1
|
Guillon C, Jan YH, Heck DE, Mariano TM, Rapp RD, Jetter M, Kardos K, Whittemore M, Akyea E, Jabin I, Laskin JD, Heindel ND. Phototoxicity of 7-oxycoumarins with keratinocytes in culture. Bioorg Chem 2019; 89:103014. [PMID: 31170642 DOI: 10.1016/j.bioorg.2019.103014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 10/26/2022]
Abstract
Seventy-one 7-oxycoumarins, 66 synthesized and 5 commercially sourced, were tested for their ability to inhibit growth in murine PAM212 keratinocytes. Forty-nine compounds from the library demonstrated light-induced lethality. None was toxic in the absence of UVA light. Structure-activity correlations indicate that the ability of the compounds to inhibit cell growth was dependent not only on their physiochemical characteristics, but also on their ability to absorb UVA light. Relative lipophilicity was an important factor as was electron density in the pyrone ring. Coumarins with electron withdrawing moieties - cyano and fluoro at C3 - were considerably less active while those with bromines or iodine at that location displayed enhanced activity. Coumarins that were found to inhibit keratinocyte growth were also tested for photo-induced DNA plasmid nicking. A concentration-dependent alteration in migration on neutral gels caused by nicking was observed.
Collapse
Affiliation(s)
| | - Yi-Hua Jan
- Department of Environmental and Occupational Health, Rutgers University School of Public Health, Piscataway, NJ 08854, USA
| | - Diane E Heck
- Department of Environmental Science, New York Medical College, Valhalla, NY 10595, USA
| | - Thomas M Mariano
- Department of Environmental and Occupational Health, Rutgers University School of Public Health, Piscataway, NJ 08854, USA
| | - Robert D Rapp
- Department of Chemistry, Lehigh University, Bethlehem, PA 18015, USA
| | - Michele Jetter
- Department of Chemistry, Lehigh University, Bethlehem, PA 18015, USA
| | - Keith Kardos
- Department of Chemistry, Lehigh University, Bethlehem, PA 18015, USA
| | | | - Eric Akyea
- Department of Chemistry, Lehigh University, Bethlehem, PA 18015, USA
| | - Ivan Jabin
- Laboratoire de Chimie Organique, Université Libre de Bruxelles, B-1050 Brussels, Belgium
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health, Rutgers University School of Public Health, Piscataway, NJ 08854, USA
| | - Ned D Heindel
- Department of Chemistry, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
2
|
Guillon CD, Jan YH, Foster N, Ressner J, Heck DE, Laskin JD, Heindel ND. Synthetically modified methoxsalen for enhanced cytotoxicity in light and dark reactions. Bioorg Med Chem Lett 2018; 29:619-622. [PMID: 30638875 DOI: 10.1016/j.bmcl.2018.12.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/13/2018] [Accepted: 12/21/2018] [Indexed: 01/09/2023]
Abstract
Linear furocoumarins, also known as psoralens, are clinically useful photo-activated pharmaceuticals employed to address hyperproliferative skin diseases. Seven diverse cytotoxic pharmacophores have been synthetically attached to 8-methoxypsoralen via a 5-amino functionality. The resulting unique set of compounds was evaluated for dark and light toxicity against PAM212 keratinocytes in culture.
Collapse
Affiliation(s)
| | - Yi-Hua Jan
- Department of Environmental and Occupational Health, Rutgers University School of Public Health, Piscataway, NJ 08854, USA
| | - Natalie Foster
- Department of Chemistry, Lehigh University, Bethlehem, PA 18015 USA
| | - Joel Ressner
- Department of Chemistry, Lehigh University, Bethlehem, PA 18015 USA
| | - Diane E Heck
- Department of Environmental Health Science, New York Medical College, Valhalla, NY 10595, USA
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health, Rutgers University School of Public Health, Piscataway, NJ 08854, USA
| | - Ned D Heindel
- Department of Chemistry, Lehigh University, Bethlehem, PA 18015 USA
| |
Collapse
|
3
|
Zhang Y, Wang Q, Wang ZX, Bi YN, Yuan XM, Song L, Jiang MM, Sun LK, Zhou K. A Study of NMR-Based Hepatic and Serum Metabolomics in a Liver Injury Sprague-Dawley Rat Model Induced by Psoralen. Chem Res Toxicol 2018; 31:852-860. [PMID: 30132663 DOI: 10.1021/acs.chemrestox.8b00082] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Psoralen is the main active component of Psoralea corylifolia and is used as a marker to assess its quality. The effects of psoralen on animals have been well characterized. However, the molecular pathway of its toxicity is not fully understood. In this study, the toxic effects of psoralen administration (60 mg/kg) for 7 days in Sprague-Dawley rats were observed. Serum biochemistry and liver histopathology were further investigated. Proton nuclear magnetic resonance was applied to characterize the metabolic profile of liver toxicity induced by psoralen and to find changed metabolites in rat serum and liver. It was revealed that visceral coefficients and serum biochemistry indexes were significantly changed in rats with psoralen-induced liver injury. Furthermore, the histopathological examination exhibited that the liver might be the target organ for psoralen. Metabolic analysis of both serum and liver samples further proved the liver was the target of toxicity of psoralen. Multivariate analysis identified 7 metabolites in serum samples and 15 in liver samples as potential biomarkers in liver injury induced by psoralen. In addition, our results suggest that psoralen can cause a disturbance in amino acid metabolism, especially valine, leucine, and isoleucine biosynthesis in both serum and liver samples. In conclusion, we combined the results of toxicity and metabolomics induced by psoralen and provide useful information about the safety and potential risks of psoralen and Psoralea corylifolia.
Collapse
Affiliation(s)
- Yue Zhang
- Institute of Traditional Chinese Medicine , Tianjin University of Traditional Chinese Medicine , Tianjin 300193 , China.,Key Laboratory of Formula of Traditional Chinese Medicine, Ministry of Education , Tianjin University of Traditional Chinese Medicine , Tianjin 300193 , China
| | - Qin Wang
- Institute of Traditional Chinese Medicine , Tianjin University of Traditional Chinese Medicine , Tianjin 300193 , China
| | - Zhao-Xin Wang
- Institute of Traditional Chinese Medicine , Tianjin University of Traditional Chinese Medicine , Tianjin 300193 , China
| | - Ya-Nan Bi
- Institute of Traditional Chinese Medicine , Tianjin University of Traditional Chinese Medicine , Tianjin 300193 , China
| | - Xiao-Mei Yuan
- Institute of Traditional Chinese Medicine , Tianjin University of Traditional Chinese Medicine , Tianjin 300193 , China
| | - Lei Song
- Institute of Traditional Chinese Medicine , Tianjin University of Traditional Chinese Medicine , Tianjin 300193 , China.,Key Laboratory of Formula of Traditional Chinese Medicine, Ministry of Education , Tianjin University of Traditional Chinese Medicine , Tianjin 300193 , China
| | - Miao-Miao Jiang
- Institute of Traditional Chinese Medicine , Tianjin University of Traditional Chinese Medicine , Tianjin 300193 , China.,Tianjin State Key Laboratory of Modern Chinese Medicine , Tianjin 300193 , China
| | - Li-Kang Sun
- Institute of Traditional Chinese Medicine , Tianjin University of Traditional Chinese Medicine , Tianjin 300193 , China.,Tianjin State Key Laboratory of Modern Chinese Medicine , Tianjin 300193 , China
| | - Kun Zhou
- Institute of Traditional Chinese Medicine , Tianjin University of Traditional Chinese Medicine , Tianjin 300193 , China.,Key Laboratory of Formula of Traditional Chinese Medicine, Ministry of Education , Tianjin University of Traditional Chinese Medicine , Tianjin 300193 , China.,Tianjin State Key Laboratory of Modern Chinese Medicine , Tianjin 300193 , China
| |
Collapse
|
4
|
Laskin JD, Jan YH, Jetter MM, Guillon CD, Mariano TM, Heck DE, Heindel ND. Identification of a Pyranocoumarin Photosensitizer that is a Potent Inhibitor of Keratinocyte Growth. Photochem Photobiol 2018; 94:577-582. [DOI: 10.1111/php.12882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/08/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Jeffrey D. Laskin
- Environmental and Occupational Health Sciences Institute; Rutgers University School of Public Health; Piscataway NJ USA
| | - Yi-Hua Jan
- Environmental and Occupational Health Sciences Institute; Rutgers University School of Public Health; Piscataway NJ USA
| | | | | | - Thomas M. Mariano
- Environmental and Occupational Health Sciences Institute; Rutgers University School of Public Health; Piscataway NJ USA
| | - Diane E. Heck
- Department of Environmental Health Science; New York Medical College; Valhalla NY USA
| | - Ned D. Heindel
- Department of Chemistry; Lehigh University; Bethlehem PA USA
| |
Collapse
|
5
|
Yang S, Jan YH, Mishin V, Heck DE, Laskin DL, Laskin JD. Diacetyl/l-Xylulose Reductase Mediates Chemical Redox Cycling in Lung Epithelial Cells. Chem Res Toxicol 2017; 30:1406-1418. [PMID: 28595002 DOI: 10.1021/acs.chemrestox.7b00052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Reactive carbonyls such as diacetyl (2,3-butanedione) and 2,3-pentanedione in tobacco and many food and consumer products are known to cause severe respiratory diseases. Many of these chemicals are detoxified by carbonyl reductases in the lung, in particular, dicarbonyl/l-xylulose reductase (DCXR), a multifunctional enzyme important in glucose metabolism. DCXR is a member of the short-chain dehydrogenase/reductase (SDR) superfamily. Using recombinant human enzyme, we discovered that DCXR mediates redox cycling of a variety of quinones generating superoxide anion, hydrogen peroxide, and, in the presence of transition metals, hydroxyl radicals. Redox cycling activity preferentially utilized NADH as a cosubstrate and was greatest for 9,10-phenanthrenequinone and 1,2-naphthoquinone, followed by 1,4-naphthoquinone and 2-methyl-1,4-naphthoquinone (menadione). Using 9,10-phenanthrenequinone as the substrate, quinone redox cycling was found to inhibit DCXR reduction of l-xylulose and diacetyl. Competitive inhibition of enzyme activity by the quinone was observed with respect to diacetyl (Ki = 190 μM) and l-xylulose (Ki = 940 μM). Abundant DCXR activity was identified in A549 lung epithelial cells when diacetyl was used as a substrate. Quinones inhibited reduction of this dicarbonyl, causing an accumulation of diacetyl in the cells and culture medium and a decrease in acetoin, the reduced product of diacetyl. The identification of DCXR as an enzyme activity mediating chemical redox cycling suggests that it may be important in generating cytotoxic reactive oxygen species in the lung. These activities, together with the inhibition of dicarbonyl/l-xylulose metabolism by redox-active chemicals, as well as consequent deficiencies in pentose metabolism, are likely to contribute to lung injury following exposure to dicarbonyls and quinones.
Collapse
Affiliation(s)
- Shaojun Yang
- Department of Environmental and Occupational Health, Rutgers University School of Public Health , Piscataway, New Jersey 08854, United States
| | - Yi-Hua Jan
- Department of Environmental and Occupational Health, Rutgers University School of Public Health , Piscataway, New Jersey 08854, United States
| | - Vladimir Mishin
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy , Piscataway, New Jersey 08854, United States
| | - Diane E Heck
- Department of Environmental Health Science, New York Medical College , Valhalla, New York 10595, United States
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy , Piscataway, New Jersey 08854, United States
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health, Rutgers University School of Public Health , Piscataway, New Jersey 08854, United States
| |
Collapse
|
6
|
Udasin RG, Wen X, Bircsak KM, Aleksunes LM, Shakarjian MP, Kong ANT, Heck DE, Laskin DL, Laskin JD. Nrf2 Regulates the Sensitivity of Mouse Keratinocytes to Nitrogen Mustard via Multidrug Resistance-Associated Protein 1 (Mrp1). Toxicol Sci 2015; 149:202-12. [PMID: 26454883 DOI: 10.1093/toxsci/kfv226] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Sulfur mustard and nitrogen mustard (mechlorethamine, HN2) are potent vesicants developed as chemical warfare agents. These electrophilic, bifunctional alkylating agents cause skin injury, including inflammation, edema, and blistering. HN2 covalently modifies macromolecules such as DNA, RNA, and proteins or is scavenged by glutathione, forming adducts that can contribute to toxicity. Multidrug resistance-associated protein 1 (Mrp1/MRP1) is a transmembrane ATPase known to efflux glutathione-conjugated electrophiles. In the present studies, we examined the effects of modulating Mrp1-mediated transport activity on the sensitivity of primary and PAM212 mouse keratinocytes to HN2. Primary keratinocytes, and to a lesser extent, PAM212 cells, express Mrp1 mRNA and protein and possess Mrp1 functional activity, as measured by calcein efflux. Sulforaphane, an activator of Nrf2, increased Mrp1 mRNA, protein, and functional activity in primary keratinocytes and PAM212 cells and decreased their sensitivity to HN2-induced growth inhibition (IC(50) = 1.4 and 4.8 µM in primary keratinocytes and 1 and 13 µM in PAM212 cells, in the absence and presence of sulforaphane, respectively). The Mrp1 inhibitor, MK-571, reversed the effects of sulforaphane on HN2-induced growth inhibition in both primary keratinocytes and PAM212 cells. In primary keratinocytes from Nrf2(-/-) mice, sulforaphane had no impact on Mrp1 expression or activity, or on sensitivity to HN2, demonstrating that its effects depend on Nrf2. These data suggest that Mrp1-mediated efflux is important in regulating HN2-induced keratinocyte growth inhibition. Enhancing HN2 efflux from keratinocytes may represent a novel strategy for mitigating vesicant-induced cytotoxicity.
Collapse
Affiliation(s)
- Ronald G Udasin
- *Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey
| | - Xia Wen
- *Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey
| | - Kristin M Bircsak
- *Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey
| | - Lauren M Aleksunes
- *Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey
| | - Michael P Shakarjian
- Department of Environmental Health Science, New York Medical College, Valhalla, New York
| | - Ah-Ng Tony Kong
- Department of Pharmaceutics, Rutgers University, Piscataway, New Jersey; and
| | - Diane E Heck
- Department of Environmental Health Science, New York Medical College, Valhalla, New York
| | - Debra L Laskin
- *Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey
| | - Jeffrey D Laskin
- §Department of Environmental and Occupational Medicine, Rutgers University Robert Wood Johnson Medical School, Piscataway, New Jersey.
| |
Collapse
|
7
|
Yang JZ, Zhang F, Jia LY, Zhang LD, Qi F, Fan HY, Cai JB. Experimental and Theoretical Study on Pyrolysis of Isopsoralen. CHINESE J CHEM PHYS 2012. [DOI: 10.1088/1674-0068/25/03/249-253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
8
|
Gomes AJ, Lunardi LO, Caetano FH, Machado AEH, Oliveira-Campos AMF, Bendhack LM, Lunardi CN. Biodegradable nanoparticles containing benzopsoralens: An attractive strategy for modifying vascular function in pathological skin disorders. J Appl Polym Sci 2011. [DOI: 10.1002/app.33427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Wang Y, Gray JP, Mishin V, Heck DE, Laskin DL, Laskin JD. Distinct roles of cytochrome P450 reductase in mitomycin C redox cycling and cytotoxicity. Mol Cancer Ther 2010; 9:1852-63. [PMID: 20501808 DOI: 10.1158/1535-7163.mct-09-1098] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mitomycin c (MMC), a quinone-containing anticancer drug, is known to redox cycle and generate reactive oxygen species. A key enzyme mediating MMC redox cycling is cytochrome P450 reductase, a microsomal NADPH-dependent flavoenzyme. In the present studies, Chinese hamster ovary (CHO) cells overexpressing this enzyme (CHO-OR cells) and corresponding control cells (CHO-WT cells) were used to investigate the role of cytochrome P450 reductase in the actions of MMC. In lysates from both cell types, MMC was found to redox cycle and generate H(2)O(2); this activity was greater in CHO-OR cells (V(max) = 1.2 +/- 0.1 nmol H(2)O(2)/min/mg protein in CHO-WT cells versus 32.4 +/- 3.9 nmol H(2)O(2)/min/mg protein in CHO-OR cells). MMC was also more effective in generating superoxide anion and hydroxyl radicals in CHO-OR cells, relative to CHO-WT cells. Despite these differences in MMC redox cycling, MMC-induced cytotoxicity, as measured by growth inhibition, was similar in the two cell types (IC(50) = 72 +/- 20 nmol/L for CHO-WT and 75 +/- 23 nmol/L for CHO-OR cells), as was its ability to induce G(2)-M and S phase arrest. Additionally, in nine different tumor cell lines, although a strong correlation was observed between MMC-induced H(2)O(2) generation and cytochrome P450 reductase activity, there was no relationship between redox cycling and cytotoxicity. Hypoxia, which stabilizes MMC radicals generated by redox cycling, also had no effect on the sensitivity of tumor cells to MMC-induced cytotoxicity. These data indicate that NADPH cytochrome P450 reductase-mediated MMC redox cycling is not involved in the cytotoxicity of this chemotherapeutic agent.
Collapse
Affiliation(s)
- Yun Wang
- Environmental and Occupational Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | |
Collapse
|
10
|
Wang Y, Gray JP, Mishin V, Heck DE, Laskin DL, Laskin JD. Role of cytochrome P450 reductase in nitrofurantoin-induced redox cycling and cytotoxicity. Free Radic Biol Med 2008; 44:1169-79. [PMID: 18206659 PMCID: PMC5793909 DOI: 10.1016/j.freeradbiomed.2007.12.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2007] [Revised: 11/15/2007] [Accepted: 12/10/2007] [Indexed: 11/30/2022]
Abstract
The one-electron reduction of redox-active chemotherapeutic agents generates highly toxic radical anions and reactive oxygen intermediates (ROI). A major enzyme catalyzing this process is cytochrome P450 reductase. Because many tumor cells highly express this enzyme, redox cycling of chemotherapeutic agents in these cells may confer selective antitumor activity. Nitrofurantoin is a commonly used redox-active antibiotic that possesses antitumor activity. In the present studies we determined whether nitrofurantoin redox cycling is correlated with cytochrome P450 reductase activity and cytotoxicity in a variety of cell lines. Recombinant cytochrome P450 reductase was found to support redox cycling of nitrofurantoin and to generate superoxide anion, hydrogen peroxide, and, in the presence of redox-active iron, hydroxyl radicals. This activity was NADPH dependent and inhibitable by diphenyleneiodonium, indicating a requirement for the flavin cofactors in the reductase. Nitrofurantoin-induced redox cycling was next analyzed in different cell lines varying in cytochrome P450 reductase activity including Chinese hamster ovary cells (CHO-OR) constructed to overexpress the enzyme. Nitrofurantoin-induced hydrogen peroxide production was 16-fold greater in lysates from CHO-OR cells than from control CHO cells. A strong correlation between cytochrome P450 reductase activity and nitrofurantoin-induced redox cycling among the cell lines was found. Unexpectedly, no correlation between nitrofurantoin-induced ROI production and cytotoxicity was observed. These data indicate that nitrofurantoin-induced redox cycling and subsequent generation of ROI are not sufficient to mediate cytotoxicity and that cytochrome P450 reductase is not a determinant of sensitivity to redox-active chemotherapeutic agents.
Collapse
Affiliation(s)
- Yun Wang
- Department of Environmental and Occupational Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Joshua P. Gray
- Pharmacology and Toxicology, Rutgers University, Piscataway, NJ 08854, USA
| | - Vladimir Mishin
- Pharmacology and Toxicology, Rutgers University, Piscataway, NJ 08854, USA
| | - Diane E. Heck
- Pharmacology and Toxicology, Rutgers University, Piscataway, NJ 08854, USA
| | - Debra L. Laskin
- Pharmacology and Toxicology, Rutgers University, Piscataway, NJ 08854, USA
| | - Jeffrey D. Laskin
- Department of Environmental and Occupational Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
- Corresponding author. Fax: +1 732 445 0119. (J.D. Laskin)
| |
Collapse
|
11
|
Gomes AJ, Faustino AS, Lunardi CN, Lunardi LO, Machado AEH. Evaluation of nanoparticles loaded with benzopsoralen in rat peritoneal exudate cells. Int J Pharm 2007; 332:153-60. [PMID: 17056212 DOI: 10.1016/j.ijpharm.2006.09.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 04/28/2006] [Accepted: 09/15/2006] [Indexed: 11/30/2022]
Abstract
Psoralens are widely used for the treatment of hyperproliferative skin disease. In this work, we prepared nanoparticles (NP) containing a benzopsoralen (3-ethoxy carbonyl-2H-benzofuro[3,2-f]-1-benzopiran-2-one) by the solvent evaporation technique. We evaluated important NP parameters such as particle size, drug encapsulation efficiency, effect of the encapsulation process over the drug's photochemistry, zeta potential, external morphology, and in vitro release behavior. We also investigated the nanoparticle as a drug delivery system (DDS), as well as its target delivery to the action site, which is a very important parameter to increase the therapeutic use of psoralens and to reduce their side effects. The uptake of benzopsoralen-loaded PLGA nanoparticles by different kinds of cells found in rat peritoneal exudates was also studied. The photodamage promoted by irradiation with UV light revealed morphological characteristics of cell damage such as cytoplasmic vesiculation, mitochondrial damage, and swelling of both the granular endoplasmatic reticulum and nuclear membrane. This encapsulation method maintained the drug's properties and improved drug delivery to the target cell.
Collapse
Affiliation(s)
- A J Gomes
- Laboratório de Fotoquímica, Instituto de Química, Universidade Federal de Uberlândia, P.O. Box 593, CEP 38400-089 Uberlândia, MG, Brazil.
| | | | | | | | | |
Collapse
|
12
|
Martey CA, Vetrano AM, Whittemore MS, Mariano TM, Heck DE, Laskin DL, Heindel ND, Laskin JD. Inhibition of interferon-gamma signaling by a mercurio-substituted dihydropsoralen in murine keratinocytes. Biochem Pharmacol 2005; 70:1726-34. [PMID: 16259964 DOI: 10.1016/j.bcp.2005.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Revised: 09/30/2005] [Accepted: 10/03/2005] [Indexed: 11/19/2022]
Abstract
Psoralens and ultraviolet light A (PUVA) are used in the treatment of a variety of epidermal proliferative and inflammatory disorders. These compounds are known to intercalate and photo crosslink DNA. Specific receptor proteins for psoralens have also been identified. We describe a novel activity of a thiol reactive derivative, iodomercurio-4',5'-dihydrotrimethylpsoralen (iodomercurio-H2TMP) in keratinocytes. Without UVA, this psoralen was found to be an effective inhibitor of interferon-gamma (IFN-gamma)-signaling as measured by induction of nitric oxide biosynthesis (IC50 = 0.8 microM). This activity was increased (IC50 = 0.1 microM) when the cells were depleted of intracellular glutathione (GSH) with buthionine sulfoximine. In keratinocytes, IFN-gamma stimulates expression of inducible nitric oxide synthase (NOS2). Although iodomercurio-H2TMP did not alter NOS2 enzymatic activity, it blocked IFN-gamma-induced expression of NOS2 mRNA and protein, an effect that was enhanced in GSH-depleted cells. Iodomercurio-H2TMP was found to readily inhibit IFN-gamma signaling in transient transfection assays using NOS2 promoter/luciferase reporter constructs. NOS2 gene expression is known to require a variety of transcription factors including STAT-1, NF-kappaB and AP-1. Using mobility shift assays the psoralen, at concentrations that inhibit nitric oxide biosynthesis, had no effect on the DNA binding activity of STAT-1 or NF-kappaB. However, iodomercurio-H2TMP was found to suppress AP-1. These data indicate that iodomercurio-H2TMP acts at sulfhydryl-sensitive sites to inhibit NOS2. Moreover, this is dependent on early events in the IFN-gamma signal transduction pathway. Inhibition of AP-1 suggests that the psoralen functions by interfering with an important transcription factor that regulates expression of NOS2 in keratinocytes.
Collapse
|
13
|
Hossain MS, Roback JD, Lezhava L, Hillyer CD, Waller EK. Amotosalen-treated donor T cells have polyclonal antigen-specific long-term function without graft-versus-host disease after allogeneic bone marrow transplantation. Biol Blood Marrow Transplant 2005; 11:169-80. [PMID: 15744235 DOI: 10.1016/j.bbmt.2004.12.332] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We have previously shown that amotosalen HCl (S-59 psoralen)-treated donor splenocytes, which have limited proliferative capacity in vitro, can protect major histocompatibility complex-mismatched bone marrow transplant (BMT) recipients from lethal murine cytomegalovirus infection without causing graft-versus-host disease. In this study, we further investigated the effects of amotosalen-treated donor T cells on immune reconstitution after allogeneic BMT. We were surprised to find that amotosalen-treated donor T cells persisted long-term in vivo, comprising 6% to 10% on average of the T-cell compartment of transplant recipients at 4 months after transplantation. Donor T cells derived from amotosalen-treated splenocytes were predominantly polyclonal CD44 hi/int CD8 + memory T cells and were functionally active, synthesizing interferon gamma in response to stimulation with murine cytomegalovirus antigen. Amotosalen-treated donor T cells, reisolated from BMT recipients' spleens >/=4 months after transplantation, proliferated in vitro, thus indicating repair of amotosalen-mediated DNA cross-links. Compared with infusion of untreated donor splenocytes, amotosalen-treated cells enhanced thymopoiesis by bone marrow-derived stem cells in BMT recipients. However, amotosalen treatment abrogated the thymopoietic activity of lymphoid progenitor cells among the donor splenocytes. Thus, infusion of amotosalen-treated donor T cells produced rapid immune reconstitution after major histocompatibility complex-mismatched BMT by transferring long-lived polyclonal memory T cells with antiviral activity and also by enhancing bone marrow-derived thymopoiesis. This is a novel approach to adoptive immunotherapy in allogeneic BMT.
Collapse
Affiliation(s)
- Mohammad Sohrab Hossain
- Department of Hematology and Oncology, Division of Stem Cell and Bone Marrow Transplantation, Winship Cancer Institute, Emory Universiy School of Medicine, Atlanta, Georgia, USA
| | | | | | | | | |
Collapse
|
14
|
Eun JS, Choi BH, Park JA, Lee GI, Lee TY, Kim DK, Jung YH, Yoo DJ, Kwak YG. Open channel block of hKv1.5 by psoralen fromHeracleum moellendorffii hance. Arch Pharm Res 2005; 28:269-73. [PMID: 15832811 DOI: 10.1007/bf02977790] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A furocoumarin derivative, psoralen (7H-furo[3,2-g][1]benzopyran-7-one), was isolated from the n-hexane fraction of Heracleum moellendorffii Hance. We examined the effects of psoralen on a human Kv1.5 potassium channel (hKv1.5) cloned from human heart and stably expressed in Ltk- cells. We found that psoralen inhibited the hKv1.5 current in a concentration-, use- and voltage-dependent manner with an IC50 value of 180 +/- 21 nM at +60 mV. Psoralen accelerated the inactivation kinetics of the hKv1.5 channel, and it slowed the deactivation kinetics of the hKv1.5 current resulting in a tail crossover phenomenon. These results indicate that psoralen acts on the hKv1.5 channel as an open channel blocker. Furthermore, psoralen prolonged the action potential duration of rat atrial muscles in a dose-dependent manner. Taken together, the present results strongly suggest that psoralen may be an ideal antiarrhythmic drug for atrial fibrillation.
Collapse
Affiliation(s)
- Jae Soon Eun
- College of Pharmacy, Woosuk University, Samrye 565-701, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Wu F, Wang AF, Zhou Y, Zhou TS, Jiang HL, Fang YZ. Determination of Psoralen and Isopsoralen in Traditional Chinese Medicines by Capillary Zone Electrophoresis with Amperometric Detection. Chromatographia 2004. [DOI: 10.1365/s10337-004-0476-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
Dong NT, Bae K, Kim YH, Hwang GS, Heo OS, Kim SE, Kang JS. Quantitative determination of psoralen and angelicin from some medicinal herbs by high performance liquid chromatography. Arch Pharm Res 2003; 26:516-20. [PMID: 12934641 DOI: 10.1007/bf02976873] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A reversed-phase high performance liquid chromatographic method was developed to determine the contents of psoralen and angelicin from some medicinal herbs. The optimum eluent for chromatography was 20 v/v% acetonitrile in water on a Zorbax 300SB C18 column. The identification was carried out by comparing the retention time and mass spectra of the relevant peaks with their standards. The variation of the concentration of psoralen and angelicin was wide between different species. The seeds of Psoralea corylifolia showed the highest contents of psoralen (7.8 mg/g) and angelicin (2.3 mg/g) among the tested herbs.
Collapse
Affiliation(s)
- Nguyen Thanh Dong
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Korea
| | | | | | | | | | | | | |
Collapse
|
17
|
Martey CA, Vetrano AM, Whittemore MS, Mariano TM, Gentile SL, Heck DE, Laskin DL, Heindel ND, Laskin JD. Mechanisms of growth inhibition in keratinocytes by mercurio-substituted 4',5'-dihydropsoralens. Biochem Pharmacol 2002; 63:2001-9. [PMID: 12093477 DOI: 10.1016/s0006-2952(02)00992-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Psoralens, together with ultraviolet light A (PUVA), are used in the treatment of epidermal proliferative disorders. Although these compounds can enter cells and photo cross-link DNA, lipids and proteins, including a specific membrane receptor, are also potential targets for the psoralens. To better elucidate the site of action of the psoralens, we have synthesized a family of 5'-mercurio-substituted derivatives of 4',5'-dihydropsoralen. These compounds are identified by their heavy metal content and can be used as a model to deliver thiol reactive psoralen derivatives into keratinocytes. The 5'-mercuriopsoralen derivatives were found to be effective inhibitors of keratinocyte growth without photoactivation. The most active compound, 4,8-dimethyl-5'-iodomercuriomethyl-4',5'-dihydropsoralen (IC50=10 microM), was also a potent photosensitizer (IC50=0.3 microM). Depletion of keratinocyte GSH with buthionine sulfoximine markedly increased their sensitivity to this analog, both with and without UVA light. In contrast, N-acetyl-L-cysteine partially protected the cells from growth inhibition, indicating that a sulfhydryl-sensitive site is growth limiting and that this target can be photoactivated. Iodomercurio-4',5'-dihydropsoralen was found to form adducts with GSH and cysteine, which were not active without UVA light. Thus, these adducts may also contribute to the photosensitization reactions of the parent compound. Using plasmid DNA unwinding assays, iodomercurio-4',5'-dihydropsoralen was also found to modify DNA, an activity that increased following UVA light treatment. This suggests that DNA damage may contribute to the actions of these psoralens. Taken together, our data demonstrate that there are multiple sites of action for mercuriopsoralens. These compounds may prove useful for understanding the mechanisms of psoralen-induced growth inhibition in the skin.
Collapse
|