1
|
Tobin JD, Robinson CN, Luttrell-Williams ES, Landry GM, McMartin KE. Lack of efflux of diglycolic acid from proximal tubule cells leads to its accumulation and to toxicity of diethylene glycol. Toxicol Lett 2023; 379:48-55. [PMID: 36958672 DOI: 10.1016/j.toxlet.2023.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/07/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
Diethylene glycol (DEG) mass poisonings have resulted from ingestion of adulterated pharmaceuticals, leading to proximal tubular necrosis and acute kidney injury. Diglycolic acid (DGA), one of the primary metabolites, accumulates greatly in kidney tissue and its direct administration results in toxicity identical to that in DEG-treated rats. DGA is a dicarboxylic acid, similar in structure to Krebs cycle intermediates such as succinate. Previous studies have shown that DGA is taken into kidney cells via the succinate-related dicarboxylate transporters. These studies have assessed whether the DGA that is taken up by primary cultures of human proximal tubule (HPT) cells is effluxed. In addition, a possible mechanism for efflux, via organic anion transporters (OATs) that exchange external organic anions for dicarboxylates inside the cell, was assessed using transformed cell lines that actively express OAT activities. When HPT cells were cultured on membrane inserts, then loaded with DGA and treated with the OAT4/5 substrate estrone sulfate or the OAT1/3 substrate para-aminohippurate, no DGA efflux was seen. A repeat of this experiment utilizing RPTEC/TERT1 cells with overexpressed OAT1 and OAT3 had similar results. In these cells, but not in HPT cells, co-incubation with succinate increased the uptake of PAH, confirming the presence of OAT activity in the RPTEC/TERT1 cells. Thus, despite OATs stimulation in cells with OAT activity, there was little to no efflux of DGA from the cells. This study concluded that DGA is poorly transported out of cells and that stimulation of OAT transporters is not a viable target for reducing DGA accumulation in cells.
Collapse
Affiliation(s)
- Julie D Tobin
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana 71130
| | - Corie N Robinson
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana 71130
| | - Elliot S Luttrell-Williams
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana 71130
| | - Greg M Landry
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana 71130
| | - Kenneth E McMartin
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana 71130.
| |
Collapse
|
2
|
Hazelhoff MH, Torres AM. Effect of erythropoietin on mercury-induced nephrotoxicity: Role of membrane transporters. Hum Exp Toxicol 2021; 40:515-525. [PMID: 32909846 DOI: 10.1177/0960327120958109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Mercury is a widespread pollutant. Mercuric ions uptake into tubular cells is supported by the Organic anion transporter 1 (Oat1) and 3 (Oat3) and its elimination into urine is through the Multidrug resistance-associated protein 2 (Mrp2). We investigated the effect of recombinant human erythropoietin (Epo) on renal function and on renal expression of Oat1, Oat3, and Mrp2 in a model of mercuric chloride (HgCl2)-induced renal damage. Four experimental groups of adult male Wistar rats were used: Control, Epo, HgCl2, and Epo + HgCl2. Epo (3000 IU/kg, b.w., i.p.) was administered 24 h before HgCl2 (4 mg/kg, b.w., i.p.). Experiments were performed 18 h after the HgCl2 dose. Parameters of renal function and structure were evaluated. The protein expression of Oat1, Oat3 and Mrp2 in renal tissue was assessed by immunoblotting techniques. Mercury levels were determined by cold vapor atomic absorption spectrometry. Pretreatment with Epo ameliorated the HgCl2-induced tubular injury as assessed by histopathology and urinary biomarkers. Immunoblotting showed that pretreatment with Epo regulated the renal expression of mercury transporters in a way to decrease mercury content in the kidney. Epo pretreatment ameliorates HgCl2-induced renal tubular injury by modulation of mercury transporters expression in the kidneys.
Collapse
Affiliation(s)
- M H Hazelhoff
- Área Farmacología, Facultad de Ciencias Bioquímicas y Farmacéuticas, 63029Universidad Nacional de Rosario, CONICET, Rosario, Argentina
| | - A M Torres
- Área Farmacología, Facultad de Ciencias Bioquímicas y Farmacéuticas, 63029Universidad Nacional de Rosario, CONICET, Rosario, Argentina
| |
Collapse
|
3
|
Ljubojević M, Breljak D, Herak-Kramberger CM, Anzai N, Sabolić I. Expression of basolateral organic anion and cation transporters in experimental cadmium nephrotoxicity in rat kidney. Arch Toxicol 2015; 90:525-41. [DOI: 10.1007/s00204-015-1450-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 01/06/2015] [Indexed: 01/11/2023]
|
4
|
Tan S, Li H, Jin Y, Yu H. In vitro and in vivo effects of sublethal cadmium on the expression of MT2 and ABCC2 genes in grass carp (Ctenopharyngodon idellus). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 108:258-264. [PMID: 25103569 DOI: 10.1016/j.ecoenv.2014.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 07/09/2014] [Accepted: 07/11/2014] [Indexed: 06/03/2023]
Abstract
To gain more knowledge about the physiological regulation of metal pollutant detoxification in grass carp, we examined Cd concentration and its the potential influence on the expression of metallothionein 2 (MT2) and multidrug resistance protein 2 (ABCC2) mRNA in the liver and kidney, using in vitro and in vivo experiments. First, the full-length of MT2 cDNA and partial ABCC2 cDNA was obtained, consisting 183bp and 366bp respectively. In vivo approach, grass carp received 96h exposure of Cd (1/10 LD50), and MT2 and ABCC2 mRNA expression were determined by qRT-PCR. The Cd treatment resulted in an increase of MT2 mRNA level in the liver with Cd accumulation. Nonetheless, the elevation ABCC2 mRNA in the liver was appeared at 48h after Cd exposure, as well as the expression of MT2 and ABCC2 mRNA in the kidney. The in vitro experiment was carried out using the hepatocyte (L86) and nephroblasts (CIK). The qRT-RCR results showed that MT2 and ABCC2 mRNA dramatically increased following Cd exposure (1/10 LD50); however, ABCC2 mRNA expression was suppressed in the L86 cell line at first (6h). In conclusion, this result suggested that both MT2 and ABCC2 mRNA may play important roles in the detoxification of toxic metals, and MT2 gene was more sensitive to Cd induction.
Collapse
Affiliation(s)
- Shuwen Tan
- College of Life Science, Foshan University, No. 1 Xianhu University Road, Nanhai, Foshan, Guangdong 528231, China; Holdone Aquaculture Breeding Limited Company, Foshan, Guangdong 528231, China
| | - Hua Li
- College of Life Science, Foshan University, No. 1 Xianhu University Road, Nanhai, Foshan, Guangdong 528231, China; Holdone Aquaculture Breeding Limited Company, Foshan, Guangdong 528231, China
| | - Ying Jin
- College of Biophotonics, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Hui Yu
- College of Life Science, Foshan University, No. 1 Xianhu University Road, Nanhai, Foshan, Guangdong 528231, China; Holdone Aquaculture Breeding Limited Company, Foshan, Guangdong 528231, China.
| |
Collapse
|
5
|
Masereeuw R, Russel FGM. Regulatory pathways for ATP-binding cassette transport proteins in kidney proximal tubules. AAPS JOURNAL 2012; 14:883-94. [PMID: 22961390 DOI: 10.1208/s12248-012-9404-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 08/15/2012] [Indexed: 01/24/2023]
Abstract
The ATP-binding cassette transport proteins (ABC transporters) represent important determinants of drug excretion. Protective or excretory tissues where these transporters mediate substrate efflux include the kidney proximal tubule. Regulation of the transport proteins in this tissue requires elaborate signaling pathways, including genetic, epigenetic, nuclear receptor mediated, posttranscriptional gene regulation involving microRNAs, and non-genomic (kinases) pathways triggered by hormones and/or growth factors. This review discusses current knowledge on regulatory pathways for ABC transporters in kidney proximal tubules, with a main focus on P-glycoprotein, multidrug resistance proteins 2 and 4, and breast cancer resistance protein. Insight in these processes is of importance because variations in transporter activity due to certain (disease) conditions could lead to significant changes in drug efficacy or toxicity.
Collapse
Affiliation(s)
- Rosalinde Masereeuw
- Department of Pharmacology and Toxicology (149), Nijmegen Centre for Molecular Life Sciences/Institute for Genetic and Metabolic Disease, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500, HB, Nijmegen, The Netherlands.
| | | |
Collapse
|
6
|
Burckhardt G, Burckhardt BC. In vitro and in vivo evidence of the importance of organic anion transporters (OATs) in drug therapy. Handb Exp Pharmacol 2011:29-104. [PMID: 21103968 DOI: 10.1007/978-3-642-14541-4_2] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Organic anion transporters 1-10 (OAT1-10) and the urate transporter 1 (URAT1) belong to the SLC22A gene family and accept a huge variety of chemically unrelated endogenous and exogenous organic anions including many frequently described drugs. OAT1 and OAT3 are located in the basolateral membrane of renal proximal tubule cells and are responsible for drug uptake from the blood into the cells. OAT4 in the apical membrane of human proximal tubule cells is related to drug exit into the lumen and to uptake of estrone sulfate and urate from the lumen into the cell. URAT1 is the major urate-absorbing transporter in the apical membrane and is a target for uricosuric drugs. OAT10, also located in the luminal membrane, transports nicotinate with high affinity and interacts with drugs. Major extrarenal locations of OATs include the blood-brain barrier for OAT3, the placenta for OAT4, the nasal epithelium for OAT6, and the liver for OAT2 and OAT7. For all transporters we provide information on cloning, tissue distribution, factors influencing OAT abundance, interaction with endogenous compounds and different drug classes, drug/drug interactions and, if known, single nucleotide polymorphisms.
Collapse
Affiliation(s)
- Gerhard Burckhardt
- Abteilung Vegetative Physiologie und Pathophysiologie, Zentrum Physiologie und Pathophysiologie, Göttingen, Germany.
| | | |
Collapse
|
7
|
Schneider R, Meusel M, Renker S, Bauer C, Holzinger H, Roeder M, Wanner C, Gekle M, Sauvant C. Low-dose indomethacin after ischemic acute kidney injury prevents downregulation of Oat1/3 and improves renal outcome. Am J Physiol Renal Physiol 2009; 297:F1614-21. [DOI: 10.1152/ajprenal.00268.2009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We have previously shown that expression of renal organic anion transporters Oat1 and Oat3 is diminished by prostaglandin E2 (PGE2) and that both transporters are downregulated after renal ischemia. Because PGE2 is increased after renal ischemia and is generated by cyclooxygenases (COX), we investigated the effect of the COX inhibitor indomethacin on expression of Oat1/3 after ischemic acute kidney injury (iAKI). iAKI was induced in rats by bilateral clamping of renal arteries for 45 min. Indomethacin (1 mg/kg) was given intraperitoneally as soon as reperfusion started. Sham-treated animals served as controls. Oat1/3 were determined by qPCR and Western blot. PGE2 in blood and urine was measured by enzyme-linked immunosorbent assay. Invasion of monocytes/macrophages was determined. Glomerular filtration rate and renal plasma flow were determined. All parameters were detected 24 h after ischemia. PAH net secretion, as well as clearance and secretion of PGE2 were calculated. In clamped animals, indomethacin restored expression of Oat1/3, as well as PAH net secretion, PGE2 clearance, or PGE2 secretion. Additionally, indomethacin substantially improved kidney function as measured by glomerular filtration and PAH clearance. Indomethacin did not affect ischemia-induced invasion of monocytes/macrophages. In conclusion, our study indicates that low-dose indomethacin applied after ischemia prevents ischemia-induced downregulation of Oat1/3 during reperfusion and has a substantial protective effect on kidney function after iAKI. The beneficial effect of low-dose indomethacin on renal outcome is likely due to an effect different from inhibition of inflammation. In accordance to the decreased PAH net secretion, renal excretion of an endogenous organic anion (PGE2) is also impaired after ischemia and reperfusion.
Collapse
Affiliation(s)
- R. Schneider
- Universitätsklinikum Würzburg, Medizinische Klinik und Poliklinik I. Abt. Nephrologie, Würzburg; and
| | - M. Meusel
- Universitätsklinikum Würzburg, Medizinische Klinik und Poliklinik I. Abt. Nephrologie, Würzburg; and
| | - S. Renker
- Universitätsklinikum Würzburg, Medizinische Klinik und Poliklinik I. Abt. Nephrologie, Würzburg; and
| | - C. Bauer
- Universitätsklinikum Würzburg, Medizinische Klinik und Poliklinik I. Abt. Nephrologie, Würzburg; and
| | - H. Holzinger
- Physiologisches Institut, Bay, Julius-Maximilians Universität Würzburg, Würzburg
| | - M. Roeder
- Universitätsklinikum Würzburg, Medizinische Klinik und Poliklinik I. Abt. Nephrologie, Würzburg; and
| | - C. Wanner
- Universitätsklinikum Würzburg, Medizinische Klinik und Poliklinik I. Abt. Nephrologie, Würzburg; and
| | - M. Gekle
- Julius-Bernstein-Institut für Physiologie, Universität Halle-Wittenberg, Halle/Saale, Germany
| | - C. Sauvant
- Physiologisches Institut, Bay, Julius-Maximilians Universität Würzburg, Würzburg
| |
Collapse
|
8
|
Ahn SY, Nigam SK. Toward a systems level understanding of organic anion and other multispecific drug transporters: a remote sensing and signaling hypothesis. Mol Pharmacol 2009; 76:481-90. [PMID: 19515966 DOI: 10.1124/mol.109.056564] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Organic anion transporters (Oats) are located in the barrier epithelia of diverse organs, where they mediate the absorption and excretion of a wide range of metabolites, signaling molecules, and xenobiotics. Although their interactions with a broad group of substrates have been extensively studied and described, the primary physiological role of Oats remains elusive. The presence of overlapping substrate specificities among the different Oat isoforms, together with recent metabolomic data from the Oat1, Oat3, and renal-specific transporter (RST/URAT1) knockout mice, suggests a possible role in remote signaling wherein substrates excreted through one Oat isoform in one organ are taken up by another Oat isoform located in a different organ, thereby mediating communication between different organ systems, or even between different organisms. Here we further develop this "remote sensing and signaling hypothesis" and suggest how the regulation of SLC22 subfamily members (including those of the organic cation, organic carnitine, and unknown substrate transporter subfamilies) can be better understood by considering the organism's broader need to communicate between epithelial and other tissues by simultaneous regulation of transport of metabolites, signaling molecules, drugs, and toxins. This systems biology perspective of remote signaling (sensing) could help reconcile an enormous array of tissue-specific data for various SLC22 family genes and, possibly, other multispecific transporters, such as those of the organic anion transporting polypeptide (OATP, SLC21) and multidrug resistance-associated protein (MRP) families.
Collapse
Affiliation(s)
- Sun-Young Ahn
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
9
|
Miller DS, Bauer B, Hartz AMS. Modulation of P-glycoprotein at the blood-brain barrier: opportunities to improve central nervous system pharmacotherapy. Pharmacol Rev 2008; 60:196-209. [PMID: 18560012 DOI: 10.1124/pr.107.07109] [Citation(s) in RCA: 246] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Pharmacotherapy of central nervous system (CNS) disorders (e.g., neurodegenerative diseases, epilepsy, brain cancer, and neuro-AIDS) is limited by the blood-brain barrier. P-glycoprotein, an ATP-driven, drug efflux transporter, is a critical element of that barrier. High level of expression, luminal membrane location, multispecificity, and high transport potency make P-glycoprotein a selective gatekeeper of the blood-brain barrier and thus a primary obstacle to drug delivery into the brain. As such, P-glycoprotein limits entry into the CNS for a large number of prescribed drugs, contributes to the poor success rate of CNS drug candidates, and probably contributes to patient-to-patient variability in response to CNS pharmacotherapy. Modulating P-glycoprotein could therefore improve drug delivery into the brain. Here we review the current understanding of signaling mechanisms responsible for the modulation of P-glycoprotein activity/expression at the blood-brain barrier with an emphasis on recent studies from our laboratories. Using intact brain capillaries from rats and mice, we have identified multiple extracellular and intracellular signals that regulate this transporter; several signaling pathways have been mapped. Three pathways are triggered by elements of the brain's innate immune response, one by glutamate, one by xenobiotic-nuclear receptor (pregnane X receptor) interactions, and one by elevated beta-amyloid levels. Signaling is complex, with several pathways sharing common signaling elements [tumor necrosis factor (TNF) receptor 1, endothelin (ET) B receptor, protein kinase C, and nitric-oxide synthase), suggesting a regulatory network. Several pathways include autocrine/paracrine elements, involving release of the proinflammatory cytokine, TNF-alpha, and the polypeptide hormone, ET-1. Finally, several steps in signaling are potential therapeutic targets that could be used to modulate P-glycoprotein activity in the clinic.
Collapse
Affiliation(s)
- David S Miller
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| | | | | |
Collapse
|
10
|
Sabolić I, Asif AR, Budach WE, Wanke C, Bahn A, Burckhardt G. Gender differences in kidney function. Pflugers Arch 2007; 455:397-429. [PMID: 17638010 DOI: 10.1007/s00424-007-0308-1] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 06/12/2007] [Accepted: 06/14/2007] [Indexed: 01/04/2023]
Abstract
Sex hormones influence the development of female (F) and male (M) specific traits and primarily affect the structure and function of gender-specific organs. Recent studies also indicated their important roles in regulating structure and/or function of nearly every tissue and organ in the mammalian body, including the kidneys, causing gender differences in a variety of characteristics. Clinical observations in humans and studies in experimental animals in vivo and in models in vitro have shown that renal structure and functions under various physiological, pharmacological, and toxicological conditions are different in M and F, and that these differences may be related to the sex-hormone-regulated expression and action of transporters in the apical and basolateral membrane of nephron epithelial cells. In this review we have collected published data on gender differences in renal functions, transporters and other related parameters, and present our own microarray data on messenger RNA expression for various transporters in the kidney cortex of M and F rats. With these data we would like to emphasize the importance of sex hormones in regulation of a variety of renal transport functions and to initiate further studies of gender-related differences in kidney structure and functions, which would enable us to better understand occurrence and development of various renal diseases, pharmacotherapy, and drug-induced nephrotoxicity in humans and animals.
Collapse
Affiliation(s)
- Ivan Sabolić
- Molecular Toxicology, Institute for Medical Research and Occupational Health, Zagreb, Croatia.
| | | | | | | | | | | |
Collapse
|
11
|
Schneider R, Sauvant C, Betz B, Otremba M, Fischer D, Holzinger H, Wanner C, Galle J, Gekle M. Downregulation of organic anion transporters OAT1 and OAT3 correlates with impaired secretion ofpara-aminohippurate after ischemic acute renal failure in rats. Am J Physiol Renal Physiol 2007; 292:F1599-605. [PMID: 17244891 DOI: 10.1152/ajprenal.00473.2006] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ischemic acute renal failure (iARF) was described to reduce renal extraction of the organic anion para-aminohippurate (PAH) in humans. The rate-limiting step of renal organic anion secretion is its basolateral uptake into proximal tubular cells. This process is mediated by the organic anion transporters OAT1 and OAT3, which both have a broad spectrum of substrates including a variety of pharmaceutics and toxins. Using a rat model of iARF, we investigated whether impairing the secretion of the organic anion PAH might be associated with downregulation of OAT1 or OAT3. Inulin and PAH clearance was determined starting from 6 up to 336 h after ischemia-reperfusion (I/R) injury. Net secretion of PAH was calculated and OAT1 as well as OAT3 expression was analyzed by RT-PCR and Western blotting. Inulin and PAH clearance along with PAH net secretion were initially diminished after I/R injury with a gradual recovery during follow-up. This initial impairment after iARF was accompanied by decreased mRNA and protein levels of OAT1 and OAT3 in clamped animals compared with sham-operated controls. In correlation to the improvement of kidney function, both mRNA and protein levels of OAT1 and OAT3 were upregulated during the follow-up. Thus decreased expression of OAT1 and OAT3 is sufficient to explain the decline of PAH secretion after iARF. As a result, this may have substantial impact on excretion kinetics and half-life of organic anions. As a consequence, the biological effects of a variety of organic anions may be affected after iARF.
Collapse
Affiliation(s)
- R Schneider
- Institute of Physiology, Division of Nephrology, University of Wuerzburg, Wuerzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Rizwan AN, Burckhardt G. Organic anion transporters of the SLC22 family: biopharmaceutical, physiological, and pathological roles. Pharm Res 2007; 24:450-70. [PMID: 17245646 DOI: 10.1007/s11095-006-9181-4] [Citation(s) in RCA: 195] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Accepted: 10/19/2006] [Indexed: 02/08/2023]
Abstract
The human organic anion transporters OAT1, OAT2, OAT3, OAT4 and URAT1 belong to a family of poly-specific transporters mainly located in kidneys. Selected OATs occur also in liver, placenta, and brain. OATs interact with endogenous metabolic end products such as urate and acidic neutrotransmitter metabolites, as well as with a multitude of widely used drugs, including antibiotics, antihypertensives, antivirals, anti-inflammatory drugs, diuretics and uricosurics. Thereby, OATs play an important role in renal drug elimination and have an impact on pharmacokinetics. In this review we focus on the interaction of human OATs with drugs. We report the affinities of human OATs for drug classes and compare the putative importance of individual OATs for renal drug excretion. The role of OATs as sites of drug-drug interaction and mediators cell toxicity, their gender-dependent regulation in health and diseased states, and the possible impact of single nucleotide polymorphisms are also dealt with.
Collapse
Affiliation(s)
- Ahsan N Rizwan
- Abteilung Vegetative Physiologie und Pathophysiologie, Bereich Humanmedizin, Georg-August-Universität Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| | | |
Collapse
|
13
|
Terada T, Inui KI. Gene expression and regulation of drug transporters in the intestine and kidney. Biochem Pharmacol 2007; 73:440-9. [PMID: 17137557 DOI: 10.1016/j.bcp.2006.10.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 10/06/2006] [Accepted: 10/09/2006] [Indexed: 01/09/2023]
Abstract
Intestinal absorption and renal secretion of ionic drugs are controlled by a number of drug transporters expressed at the brush-border and basolateral membranes of epithelial cells. Over the last several years, considerable progress has been made regarding the molecular identification and functional characterization of drug transporters. Under some physiological and pathophysiological conditions, the expression and transport activity of drug transporters are changed, affecting the pharmacokinetics of substrate drugs. The regulation of transport activity in response to endogenous and exogenous signals can occur at various levels such as transcription, mRNA stability, translation, and posttranslational modification. Transcriptional regulation is of particular interest, because changes in transport activity are dynamically regulated by increases or decreases in levels of mRNA expression. The tissue-specific expression of drug transporters is also under transcriptional control, and recent studies using clinical samples from human tissues have revealed the expression profiles of drug transporters in the human body. The purpose of this research updates is to review the recent progress in the study of the gene expression and regulation of intestinal and renal drug transporters.
Collapse
Affiliation(s)
- Tomohiro Terada
- Department of Pharmacy, Kyoto University Hospital, Kyoto 606-8507, Japan
| | | |
Collapse
|
14
|
Bukowska B, Kopka A, Michałowicz J, Duda W. Comparison of the effect of Aminopielik D pesticide and its active components on human erythrocytes. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2006; 22:189-193. [PMID: 21783708 DOI: 10.1016/j.etap.2006.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Accepted: 03/10/2006] [Indexed: 05/31/2023]
Abstract
In the present work, the effect of Aminopielik D [417.5g/l of dimethylamino salts of 2,4-dichlorophenoxyacetic acid (2,4-D) and 32.5g/l of 3,6-dichloro-2-metoxybenzoic acid (Dicamba)] and its active components (used separately and in mixture) on human erythrocytes was examined. The parameters studied were: lipid peroxidation, metHb formation and catalase activity. Aminopielik D used at doses of 100-1000ppm was found to increase lipid peroxidation, decrease of catalase activity and oxidation of haemoglobin. 2,4-D and Dicamba are present in Aminopielik D in the dimethylamino form; their sodium salts in solution (separately and as a mixture) did not cause such strong effects. A synergistic action of 2,4-D and Dicamba was excluded as the individual compounds caused the same effects as their mixture. Aminopielik D provoked slightly higher changes in the lipid peroxidation and catalase activity than its active components alone and in mixture, which was probably a result of the properties of the additives and interaction of tested systems with the dimethylamino group.
Collapse
Affiliation(s)
- Bożena Bukowska
- Department of Biophysics of Environmental Pollution, University of Łódź, Banacha 12/16 Str., 90-237 Lódź, Poland
| | | | | | | |
Collapse
|
15
|
Ljubojević M, Balen D, Breljak D, Kusan M, Anzai N, Bahn A, Burckhardt G, Sabolić I. Renal expression of organic anion transporter OAT2 in rats and mice is regulated by sex hormones. Am J Physiol Renal Physiol 2006; 292:F361-72. [PMID: 16885152 DOI: 10.1152/ajprenal.00207.2006] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The renal reabsorption and/or excretion of various organic anions is mediated by specific organic anion transporters (OATs). OAT2 (Slc22a7) has been identified in rat kidney, where its mRNA expression exhibits gender differences [females (F) > males (M)]. The exact localization of OAT2 protein in the mammalian kidney has not been reported. Here we studied the expression of OAT2 mRNA by RT-PCR and its protein by Western blotting (WB) and immunocytochemistry (IC) in kidneys of adult intact and gonadectomized M and F, sex hormone-treated castrated M, and prepubertal M and F rats, and the protein in adult M and F mice. In adult rats, the expression of OAT2 mRNA was predominant in the outer stripe (OS) tissue, exhibiting 1) gender dependency (F > M), 2) upregulation by castration and downregulation by ovariectomy, and 3) strong downregulation by testosterone and weak upregulation by estradiol and progesterone treatment. A polyclonal antibody against rat OAT2 on WB of isolated renal membranes labeled a approximately 66-kDa protein band that was stronger in F. By IC, the antibody exclusively stained brush border (BB) of the proximal tubule S3 segment (S3) in the OS and medullary rays (F > M). In variously treated rats, the pattern of 66-kDa band density in the OS membranes and the staining intensity of BB in S3 matched the mRNA expression. The expression of OAT2 protein in prepubertal rats was low and gender independent. In mice, the expression pattern largely resembled that in rats. Therefore, OAT2 in rat (and mouse) kidney is localized to the BB of S3, exhibiting gender differences (F > M) that appear in puberty and are caused by strong androgen inhibition and weak estrogen and progesterone stimulation.
Collapse
Affiliation(s)
- Marija Ljubojević
- Molecular Toxicology, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Huls M, van den Heuvel JJMW, Dijkman HBPM, Russel FGM, Masereeuw R. ABC transporter expression profiling after ischemic reperfusion injury in mouse kidney. Kidney Int 2006; 69:2186-93. [PMID: 16612327 DOI: 10.1038/sj.ki.5000407] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Renal ATP binding cassette (ABC) transporters have an important role in the elimination of metabolic waste products and compounds foreign to the body. The kidney has the ability to tightly control the expression of these efflux transporters to maintain homeostasis, and as a major mechanism of adaptation to environmental stress. In the present study, we investigated the expression of 45 ABC transporter genes in the mouse kidney under basal conditions, after induction of ischemia and after regeneration. Two days after clamping, mice showed a 76% decrease in renal creatinine clearance, which improved clearly within 7 days. This was confirmed by histological examinations. Seven days after ischemia, real-time quantitative Polymerase chain reaction data showed that transcript abundance of abcb1, abcb11, and abcc4 was increased, and that of abca3, abcc2, and abcg2 decreased. Expression of all transporters returned to baseline after 14 days, except for abcb11, which was reduced. Abcb11 is the major liver canalicular bile salt export pump. Here we show for the first time expression in the kidney and localization of the transporter to the apical membrane of proximal tubules. The presence of another novel renal transporter, abca3, was confirmed by Western blotting. Immunohistochemistry showed that abca3 is localized to the peritubular capillaries and apical membrane of proximal tubules. In conclusion, after inducing ischemic reperfusion injury in the kidney, ABC transporters appear to be differentially regulated, which might be associated with the renal regeneration process. Furthermore, we showed for the first time expression and subcellular localization of abcb11 and abca3 in mouse kidney.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B
- ATP Binding Cassette Transporter, Subfamily B, Member 1
- ATP Binding Cassette Transporter, Subfamily B, Member 11
- ATP Binding Cassette Transporter, Subfamily G, Member 2
- ATP-Binding Cassette Transporters/analysis
- ATP-Binding Cassette Transporters/biosynthesis
- ATP-Binding Cassette Transporters/genetics
- Animals
- Blotting, Western
- Gene Expression Profiling
- Gene Expression Regulation
- Immunohistochemistry
- Kidney/chemistry
- Kidney/pathology
- Kidney Tubules, Proximal/chemistry
- Kidney Tubules, Proximal/pathology
- Male
- Membrane Transport Proteins/analysis
- Membrane Transport Proteins/genetics
- Mice
- Mice, Inbred Strains
- Multidrug Resistance-Associated Protein 2
- Multidrug Resistance-Associated Proteins/analysis
- Multidrug Resistance-Associated Proteins/genetics
- Reperfusion Injury/genetics
- Reperfusion Injury/pathology
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- M Huls
- Department of Pharmacology and Toxicology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
17
|
Robertson EE, Rankin GO. Human renal organic anion transporters: Characteristics and contributions to drug and drug metabolite excretion. Pharmacol Ther 2006; 109:399-412. [PMID: 16169085 DOI: 10.1016/j.pharmthera.2005.07.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2005] [Indexed: 02/07/2023]
Abstract
The kidney is a key organ for promoting the excretion of drugs and drug metabolites. One of the mechanisms by which the kidney promotes excretion is via active secretion. Secretion of drugs and their metabolites from blood to luminal fluid in the nephron is a protein-mediated process that normally involves either the direct or indirect expenditure of energy. Renal transporters for organic anions are located in the proximal tubule segment of the nephron. The primary transporters of organic anions on the basolateral membrane (BLM) of proximal tubule cells are members of the organic anion transporter (OAT) family (mainly OAT1 and OAT3). The sulfate-anion antiporter 1 (SAT-1; hsat-1) may also contribute to organic anion transport at the basolateral membrane. On the apical membrane, the multi-drug resistance-associated protein 2 (MRP2) is an important transport protein to complete the secretion process. However, there are several transport proteins on the basolateral and apical membranes of proximal tubule cells in human kidneys that have not been fully characterized and whose role in the secretion of organic anions remains to be determined. This review will primarily focus on the human renal basolateral and apical membrane transporters for organic anions that may play a role in the excretion of drugs and drug metabolites.
Collapse
Affiliation(s)
- Eliza E Robertson
- Department of Pharmacology, Joan C. Edwards School of Medicine, Marshall University, 1542 Spring Valley Drive, Huntington, WV 25704-9388, USA
| | | |
Collapse
|
18
|
Sekine T, Miyazaki H, Endou H. Molecular physiology of renal organic anion transporters. Am J Physiol Renal Physiol 2006; 290:F251-61. [PMID: 16403838 DOI: 10.1152/ajprenal.00439.2004] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Recent advances in molecular biology have identified three organic anion transporter families: the organic anion transporter (OAT) family encoded by SLC22A, the organic anion transporting peptide (OATP) family encoded by SLC21A (SLCO), and the multidrug resistance-associated protein (MRP) family encoded by ABCC. These families play critical roles in the transepithelial transport of organic anions in the kidneys as well as in other tissues such as the liver and brain. Among these families, the OAT family plays the central role in renal organic anion transport. Knowledge of these three families at the molecular level, such as substrate selectivity, tissue distribution, and gene localization, is rapidly increasing. In this review, we will give an overview of molecular information on renal organic anion transporters and describe recent topics such as the regulatory mechanisms and molecular physiology of urate transport. We will also discuss the physiological roles of each organic anion transporter in the light of the transepithelial transport of organic anions in the kidneys.
Collapse
Affiliation(s)
- Takashi Sekine
- Kyorin University School of Medicine, Department of Pharmacology and Toxicology, 6-20-2 Shinkawa, Mitaka-shi, Tokyo 181-8611, Japan
| | | | | |
Collapse
|
19
|
Sauvant C, Holzinger H, Gekle M. Prostaglandin E2 inhibits its own renal transport by downregulation of organic anion transporters rOAT1 and rOAT3. J Am Soc Nephrol 2005; 17:46-53. [PMID: 16338963 DOI: 10.1681/asn.2005070727] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Prostaglandin E2 (PGE2) is the principal mediator of fever and inflammation. Recently, evidence emerged that during febrile response, PGE2 that is generated in the periphery enters the hypothalamus and contributes to the maintenance of fever. In a rat model of fever generation, peripheral PGE2 is increased, whereas clearance by metabolism of peripheral PGE2 is downregulated. The major route of PGE2 excretion is via the renal proximal tubular organic anion secretory system, where basolateral uptake that is mediated by renal organic anion transporter 1 (rOAT1) and rOAT3 is rate limiting. Therefore, it was hypothesized that PGE2 itself will abolish its excretion by rOAT1 or rOAT3. Fluorescein was used as a prototypic organic anion, and NRK-52E cells from rat served as a proximal tubular model system. PGE2 time-dependently downregulates basolateral organic anion uptake, without affecting cell volume or cell protein, recirculation of counter ions, or proximal tubular transport systems in general. In addition, PGE2 diminishes expression of both rOAT1 and rOAT3. Both organic anion uptake and expression of rOAT1 and rOAT3 are dose-dependently downregulated by PGE2. These findings suggest that during fever or inflammation, renal secretory transport of PGE2 is reduced, contributing to elevated PGE2 levels in blood. These data fit into the hypothetical concept of peripheral PGE2's playing a significant role in fever. The described regulatory mechanism may also be of relevance in chronic inflammatory events. Moreover, the data presented could explain why increased plasma urate levels occur in diseases that go along with increased levels of PGE2.
Collapse
Affiliation(s)
- Christoph Sauvant
- Physiologisches Institut der Universität Würzburg, Röntgenring 9, 97070 Würzburg, Germany.
| | | | | |
Collapse
|
20
|
Hartz AMS, Bauer B, Fricker G, Miller DS. Rapid modulation of P-glycoprotein-mediated transport at the blood-brain barrier by tumor necrosis factor-alpha and lipopolysaccharide. Mol Pharmacol 2005; 69:462-70. [PMID: 16278373 DOI: 10.1124/mol.105.017954] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
At the blood-brain barrier, P-glycoprotein, an ATP-driven drug efflux pump, selectively limits drug access to the brain parenchyma, impeding pharmacotherapy of a number of central nervous system (CNS) disorders. We previously used confocal imaging to demonstrate in isolated rat brain capillaries that endothelin-1 (ET-1), acting through an ET(B) receptor, NO synthase, and protein kinase C, rapidly and reversibly reduces P-glycoprotein transport function. In this study, we define a link between the brain's innate immune response and functional regulation of P-glycoprotein. We show that exposing brain capillaries to the inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha), activated a TNF-R1 receptor, released ET-1, activated ET(B) receptor signaling, and essentially abolished P-glycoprotein-mediated transport. Bacterial lipopolysaccharide, a potent activator of the brain's innate immune response, reduced P-glycoprotein activity through TNF-alpha release, ET-1 release, and ET(B) receptor signaling. TNF-alpha and LPS effects had a rapid onset (minutes), were reversible, and did not involve changes in tight junctional permeability. These findings define a signaling pathway through which P-glycoprotein activity is acutely modulated. They show that this key component of the selective/active blood-brain barrier is an early target of cytokine signaling during the innate immune response and suggest ways to manipulate the barrier for improved CNS pharmacotherapy.
Collapse
Affiliation(s)
- Anika M S Hartz
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | | | |
Collapse
|
21
|
Soodvilai S, Wright SH, Dantzler WH, Chatsudthipong V. Involvement of tyrosine kinase and PI3K in the regulation of OAT3-mediated estrone sulfate transport in isolated rabbit renal proximal tubules. Am J Physiol Renal Physiol 2005; 289:F1057-64. [PMID: 15956776 DOI: 10.1152/ajprenal.00185.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
It was shown previously that OAT3 activity was differentially regulated by protein kinases including MAPK, PKA, and PKC. The present study investigated the short-term effect of tyrosine kinase and phosphatidylinositol 3-kinase (PI3K) on OAT3-mediated organic anion transport in S2 segments of renal proximal tubules. Genistein, a tyrosine kinase inhibitor, and wortmannin, a PI3K inhibitor, inhibited transport of estrone sulfate, a prototypic substrate for OAT3, in a dose-dependent manner. Previously, we showed that epidermal growth factor (EGF) stimulated OAT3 activity via the MAPK pathway. In the present study, we investigated whether EGF-stimulated OAT3 activity was dependent on tyrosine kinase and PI3K. We showed that EGF stimulation of OAT3 was reduced by inhibition of tyrosine kinase or PI3K, suggesting that they play a role in the stimulatory process. Inhibitory effects also indicated that tyrosine kinase and PI3K are involved in the MAPK pathway for EGF stimulation of OAT3 in intact renal proximal tubules, with PI3K acting upstream and tyrosine kinase acting downstream of mitogen-activated/extracellular signal-regulated kinase kinase activation.
Collapse
Affiliation(s)
- S Soodvilai
- Dept. of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand 10400
| | | | | | | |
Collapse
|
22
|
Marin-Kuan M, Nestler S, Verguet C, Bezençon C, Piguet D, Mansourian R, Holzwarth J, Grigorov M, Delatour T, Mantle P, Cavin C, Schilter B. A Toxicogenomics Approach to Identify New Plausible Epigenetic Mechanisms of Ochratoxin A Carcinogenicity in Rat. Toxicol Sci 2005; 89:120-34. [PMID: 16251485 DOI: 10.1093/toxsci/kfj017] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin occurring naturally in a wide range of food commodities. In animals, it has been shown to cause a variety of adverse effects, nephrocarcinogenicity being the most prominent. Because of its high toxic potency and the continuous exposure of the human population, OTA has raised public health concerns. There is significant debate on how to use the rat carcinogenicity data to assess the potential risk to humans. In this context, the question of the mechanism of action of OTA appears of key importance and was studied through the application of a toxicogenomics approach. Male Fischer rats were fed OTA for up to 2 years. Renal tumors were discovered during the last 6 months of the study. The total tumor incidence reached 25% at the end of the study. Gene expression profile was analyzed in groups of animals taken in intervals from 7 days to 12 months. Tissue-specific responses were observed in kidney versus liver. For selected genes, microarray data were confirmed at both mRNA and protein levels. In kidney, several genes known as markers of kidney injury and cell regeneration were significantly modulated by OTA. The expression of genes known to be involved in DNA synthesis and repair, or genes induced as a result of DNA damage, was only marginally modulated. Very little or no effect was found amongst genes associated with apoptosis. Alterations of gene expression indicating effects on calcium homeostasis and a disruption of pathways regulated by the transcription factors hepatocyte nuclear factor 4 alpha (HNF4alpha) and nuclear factor-erythroid 2-related factor 2 (Nrf2) were observed in the kidney but not in the liver. Previous data have suggested that a reduction in HNF4alpha may be associated with nephrocarcinogenicity. Many Nrf2-regulated genes are involved in chemical detoxication and antioxidant defense. The depletion of these genes is likely to impair the defense potential of the cells, resulting in chronic elevation of oxidative stress in the kidney. The inhibition of defense mechanism appears as a highly plausible new mechanism, which could contribute to OTA carcinogenicity.
Collapse
Affiliation(s)
- M Marin-Kuan
- Nestlé Research Center, PO Box 44, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Notenboom S, Miller DS, Kuik LH, Smits P, Russel FGM, Masereeuw R. Short-term exposure of renal proximal tubules to gentamicin increases long-term multidrug resistance protein 2 (Abcc2) transport function and reduces nephrotoxicant sensitivity. J Pharmacol Exp Ther 2005; 315:912-20. [PMID: 16085757 DOI: 10.1124/jpet.105.089094] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We previously showed that the function of renal multidrug resistance protein (Mrp) 2 (Abcc2) is reduced by endothelin (ET)-1 signaling through an ET(B) receptor, nitric-oxide synthase (NOS), cGMP, and protein kinase C and that this pathway was activated by several nephrotoxicants (Masereeuw et al., 2000; Terlouw et al., 2001; Notenboom et al., 2002, 2004). Here, we determined the long-term effects on Mrp2-mediated transport (luminal fluorescein methotrexate accumulation) of short-term (30 min) exposure to ET-1 and the aminoglycoside antibiotic, gentamicin. Our data show that over the 3 h following exposure, proximal tubules recovered fully from the initial decrease in Mrp2-mediated transport and that transport activity was not changed 9 h later. However, 24 h after exposure, luminal accumulation of an Mrp2 substrate had increased by 50%. Increased transport at 24 h was accompanied by an increased transporter protein content of the luminal plasma membrane as measured by immunostaining. Blocking ET-1 signaling at the ET(B) receptor or downstream at NOS or guanylyl cyclase abolished both stimulation of transport and increased transporter expression. Thus, regardless of whether signaling was initiated by a short exposure to ET-1 or to a nephrotoxicant, the time course of Mrp2 response to ET(B) signaling was the same and was multiphasic. Finally, when tubules were exposed to gentamicin for 30 min and removed to gentamicin-free medium for 24 h, they were less sensitive to acute gentamicin toxicity than paired controls not initially exposed to the drug. Thus, short-term exposure to ET-1 or gentamicin resulted in long-term protection against a second insult.
Collapse
Affiliation(s)
- Sylvia Notenboom
- Department of Pharmacology and Toxicology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, The Netherlands
| | | | | | | | | | | |
Collapse
|
24
|
Deguchi T, Kouno Y, Terasaki T, Takadate A, Otagiri M. Differential contributions of rOat1 (Slc22a6) and rOat3 (Slc22a8) to the in vivo renal uptake of uremic toxins in rats. Pharm Res 2005; 22:619-27. [PMID: 15846470 DOI: 10.1007/s11095-005-2486-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2004] [Accepted: 12/20/2004] [Indexed: 01/08/2023]
Abstract
PURPOSE Evidence suggests that uremic toxins such as hippurate (HA), indoleacetate (IA), indoxyl sulfate (IS), and 3-carboxy-4-methyl-5-propyl-2-furanpropionate (CMPF) promote the progression of renal failure by damaging tubular cells via rat organic anion transporter 1 (rOat1) and rOat3 on the basolateral membrane of the proximal tubules. The purpose of the current study is to evaluate the in vivo transport mechanism responsible for their renal uptake. METHODS We investigated the uremic toxins transport mechanism using the abdominal aorta injection technique [i.e., kidney uptake index (KUI) method], assuming minimal mixing of the bolus with serum protein from circulating serum. RESULTS Maximum mixing was estimated to be 5.8% of rat serum by measuring estrone sulfate extraction after addition of 0-90% rat serum to the arterial injection solution. Saturable renal uptake of p-aminohippurate (PAH, K(m) = 408 microM) and benzylpenicillin (PCG, K(m) = 346 microM) was observed, respectively. The uptake of PAH and PCG was inhibited in a dose-dependent manner by unlabeled PCG (IC(50) = 47.3 mM) and PAH (IC(50) = 512 microM), respectively, suggesting that different transporters are responsible for their uptake. A number of uremic toxins inhibited the renal uptake of PAH and PCG. Excess PAH, which could inhibit rOat1 and rOat3, completely inhibited the saturable uptake of IA, IS, and CMPF by the kidney, and by 85% for HA uptake. PCG inhibited the total saturable uptake of HA, IA, IS, and CMPF by 10%, 10%, 45%, and 65%, respectively, at the concentration selective for rOat3. CONCLUSIONS rOat1 could be the primary mediator of the renal uptake of HA and IA, accounting for approximately 75% and 90% of their transport, respectively. rOat1 and rOat3 contributed equally to the renal uptake of IS. rOat3 could account for about 65% of the uptake of CMPF under in vivo physiologic conditions. These results suggest that rOat1 and rOat3 play an important role in the renal uptake of uremic toxins and the induction of their nephrotoxicity.
Collapse
Affiliation(s)
- Tsuneo Deguchi
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | | | | | | | | |
Collapse
|
25
|
Wright SH, Dantzler WH. Molecular and cellular physiology of renal organic cation and anion transport. Physiol Rev 2004; 84:987-1049. [PMID: 15269342 DOI: 10.1152/physrev.00040.2003] [Citation(s) in RCA: 342] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Organic cations and anions (OCs and OAs, respectively) constitute an extraordinarily diverse array of compounds of physiological, pharmacological, and toxicological importance. Renal secretion of these compounds, which occurs principally along the proximal portion of the nephron, plays a critical role in regulating their plasma concentrations and in clearing the body of potentially toxic xenobiotics agents. The transepithelial transport involves separate entry and exit steps at the basolateral and luminal aspects of renal tubular cells. It is increasingly apparent that basolateral and luminal OC and OA transport reflects the concerted activity of a suite of separate transport processes arranged in parallel in each pole of proximal tubule cells. The cloning of multiple members of several distinct transport families, the subsequent characterization of their activity, and their subcellular localization within distinct regions of the kidney now allows the development of models describing the molecular basis of the renal secretion of OCs and OAs. This review examines recent work on this issue, with particular emphasis on attempts to integrate information concerning the activity of cloned transporters in heterologous expression systems to that observed in studies of physiologically intact renal systems.
Collapse
Affiliation(s)
- Stephen H Wright
- Dept. of Physiology, College of Medicine, Univ. of Arizona, Tucson, AZ 85724, USA.
| | | |
Collapse
|
26
|
Soodvilai S, Chatsudthipong V, Evans KK, Wright SH, Dantzler WH. Acute regulation of OAT3-mediated estrone sulfate transport in isolated rabbit renal proximal tubules. Am J Physiol Renal Physiol 2004; 287:F1021-9. [PMID: 15238352 DOI: 10.1152/ajprenal.00080.2004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We investigated the regulation of organic anion transport driven by the organic anion transporter 3 (OAT3), a multispecific OAT localized at the basolateral membrane of the renal proximal tubule. PMA, a PKC activator, inhibited uptake of estrone sulfate (ES), a prototypic substrate for OAT3, in a dose- and time-dependent manner. This inhibition was reduced by 100 nM bisindoylmaleimide I (BIM), a specific PKC inhibitor. The alpha(1)-adrenergic receptor agonist phenylephrine also inhibited ES uptake, and this effect was reduced by BIM. These results suggest that PKC activation downregulates OAT3-mediated organic anion transport. In contrast, epidermal growth factor (EGF) increased ES uptake following activation of MAPK. Exposure to PGE(2) or dibutyryl (db)-cAMP also enhanced ES uptake. Stimulation produced by PGE(2) and db-cAMP was prevented by the PKA inhibitor H-89, indicating that this stimulation required PKA activation. In addition, inhibition of cyclooxygenase 1 (COX1) (but not COX2) inhibited ES uptake. Furthermore, the stimulatory effect of EGF was eliminated by inhibition of either COX1 or PKA. These data suggest that EGF stimulates ES uptake by a process in which MAPK activation results in increased PGE(2) production that, in turn, activates PKA and subsequently stimulates ES uptake. Interestingly, EGF did not induce upregulation immediately following phenylephrine-induced downregulation; and phenylephrine did not induce downregulation immediately after EGF-induced upregulation. These data are the first to show the regulatory response of organic anion transport driven by OAT3 in intact renal proximal tubules.
Collapse
Affiliation(s)
- S Soodvilai
- Dept. of Physiology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | | | | | | | | |
Collapse
|
27
|
Abstract
Genetic polymorphisms in the genes coding for drug metabolizing enzymes, drug transporters, and drug receptors are major determinants of an individual's response to drugs. The potential interactions of pharmacogenomics of renal drug transporters and drug receptors with renal drug disposition and the immature kidneys are briefly reviewed. Examples of gene polymorphisms seen in the RAAS (renin angiotensin system), beta-adrenergic receptors, dopamine receptors and cytochrome P450 and their potential clinical impact are discussed. The human newborn has deficient hepatic and renal drug metabolism and disposition. This immaturity in drug-handling capacity may potentially be superimposed to genetic polymorphisms determining drug metabolism and transport thereby substantially increasing interpatient variability in drug dose requirements and in drug responses in the newborn. Pharmacogenomics is a tool that can be used to individualize drug therapy in newborns to minimize adverse drug effects and to optimize efficacy.
Collapse
Affiliation(s)
- Gaurav Kapur
- Department of Pediatric Nephrology, Pediatric Pharmacology Research Unit Network, Wayne State University School of Medicine, Children's Hospital of Michigan, Detroit, MI 48201, USA
| | | | | |
Collapse
|
28
|
Eraly SA, Bush KT, Sampogna RV, Bhatnagar V, Nigam SK. The molecular pharmacology of organic anion transporters: from DNA to FDA? Mol Pharmacol 2004; 65:479-87. [PMID: 14978224 DOI: 10.1124/mol.65.3.479] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Renal organic anion secretion has been implicated in numerous clinically significant drug interactions and adverse reactions, indicating the importance of a detailed understanding of this pathway for the development of optimum therapeutics. With the cloning of multiple genes encoding organic anion transporters (OATs), the study of organic anion secretion has entered the molecular age. In this review, we focus on various aspects of the molecular biology and pharmacology of the OATs, including discussion of their structural biology, genomic organization in pairs, developmental regulation, toxicology, and pharmacogenetics. We propose functional, pathophysiological, and evolutionary hypotheses to help explain recent experimental and genomic data.
Collapse
Affiliation(s)
- Satish A Eraly
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0693, USA
| | | | | | | | | |
Collapse
|