogeneously glycosylated 81-residue tryptic tandem repeat glycopeptide from porcine submaxillary mucin (PSM) has been isolated and its glycosylation pattern determined by amino acid sequencing. Key to these studies is the ability to trim the structurally heterogeneous PSM oligosaccharide side chains to homogeneous GalNAc monosaccharide side chains by mild trifluoromethanesulfonic acid treatment. Trypsin treatment of trifluoromethanesulfonic acid-treated PSM releases the 81-residue tandem repeat as an ensemble of 81-residue glycopeptides with different glycosylation patterns. Automated amino acid sequencing using Edman degradative chemistry of the repeat was used to determine the extent of glycosylation of nearly every Ser and Thr residue. The Thr residues are all highly glycosylated within the range of 73-90%, giving an average Thr glycosylation of 83%. In contrast, the Ser residues display a wide range of glycosylations, ranging between 33 and 95%, giving an average Ser glycosylation of 74%. These data are consistent with the known elevated glycosylation of Thr peptides over Ser peptides for the porcine UDP-N-acetylgalactosamine:polypeptide N-acetylgalactosaminyltransferase. It is also observed that the extent of glycosylation of the repeat correlates poorly with published predictive methods. An examination of the sequences surrounding the glycosylation sites reveals that nearly all of the highly glycosylated sites have a penultimate Gly residue, whereas those that are less highly glycosylated have medium to large side chain penultimate residues. As observed by others, glycosylation also appears to be modulated by the presence of Pro residues. On the basis of these findings we suggest that the acceptor peptide binds the transferase in a beta-like conformation and that penultimate residue side chain steric interactions may play a role in determining extent that a given Ser or Thr is glycosylated. A model for the GalNAc transferase peptide binding site is proposed.
Collapse
Affiliation(s)
- T A Gerken
- W. A. Bernbaum Center for Cystic Fibrosis Research, Case Western Reserve University, Cleveland, Ohio 44106-4948, USA.
| | | | | |
Collapse
|
34
|
Hansen JE, Lund O, Rapacki K, Brunak S. O-GLYCBASE version 2.0: a revised database of O-glycosylated proteins. Nucleic Acids Res 1997; 25:278-82. [PMID: 9016554 PMCID: PMC146398 DOI: 10.1093/nar/25.1.278] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
O-GLYCBASE is an updated database of information on glycoproteins and their O-linked glycosylation sites. Entries are compiled and revised from the literature, and from the SWISS-PROT database. Entries include information about species, sequence, glycosylation sites and glycan type. O-GLYCBASE is now fully cross-referenced to the SWISS-PROT, PIR, PROSITE, PDB, EMBL, HSSP, LISTA and MIM databases. Compared with version 1.0 the number of entries have increased by 34%. Revision of the O-glycan assignment was performed on 20% of the entries. Sequence logos displaying the acceptor specificity patterns for the GalNAc, mannose and GlcNAc transferases are shown. The O-GLYCBASE database is available through WWW or by anonymous FTP.
Collapse
Affiliation(s)
- J E Hansen
- Center for Biological Sequence Analysis, The Technical University of Denmark, Building 206, DK-2800 Lyngby, Denmark.
| | | | | | | |
Collapse
|
35
|
Brockhausen I, Toki D, Brockhausen J, Peters S, Bielfeldt T, Kleen A, Paulsen H, Meldal M, Hagen F, Tabak LA. Specificity of O-glycosylation by bovine colostrum UDP-GalNAc: polypeptide alpha-N-acetylgalactosaminyltransferase using synthetic glycopeptide substrates. Glycoconj J 1996; 13:849-56. [PMID: 8910012 DOI: 10.1007/bf00702349] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The factors determining glycosylation of mucin type glycoproteins are not well understood. In the present work, we investigated the role of the peptide moiety and of the presence of O-glycan chains on O-glycosylation by UDP-GalNAc: polypeptide alpha-N-acetylgalactosaminyl-transferase (ppGalNAc-T). We used purified ppGalNAc-T from bovine colostrum and a series of synthetic glycopeptide and peptide substrates most of which contained sequences derived from the tandem repeat region of MUC2 mucin. The rate of incorporation of GalNAc into Thr was significantly greater than toward Ser residues. The presence of one or two GalNAc-Thr moieties in the substrate significantly reduced enzyme activity, and this effect was more pronounced when the disaccharide Gal beta 1-3GalNAc was present. Thus the sequential attachment of a second GalNAc residue in the vicinity of a pre-existing GalNAc-Thr or Gal beta 1-3GalNAc-Thr occurs at a slower rate than primary glycosylation of carbohydrate-free peptide. Analysis of products by HPLC showed that the enzyme was selective in glycosylating peptides or glycopeptides with the PTTTPIST sequence in that the preferred primary glycosylation site was the third Thr from the amino-terminal end; secondary glycosylation depended on the site of the primary glycosylation. Negatively but not positively charged amino acids on the carboxy-terminal side of the putative secondary glycosylation site resulted in high activity suggesting charge-charge interactions of substrates with the enzyme. These studies indicate that O-glycosylation by bovine colostrum ppGalNAc-T is a selective process dependent on both the amino acid sequence and prior glycosylation of peptide substrates.
Collapse
Affiliation(s)
- I Brockhausen
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Joba W, Hoffmann W. Alternative splicing of repetitive units is responsible for the polydispersities of integumentary mucin B.1 (FIM-B.1) from Xenopus laevis. Glycoconj J 1996; 13:735-40. [PMID: 8910000 DOI: 10.1007/bf00702337] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Frog integumentary mucin B.1 (FIM-B.1) represents a polymorphic extracellular mosaic protein which contains tandemly arranged serine/threonine-rich modules as well as cysteine-rich domains. The latter are probably important for oligomerization of FIM-B.1 and have also been found in many proteins of the complement cascade as well as regions homologous to von Willebrand factor. The repetitive modules are targets for extensive O-glycosylation. Previous cDNA cloning experiments clearly established polydispersities within the same individual, which originate from deletions/insertions in the repetitive domain. Here, we analyse part of the corresponding genomic region. Each repetitive unit as well as the cysteine-rich domain is encoded by an individual class 1-1 exon typical of shuffled modules. Alternative splicing of these multiple cassettes creates the polydisperse FIM-B.1 transcripts.
Collapse
Affiliation(s)
- W Joba
- Max-Planck-Institut für Psychiatrie, Abteilung Neurochemie, Martinsried, Germany
| | | |
Collapse
|
37
|
Abstract
The glycosylation pathway is the most important post-translational modification of a protein and is moreover a highly specific process. The majority of proteins of pharmaceutical interest are glycoproteins. Therefore, it is necessary to identify the composition, the structure, the function and the biosynthesis of the glycoproteins. The present knowledge is described here. In addition, the performed studies about structure-function relationship of the glycoproteins have shown that the oligosaccharide part of a glycoprotein confers important and specific biological roles. Thus, the modification of the structure of the glycan chains can lead to a modification of the activity of the glycoprotein. This phenomenon is encountered at the time of the production of recombinant glycoprotein in a heterologous system. Indeed, the glycosylation profile of a protein is specific to both the host cell and the culture conditions of this cell. Thus, the advantages and the drawbacks of the different host cells used for the glycosylation engineering are presented. In this way, the identification of the different specific enzymes glycosyltransferases and glycosidases involved in the glycosylation pathway is now necessary to improve the production of recombinant glycoprotein. The structure and the characteristics of these enzymes, and more particularly the oligosaccharyltransferase and the galactosyltransferase, are also described.
Collapse
Affiliation(s)
- I Meynial-Salles
- Département de Génie Biochimique et Alimentaire, INSA URA CNRS, 544 Centre de Bioingénierie Gilbert Durand, Toulouse, France
| | | |
Collapse
|
38
|
Nehrke K, Hagen FK, Tabak LA. Charge distribution of flanking amino acids influences O-glycan acquisition in vivo. J Biol Chem 1996; 271:7061-5. [PMID: 8636138 DOI: 10.1074/jbc.271.12.7061] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The elements that regulate O-glycosylation are poorly understood. We have developed a novel in vivo system to analyze the role of flanking sequence on the modification of a single well characterized O-glycosylation site derived from human von Willebrand factor (PHMAQVTVGPGL). A secreted chimeric reporter protein, containing the human von Willebrand factor sequence, an antibody recognition epitope, and a heart muscle kinase site, was engineered and expressed in COS7 and MCF-7 cells. Glycosylated and non-glycosylated forms of the immunoprecipitated reporter were resolved electrophoretically and their relative amounts quantitated. Using mutational analysis we find that the glycosylation apparatus of COS7 cells can accommodate a broad range of changes in the flanking sequence without compromising glycosylation, but that the distribution of charged amino acids flanking the O-glycosylation site can have a profound influence on glycosylation with position -1 relative to the glycosylation site being particularly sensitive. A combination of acidic residues at positions -1 and +3 almost completely eliminates glycosylation of the reporter in both COS7 and MCF-7 cells. The overall density of charged amino acids is less important since substitution of acidic residues at position -2, +1, and +2 had no effect in the level of glycosylation observed.
Collapse
Affiliation(s)
- K Nehrke
- Department of Dental Research, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA
| | | | | |
Collapse
|
39
|
Hagen FK, Gregoire CA, Tabak LA. Cloning and sequence homology of a rat UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase. Glycoconj J 1995; 12:901-9. [PMID: 8748168 DOI: 10.1007/bf00731252] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase (polypeptide GalNAc transferase) cDNA was amplified from rat sublingual, submandibular and parotid glands, brain, skeletal muscle, and liver, using the polymerase chain reaction (PCR) and sequences derived from bovine polypeptide GalNAc transferase-Type 1 (polypeptide GalNAc transferase-T1). The transcripts encoding the rat sublingual gland and bovine enzymes were 91% identical in nucleotide sequence, except in their 5' and 3' untranslated regions. The enzymes encoded by the rat and bovine cDNAs were 559 amino acids in length and were virtually identical (98% amino acid sequence identity and 99.5% homologous overall). Northern blot analysis indicates that the polypeptide GalNAc transferase-T1 transcripts are expressed in many tissues but at widely differing levels. Although the amino acid sequence of polypeptide GalNAc transferase-T1 is conserved among mammals, the pattern of tissue expression varies between rats and humans. For example, the steady-state level of polypeptide GalNAc transferase-T1 transcript is quite low in lung relative to other rat tissues, whereas high expression of this transcript is detected in human lung. Therefore, we surmise that isoforms of polypeptide GalNAc transferase must exist and that isoforms are expressed in a tissue-dependent fashion. Searches of the GenBank database have revealed homologous sequences for several isoforms derived from several human tissues. In addition, hypothetical proteins from C. elegans also display strong homology; evidence suggests six ancestral isoforms of polypeptide GalNAc transferases may exist in C. elegans.
Collapse
Affiliation(s)
- F K Hagen
- Department of Dental Research and Biochemistry, University of Rochester, New York 14642, USA
| | | | | |
Collapse
|
40
|
White T, Bennett EP, Takio K, Sørensen T, Bonding N, Clausen H. Purification and cDNA cloning of a human UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase. J Biol Chem 1995; 270:24156-65. [PMID: 7592619 DOI: 10.1074/jbc.270.41.24156] [Citation(s) in RCA: 163] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A UDP-GalNAc:polypeptide N-acetylgalactosaminyl-transferase (GalNAc-transferase) from human placenta was purified to apparent homogeneity using a synthetic acceptor peptide as affinity ligand. The purified GalNAc-transferase migrated as a single band with an approximate molecular weight of 52,000 by reducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Based on a partial amino acid sequence, the cDNA encoding the transferase was cloned and sequenced from a cDNA library of a human cancer cell line. The cDNA sequence has a 571-amino acid coding region indicating a protein of 64.7 kDa with a type II domain structure. The deduced protein sequence showed significant similarity to a recently cloned bovine polypeptide GalNAc-transferase (Homa, F.L., Hollanders, T., Lehman, D.J., Thomsen, D.R., and Elhammer, A.P. (1993) J. Biol. Chem. 268, 12609-12616). A polymerase chain reaction construct was expressed in insect cells using a baculovirus vector. Northern analysis of eight human tissues differed clearly from that of the bovine GalNAc-transferase. Polymerase chain reaction cloning and sequencing of the human version of the bovine transferase are presented, and 98% similarity at the amino acid level was found. The data suggest that the purified human GalNAc-transferase is a novel member of a family of polypeptide GalNAc-transferases, and a nomenclature GalNAc-T1 and GalNAc-T2 is introduced to distinguish the members.
Collapse
Affiliation(s)
- T White
- Faculty of Health Sciences, School of Dentistry, University of Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
41
|
Sørensen T, White T, Wandall HH, Kristensen AK, Roepstorff P, Clausen H. UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase. Identification and separation of two distinct transferase activities. J Biol Chem 1995; 270:24166-73. [PMID: 7592620 DOI: 10.1074/jbc.270.41.24166] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Using a defined acceptor substrate peptide as an affinity chromatography ligand we have developed a purification scheme for a unique human polypeptide, UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase (GalNAc-transferase) (White, T., Bennett, E.P., Takio, K., Sørensen, T., Bonding, N., and Clausen, H. (1995) J. Biol. Chem. 270, 24156-24165). Here we report detailed studies of the acceptor substrate specificity of GalNAc-transferase purified by this scheme as well as the Gal-NAc-transferase activity, which, upon repeated affinity chromatography, evaded purification by this affinity ligand. Using a panel of acceptor peptides, a qualitative difference in specificity between these separated transferase activities in four rat organs and two human organs also revealed qualitative differences in specificity. The results support the existence of multiple Gal-NAc-transferase activities and suggest that these are differentially expressed in different organs. As the number of GalNAc-transferases existing is unknown, as is the specificity of the until now cloned and expressed GalNAc-transferases (T1 and T2), it is as yet impossible to relate the results obtained to specific enzyme proteins. The identification of acceptor peptides that can be used to discriminate GalNAc-transferase activities is an important step toward understanding the molecular basis of GalNAc O-linked glycosylation in cells and organs and in pathological conditions.
Collapse
Affiliation(s)
- T Sørensen
- Faculty of Health Sciences, School of Dentistry, University of Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
42
|
Hansen JE, Lund O, Engelbrecht J, Bohr H, Nielsen JO, Hansen JE. Prediction of O-glycosylation of mammalian proteins: specificity patterns of UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase. Biochem J 1995; 308 ( Pt 3):801-13. [PMID: 8948436 PMCID: PMC1136796 DOI: 10.1042/bj3080801] [Citation(s) in RCA: 204] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The specificity of the enzyme(s) catalysing the covalent link between the hydroxyl side chains of serine or threonine and the sugar moiety N-acetylgalactosamine (GalNAc) is unknown. Pattern recognition by artificial neural networks and weight matrix algorithms was performed to determine the exact position of in vivo O-linked GalNAc-glycosylated serine and threonine residues from the primary sequence exclusively. The acceptor sequence context for O-glycosylation of serine was found to differ from that of threonine and the two types were therefore treated separately. The context of the sites showed a high abundance of proline, serine and threonine extending far beyond the previously reported region covering positions -4 through +4 relative to the glycosylated residue. The O-glycosylation sites were found to cluster and to have a high abundance in the N-terminal part of the protein. The sites were also found to have an increased preference for three different classes of beta-turns. No simple consensus-like rule could be deduced for the complex glycosylation sequence acceptor patterns. The neural networks were trained on the hitherto largest data material consisting of 48 carefully examined mammalian glycoproteins comprising 264 O-glycosylation sites. For detection neural network algorithms were much more reliable than weight matrices. The networks correctly found 60-95% of the O-glycosylated serine/threonine residues and 88-97% of the non-glycosylated residues in two independent test sets of known glycoproteins. A computer server using E-mail for prediction of O-glycosylation sites has been implemented and made publicly available. The Internet address is NetOglyc@cbs.dtu.dk.
Collapse
Affiliation(s)
- J E Hansen
- Laboratory for Infectious Diseases, Hvidovre Hospital, University of Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
43
|
Stadie TRE, Chai W, Lawson AM, Byfield PGH, Hanisch FG. Studies on the Order and Site Specificity of GalNAc Transfer to MUC1 Tandem Repeats by UDP-GalNAc: Polypeptide N -Acetylgalactosaminyltransferase from Milk or Mammary Carcinoma Cells. ACTA ACUST UNITED AC 1995. [DOI: 10.1111/j.1432-1033.1995.tb20448.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Brockhausen I. Chapter 5 Biosynthesis 3. Biosynthesis of O-Glycans of the N-Acetylgalactosamine-α-Ser/Thr Linkage Type. NEW COMPREHENSIVE BIOCHEMISTRY 1995. [DOI: 10.1016/s0167-7306(08)60593-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
45
|
Rebordosa X, Piñol J, Pérez-Pons JA, Lloberas J, Naval J, Querol E. Mapping, cloning and sequencing of a glycoprotein-encoding gene from bovine herpesvirus type 1 homologous to the gE gene from HSV-1. Gene 1994; 149:203-9. [PMID: 7958994 DOI: 10.1016/0378-1119(94)90151-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In order to map and identify the glycoprotein-encoding gene from bovine herpesvirus type 1 (BHV-1), homologous to the gE glycoprotein from herpes simplex virus type 1 (HSV-1), a region of the unique short sequence from the BHV-1 genome has been sequenced. The sequenced region contains an ORF coding for a polypeptide of 575 amino acids (aa). The aa sequence presents substantial similarity to that of the glycoprotein gE from HSV-1 and to homologous proteins of related viruses such as pseudorabies virus, equine herpesvirus type 1 and varicella zoster virus. The aa sequence presents additional characteristics compatible with the structure of a viral glycoprotein: signal peptide, putative glycosylation sites and a long C-terminal transmembrane alpha-helix.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Blotting, Western
- Cloning, Molecular/methods
- Consensus Sequence
- Genes, Viral
- Glycosylation
- Herpesvirus 1, Bovine/genetics
- Herpesvirus 1, Equid/genetics
- Herpesvirus 1, Human/genetics
- Herpesvirus 1, Suid/genetics
- Herpesvirus 3, Human/genetics
- Molecular Sequence Data
- Open Reading Frames
- Protein Structure, Secondary
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/isolation & purification
- Restriction Mapping
- Sequence Homology, Amino Acid
- Viral Envelope Proteins/biosynthesis
- Viral Envelope Proteins/chemistry
- Viral Envelope Proteins/genetics
- Viral Proteins
Collapse
Affiliation(s)
- X Rebordosa
- Institut de Biologia Fonamental, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | | | | | | | |
Collapse
|
46
|
Tetaert D, Soudan B, Lo-Guidice JM, Richet C, Degand P, Boussard G, Mariller C, Spik G. Combination of high-performance anion-exchange chromatography and electrospray mass spectrometry for analysis of the in vitro O-glycosylated mucin motif peptide. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL APPLICATIONS 1994; 658:31-8. [PMID: 7952129 DOI: 10.1016/0378-4347(94)00223-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Reversed-phase high-performance liquid chromatography (HPLC) and high-performance anion-exchange chromatography (HPAEC) with pulsed amperometric detection were developed for the study of products obtained from the in vitro O-glycosylation of a mucin motif peptide, TTSAPTTS, the most representative sequence encoded by the human gene MUC5C. After incubation of the peptide, which is rich in clustered hydroxyamino acids, by both human colonic and gastric microsomal homogenates, the glycosylated products were separated by HPLC and HPAEC and analysed by electrospray mass spectrometry (ES-MS). The combination of HPAEC and ES-MS was the approach used for evaluating the differences between the polypeptide N-acetylgalactosaminyltransferase activity in different digestive tissues.
Collapse
|
47
|
Nishimori I, Johnson N, Sanderson S, Perini F, Mountjoy K, Cerny R, Gross M, Hollingsworth M. Influence of acceptor substrate primary amino acid sequence on the activity of human UDP-N-acetylgalactosamine:polypeptide N-acetylgalactosaminyltransferase. Studies with the MUC1 tandem repeat. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)33981-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
48
|
Granovsky M, Bielfeldt T, Peters S, Paulsen H, Meldal M, Brockhausen J, Brockhausen I. UDPgalactose:glycoprotein-N-acetyl-D-galactosamine 3-beta-D-galactosyltransferase activity synthesizing O-glycan core 1 is controlled by the amino acid sequence and glycosylation of glycopeptide substrates. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 221:1039-46. [PMID: 8181460 DOI: 10.1111/j.1432-1033.1994.tb18822.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In order to investigate the role of the peptide moiety of glycoproteins in the control of O-glycan biosynthesis, UDPgalactose:glycoprotein-N-acetyl-D-galactosamine 3-beta-D-galactosyltransferase (core 1 beta 3-Gal-T) from rat liver was tested for its specificity towards GalNAc-containing glycopeptide substrates. Series of glycopeptides have been synthesized by solid-phase synthesis, protected with an acetyl group on the amino terminal and an amide group on the carboxy terminal, based on variations of the repeat sequences of human intestinal mucin. Most glycopeptides were excellent substrates for core 1 beta 3-Gal-T compared to benzyl alpha-D-galactosamine as indicated by their relatively high Vmax/Km. The enzyme preferred threonine alpha-D-galactosamine Thr(GalNAc) to serine alpha-D-galactosamine. Pro on the carboxy-terminal side adjacent to Thr(GalNAc) was inhibitory. Negatively charged amino acids on either side showed a low Km; substrates with negatively charged amino acids on the amino-terminal side were highly efficient substrates, suggesting charge-charge interactions between enzyme and substrate. Gal beta 1-3GalNAc alpha residues adjacent to Thr(GalNAc) reduced the activity. Product analysis using glycopeptide substrates with three adjacent GalNAc residues showed incorporation of one, two and a small amount of three Gal residues per molecule with an uneven distribution of the potential di-galactosylated isomers. These studies indicate that, in addition to initial glycosylation, the second step in the glycosylation pathways of O-glycans is also controlled by the structure and glycosylation of the peptide core of substrates.
Collapse
Affiliation(s)
- M Granovsky
- Biochemistry Department, Research Institute, Hospital for Sick Children, Toronto, Canada
| | | | | | | | | | | | | |
Collapse
|
49
|
Bock K, Schuster-Kolbe J, Altman E, Allmaier G, Stahl B, Christian R, Sleytr U, Messner P. Primary structure of the O-glycosidically linked glycan chain of the crystalline surface layer glycoprotein of Thermoanaerobacter thermohydrosulfuricus L111-69. Galactosyl tyrosine as a novel linkage unit. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37258-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
50
|
O'Connell BC, Tabak LA. A comparison of serine and threonine O-glycosylation by UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase. J Dent Res 1993; 72:1554-8. [PMID: 8254121 DOI: 10.1177/00220345930720120401] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
O-glycosylated proteins are ubiquitous in eukaryotes and are responsible for a variety of biological functions. O-glycosylation is initiated by the addition of N-acetylgalactosamine to serine or threonine residues, though it is not clear how specific residues are selected for modification. We have compared serine and threonine glycosylation using peptide substrates based on sequences from erythropoietin (EPO) and von Willebrand factor (HVF) that are glycosylated in vivo. UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase was derived from rat parotid, submandibular, and sublingual glands, liver and kidney as well as from human colostrum. The threonine-containing substrates were glycosylated to a much greater extent than those containing serine for all the enzyme sources. Changes in reaction pH, donor concentration, or divalent cation were unable to increase glycosylation of serine. When the incubation time was extended, serine in the EPO-based peptide was found to incorporate GalNAc at a low level, in contrast to the serine-containing HVF peptide, which did not glycosylate at all. By circular dichroism, the non-glycosylating peptide was the only one of the series that did not exhibit random coil structure. Our data suggest that although the structural and sequence requirements for O-glycosylation of serine and threonine residues are similar, serine sites are glycosylated less effectively than are threonine sites in vitro.
Collapse
Affiliation(s)
- B C O'Connell
- Department of Dental Research, University of Rochester, New York 14642
| | | |
Collapse
|