1
|
Sachdeva S, Saluja H, Mani A, Phadnaik MB, Mani S. Lipoxins in inflammation. Clin Hemorheol Microcirc 2022; 82:201-216. [PMID: 35147530 DOI: 10.3233/ch-211346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Lipoxins and ATL appear to be the first recognized members of a new class of endogenous mediator that are anti-inflammatory or serve for the "pro-resolution" of inflammation. PGE2 can and may display anti-inflammatory properties in certain settings, but in most cases, it enhances inflammation in vivo. This is likely the result of numerous receptor isoforms and differential coupled mechanisms for PGE2 and its diverse role in human physiology. Since the integrated response of the host is essential to health and disease, it is important to achieve a more complete understanding of the molecular and cellular events governing the formation and actions of endogenous mediators of resolution that appear to control the magnitude and duration of inflammation. In view of the present body of evidence, it is not surprising that a protective action for inhibition of COX-2 was found in cardiovascular disease. Characterizing useful experimental systems with clinically relevant endpoints will also take a multidisciplinary approach and require a shift in our current thinking about inflammation and the role of lipid mediators.
Collapse
Affiliation(s)
- Shivani Sachdeva
- Department of Periodontology, Pravara Institute of Medical Sciences, Rdc, Loni, Maharashtra, India
| | - Harish Saluja
- Department of Oral and Maxillofacial Surgery, Pravara Institute of Medical Sciences, Rdc, Loni, Maharashtra, India
| | - Ameet Mani
- Department of Periodontology, Pravara Institute of Medical Sciences, Rdc, Loni, Maharashtra, India
| | - M B Phadnaik
- Department of Periodontology, #Government Dental College Nagpur, Maharashtra, India
| | - Shubhangi Mani
- Department of Orthodontics, Pravara Institute of Medical Sciences, Rdc, Loni, Maharashtra, India
| |
Collapse
|
2
|
Shum M, London CM, Briottet M, Sy KA, Baillif V, Philippe R, Zare A, Ghorbani-Dalini S, Remus N, Tarze A, Escabasse V, Epaud R, Dubourdeau M, Urbach V. CF Patients’ Airway Epithelium and Sex Contribute to Biosynthesis Defects of Pro-Resolving Lipids. Front Immunol 2022; 13:915261. [PMID: 35784330 PMCID: PMC9244846 DOI: 10.3389/fimmu.2022.915261] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/13/2022] [Indexed: 01/07/2023] Open
Abstract
Specialized pro-resolving lipid mediators (SPMs) as lipoxins (LX), resolvins (Rv), protectins (PD) and maresins (MaR) promote the resolution of inflammation. We and others previously reported reduced levels of LXA4 in bronchoalveolar lavages from cystic fibrosis (CF) patients. Here, we investigated the role of CF airway epithelium in SPMs biosynthesis, and we evaluated its sex specificity. Human nasal epithelial cells (hNEC) were obtained from women and men with or without CF. Lipids were quantified by mass spectrometry in the culture medium of hNEC grown at air-liquid interface and the expression level and localization of the main enzymes of SPMs biosynthesis were assessed. The 5-HETE, LXA4, LXB4, RvD2, RvD5, PD1 and RvE3 levels were significantly lower in samples derived from CF patients compared with non-CF subjects. Within CF samples, the 12-HETE, 15-HETE, RvD3, RvD4, 17-HODHE and PD1 were significantly lower in samples derived from females. While the mean expression levels of 15-LO, 5-LO and 12-LO do not significantly differ either between CF and non-CF or between female and male samples, the SPMs content correlates with the level of expression of several enzymes involved in SPMs metabolism. In addition, the 5-LO localization significantly differed from cytoplasmic in non-CF to nucleic (or nuclear envelope) in CF hNEC. Our studies provided evidence for lower abilities of airway epithelial cells derived from CF patients and more markedly, females to produce SPMs. These data are consistent with a contribution of CF airway epithelium in the abnormal resolution of inflammation and with worse pulmonary outcomes in women.
Collapse
Affiliation(s)
- Mickael Shum
- University Paris Est Créteil, Institut National de la Santé Et de la Recherche Médicale (INSERM) U955, Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
| | - Charlie M. London
- University Paris Est Créteil, Institut National de la Santé Et de la Recherche Médicale (INSERM) U955, Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
| | - Maelle Briottet
- University Paris Est Créteil, Institut National de la Santé Et de la Recherche Médicale (INSERM) U955, Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
| | - Khadeeja Adam Sy
- University Paris Est Créteil, Institut National de la Santé Et de la Recherche Médicale (INSERM) U955, Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
| | | | - Reginald Philippe
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1151 – Institut Necker Enfants Malades (INEM), Paris, France
| | - Abdolhossein Zare
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1151 – Institut Necker Enfants Malades (INEM), Paris, France
| | - Sadegh Ghorbani-Dalini
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1151 – Institut Necker Enfants Malades (INEM), Paris, France
| | - Natacha Remus
- University Paris Est Créteil, Institut National de la Santé Et de la Recherche Médicale (INSERM) U955, Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
- Centre Hospitalier Intercommunal de Créteil (CHIC), Créteil, France
| | - Agathe Tarze
- University Paris Est Créteil, Institut National de la Santé Et de la Recherche Médicale (INSERM) U955, Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
| | - Virginie Escabasse
- University Paris Est Créteil, Institut National de la Santé Et de la Recherche Médicale (INSERM) U955, Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
- Centre Hospitalier Intercommunal de Créteil (CHIC), Créteil, France
| | - Ralph Epaud
- University Paris Est Créteil, Institut National de la Santé Et de la Recherche Médicale (INSERM) U955, Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
- Centre Hospitalier Intercommunal de Créteil (CHIC), Créteil, France
| | | | - Valerie Urbach
- University Paris Est Créteil, Institut National de la Santé Et de la Recherche Médicale (INSERM) U955, Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1151 – Institut Necker Enfants Malades (INEM), Paris, France
- *Correspondence: Valerie Urbach,
| |
Collapse
|
3
|
Abstract
ABSTRACT Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are caused by an exaggerated inflammatory response arising from a wide variety of pulmonary and systemic insults. Lung tissue is composed of a variety of cell populations, including parenchymal and immune cells. Emerging evidence has revealed that multiple cell populations in the lung work in concert to regulate lung inflammation in response to both direct and indirect stimulations. To date, the question of how different types of pulmonary cells communicate with each other and subsequently regulate or modulate inflammatory cascades remains to be fully addressed. In this review, we provide an overview of current advancements in understanding the role of cell-cell interaction in the development of ALI and depict molecular mechanisms by which cell-cell interactions regulate lung inflammation, focusing on inter-cellular activities and signaling pathways that point to possible therapeutic opportunities for ALI/ARDS.
Collapse
Affiliation(s)
- Huiting Zhou
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Erica K. Fan
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania
| | - Jie Fan
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Research and Development, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
4
|
Role of the Cysteinyl Leukotrienes in the Pathogenesis and Progression of Cardiovascular Diseases. Mediators Inflamm 2017; 2017:2432958. [PMID: 28932020 PMCID: PMC5592403 DOI: 10.1155/2017/2432958] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 08/17/2017] [Indexed: 12/18/2022] Open
Abstract
Cysteinyl leukotrienes (CysLTs) are potent lipid inflammatory mediators synthesized from arachidonic acid, through the 5-lipoxygenase (5-LO) pathway. Owing to their properties, CysLTs play a crucial role in the pathogenesis of inflammation; therefore, CysLT modifiers as synthesis inhibitors or receptor antagonists, central in asthma management, may become a potential target for the treatment of other inflammatory diseases such as the cardiovascular disorders. 5-LO pathway activation and increased expression of its mediators and receptors are found in cardiovascular diseases. Moreover, the cardioprotective effects observed by using CysLT modifiers are promising and contribute to elucidate the link between CysLTs and cardiovascular disease. The aim of this review is to summarize the state of present research about the role of the CysLTs in the pathogenesis and progression of atherosclerosis and myocardial infarction.
Collapse
|
5
|
Ke Y, Zebda N, Oskolkova O, Afonyushkin T, Berdyshev E, Tian Y, Meng F, Sarich N, Bochkov VN, Wang JM, Birukova AA, Birukov KG. Anti-Inflammatory Effects of OxPAPC Involve Endothelial Cell-Mediated Generation of LXA4. Circ Res 2017; 121:244-257. [PMID: 28522438 DOI: 10.1161/circresaha.116.310308] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 05/12/2017] [Accepted: 05/18/2017] [Indexed: 12/23/2022]
Abstract
RATIONALE Oxidation of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (OxPAPC) generates a group of bioactive oxidized phospholipid products with a broad range of biological activities. Barrier-enhancing and anti-inflammatory effects of OxPAPC on pulmonary endothelial cells are critical for prevention of acute lung injury caused by bacterial pathogens or excessive mechanical ventilation. Anti-inflammatory properties of OxPAPC are associated with its antagonistic effects on Toll-like receptors and suppression of RhoA GTPase signaling. OBJECTIVE Because OxPAPC exhibits long-lasting anti-inflammatory and lung-protective effects even after single administration in vivo, we tested the hypothesis that these effects may be mediated by additional mechanisms, such as OxPAPC-dependent production of anti-inflammatory and proresolving lipid mediator, lipoxin A4 (LXA4). METHODS AND RESULTS Mass spectrometry and ELISA assays detected significant accumulation of LXA4 in the lungs of OxPAPC-treated mice and in conditioned medium of OxPAPC-exposed pulmonary endothelial cells. Administration of LXA4 reproduced anti-inflammatory effect of OxPAPC against tumor necrosis factor-α in vitro and in the animal model of lipopolysaccharide-induced lung injury. The potent barrier-protective and anti-inflammatory effects of OxPAPC against tumor necrosis factor-α and lipopolysaccharide challenge were suppressed in human pulmonary endothelial cells with small interfering RNA-induced knockdown of LXA4 formyl peptide receptor-2 (FPR2/ALX) and in mFPR2-/- (mouse formyl peptide receptor 2) mice lacking the mouse homolog of human FPR2/ALX. CONCLUSIONS This is the first demonstration that inflammation- and injury-associated phospholipid oxidation triggers production of anti-inflammatory and proresolution molecules, such as LXA4. This lipid mediator switch represents a novel mechanism of OxPAPC-assisted recovery of inflamed lung endothelium.
Collapse
Affiliation(s)
- Yunbo Ke
- From the Department of Medicine, Lung Injury Center, Section of Pulmonary and Critical Medicine, University of Chicago, IL (Y.K., N.Z., O.O., T.A., Y.T., F.M., N.S., A.A.B., K.G.B.); National Jewish Health, Denver, CO (E.B.); National Cancer Institute at Frederick, MD (J.M.W.); and Institute of Pharmaceutical Sciences, University of Graz, Austria (V.N.B.)
| | - Noureddine Zebda
- From the Department of Medicine, Lung Injury Center, Section of Pulmonary and Critical Medicine, University of Chicago, IL (Y.K., N.Z., O.O., T.A., Y.T., F.M., N.S., A.A.B., K.G.B.); National Jewish Health, Denver, CO (E.B.); National Cancer Institute at Frederick, MD (J.M.W.); and Institute of Pharmaceutical Sciences, University of Graz, Austria (V.N.B.)
| | - Olga Oskolkova
- From the Department of Medicine, Lung Injury Center, Section of Pulmonary and Critical Medicine, University of Chicago, IL (Y.K., N.Z., O.O., T.A., Y.T., F.M., N.S., A.A.B., K.G.B.); National Jewish Health, Denver, CO (E.B.); National Cancer Institute at Frederick, MD (J.M.W.); and Institute of Pharmaceutical Sciences, University of Graz, Austria (V.N.B.)
| | - Taras Afonyushkin
- From the Department of Medicine, Lung Injury Center, Section of Pulmonary and Critical Medicine, University of Chicago, IL (Y.K., N.Z., O.O., T.A., Y.T., F.M., N.S., A.A.B., K.G.B.); National Jewish Health, Denver, CO (E.B.); National Cancer Institute at Frederick, MD (J.M.W.); and Institute of Pharmaceutical Sciences, University of Graz, Austria (V.N.B.)
| | - Evgeny Berdyshev
- From the Department of Medicine, Lung Injury Center, Section of Pulmonary and Critical Medicine, University of Chicago, IL (Y.K., N.Z., O.O., T.A., Y.T., F.M., N.S., A.A.B., K.G.B.); National Jewish Health, Denver, CO (E.B.); National Cancer Institute at Frederick, MD (J.M.W.); and Institute of Pharmaceutical Sciences, University of Graz, Austria (V.N.B.)
| | - Yufeng Tian
- From the Department of Medicine, Lung Injury Center, Section of Pulmonary and Critical Medicine, University of Chicago, IL (Y.K., N.Z., O.O., T.A., Y.T., F.M., N.S., A.A.B., K.G.B.); National Jewish Health, Denver, CO (E.B.); National Cancer Institute at Frederick, MD (J.M.W.); and Institute of Pharmaceutical Sciences, University of Graz, Austria (V.N.B.)
| | - Fanyong Meng
- From the Department of Medicine, Lung Injury Center, Section of Pulmonary and Critical Medicine, University of Chicago, IL (Y.K., N.Z., O.O., T.A., Y.T., F.M., N.S., A.A.B., K.G.B.); National Jewish Health, Denver, CO (E.B.); National Cancer Institute at Frederick, MD (J.M.W.); and Institute of Pharmaceutical Sciences, University of Graz, Austria (V.N.B.)
| | - Nicolene Sarich
- From the Department of Medicine, Lung Injury Center, Section of Pulmonary and Critical Medicine, University of Chicago, IL (Y.K., N.Z., O.O., T.A., Y.T., F.M., N.S., A.A.B., K.G.B.); National Jewish Health, Denver, CO (E.B.); National Cancer Institute at Frederick, MD (J.M.W.); and Institute of Pharmaceutical Sciences, University of Graz, Austria (V.N.B.)
| | - Valery N Bochkov
- From the Department of Medicine, Lung Injury Center, Section of Pulmonary and Critical Medicine, University of Chicago, IL (Y.K., N.Z., O.O., T.A., Y.T., F.M., N.S., A.A.B., K.G.B.); National Jewish Health, Denver, CO (E.B.); National Cancer Institute at Frederick, MD (J.M.W.); and Institute of Pharmaceutical Sciences, University of Graz, Austria (V.N.B.)
| | - Ji Ming Wang
- From the Department of Medicine, Lung Injury Center, Section of Pulmonary and Critical Medicine, University of Chicago, IL (Y.K., N.Z., O.O., T.A., Y.T., F.M., N.S., A.A.B., K.G.B.); National Jewish Health, Denver, CO (E.B.); National Cancer Institute at Frederick, MD (J.M.W.); and Institute of Pharmaceutical Sciences, University of Graz, Austria (V.N.B.)
| | - Anna A Birukova
- From the Department of Medicine, Lung Injury Center, Section of Pulmonary and Critical Medicine, University of Chicago, IL (Y.K., N.Z., O.O., T.A., Y.T., F.M., N.S., A.A.B., K.G.B.); National Jewish Health, Denver, CO (E.B.); National Cancer Institute at Frederick, MD (J.M.W.); and Institute of Pharmaceutical Sciences, University of Graz, Austria (V.N.B.)
| | - Konstantin G Birukov
- From the Department of Medicine, Lung Injury Center, Section of Pulmonary and Critical Medicine, University of Chicago, IL (Y.K., N.Z., O.O., T.A., Y.T., F.M., N.S., A.A.B., K.G.B.); National Jewish Health, Denver, CO (E.B.); National Cancer Institute at Frederick, MD (J.M.W.); and Institute of Pharmaceutical Sciences, University of Graz, Austria (V.N.B.).
| |
Collapse
|
6
|
Shinohara M, Serhan CN. Novel Endogenous Proresolving Molecules:Essential Fatty Acid-Derived and Gaseous Mediators in the Resolution of Inflammation. J Atheroscler Thromb 2016; 23:655-64. [PMID: 27052783 DOI: 10.5551/jat.33928] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Acute inflammation is a fundamental, protective response that orchestrates immune system to address harmful stimuli both from within and via invasion. New evidences indicate that the resolution of acute inflammation is not simply passive but active and highly regulated processes coordinated by new families of potent bioactive lipid mediators (LMs), coined specialized proresolving mediators (SPMs). These SPMs are biosynthesized from n-3 polyunsaturated fatty acids. Low concentrations of SPM (nM range) stimulate proresolving cellular processes, such as inhibition of neutrophil infiltration, enhancement of macrophage phagocytosis of bacteria and efferocytosis of cellular debris, and reduction of inflammatory pain through specific G-protein coupled receptors.Of the many bioactive mediators that regulate inflammation resolution, low-dose carbon monoxide (CO) functions as a tissue-protective gaso-transmitter that is endogenously produced by the heme oxygenase (HO) system. Specific SPMs activate the HO system, which in turn enhances endogenous CO production locally, thus establishing a protective feed-forward circuit between SPMs and CO. In addition, treatment with low-dose CO and SPMs exerts protective effects against ischemia/reperfusion injury by decreasing leukocyte-platelet interaction and proinflammatory LM levels.Recent studies reviewed herein assessed the impact of SPMs and low-dose inhaled CO on inflammatory diseases. LM metabololipidomics approach allows the assessment of the efficacy of novel treatments with SPMs and low-dose CO. Moreover, this approach indicates the regions where the action of individual LMs may be physiologically relevant and when these LMs are produced in vivo to serve their proresolving mediator functions that may also permit new directions for treating human diseases.
Collapse
Affiliation(s)
- Masakazu Shinohara
- The Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine
| | | |
Collapse
|
7
|
Shinohara M, Kibi M, Riley IR, Chiang N, Dalli J, Kraft BD, Piantadosi CA, Choi AMK, Serhan CN. Cell-cell interactions and bronchoconstrictor eicosanoid reduction with inhaled carbon monoxide and resolvin D1. Am J Physiol Lung Cell Mol Physiol 2014; 307:L746-57. [PMID: 25217660 DOI: 10.1152/ajplung.00166.2014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Polymorphonuclear leukocyte (PMN)-mediated acute lung injury from ischemia/reperfusion (I/R) remains a major cause of morbidity and mortality in critical care medicine. Here, we report that inhaled low-dose carbon monoxide (CO) and intravenous resolvin D1 (RvD1) in mice each reduced PMN-mediated acute lung injury from I/R. Inhaled CO (125-250 ppm) and RvD1 (250-500 ng) each reduced PMN lung infiltration and gave additive lung protection. In mouse whole blood, CO and RvD1 attenuated PMN-platelet aggregates, reducing leukotrienes (LTs) and thromboxane B2 (TxB2) in I/R lungs. With human whole blood, CO (125-250 ppm) decreased PMN-platelet aggregates, expression of adhesion molecules, and cysteinyl LTs, as well as TxB2. RvD1 (1-100 nM) also dose dependently reduced platelet activating factor-stimulated PMN-platelet aggregates in human whole blood. In nonhuman primate (baboon) lung infection with Streptococcus pneumoniae, inhaled CO reduced urinary cysteinyl LTs. These results demonstrate lung protection by low-dose inhaled CO as well as RvD1 that each reduced PMN-mediated acute tissue injury, PMN-platelet interactions, and production of both cysteinyl LTs and TxB2. Together they suggest a potential therapeutic role of low-dose inhaled CO in organ protection, as demonstrated using mouse I/R-initiated lung injury, baboon infections, and human whole blood.
Collapse
Affiliation(s)
- Masakazu Shinohara
- Center for Experimental Therapeutics and Reperfusion Injury, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Megumi Kibi
- Center for Experimental Therapeutics and Reperfusion Injury, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ian R Riley
- Center for Experimental Therapeutics and Reperfusion Injury, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Nan Chiang
- Center for Experimental Therapeutics and Reperfusion Injury, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jesmond Dalli
- Center for Experimental Therapeutics and Reperfusion Injury, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Bryan D Kraft
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Claude A Piantadosi
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Augustine M K Choi
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; Division of Pulmonary and Critical Care Medicine, Weill Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts;
| |
Collapse
|
8
|
Dalli J, Winkler JW, Colas RA, Arnardottir H, Cheng CYC, Chiang N, Petasis NA, Serhan CN. Resolvin D3 and aspirin-triggered resolvin D3 are potent immunoresolvents. ACTA ACUST UNITED AC 2013; 20:188-201. [PMID: 23438748 DOI: 10.1016/j.chembiol.2012.11.010] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 11/26/2012] [Accepted: 11/29/2012] [Indexed: 01/25/2023]
Abstract
Resolvins are a family of n-3 lipid mediators initially identified in resolving inflammatory exudates that temper inflammatory responses to promote catabasis. Here, temporal metabololipidomics with self-limited resolving exudates revealed that resolvin (Rv) D3 has a distinct time frame from other lipid mediators, appearing late in the resolution phase. Using synthetic materials prepared by stereocontrolled total organic synthesis and metabololipidomics, we established complete stereochemistry of RvD3 and its aspirin-triggered 17R-epimer (AT-RvD3). Both synthetic resolvins potently regulated neutrophils and mediators, reducing murine peritonitis and dermal inflammation. RvD3 and AT-RvD3 displayed leukocyte-directed actions, e.g., blocking human neutrophil transmigration and enhancing macrophage phagocytosis and efferocytosis. These results position RvD3 uniquely within the inflammation-resolution time frame to vantage and contribute to the beneficial actions of aspirin and essential n-3 fatty acids.
Collapse
Affiliation(s)
- Jesmond Dalli
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Singh RK, Tandon R, Dastidar SG, Ray A. A review on leukotrienes and their receptors with reference to asthma. J Asthma 2013; 50:922-31. [PMID: 23859232 DOI: 10.3109/02770903.2013.823447] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE AND METHODS Leukotrienes (LTs) including cysteinyl leukotrienes (CysLTs) and LTB4 are the most potent inflammatory lipid mediators and play a central role in the pathophysiology of asthma and other inflammatory diseases. These biological molecules mediate a plethora of contractile and inflammatory responses through specific interaction with distinct G protein-coupled receptors (GPCRs). The main objective of this review is to present an overview of the biological effects of CysLTs and their receptors, along with the current knowledge of mechanisms and role of LTs in the pathogenesis of asthma. RESULTS CysLTs including LTC4, LTD4 and LTE4 are ligands for CysLT1 and CysLT2 receptors, and LTB4 is the agonist for BLT1 and BLT2 receptors. The role of CysLT1 receptor is well established, and most of the pathophysiological effects of CysLTs in asthma are mediated by CysLT1 receptor. Several CysLT1 antagonists have been developed to date and are currently in clinical practice. Most common among them are classical CysLT1 receptor antagonists such as montelukast, zafirlukast, pranlukast, pobilukast, iralukast, cinalukast and MK571. The pharmacological role of CysLT2 receptor, however, is less defined and there is no specific antagonist available so far. The recent demonstration that mice lacking both known CysLT receptors exhibit full/augmented response to CysLT points to the existence of additional subtypes of CysLT receptors. LTB4, on the other hand, is another potent inflammatory leukotriene, which acts as a strong chemoattractant for neutrophils, but weaker for eosinophils. LTB4 is known to play an important role in the development of airway hyper-responsiveness in severe asthma. However there is no LTB4 antagonist available in clinic to date. CONCLUSION This review gives a recent update on the LTs including their biosynthesis, biological effects and the role of anti-LTs in the treatment of asthma. It also discusses about the possible existence of additional subtypes of CysLT receptors.
Collapse
Affiliation(s)
- Rakesh Kumar Singh
- Department of Pharmacology, Daiichi Sankyo Life Science Research Centre, Daiichi Sankyo India Pharma Private Limited, Udyog Vihar, Gurgaon , Haryana , India
| | | | | | | |
Collapse
|
10
|
Sala A, Folco G, Murphy RC. Transcellular biosynthesis of eicosanoids. Pharmacol Rep 2010; 62:503-10. [DOI: 10.1016/s1734-1140(10)70306-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 04/20/2010] [Indexed: 01/12/2023]
|
11
|
Gonsalves CS, Kalra VK. Hypoxia-mediated expression of 5-lipoxygenase-activating protein involves HIF-1alpha and NF-kappaB and microRNAs 135a and 199a-5p. THE JOURNAL OF IMMUNOLOGY 2010; 184:3878-88. [PMID: 20194722 DOI: 10.4049/jimmunol.0902594] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hypoxia occurs in a number of pathological states, such as pulmonary, hematological, and cardiovascular disorders. In this study, we examined the molecular mechanism by which hypoxia contributes to increased leukotriene formation. Our studies showed hypoxia augmented the expression of 5-lipoxygenase activating protein (FLAP), a key enzyme in leukotriene formation, in both human pulmonary microvascular endothelial cells and a transformed human brain endothelial cell line. Hypoxia-induced FLAP mRNA expression involved activation of NADPH-oxidase, PI-3 kinase, mitogen-activated protein kinase, NF-kappaB, and hypoxia-inducible factor (HIF)-1alpha. Hypoxia-induced FLAP promoter activity was attenuated on mutation of hypoxia-response elements (HREs) and NF-kappaB binding motif in the FLAP promoter. Hypoxia also augmented binding of HIF-1alpha to HREs in FLAP promoter as demonstrated by EMSA with nuclear extracts. Furthermore, chromain immunoprecipitation analysis showed HIF-1alpha bound to HREs in native chromatin obtained from hypoxia-treated cells. Next, we examined the role of HIF-1alpha regulated microRNAs on FLAP expression. Our studies showed decreased expression of miR-135a and miR-199a-5p in response to hypoxia. However, overexpression of anti-miR-135a and anti-miR-199a-5p oligonucleotides led to a several fold increased FLAP mRNA and protein expression. These studies demonstrate for the first time that hypoxia-mediated FLAP expression is regulated by HREs and NF-kappaB site in its promoter, and negatively regulated by miR-135a and miR-199a-5p, which target the 3'-UTR of FLAP mRNA. An understanding of these regulatory pathways provides new avenues to ameliorate leukotriene formation and hence reactive airway disease, and inflammation in individuals who have sickle cell disease.
Collapse
Affiliation(s)
- Caryn S Gonsalves
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | | |
Collapse
|
12
|
Poeckel D, Funk CD. The 5-lipoxygenase/leukotriene pathway in preclinical models of cardiovascular disease. Cardiovasc Res 2010; 86:243-53. [PMID: 20093252 DOI: 10.1093/cvr/cvq016] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Leukotrienes (LTs) derived from 5-lipoxygenase (5-LO) activity are most widely known for their actions during acute inflammation and asthma. 5-LO/LT pathway involvement in cardiovascular disease (CVD) pathogenesis has come to the forefront based on provocative human genetic/population and animal studies leading to the hypothesis that this pathway promotes atherosclerosis, abdominal aortic aneurysm, and myocardial infarction/reperfusion injury via increased leucocyte chemotaxis, vascular inflammation and enhanced permeability, and subsequent tissue/matrix degeneration. A series of pre-clinical studies have tested this hypothesis by means of genetic or pharmacological inhibition of either the LT biosynthesis axis (5-LO, 5-LO-activating protein, LTA(4) hydrolase, LTC(4) synthase) or the cognate LT receptors. Here, we summarize, compare, and analyse these animal studies and relate their findings to human disease pathogenesis. We draw a complex picture of 5-LO/LT participation in cardiovascular disorders, which is further complicated by marked differences between species. Moreover, we discuss how the cytokine footprint of the respective pathological conditions determines the expression level and hence, the contribution of components of the pathway to the overall disease state. Current knowledge implies a role for 5-LO and LTs during the early/acute phase of CVD, but our understanding of a putative 5-LO/LT involvement in more advanced stages of CVD is limited, thereby preventing simple extrapolation of findings from animal studies to humans.
Collapse
Affiliation(s)
- Daniel Poeckel
- Department of Physiology, Queen's University, 433 Botterell Hall, Kingston, ON, Canada K7L 3N6
| | | |
Collapse
|
13
|
Lipids as targets for novel anti-inflammatory therapies. Pharmacol Ther 2009; 124:96-112. [PMID: 19576246 DOI: 10.1016/j.pharmthera.2009.06.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 06/12/2009] [Indexed: 02/01/2023]
Abstract
Lipids serve important functions as membrane constituents and also as energy storing molecules. Besides these functions certain lipid species have now been recognized as signalling molecules that regulate a multitude of cellular responses including cell growth and death, and also inflammatory reactions. Bioactive lipids are generated by hydrolysis from membrane lipids mainly by phospholipases giving rise to fatty acids and lysophospholipids that either directly exert their function or are further converted to active mediators. This review will summarize the present knowledge about bioactive lipids that either promote or attenuate inflammatory reactions. These lipids include polyunsaturated fatty acids (PUFA), eicosanoids including the epoxyeicosatrienoic acids (EET), peroxisome proliferation activating receptor (PPAR) activators, cannabinoids and the sphingolipids ceramide, sphingosine 1-phosphate and sphingosylphosphorylcholine.
Collapse
|
14
|
Placenta growth factor induces 5-lipoxygenase-activating protein to increase leukotriene formation in sickle cell disease. Blood 2008; 113:1129-38. [PMID: 18945963 DOI: 10.1182/blood-2008-07-169821] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Individuals with sickle cell disease (SCD) have increased inflammation, a high incidence of airway hyperreactivity (AH), and increased circulating leukotrienes (LT). We show that expression of 5-lipoxygenase and 5-lipoxygenase activating protein (FLAP), key catalytic molecules in the LT pathway, were significantly increased in peripheral blood mononuclear cells (MNCs) in patients with SCD, compared with healthy controls. Placenta growth factor (PlGF), elaborated from erythroid cells, activated MNC and THP-1 monocytic cells to induce LT production. PlGF-mediated increased FLAP mRNA expression occurred via activation of phosphoinositide-3 (PI-3) kinase, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, and hypoxia inducible factor-1alpha (HIF-1alpha). HIF-1alpha small interfering RNA (siRNA) reduced PlGF-induced FLAP expression. FLAP promoter-driven luciferase constructs demonstrated that PlGF-mediated luciferase induction was abrogated upon mutation of HIF-1alpha response element (HRE), but not the nuclear factor-kappaB (NF-kappaB) site in the FLAP promoter; a finding confirmed by chromatin immunoprecipitation (ChIP) analysis. PlGF also increased HIF-1alpha binding to the HRE in the FLAP promoter. Therefore, it is likely that the intrinsically elevated levels of PlGF in SCD subjects contribute to increased LT, which in turn, mediate both inflammation and AH. Herein, we identify a mechanism of increased LT in SCD and show HIF-1alpha as a hypoxia-independent target of PlGF. These studies provide new avenues to ameliorate these complications.
Collapse
|
15
|
Capra V, Thompson MD, Sala A, Cole DE, Folco G, Rovati GE. Cysteinyl-leukotrienes and their receptors in asthma and other inflammatory diseases: critical update and emerging trends. Med Res Rev 2007; 27:469-527. [PMID: 16894531 DOI: 10.1002/med.20071] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cysteinyl-leukotrienes (cysteinyl-LTs), that is, LTC4, LTD4, and LTE4, trigger contractile and inflammatory responses through the specific interaction with G protein-coupled receptors (GPCRs) belonging to the purine receptor cluster of the rhodopsin family, and identified as CysLT receptors (CysLTRs). Cysteinyl-LTs have a clear role in pathophysiological conditions such as asthma and allergic rhinitis (AR), and have been implicated in other inflammatory conditions including cardiovascular diseases, cancer, atopic dermatitis, and urticaria. Molecular cloning of human CysLT1R and CysLT2R subtypes has confirmed most of the previous pharmacological characterization and identified distinct expression patterns only partially overlapping. Interestingly, recent data provide evidence for the immunomodulation of CysLTR expression, the existence of additional receptor subtypes, and of an intracellular pool of CysLTRs that may have roles different from those of plasma membrane receptors. Furthermore, genetic variants have been identified for the CysLTRs that may interact to confer risk for atopy. Finally, a crosstalk between the cysteinyl-LT and the purine systems is being delineated. This review will summarize and attempt to integrate recent data derived from studies on the molecular pharmacology and pharmacogenetics of CysLTRs, and will consider the therapeutic opportunities arising from the new roles suggested for cysteinyl-LTs and their receptors.
Collapse
MESH Headings
- Adult
- Animals
- Asthma/drug therapy
- Asthma/physiopathology
- Cardiovascular Diseases/physiopathology
- Child
- Child, Preschool
- Dermatitis, Atopic/drug therapy
- Dermatitis, Atopic/etiology
- Female
- Humans
- Hydroxyurea/adverse effects
- Hydroxyurea/analogs & derivatives
- Leukotriene Antagonists/adverse effects
- Leukotriene Antagonists/therapeutic use
- Leukotriene C4/physiology
- Leukotriene D4/physiology
- Leukotriene E4/physiology
- Membrane Proteins/drug effects
- Membrane Proteins/genetics
- Membrane Proteins/physiology
- Pharmacogenetics
- Receptors, Leukotriene/drug effects
- Receptors, Leukotriene/genetics
- Receptors, Leukotriene/physiology
- Receptors, Purinergic/physiology
- Recombinant Proteins/pharmacology
- Rhinitis, Allergic, Seasonal/drug therapy
- Rhinitis, Allergic, Seasonal/physiopathology
- SRS-A/biosynthesis
- Tissue Distribution
Collapse
Affiliation(s)
- Valérie Capra
- Department of Pharmacological Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy.
| | | | | | | | | | | |
Collapse
|
16
|
Folco G, Murphy RC. Eicosanoid Transcellular Biosynthesis: From Cell-Cell Interactions to in Vivo Tissue Responses. Pharmacol Rev 2006; 58:375-88. [PMID: 16968946 DOI: 10.1124/pr.58.3.8] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The biosynthesis of the biologically active metabolites of arachidonic acid involves a number of enzymes that are differentially expressed in cells. Prostaglandins and thromboxanes are derived from the chemically unstable prostaglandin (PG) H(2) intermediate synthesized by PGH synthases (cyclooxygenase-1/2) and leukotrienes from chemically unstable leukotriene A(4) by 5-lipoxygenase. Additional enzymes transform these reactive intermediates to a variety of chemical structures known collectively as the lipid mediators. Although some cells have the complete cassette of enzymes required for the production of biologically active prostaglandins and leukotrienes, the actual biosynthetic events often are a result of cell-cell interaction and a transfer of these chemically reactive intermediates, PGH(2) and leukotriene A(4), between cells. This process has come to be known as transcellular biosynthesis of eicosanoids and requires a donor cell to synthesize and release one component of the biosynthetic cascade and a second, accessory cell to take up that intermediate and process each into the final biologically active product. This review focuses on the evidence for transcellular biosynthetic events for prostaglandins, leukotrienes, and lipoxins occurring during cell-cell interactions. Evidence for arachidonic acid serving as a transcellular biosynthetic intermediate is presented. Experiments for transcellular events taking place in vivo that reveal the true complexity of eicosanoid biosynthesis within tissues are also reviewed.
Collapse
Affiliation(s)
- Giancarlo Folco
- Department of Pharmacology, University of Colorado at Denver and Health Sciences Center, Mail Stop 8303, 12801 E. 17th Avenue, P.O. Box 6511, Aurora, CO 80045-0511, USA
| | | |
Collapse
|
17
|
Serhan CN. Lipoxins and aspirin-triggered 15-epi-lipoxins are the first lipid mediators of endogenous anti-inflammation and resolution. Prostaglandins Leukot Essent Fatty Acids 2005; 73:141-62. [PMID: 16005201 DOI: 10.1016/j.plefa.2005.05.002] [Citation(s) in RCA: 319] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Lipoxins (LXs) or the lipoxygenase interaction products are generated from arachidonic acid via sequential actions of lipoxygenases and subsequent reactions to give specific trihydroxytetraene-containing eicosanoids. These unique structures are formed during cell-cell interactions and appear to act at both temporal and spatially distinct sites from other eicosanoids produced during the course of inflammatory responses and to stimulate natural resolution. Lipoxin A4 (LXA4) and lipoxin B4 (LXB4) are positional isomers that each possesses potent cellular and in vivo actions. These LX structures are conserved across species. The results of numerous studies reviewed in this work now confirm that they are the first recognized eicosanoid chemical mediators that display both potent anti-inflammatory and pro-resolving actions in vivo in disease models that include rabbit, rat, and mouse systems. LXs act at specific GPCRs as agonists to regulate cellular responses of interest in inflammation and resolution. Aspirin has a direct impact in the LX circuit by triggering the biosynthesis of endogenous epimers of LX, termed the aspirin-triggered 15-epi-LX, that share the potent anti-inflammatory actions of LX. Stable analogs of LXA4, LXB4, and aspirin-triggered lipoxin were prepared, and several of these display potent actions in vitro and in vivo. The results reviewed herein implicate a role of LX and their analogs in many common human diseases including airway inflammation, asthma, arthritis, cardiovascular disorders, gastrointestinal disease, periodontal disease, kidney diseases and graft-vs.-host disease, as well as others where uncontrolled inflammation plays a key role in disease pathogenesis. Hence, the LX pathways and mechanisms reviewed to date in this work provide a basis for new approaches to treatment of many common human diseases that involve inflammation.
Collapse
Affiliation(s)
- Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesia, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
18
|
Di Gennaro A, Carnini C, Buccellati C, Ballerio R, Zarini S, Fumagalli F, Viappiani S, Librizzi L, Hernandez A, Murphy RC, Constantin G, De Curtis M, Folco G, Sala A. Cysteinyl-leukotrienes receptor activation in brain inflammatory reactions and cerebral edema formation: a role for transcellular biosynthesis of cysteinyl-leukotrienes. FASEB J 2004; 18:842-4. [PMID: 15001558 DOI: 10.1096/fj.03-0599fje] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We studied the effect of intravascular activation of human neutrophils on the synthesis of cysteinyl leukotrienes (cysLT) and the formation of cerebral edema in guinea-pig brains. Challenge with the chemotactic formylated tripeptide fMLP (0.1 microM) of neutrophil-perfused brain in vitro resulted in blood-brain barrier disruption associated with a significant increase of cysLT. Both events were completely prevented by neutrophil pretreatment with a specific 5-lipoxygenase (5-LO) inhibitor. Perfusion with the 5-LO metabolite leukotriene B4 (10 nM), together with neutrophils treated with the 5-LO inhibitor, did not restore the alteration in permeability observed upon perfusion with untreated and activated neutrophils. The dual cysLT1-cysLT2 receptor antagonist BAYu9773 was more potent and more effective than a selective cysLT1 antagonist in preventing the brain permeability alteration induced by neutrophil activation. RT-PCR showed significant expression of cysLT2 receptor mRNA in human umbilical vein endothelial cells. Intravital microscopy in mice showed that inhibition of leukotriene synthesis significantly reduced firm adhesion of neutrophils to cerebral vessels without affecting rolling. These data support the hypothesis that neutrophil and endothelial cells cooperate toward the local synthesis of cysLT within the brain vasculature and, acting via the cysLT2 receptor on endothelial cells, may represent a contributing pathogenic mechanism in the development of cerebral inflammation and edema.
Collapse
Affiliation(s)
- Antonio Di Gennaro
- Center for Cardiopulmonary Pharmacology and Department of Pharmacological Sciences, University of Milan, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kantarci A, Van Dyke TE. Lipoxins in chronic inflammation. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2003; 14:4-12. [PMID: 12764016 DOI: 10.1177/154411130301400102] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The discovery of endogenous molecules involved in counterregulation of inflammatory responses that may lead to tissue injury provides an opportunity to explore new therapeutic approaches based on manipulation of new pathways. Natural counterregulatory pathways may reduce the possibility of unwanted toxic side-effects. Lipoxins are trihydroxytetraene-containing eicosanoids that are generated within the vascular lumen during platelet-leukocyte interactions and at mucosal surfaces via leukocyte-epithelial cell interactions. During cell-cell interactions, transcellular biosynthetic pathways are the major lipoxin biosynthetic routes, and thus, in humans, lipoxins are formed in vivo during multicellular responses, such as inflammation and asthma. This branch of the eicosanoid cascade generates specific tetraene-containing products that serve as "stop signals" for neutrophils that regulate key steps in leukocyte trafficking and prevent neutrophil-mediated tissue injury. These novel anti-inflammatory lipid mediators also appear to facilitate the resolution of the acute inflammatory response. In this review, recent findings and new concepts pertaining to the generation of lipoxins and their impact on the resolution of acute inflammation, and organ protection from leukocyte-mediated injury, are presented. The parallels and possible associations with periodontal diseases are discussed.
Collapse
Affiliation(s)
- Alpdogan Kantarci
- Boston University Goldman School of Dental Medicine, Department of Periodontology and Oral Biology, 100 East Newton Street G-05, Boston, MA 02118, USA
| | | |
Collapse
|
20
|
Van Dyke TE, Serhan CN. Resolution of inflammation: a new paradigm for the pathogenesis of periodontal diseases. J Dent Res 2003; 82:82-90. [PMID: 12562878 DOI: 10.1177/154405910308200202] [Citation(s) in RCA: 326] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The periodontal diseases are infectious diseases caused by predominantly Gram-negative bacteria. However, as our understanding of the pathogenesis of the periodontal diseases grows, it is becoming clear that most of the tissue damage that characterizes periodontal disease is caused by the host response to infection, not by the infectious agent directly. Investigation into the mechanism of action of host-mediated tissue injury has revealed that the neutrophil plays an important role in destruction of host tissues. In this paper, we review the biochemical pathways and molecular mediators that are responsible for regulation of the inflammatory response in diseases such as periodontitis, with a focus on lipid mediators of inflammation. Pro-inflammatory mediators, such as prostaglandins and leukotrienes, are balanced by counter-regulatory signals provided by a class of molecules called lipoxins. The role of lipoxins in the control and resolution of inflammation is discussed, as is the possibility of the development of new therapeutic strategies for the control and prevention of neutrophil-mediated tissue injury in inflammatory diseases like periodontitis.
Collapse
Affiliation(s)
- T E Van Dyke
- Department of Periodontology and Oral Biology, Boston University, Goldman School of Dental Medicine, 100 East Newton Street, Boston, MA 02118, USA.
| | | |
Collapse
|
21
|
Rotondo S, Dell'Elba G, Krauze-Brzósko K, Manarini S, Martelli N, Pecce R, Evangelista V, Cerletti C. Licofelone, a dual lipoxygenase-cyclooxygenase inhibitor, downregulates polymorphonuclear leukocyte and platelet function. Eur J Pharmacol 2002; 453:131-9. [PMID: 12393068 DOI: 10.1016/s0014-2999(02)02385-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Polymorphonuclear leukocytes are strongly implicated in the pathogenesis of inflammatory disease. Polymorphonuclear leukocyte recruitment at sites of inflammation, mainly sustained by the beta2-integrins, is followed by the synthesis and release of inflammatory mediators, such as leukotrienes, proteolytic enzymes and reactive oxygen species. Functional and metabolic interactions between polymorphonuclear leukocytes and platelets can contribute to and exacerbate the process. The effects of the dual 5-lipoxygenase and cyclooxygenase inhibitor licofelone ([2,2-dimethyl-6-(4-chlorophenyl)-7-phenyl-2,3-dihydro-1H-pyrrolizine-5-yl]-acetic acid) were studied on arachidonic acid transcellular metabolism occurring between polymorphonuclear leukocytes and platelets. The formation of leukotriene C(4), a leukotriene A(4)-derived metabolite, by mixed polymorphonuclear leukocyte/platelet suspensions stimulated with 10 microM A23187 was inhibited by licofelone with an IC(50) of 3.8 +/- 0.07 microM. The formation of 5,12-di-hydroxy-eicosatetraenoic acid (HETE) was abolished at concentrations > or = 10 microM. Licofelone also inhibited the generation of reactive oxygen species by polymorphonuclear leukocytes stimulated with 1 microM n-formyl-methionyl-leucyl-phenylalanine (fMLP), 10 nM complement fraction 5a (C5a) and 1 microM platelet activating factor (PAF) with IC(50)s of 24.4 +/- 0.6, 11.0 +/- 1.5 and 11.7 +/-1.2 microM; elastase release induced by the three agonists was inhibited with IC(50)s of 12.2 +/- 2.2, 23.5 +/- 8 and 2.6 +/- 1 microM, respectively. Homotypic polymorphonuclear leukocyte aggregation induced by fMLP, C5A and PAF was inhibited by licofelone with IC(50)s of 23.7 +/- 4.8, 15.6 +/- 3.4 and 15.4 +/- 4 microM, respectively. The present study extends the anti-lipoxygenase and anti-cyclooxygenase activities of licofelone to the production of arachidonic acid metabolites generated as a consequence of polymorphonuclear leukocyte-platelet transcellular metabolism and to polymorphonuclear leukocyte responses relevant to the pathogenesis of inflammation. The coexistence within the same molecule of a wide spectrum of anti-inflammatory properties is of interest.
Collapse
Affiliation(s)
- Serenella Rotondo
- G Bizzozero Laboratory of Blood and Vascular Cell Interactions, Istituto di Ricerche Farmacologiche Mario Negri, Consorzio Mario Negri Sud, Via Nazionale, Santa Maria Imbaro 66030, Italy
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Satoh S, Suzuki A, Asari Y, Sato M, Kojima N, Sato T, Tsuchiya N, Sato K, Senoo H, Kato T. Glomerular endothelium exhibits enhanced expression of costimulatory adhesion molecules, CD80 and CD86, by warm ischemia/reperfusion injury in rats. J Transl Med 2002; 82:1209-17. [PMID: 12218082 DOI: 10.1097/01.lab.0000029620.13097.19] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Recent studies suggested that the vascular endothelial cells function as a resident antigen-presenting cell (APC) in certain situations such as organ transplantation, and the ischemia/reperfusion injury, an inevitable event in organ transplantation, leads to an enhanced biosynthesis of cell adhesion molecules. We have demonstrated that the hepatic sinusoidal endothelial cells have potential ability as APCs by expressing the costimulatory adhesion molecule proteins, CD80 (B7-1) and CD86 (B7-2), of which expression was enhanced by warm ischemia/reperfusion of the rat liver. In this study, we assessed the localization of CD80, CD86, and intercellular adhesion molecule 1 in the rat kidneys and the influence of warm ischemia/reperfusion with or without a hypercreatinemic condition on the expression of these adhesion molecules in the renal tissues. Wistar male rats weighing 150 to 230 g were divided into group A, receiving a sham-operation (control), group B, receiving 1-hour clamping of the left renal pedicle (temporary ischemia), and group C, receiving right nephrectomy and 1-hour clamping of the left renal pedicle (temporary ischemia with hypercreatinemia). The left kidneys were submitted to immunohistochemical and molecular analyses sequentially for the period of 14 days. We found that CD80, CD86, and intercellular adhesion molecule 1 proteins localized on the glomerular and peritubular endothelium and were up-regulated after ischemia/reperfusion. The up-regulation of these three proteins was enhanced by the hypercreatinemic condition. The relative mRNA levels analyzed by real-time reverse transcription polymerase chain reaction showed that CD80 and CD86 expressions were constitutively observed and significantly increased for 14 days after the warm ischemia reperfusion with a peak level at Day 3 (6.7- and 20.8-fold increase for CD80 and CD86, respectively). Our results suggested that the glomerular endothelial cells will play a pivotal role as a APC by expressing CD80 and CD86 in the induction of renal tissue injury associated with the ischemia/reperfusion at renal transplantation surgery, as well as the peritubular endothelium.
Collapse
Affiliation(s)
- Shigeru Satoh
- Department of Urology, Akita University School of Medicine, Akita, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Serhan CN. Lipoxins and aspirin-triggered 15-epi-lipoxin biosynthesis: an update and role in anti-inflammation and pro-resolution. Prostaglandins Other Lipid Mediat 2002; 68-69:433-55. [PMID: 12432935 DOI: 10.1016/s0090-6980(02)00047-3] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lipoxins (LX) are trihydroxytetraene-containing eicosanoids that are generated within the vascular lumen during platelet-leukocyte interactions and at mucosal surfaces via leukocyte-epithelial cell interactions. Recent findings have given several new concepts that are reviewed here regarding the generation of LX and 15 epi-LX and their impact in the resolution of acute inflammation and organ protection from leukocyte-mediated injury. During cell-cell interactions, transcellular biosynthetic pathways are used as major LX biosynthetic routes, and thus, in humans, LX are formed in vivo during multicellular responses such as inflammation, and asthma. This branch of the eicosanoid cascade generates specific tetraene-containing products that serve as neutrophil "stop signals," in that they regulate key steps in leukocyte trafficking and prevent neutrophil-mediated acute tissue injury. In addition, aspirin's mechanism of action also involves the triggering of carbon 15 epimers of lipoxins or 15-epi-lipoxins that mimic the bioactions of native LX. An overview of these recent developments is presented with a focus on the cellular and molecular interactions of these novel anti-inflammatory lipid mediators that also appear to facilitate the resolution of acute inflammatory responses.
Collapse
Affiliation(s)
- Charles N Serhan
- Department of Anesthesiology, Center for Experimental Therapeutics and Reperfusion Injury, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
24
|
Li N, Hu H, Lindqvist M, Wikström-Jonsson E, Goodall AH, Hjemdahl P. Platelet-leukocyte cross talk in whole blood. Arterioscler Thromb Vasc Biol 2000; 20:2702-8. [PMID: 11116075 DOI: 10.1161/01.atv.20.12.2702] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Thrombosis and inflammation involve complex platelet-leukocyte interaction, the details of which are not fully elucidated. Therefore, we investigated cross talk between platelets and leukocytes in whole blood, under the following physiological conditions: at 37 degrees C, with normal calcium concentrations, and with shear force. Platelet P-selectin and leukocyte CD11b expression were used to monitor platelet and leukocyte activation, respectively, and platelet-leukocyte aggregation (PLA) was analyzed. The leukocyte-specific agonist N:-formyl-methionyl-leucyl-phenylalanine (10(-6) mol/L) increased P-selectin-positive platelets from 2.5+/-0. 1% to 5.1+/-0.6% (P:<0.05). The increase was inhibited by either the platelet-activating factor (PAF) antagonist SR27417, the superoxide anion scavenger superoxide dismutase, the 5-lipoxygenase inhibitor Zileuton, or the 5-lipoxygenase-activating protein inhibitor MK-886, suggesting the involvement of PAF, superoxide anion, and 5-lipoxygenase products in leukocyte-induced platelet activation. The platelet-specific agonist collagen (1 microg/mL) increased leukocyte CD11b expression from 2.94+/-0.52 to 3.81+/-0.58 (P:<0. 05); this was not inhibited by the thromboxane A(2) receptor antagonist ICI 192.605 or the PAF antagonist SR27417. Platelet P-selectin expression induced by N:-formyl-methionyl-leucyl-phenylalanine and leukocyte CD11b expression induced by collagen could be suppressed by glycoprotein IIb/IIIa blockade or P-selectin blockade. This study documents platelet-leukocyte cross talk under conditions that mimic a physiological state and suggests that this involves multiple mediators and mechanisms. Furthermore, new evidence of integrin and selectin involvement in intracellular and intercellular signaling during platelet-leukocyte cross talk is provided.
Collapse
Affiliation(s)
- N Li
- Department of Medicine, Division of Clinical Pharmacology, Karolinska Hospital, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
25
|
Yasuda M, Shimizu S, Tokuyama S, Watanabe T, Kiuchi Y, Yamamoto T. A novel effect of polymorphonuclear leukocytes in the facilitation of angiogenesis. Life Sci 2000; 66:2113-21. [PMID: 10823350 DOI: 10.1016/s0024-3205(00)00537-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The purpose of this study was to examine whether the adhesion of polymorphonuclear leukocytes (PMNs) to endothelial cells and/or reactive oxygen species (ROS) released from PMNs are responsible for inducing angiogenesis. Angiogenesis was assessed by tube formation using endothelial cells obtained from bovine thoracic aorta (BAECs) grown on a layer of collagen type I. Addition of PMNs to BAECs weakly induced angiogenesis. The angiogenesis induced by PMNs alone was further enhanced by treatment of the PMNs with N-formyl-methionyl-leucyl-phenylalanine (FMLP), a selective activator of PMN. The involvement of PMN adhesion to BAECs via adhesion molecules in angiogenesis was investigated by using monoclonal antibodies against E-selectin and intercellular adhesion molecule-1 (ICAM-1). These antibodies blocked both the PMN adhesion to BAECs and the enhancement of angiogenesis induced by FMLP-treated PMNs. Furthermore, the enhancement of angiogenesis by FMLP-treated PMNs was blocked by catalase, a scavenging enzyme of H2O2, but not by superoxide dismutase (SOD). These results suggest that PMNs induce angiogenesis in vitro, and that the mechanism of stimulation of angiogenesis by PMNs may involve the adherence of PMNs to endothelial cells via E-selectin and ICAM-1, and H2O2, but not superoxide. Thus, activated PMNs in pathological states may not only induce tissue injury, but may also function as regulators of angiogenesis.
Collapse
Affiliation(s)
- M Yasuda
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Showa University, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Sala A, Rossoni G, Berti F, Buccellati C, Bonazzi A, Maclouf J, Folco G. Monoclonal anti-CD18 antibody prevents transcellular biosynthesis of cysteinyl leukotrienes in vitro and in vivo and protects against leukotriene-dependent increase in coronary vascular resistance and myocardial stiffness. Circulation 2000; 101:1436-40. [PMID: 10736289 DOI: 10.1161/01.cir.101.12.1436] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cysteinyl leukotrienes (cys-LT) can constrict small and large vessels and increase vascular permeability. Formation of cys-LT arising from polymorphonuclear leukocytes (PMNL) and endothelial cell cooperation (transcellular synthesis) led to the hypothesis that PMNL-endothelial cell adhesion may represent a key step toward the formation of vasoactive cys-LT. METHODS AND RESULTS We studied the effect of pretreatment with a monoclonal antibody directed against the CD18 subunit of PMNL beta(2)-integrin on the synthesis of cys-LT in a PMNL-perfused isolated rabbit heart in vitro and in a model of permanent ligature of the left descending coronary artery in the rabbit in vivo. Challenge of PMNL-perfused rabbit hearts with formyl-met-leu-phe (0.3 micromol/L) caused synthesis of cys-LT and increase in coronary perfusion pressure that were prevented by the anti-CD18 antibody. Similar results were obtained with the use of A-23187 (0.5 micromol/L) as a challenge. Persistence of PMNL-associated myeloperoxidase activity in the perfusion buffer was observed in the presence of the anti-CD18 antibody, indicating decreased PMNL infiltration. Coronary artery ligature in vivo increased urinary excretion of leukotriene E(4), supporting the activation of the 5-lipoxygenase pathway during experimental acute myocardial infarction. Pretreatment with the anti-CD18 antibody (1 mg/kg) prevented the increase in leukotriene E(4) excretion. CONCLUSIONS These data support the importance of adhesion in promoting cys-LT formation, originating from PMNL-endothelial cell cooperation, and contributing to myocardial stiffness and increased coronary resistance.
Collapse
Affiliation(s)
- A Sala
- Center for Cardiopulmonary Pharmacology, University of Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
27
|
Affiliation(s)
- J Z Haeggström
- Department of Medical Biochemistry and Biophysics, Division of Chemistry II, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
28
|
Affiliation(s)
- S Adler
- Department of Medicine, New York Medical College, Valhalla, USA
| | | |
Collapse
|
29
|
Sala A, Zarini S, Folco G, Murphy RC, Henson PM. Differential metabolism of exogenous and endogenous arachidonic acid in human neutrophils. J Biol Chem 1999; 274:28264-9. [PMID: 10497182 DOI: 10.1074/jbc.274.40.28264] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Leukotrienes can be produced by cooperative interactions between cells in which, for example, arachidonate derived from one cell is oxidized to leukotriene A(4) (LTA(4)) by another and this can then be exported for conversion to LTB(4) or cysteinyl leukotrienes (cys-LTs) by yet another. Neutrophils do not contain LTC(4) synthase but are known to cooperate with endothelial cells or platelets (which do have this enzyme) to generate cys-LTs. Stimulation of human neutrophils perfusing isolated rabbit hearts resulted in production of cys-LTs, whereas these were not seen with perfused hearts alone or isolated neutrophils. In addition, the stimulated, neutrophil-perfused hearts generated much greater amounts of total LTA(4) products, suggesting that the hearts were supplying arachidonate to the neutrophils and, in addition, that this externally derived arachidonate was preferentially used for exported LTA(4) that could be metabolized to cys-LTs by the coronary endothelium. Stable isotope-labeled arachidonate and electrospray tandem mass spectrometry were used to differentially follow metabolism of exogenous and endogenous arachidonate. Isolated, adherent neutrophils at low concentrations (to minimize transcellular metabolism between them) were shown to generate higher proportions of nonenzymatic LTA(4) products from exogenous arachidonate (deuterium-labeled) than from endogenous (unlabeled) sources. The endogenous arachidonate, on the other hand, was preferentially used for conversion to LTB(4) by the LTA(4) hydrolase. This result was not because of saturation of the LTA(4) hydrolase, because it occurred at widely differing concentrations of exogenous arachidonate. Finally, in the presence of platelets (which contain LTC(4) synthase), the LTA(4) synthesized from exogenous deuterium-labeled arachidonate was converted to cys-LTs to a greater degree than that from endogenous sources. These experiments suggest that exogenous arachidonate is preferentially converted to LTA(4) for export (not intracellular conversion) and raises the likelihood that there are different intracellular pathways for arachidonate metabolism.
Collapse
Affiliation(s)
- A Sala
- Center for Cardiopulmonary Pharmacology, University of Milan, Via Balzaretti 9, Milan 20133, Italy
| | | | | | | | | |
Collapse
|
30
|
Haeggström JZ. Leukotriene A4 hydrolase and the committed step in leukotriene B4 biosynthesis. Clin Rev Allergy Immunol 1999; 17:111-31. [PMID: 10436862 DOI: 10.1007/bf02737600] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- J Z Haeggström
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
31
|
Klockmann MT, Jahn HU, Hippenstiel S, Krämer HJ, Suttorp N. Interaction of human neutrophils with airway epithelial cells: reduction of leukotriene B4 generation by epithelial cell derived prostaglandin E2. J Cell Physiol 1998; 175:268-75. [PMID: 9572471 DOI: 10.1002/(sici)1097-4652(199806)175:3<268::aid-jcp4>3.0.co;2-m] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Airway epithelial cells (AEC) play an active role in the regulation of inflammatory airway disease. In the present study we analyzed the interaction of AEC with polymorphonuclear leukocytes (PMN) in coincubation with respect to their arachidonic acid (AA) metabolism using reversed phase-HPLC and post-HPLC-ELISA. Primary cultures of porcine AEC released predominantly PGE2, PGF2a, and 15-hydroxyeicosatetraenoic acid (15-HETE), whereas the major human PMN-derived AA metabolite was the chemotactic factor leukotriene B4 (LTB4). In AEC-PMN cocultures stimulated with the calcium ionophore A23187, PMN-related 5-lipoxygenase products were decreased by 45%. This reduction in LTB4 formation in the presence of AEC was mainly due to PGE2 generated by the epithelial cells, whereas 15-HETE made a minor contribution. Most of the effect was inhibited by AEC pretreatment with acetylsalicylic acid and restored by addition of equivalent amounts of exogenous PGE2. LTB4 degradation was not enhanced in PMN-AEC coincubations. Moreover, reduction of LTB4 formation in this system did not require an intimate cell-to-cell contact as shown by studies involving filter membranes for PMN-AEC separation. Superoxide anion concentrations were also decreased in PMN-AEC coincubations; this effect, however, was unrelated to PGE2 for quantitative reasons and was probably due to O2- degradation by epithelial cells. In summary, epithelially derived PGE2 is the major mediator in the coincubation of porcine AEC and human PMN that downregulates neutrophil responses by activating receptors on the neutrophil. A minor contributor in this course of PMN-AEC interaction may be the 15-HETE transcellular pathway. Overall, airway epithelium appears to play an antiinflammatory role by damping the proinflammatory potential of neutrophils.
Collapse
Affiliation(s)
- M T Klockmann
- Department of Internal Medicine, Justus-Liebig-University of Giessen, Germany
| | | | | | | | | |
Collapse
|
32
|
Sud'ina GF, Galkina SI, Margolis LB, Ullrich V. Dependence of neutrophil activation on cell density and adhesion. CELL ADHESION AND COMMUNICATION 1998; 5:27-37. [PMID: 9638339 DOI: 10.3109/15419069809005596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Upon an increasing cell density human neutrophils develop more cell-to-cell contacts in conjunction with an increase in the pHi. These changes are accompanied by decreased superoxide formation after adherence, and a decrease in the total amount of 5-lipoxygenase products after various stimuli. Among the various arachidonate metabolites, leukotriene formation remained almost constant but the yield in 5-HETE decreased. This drop in could account for the decrease in total 5-lipoxygenase products observed when the cell density increased. We conclude that cellular signalling can be affected by an increase of cell-cell interactions. Whether the increase in cellular pH is a cause or consequence of such contact inhibition has yet be answered.
Collapse
Affiliation(s)
- G F Sud'ina
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Russia.
| | | | | | | |
Collapse
|
33
|
Brown KK, Henson PM, Maclouf J, Moyle M, Ely JA, Worthen GS. Neutrophil-platelet adhesion: relative roles of platelet P-selectin and neutrophil beta2 (DC18) integrins. Am J Respir Cell Mol Biol 1998; 18:100-10. [PMID: 9448051 DOI: 10.1165/ajrcmb.18.1.2314] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Neutrophils and platelets interact both physically and metabolically during inflammation and thrombosis, but the mechanisms responsible for their adhesion remain incompletely understood. Neutrophil-platelet adhesion was measured after specific stimulation of neutrophils, platelets, or both and quantified by flow cytometry. Specific stimulation of either the neutrophil or the platelet led to a marked increase in the percentage of neutrophils that bound platelets, although platelet stimulation led to a large increase and neutrophil stimulation to only a small increase in the number of platelets per neutrophil. Stimulation of both cells further increased the number of neutrophil-platelet adhesive events and led to large numbers of platelets binding to each neutrophil. Confirming previous observations, blocking antibodies to platelet P-selectin (CD62P) partially inhibited adhesion. However, blockade of the neutrophil beta2 integrin CD11b/CD18 also inhibited the percentage of neutrophils that bound platelets. Combining P-selectin and CD11b/18 blockade further inhibited the stimulated increase in the percentage of neutrophils binding platelets and the increased number of platelets per neutrophil. Both cell adhesion molecules were active even when only a single cell type was primarily activated, supporting physiologically important transcellular activation. These data suggest that: (1) neutrophil-platelet adhesion can be initiated by specific activation of either the neutrophil or the platelet and that specific activation of either cell type leads to distinct patterns of adhesion, and (2) neutrophil-platelet adhesion uses both platelet P-selectin and the neutrophil beta2 integrin CD11b/CD18 when the cells are primarily or secondarily activated.
Collapse
Affiliation(s)
- K K Brown
- Department of Medicine, National Jewish Center for Immunology and Respiratory Medicine, University of Colorado Health Sciences Center, Denver 80206, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Kvietys PR, Granger DN. Endothelial cell monolayers as a tool for studying microvascular pathophysiology. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:G1189-99. [PMID: 9435543 DOI: 10.1152/ajpgi.1997.273.6.g1189] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Endothelial cells contribute to a variety of biological responses that facilitate organ function. This critical role of the endothelial cell has resulted in the development of different in vitro models that utilize monolayers of cultured cells to simulate conditions that exist in the intact animal. This review focuses on endothelial cell monolayers as a model system for research on certain pathophysiological conditions affecting the gastrointestinal tract. The advantages and limitations of endothelial cell monolayers are addressed, along with evolving technologies and strategies that hold promise for extending the utility of this in vitro model for studies of gastrointestinal function and disease.
Collapse
Affiliation(s)
- P R Kvietys
- London Health Sciences Centre Research, Inc., Ontario, Canada
| | | |
Collapse
|
35
|
Serhan CN. Lipoxins and novel aspirin-triggered 15-epi-lipoxins (ATL): a jungle of cell-cell interactions or a therapeutic opportunity? PROSTAGLANDINS 1997; 53:107-37. [PMID: 9112289 DOI: 10.1016/s0090-6980(97)00001-4] [Citation(s) in RCA: 178] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Lipid-derived mediators play critical roles in inflammation and other multicellular vascular processes, including atherosclerosis and thrombosis. The lipoxins (LXs) were first isolated in 1984, and have continued to show intriguing and potentially important biological roles. These compounds carry a trihydroxytetraene structure and are both structurally and functionally unique among arachidonic acid-derived bioactive products. The availability of synthetic materials for evaluation of bioactions as well as appropriate methods of detection to determine when and where LX are generated has, in recent studies, catapulted our understanding of the formation and actions of the lipoxins. This mini-review addresses new concepts in the formation and biological roles of these lipid-derived mediators and considers whether the lipoxins and the newly discovered aspirin-triggered lipoxins (ATL) represent novel approaches for therapeutic opportunities. Recent findings indicate that select cytokines and aspirin initiate and regulate LX biosynthetic events. These circuits involve cell-cell interfacing that facilitates transcellular events to form LX that display anti-inflammatory actions in both in vitro and in vivo models. These recent results suggest that LX biosynthetic circuits assemble to evoke anti-inflammatory actions and generate LX that can serve as "stop signals" in appropriate microenvironments.
Collapse
Affiliation(s)
- C N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Brigham, and Women's Hospital, Boston, Massachusetts 02115, USA
| |
Collapse
|
36
|
Galkina SI, Sud'ina GF, Margolis LB. Regulation of intracellular pH by phospholipase A2 and protein kinase C upon neutrophil adhesion to solid substrata. FEBS Lett 1996; 393:117-20. [PMID: 8804438 DOI: 10.1016/0014-5793(96)00864-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Adhesion to solid substrata has been shown to increase intracellular pH (pH(i)) of fibroblasts and of other cells (FEBS Lett. (1988) 234, 449-450; Proc. Natl. Acad. Sci. USA (1989) 86, 4525-4529; J. Biol. Chem. (1990) 265, 1327-1332; Exp. Cell Res. (1992) 200, 211-214; FEBS Lett. (1995) 374, 17-20). We have found that the inhibitors of PLA2, 4-bromophenacyl bromide and manoalide, completely blocked the increase of pH(i) and spreading of neutrophils upon adhesion to solid substrata. Inhibition of phospholipase C with neomycin or removal of extracellular Ca2+ affects neither neutrophil spreading nor their pH(i). Inhibition of PKC with H-7 or staurosporin increased pH(i). PMA, an activator of PKC, dramatically decreased pH(i) but did not impair the spreading of neutrophils. The effect of arachidonic acid, a product of PLA2 activity, on neutrophil pH(i) and spreading was similar to that of PMA. H-7, an inhibitor of PKC, partially blocked the effect of arachidonic acid (AA) on pH(i). BW755C, an inhibitor of AA metabolism by cyclooxygenase or lipoxygenase, affected neither the pH(i) nor cell spreading. We propose that the increase of pH(i) upon neutrophil adhesion is mediated by PLA2 activity, while PKC decreased pH(i). AA produced by PLA2 activates PKC, thus forming a feedback regulation of pH(i).
Collapse
Affiliation(s)
- S I Galkina
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Russia
| | | | | |
Collapse
|
37
|
Sala A, Bolla M, Zarini S, Müller-Peddinghaus R, Folco G. Release of leukotriene A4 versus leukotriene B4 from human polymorphonuclear leukocytes. J Biol Chem 1996; 271:17944-8. [PMID: 8663438 DOI: 10.1074/jbc.271.30.17944] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The reactive intermediate formed by 5-lipoxygenase metabolism of arachidonic acid, leukotriene A4, is known to be released from cells and subsequently taken up by other cells for biochemical processing. The objective of this study was to determine the relative amount of leukotriene A4 synthesized by human polymorphonuclear leukocytes (PMNL) that is available for transcellular biosynthetic processes. This was accomplished by diluting cell suspensions and measuring the relative amounts of enzymatic versus nonenzymatic leukotriene A4-derived metabolites after challenge with the Ca2+ ionophore A23187. Nonenzymatic leukotriene A4-derived metabolites were used as a quantitative index of the amount of leukotriene A4 released into the extracellular milieu. The results obtained demonstrated that in human PMNL, the relative amounts of nonenzymatic versus enzymatic leukotriene A4-derived metabolites increased with decreasing cell concentrations. After a 20-fold dilution of PMNL in cell preparations, a doubling in the amount of nonenzymatic leukotriene A4-derived metabolites was observed following challenge (from 53.9 +/- 1.3 to 110.4 +/- 8.9 pmol/10(6) PMNL, p < 0.01). Reduction of possible cell-cell interactions by dilution suggested that over 50% of leukotriene A4 synthesized is released from the PMNL. These data provide evidence that, in human PMNL preparations, transfer of leukotriene A4 to neighboring PMNL is taking place, resulting in additional formation of leukotriene B4 and its omega-oxidized metabolites 20-hydroxy- and 20-carboxy-leukotriene B4. Neutrophil reuptake of extracellular leukotriene A4 leads to an underestimation of the fraction of leukotriene A4 that is in fact available for transcellular metabolism when tight cell-cell interactions occur, such as during PMNL adhesion to the microvascular endothelium and diapedesis.
Collapse
Affiliation(s)
- A Sala
- Center for Cardiopulmonary Pharmacology, Institute of Pharmacological Sciences, School of Pharmacy, University of Milano, Italy
| | | | | | | | | |
Collapse
|
38
|
Sala A, Testa T, Folco G. Leukotriene A4, and not leukotriene B4, is the main 5-lipoxygenase metabolite released by bovine leukocytes. FEBS Lett 1996; 388:94-8. [PMID: 8690098 DOI: 10.1016/0014-5793(96)00539-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The production of leukotriene A4 (LTA4)-derived metabolites, analysed by RP-HPLC, was studied in purified bovine polymorphonuclear leukocyte (PMNL) preparations and in PMNL-platelet coincubations after challenge with the calcium ionophore A23187. The results obtained show that in bovine PMNL LTB4 represents the main LTA4 metabolite. When washed platelets were added to PMNL, LTC4 was the main enzymatic metabolite observed, indicating a substantial transfer of PMNL-derived LTA4 to platelets. The synthesis of LTC4 was accompanied by a significant decrease in LTB4, suggesting that a quota of the LTB4 synthesized in PMNL preparations is the result of transcellular metabolism of released LTA4 by neighbouring PMNL. Reduction of PMNL-PMNL interactions through dilution of cell incubates allowed us to estimate that most of the leukotriene A4 synthesized by PMNL is indeed released from the cell. LTA4, and not LTB4, represents the main 5-lipoxygenase metabolite released by bovine PMNL.
Collapse
Affiliation(s)
- A Sala
- Center for Cardiopulmonary Pharmacology, Institute of Pharmacological Sciences, University of Milan, Italy
| | | | | |
Collapse
|
39
|
Clària J, Serhan CN. Aspirin triggers previously undescribed bioactive eicosanoids by human endothelial cell-leukocyte interactions. Proc Natl Acad Sci U S A 1995; 92:9475-9. [PMID: 7568157 PMCID: PMC40824 DOI: 10.1073/pnas.92.21.9475] [Citation(s) in RCA: 551] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Aspirin [acetylsalicylic acid (ASA)], along with its analgesic-antipyretic uses, is now also being considered for cardiovascular protection and treatments in cancer and human immunodeficiency virus infection. Although many of ASA's pharmacological actions are related to its ability to inhibit prostaglandin and thromboxane biosynthesis, some of its beneficial therapeutic effects are not completely understood. Here, ASA triggered transcellular biosynthesis of a previously unrecognized class of eicosanoids during coincubations of human umbilical vein endothelial cells (HUVEC) and neutrophils [polymorphonuclear leukocytes (PMN)]. These eicosanoids were generated with ASA but not by indomethacin, salicylate, or dexamethasone. Formation was enhanced by cytokines (interleukin 1 beta) that induced the appearance of prostaglandin G/H synthase 2 (PGHS-2) but not 15-lipoxygenase, which initiates their biosynthesis from arachidonic acid in HUVEC. Costimulation of HUVEC/PMN by either thrombin plus the chemotactic peptide fMet-Leu-Phe or phorbol 12-myristate 13-acetate or ionophore A23187 leads to the production of these eicosanoids from endogenous sources. Four of these eicosanoids were also produced when PMN were exposed to 15R-HETE [(15R)-15-hydroxy-5,8,11-cis-13-trans-eicosatetraenoic acid] and an agonist. Physical methods showed that the class consists of four tetraene-containing products from arachidonic acid that proved to be 15R-epimers of lipoxins. Two of these compounds (III and IV) were potent inhibitors of leukotriene B4-mediated PMN adhesion to HUVEC, with compound IV [(5S,6R,15R)-5,6,15-trihydroxy-7,9,13-trans-11-cis-eicosatetraenoi c acid; 15-epilipoxin A4] active in the nanomolar range. These results demonstrate that ASA evokes a unique class of eicosanoids formed by acetylated PGHS-2 and 5-lipoxygenase interactions, which may contribute to the therapeutic impact of this drug. Moreover, they provide an example of a drug's ability to pirate endogenous biosynthetic mechanisms to trigger new mediators.
Collapse
Affiliation(s)
- J Clària
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | | |
Collapse
|
40
|
Brady HR, Papayianni A, Serhan CN. Potential vascular roles for lipoxins in the “stop programs” of host defense and inflammation. Trends Cardiovasc Med 1995; 5:186-92. [DOI: 10.1016/1050-1738(95)00055-e] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
41
|
Bates EJ. Eicosanoids, fatty acids and neutrophils: their relevance to the pathophysiology of disease. Prostaglandins Leukot Essent Fatty Acids 1995; 53:75-86. [PMID: 7480077 DOI: 10.1016/0952-3278(95)90133-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
PUFA and their eicosanoid metabolites are potent biological modifiers. They have beneficial effects in a number of diseases, which may result in part from their direct actions on neutrophils as well as from their ability to modulate eicosanoid biosynthesis. A consideration of their interactions with other cell types, e.g. lymphocytes and macrophages, is beyond the scope of this review. Small alterations in structure can result in large changes in the neutrophil response. This will have important implications for the further development and use of fatty acids for therapeutic purposes.
Collapse
Affiliation(s)
- E J Bates
- Department of Immunology, Women's and Children's Hospital, North Adelaide, Australia
| |
Collapse
|
42
|
Papayianni A, Serhan CN, Phillips ML, Rennke HG, Brady HR. Transcellular biosynthesis of lipoxin A4 during adhesion of platelets and neutrophils in experimental immune complex glomerulonephritis. Kidney Int 1995; 47:1295-302. [PMID: 7543622 DOI: 10.1038/ki.1995.184] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Polymorphonuclear neutrophils are important effectors of injury in host defense and inflammation. Many inflammatory diseases are self-limiting, raising the possibility that compounds are generated in vivo during the course of inflammation that inhibit neutrophil recruitment and tissue destruction. Lipoxins, a more recent addition to the families of bioactive eicosanoids, are potential candidates in this regard. Lipoxins are generated via pathways that initially involve the dual lipoxygenation of arachidonic acid and are potent inhibitors of several neutrophil trafficking events in vitro. Here, we present evidence that lipoxin A4 is generated in rat kidneys during experimental immune complex-mediated glomerulonephritis in vivo. Renal lipoxin A4 levels were markedly reduced by prior depletion of animals of either neutrophils or platelets, suggesting that most lipoxin A4 generated in vivo was derived from transcellular biosynthetic pathways during platelet-neutrophil interactions. Electron microscopic examination of glomerulonephritic kidneys revealed areas of intimate contact between neutrophils and platelets within the lumen of glomerular capillaries. P-selectin on platelets is an important mediator of platelet-neutrophil adhesion in vitro and in vivo. Prior treatment of animals with a blocking monoclonal antibody (mAb) against P-selectin (mAb CY1747), but not an isotype-matched non-blocking control mAb (mAb PNB1.6), caused striking inhibition of lipoxin A4 generation without attenuating neutrophil recruitment. Anti-P-selectin mAb also blunted transcellular lipoxin A4 generation during coincubations of activated neutrophils and platelets in vitro.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A Papayianni
- Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
43
|
|
44
|
Serhan CN. Lipoxin biosynthesis and its impact in inflammatory and vascular events. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1212:1-25. [PMID: 8155718 DOI: 10.1016/0005-2760(94)90185-6] [Citation(s) in RCA: 222] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- C N Serhan
- Department of Medicine, Brigham and Women's Hospital, Boston, MA
| |
Collapse
|
45
|
Takata S, Matsubara M, Allen PG, Janmey PA, Serhan CN, Brady HR. Remodeling of neutrophil phospholipids with 15(S)-hydroxyeicosatetraenoic acid inhibits leukotriene B4-induced neutrophil migration across endothelium. J Clin Invest 1994; 93:499-508. [PMID: 7906693 PMCID: PMC293870 DOI: 10.1172/jci116999] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
5-Lipoxygenase products, such as leukotrienes, are important stimuli for leukocyte-mediated tissue injury in acute inflammation. 15-Hydroxyeicosatetraenoic acid (15-HETE) is an eicosanoid generated by a variety of cell types via the actions of 15-lipoxygenases and, in addition, cyclooxygenases and epoxygenases. 15-HETE levels are frequently elevated at sites of inflammation, and extracellular 15(S)-HETE is esterified rapidly into neutrophil (PMN) phospholipids in vitro to levels that are comparable with arachidonic acid. We present evidence that remodeling of PMN phospholipids with 15(S)-HETE stereoselectively inhibits PMN migration across endothelium in response to leukotriene B4 (LTB4) and other chemoattractants. Esterified 15(S)-HETE causes a striking reduction in the affinity of LTB4 cell-surface receptors for their ligand and inhibition of LTB4-triggered stimulus-response coupling. As a result of these actions, esterified 15(S)-HETE attenuates the cytoskeletal rearrangements and CD11/CD18-mediated adhesive events that subserve directed locomotion of PMN across endothelium. These observations indicate that products of the 5-lipoxygenase and 15-lipoxygenase pathways can exert counterbalancing influences on PMN trafficking across endothelium. They suggest that 15(S)-HETE may be a potent endogenous inhibitor of PMN-endothelial interactions in vivo and serve to limit or reverse acute inflammation.
Collapse
Affiliation(s)
- S Takata
- Renal Division, Brigham and Women's Hospital, Boston, Massachusetts
| | | | | | | | | | | |
Collapse
|
46
|
Edenius C, Tornhamre S, Lindgren JA. Stimulation of lipoxin synthesis from leukotriene A4 by endogenously formed 12-hydroperoxyeicosatetraenoic acid in activated human platelets. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1210:361-7. [PMID: 8305492 DOI: 10.1016/0005-2760(94)90241-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Human platelets are devoid of 5-lipoxygenase activity but convert exogenous leukotriene A4 (LTA4) either by a specific LTC4 synthase to leukotriene C4 or via a 12-lipoxygenase mediated reaction to lipoxins. Unstimulated platelets mainly produced LTC4, whereas only minor amounts of lipoxins were formed. Platelet activation with thrombin, collagen or ionophore A23187 increased the conversion of LTA4 to lipoxins and decreased the leukotriene production. Maximal effects were observed after incubation with ionophore A23187, which induced synthesis of comparable amounts of lipoxins and cysteinyl leukotrienes (LTC4, LTD4 and LTE4). Chelation of intra- and extracellular calcium with quin-2 and EDTA reversed the ionophore A23187-induced stimulation of lipoxin synthesis from LTA4 and inhibited the formation of 12-hydroxyeicosatetraenoic acid (12-HETE) from endogenous substrate. However, calcium did not affect the 12-lipoxygenase activity in the 100,000 x g supernatant of sonicated platelet suspensions. Furthermore, the stimulatory effect on lipoxin formation induced by platelet agonists could be mimicked in intact platelets by the addition of low concentrations of arachidonic acid, 12-hydroperoxyeicosatetraenoic acid (12-HPETE) or 13-hydroperoxyoctadecadienoic acid (13-HPODE). The results indicate that the elevated lipoxin synthesis during platelet activation is due to stimulated 12-lipoxygenase activity induced by endogenously formed 12-HPETE.
Collapse
Affiliation(s)
- C Edenius
- Department of Physiological Chemistry, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
47
|
Michalowski AS. On radiation damage to normal tissues and its treatment. II. Anti-inflammatory drugs. Acta Oncol 1994; 33:139-57. [PMID: 8204269 DOI: 10.3109/02841869409098397] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In addition to transiently inhibiting cell cycle progression and sterilizing those cells capable of proliferation, irradiation disturbs the homeostasis effected by endogenous mediators of intercellular communication (humoral component of tissue response to radiation). Changes in the mediator levels may modulate radiation effects either by assisting a return to normality (e.g., through a rise in H-type cell lineage-specific growth factors) or by aggravating the damage. The latter mode is illustrated with reports on changes in eicosanoid levels after irradiation and on results of empirical treatment of radiation injuries with anti-inflammatory drugs. Prodromal, acute and chronic effects of radiation are accompanied by excessive production of eicosanoids (prostaglandins, prostacyclin, thromboxanes and leukotrienes). These endogenous mediators of inflammatory reactions may be responsible for the vasodilatation, vasoconstriction, increased microvascular permeability, thrombosis and chemotaxis observed after radiation exposure. Glucocorticoids inhibit eicosanoid synthesis primarily by interfering with phospholipase A2 whilst non-steroidal anti-inflammatory drugs prevent prostaglandin/thromboxane synthesis by inhibiting cyclooxygenase. When administered after irradiation on empirical grounds, drugs belonging to both groups tend to attenuate a range of prodromal, acute and chronic effects of radiation in man and animals. Taken together, these two sets of observations are highly suggestive of a contribution of humoral factors to the adverse responses of normal tissues and organs to radiation. A full account of radiation damage should therefore consist of complementary descriptions of cellular and humoral events. Further studies on anti-inflammatory drug treatment of radiation damage to normal organs are justified and desirable.
Collapse
|
48
|
Sud'ina GF, Galkina SI, Barsky OA, Margolis LB. Adhesive interactions of neutrophils and leukotriene synthesis. FEBS Lett 1993; 336:201-4. [PMID: 8262229 DOI: 10.1016/0014-5793(93)80802-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cell-substrate and cell-cell adhesion of neutrophils has been found to slow down the calcium ionophore A23187-induced synthesis of 5-lipoxygenase (5-LO) metabolites of arachidonic acid. Addition of the exogenous substrate, arachidonic acid (AA), together with A23187, resulted in the enhanced production of leukotriene B4 (LTB4) and 5-hydroxyeicosatetraenoic acid (5-HETE) by adherent neutrophils in comparison with those by the cells in suspension. We observed also the enhanced production of 5-LO metabolites in attached cells when we stimulated the cells by the combined action of phorbol 12-myristate 13-acetate (PMA) and A23187. Thus, the adhesion to solid substrate and to other cells, an important regulatory factor for the activity of many cells, is a powerful regulator of leukotriene production by neutrophils.
Collapse
Affiliation(s)
- G F Sud'ina
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Russian Federation
| | | | | | | |
Collapse
|
49
|
Lindgren JA, Edenius C. Transcellular biosynthesis of leukotrienes and lipoxins via leukotriene A4 transfer. Trends Pharmacol Sci 1993; 14:351-4. [PMID: 8296390 DOI: 10.1016/0165-6147(93)90092-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- J A Lindgren
- Department of Physiological Chemistry, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
50
|
Yoshida N, Takemura T, Granger DN, Anderson DC, Wolf RE, McIntire LV, Kvietys PR. Molecular determinants of aspirin-induced neutrophil adherence to endothelial cells. Gastroenterology 1993; 105:715-24. [PMID: 8103026 DOI: 10.1016/0016-5085(93)90888-j] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Previous studies indicate that aspirin can promote neutrophil adhesion to venular endothelium in vivo. The objectives of the present study were (1) to identify the leukocyte and endothelial cell surface glycoproteins that mediate this adhesive interaction and (2) to assess the role of lipoxygenase products, prostanoids, and platelet activating factor in aspirin-induced neutrophil adhesion. METHODS Human neutrophils (polymorphonuclear leukocytes [PMN]) were added to confluent monolayers of human umbilical vein endothelial cells (HUVEC) and coincubated with or without aspirin (30, 150, or 300 micrograms/mL). RESULTS Aspirin increased neutrophil adherence to HUVEC in a dose-dependent manner. Pretreatment of HUVEC with aspirin had no effect on PMN adherence whereas pretreatment of PMN significantly increased adherence to HUVEC. Incubation of neutrophils with aspirin increased surface expression of CD11b and CD18 on neutrophils. The aspirin-induced increase in PMN adherence to HUVEC was significantly reduced by monoclonal antibodies against CD18, CD11b, CD11a, and intercellular adhesion molecule 1. Aspirin-induced neutrophil adhesion was diminished by treatment with either a lipoxygenase inhibitor or a leukotriene B4 (LTB4) receptor antagonist. CONCLUSIONS These studies indicate that aspirin promotes neutrophil adherence to endothelium via CD11a/CD18- and CD11b/CD18-dependent interactions with intercellular adhesion molecule 1; the adhesion response is partially mediated by leukotriene B4.
Collapse
Affiliation(s)
- N Yoshida
- Department of Physiology, Louisiana State University Medical Center, Shreveport
| | | | | | | | | | | | | |
Collapse
|