1
|
|
2
|
Sheikh IA, Jiffri EH, Ashraf GM, Kamal MA, Beg MA. Structural studies on inhibitory mechanisms of antibiotic, corticosteroid and catecholamine molecules on lactoperoxidase. Life Sci 2018; 207:412-419. [PMID: 29953881 DOI: 10.1016/j.lfs.2018.06.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 06/13/2018] [Accepted: 06/25/2018] [Indexed: 12/17/2022]
Abstract
AIM Lactoperoxidase (LPO) is an essential protein with broad spectrum antimicrobial activity present in mammalian milk. It imparts immunity to infants against wide range of pathogenic infections. Several in vitro studies have shown inhibition of LPO activity by pharmaceutical compounds including commonly used antibiotics such as ampicillin and gentamicin, and molecules like prednisolone, norepinephrine, etc. Prescription of such drugs to lactating mothers might have adverse health effects on infants. The aim of our study was the elucidation of the structural aspects of the inhibitory mechanism of ampicillin, gentamicin, amoxicillin, prednisolone and norepinephrine on LPO. MATERIAL AND METHODS Three dimensional structure of camel LPO (cLPO) was developed using homology modeling and used for in silico experimental studies. The Schrödinger induced fit docking along with binding affinity estimation experiments were performed. The cLPO and Ligands were prepared using Protein Preparation Wizard and Ligprep modules available in Schrodinger suite. For estimating Binding affinity Prime Molecular Mechanics with Generalized Born and Surface Area (MMGB-SA) module was used. KEY RESULTS The five drug ligands formed three to five hydrogen bonding interactions with cLPO. Amino acids Arg-231, Asp-232, Ser-370, Arg-371 and Glu-374 of cLPO were crucial for these interactions. The binding affinity values for gentamicin were highest and for norepinephrine were the lowest. SIGNIFICANCE This study concludes that the five drug molecules show potential ability to inhibit the LPO activity. Further, a very high sequence similarity of cLPO with human LPO imparts high significance to these conclusions in relation to human health especially in new born infants.
Collapse
Affiliation(s)
- Ishfaq A Sheikh
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Essam H Jiffri
- Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad A Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohd A Beg
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
3
|
Singh PK, Sirohi HV, Iqbal N, Tiwari P, Kaur P, Sharma S, Singh TP. Structure of bovine lactoperoxidase with a partially linked heme moiety at 1.98Å resolution. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:329-335. [DOI: 10.1016/j.bbapap.2016.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/05/2016] [Accepted: 12/10/2016] [Indexed: 11/26/2022]
|
4
|
Goyal RN, Rana ARS, Chasta H. Electrochemical and peroxidase-catalyzed oxidation of epinephrine. Electrochim Acta 2012. [DOI: 10.1016/j.electacta.2011.11.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
5
|
Singh AK, Kumar RP, Pandey N, Singh N, Sinha M, Bhushan A, Kaur P, Sharma S, Singh TP. Mode of binding of the tuberculosis prodrug isoniazid to heme peroxidases: binding studies and crystal structure of bovine lactoperoxidase with isoniazid at 2.7 A resolution. J Biol Chem 2009; 285:1569-76. [PMID: 19907057 DOI: 10.1074/jbc.m109.060327] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Isoniazid (INH) is an anti-tuberculosis prodrug that is activated by mammalian lactoperoxidase and Mycobacterium tuberculosis catalase peroxidase (MtCP). We report here binding studies, an enzyme assay involving INH, and the crystal structure of the complex of bovine lactoperoxidase (LPO) with INH to illuminate binding properties and INH activation as well as the mode of diffusion and interactions together with a detailed structural and functional comparison with MtCP. The structure determination shows that isoniazid binds to LPO at the substrate binding site on the distal heme side. The substrate binding site is connected to the protein surface through a long hydrophobic channel. The acyl hydrazide moiety of isoniazid interacts with Phe(422) O, Gln(423) O(epsilon1), and Phe(254) O. In this arrangement, pyridinyl nitrogen forms a hydrogen bond with a water molecule, W-1, which in turn forms three hydrogen bonds with Fe(3+), His(109) N(epsilon2), and Gln(105) N(epsilon2). The remaining two sides of isoniazid form hydrophobic interactions with the atoms of heme pyrrole ring A, C(beta) and C(gamma) atoms of Glu(258), and C(gamma) and C(delta) atoms of Arg(255). The binding studies indicate that INH binds to LPO with a value of 0.9 x 10(-6) m for the dissociation constant. The nitro blue tetrazolium reduction assay shows that INH is activated by the reaction of LPO-H(2)O(2) with INH. This suggests that LPO can be used for INH activation. It also indicates that the conversion of INH into isonicotinoyl radical by LPO may be the cause of INH toxicity.
Collapse
Affiliation(s)
- Amit K Singh
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110 029, India
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Reszka KJ, McGraw DW, Britigan BE. Peroxidative metabolism of beta2-agonists salbutamol and fenoterol and their analogues. Chem Res Toxicol 2009; 22:1137-50. [PMID: 19462961 DOI: 10.1021/tx900071f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phenolic beta(2)-adrenoreceptor agonists salbutamol, fenoterol, and terbutaline relax smooth muscle cells that relieve acute airway bronchospasm associated with asthma. Why their use sometimes fails to relieve bronchospasm and why the drugs appear to be less effective in patients with severe asthma exacerbations remains unclear. We show that in the presence of hydrogen peroxide, both myeloperoxidase, secreted by activated neutrophils present in inflamed airways, and lactoperoxidase, which is naturally present in the respiratory system, catalyze oxidation of these beta(2)-agonists. Azide, cyanide, thiocyanate, ascorbate, glutathione, and methimazole inhibited this process, while methionine was without effect. Inhibition by ascorbate and glutathione was associated with their oxidation to corresponding radical species by the agonists' derived phenoxyl radicals. Using electron paramagnetic resonance (EPR), we detected free radical metabolites from beta(2)-agonists by spin trapping with 2-methyl-2-nitrosopropane (MNP). Formation of these radicals was inhibited by pharmacologically relevant concentrations of methimazole and dapsone. In alkaline buffers, radicals from fenoterol and its structural analogue, metaproteronol, were detected by direct EPR. Analysis of these spectra suggests that oxidation of fenoterol and metaproterenol, but not terbutaline, causes their transformation through intramolecular cyclization by addition of their amino nitrogen to the aromatic ring. Together, these results indicate that phenolic beta(2)-agonists function as substrates for airway peroxidases and that the resulting products differ in their structural and functional properties from their parent compounds. They also suggest that these transformations can be modulated by pharmacological approaches using appropriate peroxidase inhibitors or alternative substrates. These processes may affect therapeutic efficacy and also play a role in adverse reactions of the beta(2)-agonists.
Collapse
Affiliation(s)
- Krzysztof J Reszka
- Research Services and Department of Internal Medicine, Department of Veterans Affairs Medical Center, Cincinnati, Ohio 45220, USA.
| | | | | |
Collapse
|
7
|
Singh AK, Singh N, Sinha M, Bhushan A, Kaur P, Srinivasan A, Sharma S, Singh TP. Binding modes of aromatic ligands to mammalian heme peroxidases with associated functional implications: crystal structures of lactoperoxidase complexes with acetylsalicylic acid, salicylhydroxamic acid, and benzylhydroxamic acid. J Biol Chem 2009; 284:20311-8. [PMID: 19465478 PMCID: PMC2740456 DOI: 10.1074/jbc.m109.010280] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Indexed: 11/06/2022] Open
Abstract
The binding and structural studies of bovine lactoperoxidase with three aromatic ligands, acetylsalicylic acid (ASA), salicylhydoxamic acid (SHA), and benzylhydroxamic acid (BHA) show that all the three compounds bind to lactoperoxidase at the substrate binding site on the distal heme side. The binding of ASA occurs without perturbing the position of conserved heme water molecule W-1, whereas both SHA and BHA displace it by the hydroxyl group of their hydroxamic acid moieties. The acetyl group carbonyl oxygen atom of ASA forms a hydrogen bond with W-1, which in turn makes three other hydrogen-bonds, one each with heme iron, His-109 N(epsilon2), and Gln-105 N(epsilon2). In contrast, in the complexes of SHA and BHA, the OH group of hydroxamic acid moiety in both complexes interacts with heme iron directly with Fe-OH distances of 3.0 and 3.2A respectively. The OH is also hydrogen bonded to His-109 N(epsilon2) and Gln-105N(epsilon2). The plane of benzene ring of ASA is inclined at 70.7 degrees from the plane of heme moiety, whereas the aromatic planes of SHA and BHA are nearly parallel to the heme plane with inclinations of 15.7 and 6.2 degrees , respectively. The mode of ASA binding provides the information about the mechanism of action of aromatic substrates, whereas the binding characteristics of SHA and BHA indicate the mode of inhibitor binding.
Collapse
Affiliation(s)
- Amit K. Singh
- From the Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110 029, India
| | - Nagendra Singh
- From the Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110 029, India
| | - Mau Sinha
- From the Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110 029, India
| | - Asha Bhushan
- From the Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110 029, India
| | - Punit Kaur
- From the Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110 029, India
| | - Alagiri Srinivasan
- From the Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110 029, India
| | - Sujata Sharma
- From the Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110 029, India
| | - Tej P. Singh
- From the Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110 029, India
| |
Collapse
|
8
|
Song L, Song W, Schipper HM. Astroglia overexpressing heme oxygenase-1 predispose co-cultured PC12 cells to oxidative injury. J Neurosci Res 2007; 85:2186-95. [PMID: 17526019 DOI: 10.1002/jnr.21367] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The mechanisms responsible for the progressive degeneration of dopaminergic neurons and pathologic iron deposition in the substantia nigra pars compacta of patients with Parkinson's disease (PD) remain unclear. Heme oxygenase-1 (HO-1), the rate-limiting enzyme in the oxidative degradation of heme to ferrous iron, carbon monoxide, and biliverdin, is upregulated in affected PD astroglia and may contribute to abnormal mitochondrial iron sequestration in these cells. To determine whether glial HO-1 hyper-expression is toxic to neuronal compartments, we co-cultured dopaminergic PC12 cells atop monolayers of human (h) HO-1 transfected, sham-transfected, or non-transfected primary rat astroglia. We observed that PC12 cells grown atop hHO-1 transfected astrocytes, but not the astroglia themselves, were significantly more susceptible to dopamine (1 microM) + H(2)O(2) (1 microM)-induced death (assessed by nuclear ethidium monoazide bromide staining and anti-tyrosine hydroxylase immunofluorescence microscopy) relative to control preparations. In the experimental group, PC12 cell death was attenuated significantly by the administration of the HO inhibitor, SnMP (1.5 microM), the antioxidant, ascorbate (200 microM), or the iron chelators, deferoxamine (400 microM), and phenanthroline (100 microM). Exposure to conditioned media derived from HO-1 transfected astrocytes also augmented PC12 cell killing in response to dopamine (1 microM) + H(2)O(2) (1 microM) relative to control media. In PD brain, overexpression of HO-1 in nigral astroglia and accompanying iron liberation may facilitate the bioactivation of dopamine to neurotoxic free radical intermediates and predispose nearby neuronal constituents to oxidative damage.
Collapse
Affiliation(s)
- Linyang Song
- Centre for Neurotranslational Research, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montreal, Quebec, Canada
| | | | | |
Collapse
|
9
|
Boscolo B, Leal SS, Ghibaudi EM, Gomes CM. Lactoperoxidase folding and catalysis relies on the stabilization of the α-helix rich core domain: A thermal unfolding study. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:1164-72. [PMID: 17698426 DOI: 10.1016/j.bbapap.2007.07.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 06/29/2007] [Accepted: 07/05/2007] [Indexed: 11/23/2022]
Abstract
Lactoperoxidase (LPO) belongs to the mammalian peroxidase family and catalyzes the oxidation of halides, pseudo-halides and a number of aromatic substrates at the expense of hydrogen peroxide. Despite the complex physiological role of LPO and its potential involvement in carcinogenic mechanisms, cystic fibrosis and inflammatory processes, little is known on the folding and structural stability of this protein. We have undertaken an investigation of the conformational dynamics and catalytic properties of LPO during thermal unfolding, using complementary biophysical techniques (differential scanning calorimetry, electron spin resonance, optical absorption, fluorescence and circular dichroism spectroscopies) together with biological activity assays. LPO is a particularly stable protein, capable of maintaining catalysis and structural integrity up to a high temperature, undergoing irreversible unfolding at 70 degrees C. We have observed that the first stages of the thermal denaturation involve a minor conformational change occurring at 40 degrees C, possibly at the level of the protein beta-sheets, which nevertheless does not result in an unfolding transition. Only at higher temperature, the protein hydrophobic core, which is rich in alpha-helices, unfolds with concomitant disruption of the catalytic heme pocket and activity loss. Evidences concerning the stabilizing role of the disulfide bridges and the covalently bound heme cofactor are shown and discussed in the context of understanding the structural stability determinants in a relatively large protein.
Collapse
Affiliation(s)
- Barbara Boscolo
- Dipartimento di Chimica I.F.M., Università di Torino, Torino, Italy
| | | | | | | |
Collapse
|
10
|
Bonini MG, Siraki AG, Bhattacharjee S, Mason RP. Glutathione-induced radical formation on lactoperoxidase does not correlate with the enzyme's peroxidase activity. Free Radic Biol Med 2007; 42:985-92. [PMID: 17349926 PMCID: PMC1994934 DOI: 10.1016/j.freeradbiomed.2006.12.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 12/20/2006] [Accepted: 12/23/2006] [Indexed: 11/23/2022]
Abstract
Lactoperoxidase (LPO) is believed to serve as a mediator of host defense against invading pathogens. The protein is more abundant in body fluids such as milk, saliva, and tears. Lactoperoxidase is known to mediate the oxidation of halides and (pseudo)halides in the presence of hydrogen peroxide to reactive intermediates presumably involved in pathogen killing. More recently, LPO has been shown to oxidize a wide diversity of thiol compounds to thiyl free radicals, which ultimately lead to the formation of a protein radical characterized by DMPO-immunospin trapping. In the same study by our group the authors claimed that a consequence of this protein radical formation was the inactivation of LPO (Guo et al., J. Biol. Chem.279:13272-13283; 2004). Here we demonstrate that although thiyl radical formation does lead to LPO radical production, the formation of this radical is unrelated to the enzyme's activity. We suggest the source of this misleading interpretation to be the binding of GSH to ELISA plates, which interferes with ABTS and guaiacol oxidation. In addition, DMPO-GSH-nitrone adducts bind to ELISA plates, leading to ambiguities of interpretation since we have demonstrated that DMPO-GSH nitrone does not bind to LPO, and only LPO-protein-DMPO-nitrone adducts can be detected by Western blot.
Collapse
Affiliation(s)
- Marcelo G Bonini
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, MD, USA.
| | | | | | | |
Collapse
|
11
|
Abstract
Lactoperoxidase is an iron containing enzyme, which is an essential component of the defense system of mammalian secretary fluids. The enzyme readily oxidizes adrenaline and other catecholamines to coloured aminochrome products. A Km-value of 1.21 mM and a catalytic constant (k = Vmax/[Enz]) of 15.5 x 10(3) min(-1) characterized the reaction between lactoperoxidase and adrenaline at pH 7.4. Urate was found to activate the enzyme catalyzed oxidation of adrenaline in a competitive manner, the effect decreasing with increasing adrenaline concentration. Lactoperoxidase was able to catalyze the oxidation of urate. However, urate was a much poorer substrate than adrenaline, and it seems unlikely that urate activates by functioning as a free, redox cycling intermediate between enzyme and adrenaline. The activation mechanism probably involves an urate-lactoperoxidase complex.
Collapse
Affiliation(s)
- Rolf A Løvstad
- Department of Medical Biochemistry, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway
| |
Collapse
|
12
|
Lee DW, Opanashuk LA. Polychlorinated biphenyl mixture aroclor 1254-induced oxidative stress plays a role in dopaminergic cell injury. Neurotoxicology 2005; 25:925-39. [PMID: 15474611 DOI: 10.1016/j.neuro.2004.05.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2004] [Accepted: 05/20/2004] [Indexed: 12/21/2022]
Abstract
Oxidative stress (OS) is thought to participate in the pathogenesis of neurodegenerative disorders, including Parkinson's disease (PD). Excessive reactive oxygen species (ROS) production can occur during the normal aging process or following exposure to environmental toxicants. Dopamine neurons, which degenerate during PD, are particularly sensitive to oxidative stress. Polychlorinated biphenyls (PCBs), persistent and widespread pollutants, have been shown to adversely impact dopaminergic (DAergic) pathways, but the role ROS play in neurotoxicity remains unclear. To test the hypothesis that PCB exposure compromises dopamine neurons by stimulating ROS production, the direct toxicity and oxidative stress response following PCB exposure was examined both in MN9D dopamine cells and primary mesencephalic cultures. PCBs induced a time- and concentration-dependent increase in ROS production, which preceded cytotoxicity. Whereas intracellular GSH depletion exacerbated PCB effects, antioxidant pretreatment attenuated ROS production and cell death. Coincident alterations in antioxidant defense enzymes also accompanied ROS production, including decreased MnSOD and increased CuZnSOD protein levels. The robust elevation in heme oxygenase-1 levels further support the activation of oxidative stress mechanisms following PCB exposure. Furthermore, PCBs produced concentration-dependent reductions in intracellular dopamine levels and elevated dopamine turnover. Although the intracellular source of ROS remains unknown, these results suggest that sublethal PCB concentrations activate an oxidative stress-related pathway, which potentially disrupts dopamine neuron function.
Collapse
Affiliation(s)
- D W Lee
- Department of Environmental Medicine, Box EHSC, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | |
Collapse
|
13
|
Guo Q, Detweiler CD, Mason RP. Protein Radical Formation during Lactoperoxidase-mediated Oxidation of the Suicide Substrate Glutathione. J Biol Chem 2004; 279:13272-83. [PMID: 14724284 DOI: 10.1074/jbc.m310034200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A novel anti-5,5-dimethyl-1-pyrroline N-oxide (DMPO) polyclonal antiserum that specifically recognizes protein radical-derived DMPO nitrone adducts has been developed. In this study, we employed this new approach, which combines the specificity of spin trapping and the sensitivity of antigen-antibody interactions, to investigate protein radical formation from lactoperoxidase (LPO). When LPO reacted with GSH in the presence of DMPO, we detected an LPO radical-derived DMPO nitrone adduct using enzyme-linked immunosorbent assay and Western blotting. The formation of this nitrone adduct depended on the concentrations of GSH, LPO, and DMPO as well as pH values, and GSH could not be replaced by H(2)O(2). The level of this nitrone adduct was decreased significantly by azide, catalase, ascorbate, iodide, thiocyanate, phenol, or nitrite. However, its formation was unaffected by chemical modification of free cysteine, tyrosine, and tryptophan residues on LPO. ESR spectra showed that a glutathiyl radical was formed from the LPO/GSH/DMPO system, but no protein radical adduct could be detected by ESR. Its formation was decreased by azide, catalase, ascorbate, iodide, or thiocyanate, whereas phenol or nitrite increased it. GSH caused marked changes in the spectrum of compound II of LPO, indicating that GSH binds to the heme of compound II, whereas phenol or nitrite prevented these changes and reduced compound II back to the native enzyme. GSH also dose-dependently inhibited the peroxidase activity of LPO as determined by measuring 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) oxidation. Taken together, these results demonstrate that the GSH-dependent LPO radical formation is mediated by the glutathiyl radical, possibly via the reaction of the glutathiyl radical with the heme of compound II to form a heme-centered radical trapped by DMPO.
Collapse
Affiliation(s)
- Qiong Guo
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, PO Box 12233, Research Triangle Park, NC 27709, USA.
| | | | | |
Collapse
|
14
|
Ciaccio C, De Sanctis G, Marini S, Sinibaldi F, Santucci R, Arcovito A, Bellelli A, Ghibaudi E, Ferrari Rosa P, Coletta M. Proton linkage for CO binding and redox properties of bovine lactoperoxidase. Biophys J 2004; 86:448-54. [PMID: 14695287 PMCID: PMC1303810 DOI: 10.1016/s0006-3495(04)74121-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2003] [Accepted: 09/08/2003] [Indexed: 11/18/2022] Open
Abstract
The pH-dependence of redox properties and of CO binding to bovine lactoperoxidase has been investigated over the range between 2 and 11. The pH-dependence of redox potentials shows a biphasic behavior, suggesting the existence of (at least) two redox-linked groups, which change their pKa values upon reduction. These values are in close agreement with those observed to play a relevant role in the modulation of CO binding to ferrous bovine lactoperoxidase. They have been tentatively attributed to Arg-372 and His-226, which are located on the distal side of the heme pocket of lactoperoxidase. A complete and unequivocal description of the proton-linked behavior of bovine lactoperoxidase requires, however, three residues, which are redox linked and relevant for the modulation of CO binding. The rate constant for CO binding to bovine lactoperoxidase is slower than what is reported for most hemoproteins, suggesting that these two residues, Arg-372 and His-226, are representing a severe barrier for the access of exogenous ligands to the heme. This aspect has been further investigated by fast kinetics following laser photolysis, trying to obtain information on the ligand binding pathway and on the energy barriers.
Collapse
Affiliation(s)
- Chiara Ciaccio
- Department of Experimental Medicine and Biochemical Sciences, Università di Tor Vergata, I-00133 Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ren MQ, Ong WY, Wang XS, Watt F. A nuclear microscopic and histochemical study of iron concentrations and distribution in the midbrain of two age groups of monkeys unilaterally injected with MPTP. Exp Neurol 2003; 184:947-54. [PMID: 14769387 DOI: 10.1016/s0014-4886(03)00341-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2002] [Revised: 06/19/2003] [Accepted: 06/27/2003] [Indexed: 11/19/2022]
Abstract
The present study was carried out to elucidate the concentration and distribution of iron in the substantia nigra of two age groups of monkeys after experimental hemi-Parkinsonism induced by unilateral internal carotid injections of MPTP. Iron levels and distribution were detected using the nuclear microscope, which is able to provide structural and quantitative elemental analysis of biological tissue down to the parts per million (ppm) level of analytical sensitivity. Five weeks after unilateral lesioning with MPTP, we observed a 30-65% loss of neurons in the injected substantia nigra of each monkey, compared with the contralateral control 'non-lesioned' side. In monkeys less than 7 years of age, the iron was distributed fairly uniformly and showed little evidence of focal deposits. In monkeys greater than 7 years of age, we observed many dense focal deposits of iron in the substantia nigra. A comparison between iron distributions in nuclear microscopic scans and cell distributions in the same sections stained by the Nissl technique showed that areas containing high iron concentrations were present not where large-diameter neurons with abundant Nissl substance (presumed dopaminergic neurons) were located but in a region ventral to these cell bodies, i.e., in the substantia nigra pars reticulata. These distributions were present on the control side as well as the MPTP-injected side. Since a previous study has shown that unilateral MPTP injection results in lesions of the substantia nigra of the same side but negligible injury to the opposite side, this implies that the iron deposits existed in the older monkeys before MPTP injections (i.e. they occurred normally). The accumulation of iron in the substantia nigra with age suggests the possibility of localised damage to neurons through the catalysis of free radicals.
Collapse
Affiliation(s)
- Min-Qin Ren
- Research Centre for Nuclear Microscopy, Department of Physics, National University of Singapore, Singapore 119260, Singapore
| | | | | | | |
Collapse
|
16
|
Brück TB, Fielding RJ, Symons MC, Harvey PJ. Mechanism of nitrite-stimulated catalysis by lactoperoxidase. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:3214-22. [PMID: 11389723 DOI: 10.1046/j.1432-1327.2001.02213.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The reactions of lactoperoxidase (LPO) intermediates compound I, compound II and compound III, with nitrite (NO2(-)) were investigated. Reduction of compound I by NO2(-) was rapid (k2 = 2.3 x 10(7) M(-1) x s(-1); pH = 7.2) and compound II was not an intermediate, indicating that NO2* radicals are not produced when NO2(-) reacts with compound I. The second-order rate constant for the reaction of compound II with NO2(-) at pH = 7.2 was 3.5 x 10(5) M(-1) x s(-1). The reaction of compound III with NO2(-) exhibited saturation behaviour when the observed pseudo first-order rate constants were plotted against NO2(-) concentrations and could be quantitatively explained by the formation of a 1 : 1 ratio compound III/NO2(-) complex. The Km of compound III for NO2(-) was 1.7 x 10(-4) M and the first-order decay constant of the compound III/ NO2(-) complex was 12.5 +/- 0.6 s(-1). The second-order rate constant for the reaction of the complex with NO2(-) was 3.3 x 10(3) M(-1) x s(-1). Rate enhancement by NO2(-) does not require NO2* as a redox intermediate. NO2(-) accelerates the overall rate of catalysis by reducing compound II to the ferric state. With increasing levels of H2O2, there is an increased tendency for the catalytically dead-end intermediate compound III to form. Under these conditions, the 'rescue' reaction of NO2(-) with compound III to form compound II will maintain the peroxidatic cycle of the enzyme.
Collapse
Affiliation(s)
- T B Brück
- Department of Chemical and Life Sciences, University of Greenwich, London, UK
| | | | | | | |
Collapse
|
17
|
Ozdemir H, Aygul I, Küfrevioglu OI. Purification of lactoperoxidase from bovine milk and investigation of the kinetic properties. Prep Biochem Biotechnol 2001; 31:125-34. [PMID: 11426700 DOI: 10.1081/pb-100103378] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Lactoperoxidase (LPO) was purified from bovine milk using Amberlite CG 50 H+ resin, CM Sephadex C-50 ion-exchange chromatography, and Sephadex G-100 gel filtration chromatography. During the purification steps, the activity of enzyme was measured using 2,2'-azino-bis (3-ethylbenzthiazoline-6 sulfonic acid) diamonium salt (ABTS) as a chromogenic substrate at pH 6. Optimum pH and optimum temperature values for LPO were determined for ABTS, p-phenylendiamine, catechol, epinephrine, and pyrogallol as substrates, and then Km and Vmax values for the same substrate were obtained by means of Lineweaver-Burk graphics. The purification degree of the enzyme was controlled by SDS-PAGE and Rz (A412/A280) values. Km values, at optimum pH and 20 degrees C, were 0.197 mM, 0.063 mM, 0.64 mM, 25.2 mM, and 63.95 mM for p-phenylendiamine, ABTS, epinephrine, pyrogallol, and catechol, respectively. Vmax values, at optimum pH and 20 degrees C, were 3.5x10(-5) EU/mL, 4.0x10(-5) EU/mL, 5.8x10(-4) EU/mL, 8.4x10(-4) EU/mL, and 1.01x10(-3) EU/mL for the same substrates, respectively. p-Phenylendiamine was first found as a new substrate for LPO.
Collapse
Affiliation(s)
- H Ozdemir
- Department of Biochemistry, Faculty of Science and Arts, Ataturk University, Erzurum, Turkey
| | | | | |
Collapse
|
18
|
Polewski K. Spectroscopic detection of adrenaline-quinone formation in micelles. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1523:56-64. [PMID: 11099858 DOI: 10.1016/s0304-4165(00)00099-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Spectral changes, from 200 nm to 600 nm, of the oxidation of adrenaline to adrenochrome induced by periodate in electrically charged and neutral micelles at pH 3.77 were studied. The observed variations of the peak position, intensity and shape of the fluorescence spectra indicated that depending on the charge of the micelle adrenaline ion is partially embedded into the micellar core. Fluorescence lifetime measurements using Omnilyzer allowed to calculate partition coefficients of 0.36, 0.05 and 0.01 in sodium dodecyl sulphate, tetradodecyltrimethylammonium bromide and Triton X-100, respectively. Kinetics of adrenaline decay during oxidation were followed by its fluorescence what overcame spectral interference in the absorption spectra of adrenaline from the formed intermediates. Scanning absorption spectroscopy, with 100 ms resolution, allowed the recording of spectral changes during the transformation. With this method, the formation of adrenaline-quinone with absorption maxima at 388 nm and 274 nm was detected. The calculated rate constants of the observed kinetics during oxidation were significantly lowered in both charged micelles compared to buffer solution and in Triton X-100 neutral micelles. The observed phenomena are discussed in terms of the electrostatic forces mechanism and in the frame of the Raper-Mason scheme of adrenaline transformation.
Collapse
Affiliation(s)
- K Polewski
- Agricultural University, Poznań, Poland.
| |
Collapse
|
19
|
Shin K, Hayasawa H, Lönnerdal B. PCR cloning and baculovirus expression of human lactoperoxidase and myeloperoxidase. Biochem Biophys Res Commun 2000; 271:831-6. [PMID: 10814547 DOI: 10.1006/bbrc.2000.2713] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lactoperoxidase (LPO) and myeloperoxidase (MPO) have been identified previously in human milk. These peroxidases have antimicrobial activity and presumably contribute to the protective functions of milk. In this study, we amplified genes encoding LPO and MPO from human mammary gland cDNA by the polymerase chain reaction (PCR). These genes were expressed in a baculovirus-insect cell system. Peroxidase activity was observed in the culture supernatant of Tricoplusia ni cells infected with the recombinant viruses and the levels increased upon addition of delta-aminolevulinic acid. Purified recombinant human LPO and MPO, both with a molecular mass of about 80 kDa, showed properties similar to bovine LPO and human MPO, respectively, in terms of absorption spectrum, sensitivity to dapsone, specificity for chloride ions, and reactivity with anti-bovine LPO or anti-MPO antibodies. Our data suggest that this expression system is useful for studying the catalytic mechanism and biological significance of these human peroxidases.
Collapse
Affiliation(s)
- K Shin
- Nutritional Science Laboratory, Morinaga Milk Industry Co. Ltd., 5-1-83 Higashihara, Zama, Kanagawa, 228-8583, Japan
| | | | | |
Collapse
|
20
|
Schipper HM. Glial HO-1 expression, iron deposition and oxidative stress in neurodegenerative diseases. Neurotox Res 1999; 1:57-70. [PMID: 12835114 DOI: 10.1007/bf03033339] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The mechanisms responsible for the pathological deposition of brain iron in Parkinson's disease, Alzheimer's disease and other human neurodegenerative disorders remain poorly understood. In rat primary astrocyte cultures, we demonstrated that dopamine, cysteamine, H(2)O(2) and menadione rapidly induce heme oxygenase-1 (HO-1) expression (mRNA and protein) followed by sequestration of non-transferrin-derived (55)Fe by the mitochondrial compartment. The effects of dopamine on HO-1 expression were inhibited by ascorbate implicating a free radical mechanism of action. Dopamine-induced mitochondrial iron trapping was abrogated by administration of the heme oxygenase inhibitors, tin mesoporphyrin (SnMP) or dexamethasone (DEX) indicating that HO-1 upregulation is necessary for subsequent mitochondrial iron deposition in these cells. Overexpression of the human HO-1 gene in cultured rat astroglia by transient transfection also stimulated mitochondrial (55)Fe deposition, an effect that was again preventible by SnMP or DEX administration. We hypothesize that free ferrous iron and carbon monoxide generated by HO-1-mediated heme degradation promote mitochondrial membrane injury and the deposition of redox-active iron within this organelle. We have shown that the percentages of GFAP-positive astrocytes that co-express HO-1 in Parkinson-affected substantia nigra and Alzheimer-diseased hippocampus are significantly increased relative to age-matched controls. Stress-induced up-regulation of HO-1 in astroglia may be responsible for the abnormal patterns of brain iron deposition and mitochondrial insufficiency documented in various human neurodegenerative disorders.
Collapse
Affiliation(s)
- H M Schipper
- Bloomfield Centre for Research in Aging, Lady Davis Institute for Medical Research, Montreal, Quebec, Canada.
| |
Collapse
|
21
|
Reszka KJ, Matuszak Z, Chignell CF, Dillon J. Oxidation of biological electron donors and antioxidants by a reactive lactoperoxidase metabolite from nitrite (NO2-): an EPR and spin trapping study. Free Radic Biol Med 1999; 26:669-78. [PMID: 10218656 DOI: 10.1016/s0891-5849(98)00244-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We report that a lactoperoxidase (LPO) metabolite derived from nitrite (NO2-) catalyses one-electron oxidation of biological electron donors and antioxidants such as NADH, NADPH, cysteine, glutathione, ascorbate, and Trolox C. The radical products of the reaction have been detected and identified using either direct EPR or EPR combined with spin trapping. While LPO/H2O2 alone generated only minute amounts of radicals from these compounds, the yield of radicals increased sharply when nitrite was also present. In aerated buffer (pH 7) the nitrite-dependent oxidation of NAD(P)H by LPO/H2O2 produced superoxide radical, O2*-, which was detected as a DMPO/*O2H adduct. We propose that in the LPO/H2O2/NO2-/biological electron donor systems the nitrite functions as a catalyst because of its preferential oxidation by LPO to a strongly oxidizing metabolite, most likely a nitrogen dioxide radical *NO2, which then reacts with the biological substrates more efficiently than does LPO/H2O2 alone. Because both nitrite and peroxidase enzymes are ubiquitous our observations point at a possible mechanism through which nitrite might exert its biological and cytotoxic action in vivo, and identify some of the physiological targets which might be affected by the peroxidase/H2O2/nitrite systems.
Collapse
Affiliation(s)
- K J Reszka
- Department of Ophthalmology, Columbia University, New York, NY, USA.
| | | | | | | |
Collapse
|
22
|
Schipper HM, Vininsky R, Brull R, Small L, Brawer JR. Astrocyte mitochondria: a substrate for iron deposition in the aging rat substantia nigra. Exp Neurol 1998; 152:188-96. [PMID: 9710517 DOI: 10.1006/exnr.1998.6854] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Little is currently known concerning the cellular substrates for, and the mechanisms mediating the pathological deposition of, redox-active brain iron in Parkinson's disease. In various subcortical brain regions, populations of astroglia progressively accumulate peroxidase-positive cytoplasmic inclusions derived from effete, iron-laden mitochondria. In the present study, histochemical, ultrastructural, and elemental microanalytical techniques were used to demonstrate the existence of peroxidase-positive astroglia in the substantia nigra of adult rats. At 4 months of age and earlier, few GFAP-positive nigral astroglia contained small, electron-dense cytoplasmic inclusions which exhibited faint endogenous peroxidase activity (diaminobenzidine reaction product) and no detectable iron by microprobe analysis. In contrast, by 14-18 months of age, there was a significant, fourfold increase in numbers of peroxidase-positive astrocyte inclusions in the substantia nigra. The nigral gliosomes in the older animals were heterogeneously electron dense, immunoreactive for ubiquitin and a mitochondrial epitope, and often exhibited X-ray emission peaks for iron. Copper peaks were also detected in a minority of nigral gliosomes. Previous in vitro work indicated that the iron-mediated peroxidase activity in these cells promotes the bioactivation of dopamine and other catechols to neurotoxic free radical intermediates. Thus, mitochondrial sequestration of redox-active iron in aging nigral astroglia may be one factor predisposing the senescent nervous system to parkinsonism and other neurodegenerative disorders.
Collapse
Affiliation(s)
- H M Schipper
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| | | | | | | | | |
Collapse
|
23
|
Reszka KJ, Matuszak Z, Chignell CF. Lactoperoxidase-catalyzed oxidation of melanin by reactive nitrogen species derived from nitrite (NO2-): an EPR study. Free Radic Biol Med 1998; 25:208-16. [PMID: 9667498 DOI: 10.1016/s0891-5849(98)00058-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The reaction of synthetic DOPA melanin (DM) with lactoperoxidase (LPO), hydrogen peroxide, and nitrite (NO2-) has been investigated using EPR. We observed that in the presence of nitrite LPO/H2O2 generated large amount of melanin radicals, as evidenced by a strong, up to 11-fold, increase in the intensity of the melanin EPR signal. In contrast, when nitrite was omitted the increase was much less, ca. 30%, which, nevertheless, indicates that DM can be metabolized directly by LPO/H2O2. When the nitrite was present, the concentration of melanin radicals was linearly dependent on [NO2-] (for [NO2-] <5 mM), and increased when [LPO] and [H2O2] increased (at constant [NO2-]). We propose that the mechanism for the generation of melanin radicals by the LPO/H2O2/nitrite system involves oxidation of NO2- by LPO/H2O2 to a reactive metabolite, most likely the nitrogen dioxide radical (.NO2), which subsequently reacts with melanin 5,6-dihydroxyindole subunits producing the respective semiquinone radicals. Because melanin and .NO2 generating systems (nitrite, peroxidase enzymes, hydrogen peroxide) may coexist in cells in vivo, our results suggest that melanin could function as a natural scavenger of this highly reactive nitrogen species. This property may be relevant to the physiological functions of the melanin pigments in vivo.
Collapse
Affiliation(s)
- K J Reszka
- Laboratory of Pharmacology & Chemistry, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA.
| | | | | |
Collapse
|
24
|
Ferrari RP, Ghibaudi EM, Traversa S, Laurenti E, De Gioia L, Salmona M. Spectroscopic and binding studies on the interaction of inorganic anions with lactoperoxidase. J Inorg Biochem 1997; 68:17-26. [PMID: 9379177 DOI: 10.1016/s0162-0134(97)00003-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The interaction of several inorganic species (SCN-, I-, Br-, Cl-, F-, NO2-, N3-, CN-) with bovine lactoperoxidase was investigated through kinetic and binding studies by using UV-Vis spectroscopy. The above ligands form 1:1 complexes with the protein and can be assigned to three different groups, on the basis of the dissociation constant values (KD) of the adducts: (1) SCN-, I-, Br-, and Cl- (KD increases along the series); (2) F- (which shows a singular behavior); (3) NO2-, N3-, and CN- (that bind at the iron site). KD values for the LPO/SCN- adduct appeared to be modified in the presence of other inorganic species; a strong competition between this substrate and all other anions (with the exception of F-) was evidentiated. Binding investigations on the natural substrates SCN- and I-, at varying pH and temperature, showed that their interaction with lactoperoxidase involves the protonation of a common site in proximity of the iron (possibly distal histidine). Michaelis-Menten constants for SCN-, I-, and Br- followed roughly the same trend as KD; KM for hydrogen peroxide is strongly dependent on the cosubstrate. Computer-assisted docking simulations showed that all ligands can penetrate inside the heme pocket.
Collapse
Affiliation(s)
- R P Ferrari
- Dipartimento di Chimica I.F.M., Università di Torino, Italy.
| | | | | | | | | | | |
Collapse
|
25
|
Affiliation(s)
- H M Schipper
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
26
|
Andersson LA, Bylkas SA, Wilson AE. Spectral analysis of lactoperoxidase. Evidence for a common heme in mammalian peroxidases. J Biol Chem 1996; 271:3406-12. [PMID: 8631940 DOI: 10.1074/jbc.271.7.3406] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The identity of the non-extractable heme of mammalian lactoperoxidase (LPO) has remained unsolved for over 40 years. Accepted possibilities include a constrained heme b or an 8-thiomethylene-modified heme b. Recent studies of myeloperoxidase (MPO) (Fenna, R., Zeng, J., and Davey, C. (1995) Arch. Biochem. Biophys. 316, 653-656; Taylor, K. L., Strobel, F., Yue, K. T., Ram, P., Pohl, J., Woods, A. S., and Kinkade, J. M., Jr. (1995) Arch. Biochem. Biophys. 316, 635-642) suggest possible prosthetic group similarities between MPO and LPO. To address heme identity for LPO, we used comparative magnetic circular dichroism (MCD) spectroscopy of LPO versus myoglobin (Mb), horseradish peroxidase (HRP), and MPO. MCD spectra of native Fe3+-LPO and Fe3+-CN--LPO are approximately 10 nm red shifted from analogous forms of Mb and HRP, including the formate-Mb adduct. MCD spectra of native LPO and MPO are opposite in sign, and MCD spectra of their cyanoadducts also differ. These data indicate the LPO heme is distinct from heme b of Mb and HRP as well as from "heme m" of MPO. From this work and literature analysis, we suggest that the non-extractable "heme l" of LPO has the two vinyl groups of heme b but lacks the 2-sulfonium-vinyl linkage of heme m. The observed red shifts in LPO spectra may derive from ester linkages to protein as for MPO. Strong spectral analogies between LPO and mammalian peroxidases (e.g. from saliva, eosinophils, thyroid, intestine) indicate similar prosthetic heme moieties.
Collapse
Affiliation(s)
- L A Andersson
- Department of Biochemistry, Kansas State University, Manhattan, Kansas 66506, USA
| | | | | |
Collapse
|
27
|
Huether G, Schuff-Werner P. Platelet serotonin acts as a locally releasable antioxidant. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1996; 398:299-306. [PMID: 8906281 DOI: 10.1007/978-1-4613-0381-7_47] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- G Huether
- Department of Psychiatry, University of Göttingen, Germany
| | | |
Collapse
|
28
|
Floris R, Piersma SR, Yang G, Jones P, Wever R. Interaction of myeloperoxidase with peroxynitrite. A comparison with lactoperoxidase, horseradish peroxidase and catalase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 215:767-75. [PMID: 8394811 DOI: 10.1111/j.1432-1033.1993.tb18091.x] [Citation(s) in RCA: 203] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Polymorphonuclear neutrophils generate both nitric oxide and superoxide and these molecules can combine to form peroxynitrite. Neutrophils also contain myeloperoxidase which reacts with peroxynitrous acid (HOONO). On mixing myeloperoxidase with HOONO compound II was formed. Compound I could not be detected as an intermediate. The apparent second-order rate constant of formation of compound II was strongly pH-dependent (2.5 x 10(5) M-1 x s-1 at pH 8.9 and 6.2 x 10(6) M-1 x s-1 at pH 7.2). The pKa of this effect is 6.9 and it was concluded that the enzyme reacts with the protonated form of the peroxide, that is peroxynitrous acid, with a pH-independent second-order rate constant of 2.0 x 10(7) M-1 x s-1 at 12 degrees C. The interaction of HOONO with lactoperoxidase was studied for comparison. As was observed for myeloperoxidase, compound I could not be detected as an intermediate. The apparent second-order rate constant of compound II formation is pH-dependent and is 3.3 x 10(5) M-1 x s-1 at pH 7.4 and 8.4 x 10(4) M-1 x s-1 at pH 9.0. In contrast, horseradish peroxidase reacts with HOONO to form compound I, which is subsequently followed by the formation of compound II. The second-order rate constant for the formation of compound I is 3.2 x 10(6) M-1 x s-1 and is pH-dependent, the pKa for this effect is 6.8. Catalase (up to 3 microM) does not affect the rate of decomposition of peroxynitrite and no compound I formation is observed. Since nitrite may be present in the peroxynitrite preparation and to discriminate between the reaction of the enzyme with nitrite or peroxynitrite, the effect of nitrite on myeloperoxidase was studied. The dissociation constant for the myeloperoxidase-nitrite complex is pH-dependent and has values of 580 microM at pH 6.0 and 55 mM at pH 8.5.
Collapse
Affiliation(s)
- R Floris
- E.C. Slater Institute, University of Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
29
|
Kvannes J, Flatmark T. A fluorometric assay of acyl-CoA oxidase activity by a coupled peroxidatic reaction: elimination of interfering side reactions. JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS 1991; 23:135-49. [PMID: 1658107 DOI: 10.1016/0165-022x(91)90061-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have developed a simple, reliable, and sensitive method for the assay of peroxisomal fatty acyl-CoA oxidase (FAO, EC 1.13.-) in subcellular fractions. It is based on a peroxidase-linked oxidation of 4-hydroxyphenylacetic acid to a fluorescent compound [M.S. Poosch and R.K. Yamasaki (1986) Biochim. Biophys. Acta 884, 585-593]. Our method eliminates the contribution of important interfering side reactions, notably those due to the presence of reducing agents, which function as competitive substrates to 4-hydroxyphenylacetic acid. Rapidly reacting thiol groups are of particular importance, notably CoASH present endogenously (e.g. in peroxisomes and mitochondria) or formed by enzymatic hydrolysis of acyl-CoA. Alkylation of the thiol compounds by N-ethylmaleimide eliminates this disturbing side reaction, and increases the amount of fluorescent product in the coupled peroxidatic reaction. The method is suitable for routine assay of FAO activity in a wide range of tissues, notably in those with a low specific peroxisomal beta-oxidation activity and/or a high content of reducing agents. As an example of this we have included data from rat heart peroxisomal fractions. The effect of alkylation of sulfhydryl groups in the incubation mixture also applies to other oxidase reactions based on H2O2-coupled peroxidatic reactions, if the oxidase itself does not contain functional sulfhydryl groups.
Collapse
Affiliation(s)
- J Kvannes
- Department of Biochemistry, University of Bergen, Norway
| | | |
Collapse
|
30
|
Kardel DM, Dunford HB, Alexandre S. Kinetics of the oxidation of ferrocyanide by lactoperoxidase compound II. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 194:259-62. [PMID: 2253620 DOI: 10.1111/j.1432-1033.1990.tb19451.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The kinetics of the oxidation of ferrocyanide by lactoperoxidase compound II has been studied over the pH range 5.2-9.9 at 25 degrees C and an ionic strength of 0.11 M. For all pH values, exponential decay curves are obtained for the reaction of compound II in the presence of ferrocyanide which yielded pseudo-first-order rate constants kobs. The spontaneous decay of compound II in the absence of ferrocyanide occurs at an appreciable rate which was measured independently and used in the data analysis. At all pH values two striking effects were observed when the rate of the decay reaction in the presence of ferrocyanide, kobs, was plotted against ferrocyanide concentration: a saturation effect and positive intercepts which are attributable to the spontaneous decay. The plots of kobs versus ferrocyanide concentration were analyzed in terms of the following parameters: a first-order rate constant k3,obs, a Michaelis constant Km,obs and a spontaneous-decay rate constant k4. The parameters k3,obs and Km,obs describe the reaction of compound II with ferrocyanide, independently of the spontaneous decay. The parameter k4 has only a small pH dependence, whereas plots of the logs of k3,obs and Km,obs versus pH have slopes of -1 at high pH. The major part of the pH dependence can be explained by the influence of a single heme-linked acid group in the LPO-compound-II-ferrocyanide complex.
Collapse
Affiliation(s)
- D M Kardel
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
31
|
Metodiewa D, Dunford HB. The role of myeloperoxidase in the oxidation of biologically active polyhydroxyphenols (substituted catechols). EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 193:445-8. [PMID: 2171935 DOI: 10.1111/j.1432-1033.1990.tb19358.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The reaction of myeloperoxidase with biologically active polyhydroxyphenols (substituted catechols): catecholamine, norepinephrine and 2,4,5-trihydroxyphenylalanine [Phe(OH)3] were investigated by using the ESR spin-stabilization technique and rapid-scan spectrophometry in the millisecond time scale. The results presented here indicate that dihydroxyphenols and trihydroxyphenols are substrates in the myeloperoxidase reaction. The data of ESR and rapid-scan optical investigation of the myleoperoxidase reaction with the dihydroxyphenols catecholamine and norepinephrine clearly indicate a normal peroxidase-type pathway of catecholamine degradation. The first evidence of o-semiquinone radical formation as a product of the enzymatic oxidation of catecholamine by myeloperoxidase is reported. The results obtained by rapid-scan spectrophotometric investigation of enzyme intermediate formation and decay showed qualitative agreement with the spin-stabilization studies. The first results on the reaction of myeloperoxidase with the trihydroxyphenol Phe(OH)3 presented here, indicate that it plays a role as an electron donor for myeloperoxidase I, but we were unable to obtain evidence that a normal peroxidase cycle is occurring. The inhibitory effect of superoxide dismutase on product formation was evident and indicate the involvement of superoxide radicals in the process. Attention is drawn to the biochemical and toxicological implications of these and other related studies of substituted catechol peroxidation by mammalian peroxidases.
Collapse
Affiliation(s)
- D Metodiewa
- Institute of Applied Radiation Chemistry, Technical University of Lodz, Poland
| | | |
Collapse
|
32
|
Heuther G, Reimer A, Schmidt F, Schuff-Werner P, Brudny MM. Oxidation of the indole nucleus of 5-hydroxytryptamine and formation of dimers in the presence of peroxidase and H2O2. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 1990; 32:249-57. [PMID: 2089095 DOI: 10.1007/978-3-7091-9113-2_35] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
5-Hydroxytryptamine (5-HT) is rapidly oxidized in the presence of peroxidase and H2O2. The major reaction product was isolated by gel chromatography and analyzed by mass spectroscopy. It is a 5-HT dimer formed under abstraction of two protons, most likely by the reaction at the C(4) position of two phenoxyradicals of 5-HT. In the presence of 5-HT an increased H2O2-consumption and a dose dependent reduction of the formation of reactive oxygen metabolites during H2O2 degradation was observed. The pattern of 5-HT reaction products separated by TLC was dependent on the H2O2 concentrations used. In the presence of albumen, plasma or tissue homogenates, massive binding of the 5-HT oxidation products to proteins was observed.
Collapse
Affiliation(s)
- G Heuther
- Neurochemische Forschungsgruppe der Psychiatrischen Klinik, University of Göttingen, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
33
|
Metodiewa D, Reszka K, Dunford HB. Oxidation of the substituted catechols dihydroxyphenylalanine methyl ester and trihydroxyphenylalanine by lactoperoxidase and its compounds. Arch Biochem Biophys 1989; 274:601-8. [PMID: 2552928 DOI: 10.1016/0003-9861(89)90475-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The reactions of native lactoperoxidase and its compound II with two substituted catechols have been investigated by ESR spin stabilization and spin trapping and by rapid scan and conventional spectrophotometric techniques. The catechols are Dopa methyl ester (dihydroxyphenylalanine methyl ester) and 6-hydroxy-Dopa (trihydroxyphenylalanine). o-Semiquinone radicals are formed in the anaerobic reaction of Dopa methyl ester with hydrogen peroxide catalyzed by native lactoperoxidase. The comparable anaerobic reaction of 6-hydroxy-Dopa appears to produce hydroxyl radicals in an unusual reaction. Compound II is reduced back to native lactoperoxidase by both catechols. The reaction between Dopa methyl ester and compound II undergoes an oscillation. The results on the overall lactoperoxidase cycle indicate two successive one-electron reductions of the peroxidase intermediates back to the native enzyme. The resulting free radical formation of o- and p-semiquinones and subsequent formation of stable quinones and Dopachromes is dependent upon the stereochemical arrangement of the catechol hydroxyl groups.
Collapse
Affiliation(s)
- D Metodiewa
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|