1
|
Salem S, Leghouchi E, Soulimani R, Bouayed J. Reduction of paw edema and liver oxidative stress in carrageenan-induced acute inflammation by Lobaria pulmonaria and Parmelia caperata, lichen species, in mice. INT J VITAM NUTR RES 2019; 91:143-151. [PMID: 31847731 DOI: 10.1024/0300-9831/a000620] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Paw edema volume reduction is a useful marker in determining the anti-inflammatory effect of drugs and plant extracts in carrageenan-induced acute inflammation. In this study, the anti-inflammatory effect of Lobaria pulmonaria (LP) and Parmelia caperata (PC), two lichen species, was examined in carrageenan-induced mouse paw edema test. Compared to the controls in carrageenan-induced inflammation (n = 5/group), our results showed that pretreatment by single oral doses with PC extract (50-500 mg/kg) gives better results than LP extract (50-500 mg/kg) in terms of anti-edematous activity, as after 4 h of carrageenan subplantar injection, paw edema formation was inhibited at 82-99% by PC while at 35-49% by LP. The higher anti-inflammatory effect of PC, at all doses, was also observed on the time-course of carrageenan-induced paw edema, displaying profile closely similar to that obtained with diclofenac (25 mg/kg), an anti-inflammatory drug reference (all p < 0.001). Both LP and PC, at all doses, significantly ameliorated liver catalase (CAT) activity (all p < 0.05). However, superoxide dismutase (SOD) activity, glutathione peroxidase (GPx) activity and glutathione (GSH) levels were found increased in liver of PC- compared to LP-carrageenan-injected mice. Our findings demonstrated on one hand higher preventive effects of PC compared to LP in a mouse carrageenan-induced inflammatory model and suggested, on the other hand, that anti-inflammatory effects elicited by the two lichens were closely associated with the amelioration in the endogenous antioxidant status of liver.
Collapse
Affiliation(s)
- Samira Salem
- Université Mohammed Seddik Benyahia, Laboratoire de Biotechnologie, Environnement et Santé, Algérie.,Université de Lorraine, LCOMS/Neurotoxicologie Alimentaire et Bioactivité, Campus Bridoux, France
| | - Essaid Leghouchi
- Université Mohammed Seddik Benyahia, Laboratoire de Biotechnologie, Environnement et Santé, Algérie
| | - Rachid Soulimani
- Université de Lorraine, LCOMS/Neurotoxicologie Alimentaire et Bioactivité, Campus Bridoux, France
| | - Jaouad Bouayed
- Université de Lorraine, LCOMS/Neurotoxicologie Alimentaire et Bioactivité, Campus Bridoux, France
| |
Collapse
|
2
|
Avila-Ramírez M, Esteban-Martínez R, López-Moctezuma E, Anguiano-Robledo L, Hernández-Campos M, López-Sánchez P. (Pro)renin/renin receptor expression during normal and preeclamptic pregnancy in rats. Life Sci 2019; 216:22-28. [DOI: 10.1016/j.lfs.2018.11.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 11/25/2022]
|
3
|
Atalay F, Odabasoglu F, Halici M, Cadirci E, Aydin O, Halici Z, Cakir A. N-Acetyl Cysteine Has Both Gastro-Protective and Anti-Inflammatory Effects in Experimental Rat Models: Its Gastro-Protective Effect Is Related to Its In Vivo and In Vitro Antioxidant Properties. J Cell Biochem 2015; 117:308-19. [DOI: 10.1002/jcb.25193] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 04/09/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Fadime Atalay
- Department of Medical Biochemistry, Faculty of Medicine; Kafkas University; Kars 36100 Turkey
| | - Fehmi Odabasoglu
- Department of Medical Biochemistry, Faculty of Medicine; Kafkas University; Kars 36100 Turkey
| | - Mesut Halici
- Department of Biochemistry, Faculty of Veterinary; Ataturk University; Erzurum 25240 Turkey
| | - Elif Cadirci
- Department of Pharmacology, Faculty of Pharmacy; Ataturk University; Erzurum 25240 Turkey
| | - Ozlem Aydin
- Department of Biochemistry, Faculty of Pharmacy; Ataturk University; Erzurum 25240 Turkey
| | - Zekai Halici
- Department of Pharmacology, Faculty of Medicine; Ataturk University; Erzurum 25240 Turkey
| | - Ahmet Cakir
- Department of Chemistry, Faculty of Science and Art; Kilis 7 Aralık University; Kilis 79100 Turkey
| |
Collapse
|
4
|
Awad H, Nolette N, Hinton M, Dakshinamurti S. AMPK and FoxO1 regulate catalase expression in hypoxic pulmonary arterial smooth muscle. Pediatr Pulmonol 2014; 49:885-97. [PMID: 24167160 DOI: 10.1002/ppul.22919] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 08/13/2013] [Indexed: 11/10/2022]
Abstract
BACKGROUND Hypoxia and reactive oxygen species (ROS) including H(2)O(2) play major roles in triggering and progression of pulmonary vascular remodeling in persistent pulmonary hypertension. Catalase (CAT), the major endogenous enzyme scavenging H(2)O(2), is regulated in a tissue- and context-specific manner. OBJECTIVE To investigate mechanisms by which hypoxia and H(2)O(2) regulate catalase expression, and the role of AMPK-FoxO pathway, in neonatal porcine pulmonary artery smooth muscle (PASMC). DESIGN/METHODS PASMC were grown in hypoxia (10% O(2)) or normoxia (21% O(2)) for 72 hr. We measured catalase activity and lipid peroxidation; CAT, FoxO1, and FoxO3a expression by qPCR; protein contents of CAT, FoxOs, p-AMPK, p-AKT, p-JNK, p-ERK1/2 in whole lysates, and FoxOs in nuclear extracts, by immunoblot; and FoxO-1 nuclear localization by immunocytochemistry, quantified by laser scanning cytometry. RESULTS Hypoxia upregulated CAT transcription, content and activity, by increasing CAT transcription factors FoxO1 and FoxO3a mRNA, and promoting nuclear translocation of FoxO1. However, lipid peroxidation increased in hypoxic PASMC. Among candidate FoxO regulatory kinases, hypoxia activated AMPK, and decreased p-Akt and ERK1/2. AMPK activation increased FoxO1 (total and nuclear) and CAT, while AMPK inhibition inhibited FoxO1 and CAT, but not FoxO3a. Exogenous H(2)O(2) decreased p-AMPK and increased p-AKT in hypoxic PASMC. This decreased active FoxO1, and reduced mRNA and protein content of CAT. Hypoxic induction of CAT, AKT inhibition (LY294002), or addition of PEG-catalase partly ameliorated the H(2)O(2) -mediated loss of nuclear FoxO1. CONCLUSIONS Hypoxia induces catalase expression, though this adaptation is insufficient to protect PASMC from hypoxia-induced lipid peroxidation. This occurs via hypoxic activation of AMPK, which promotes nuclear FoxO1 and thus catalase expression. Exogenous ROS may downregulate cellular antioxidant defenses; H(2)O(2) activates survival factor Akt, decreasing nuclear FoxO1 and thus catalase.
Collapse
Affiliation(s)
- Hanan Awad
- Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, Canada
| | | | | | | |
Collapse
|
5
|
Kaplan KA, Odabasoglu F, Halici Z, Halici M, Cadirci E, Atalay F, Aydin O, Cakir A. Alpha-lipoic acid protects against indomethacin-induced gastric oxidative toxicity by modulating antioxidant system. J Food Sci 2012; 77:H224-30. [PMID: 23057764 DOI: 10.1111/j.1750-3841.2012.02920.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gastroprotective effects of α-lipoic acid (ALA) against oxidative gastric damage induced by indomethacin (IND) have been investigated. All doses (50, 75, 100, 150, 200, and 300 mg/kg body weight) of ALA reduced the ulcer index with 88.2% to 96.1% inhibition ratio. In biochemical analyses of stomach tissues, ALA administration decreased the level of lipid peroxidation (LPO) and activities of myeloperoxidase (MPO) and catalase (CAT) in gastric tissues, which were increased after IND application. ALA also increased the level of glutathione (GSH) and activities of superoxide dismutase (SOD) and glutathione S-transferase (GST) that were decreased in gastric damaged stomach tissues. In conclusion, the gastroprotective effect of ALA could be attributed to its ameliorating effect on the antioxidant defense systems.
Collapse
Affiliation(s)
- Kursat Ali Kaplan
- Department of Biochemistry, Faculty of Pharmacy, Ataturk University, 25240 Erzurum, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Machida T, Ohta M, Onoguchi A, Iizuka K, Sakai M, Minami M, Hirafuji M. 5-Hydroxytryptaime induces cyclooxygenase-2 in rat vascular smooth muscle cells: Mechanisms involving Src, PKC and MAPK activation. Eur J Pharmacol 2011; 656:19-26. [DOI: 10.1016/j.ejphar.2010.12.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 12/02/2010] [Accepted: 12/22/2010] [Indexed: 11/16/2022]
|
7
|
α-Lipoic acid has anti-inflammatory and anti-oxidative properties: an experimental study in rats with carrageenan-induced acute and cotton pellet-induced chronic inflammations. Br J Nutr 2010; 105:31-43. [PMID: 21073761 DOI: 10.1017/s0007114510003107] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
α-Lipoic acid (ALA) has been termed the 'ideal' antioxidant, a readily absorbed and bioavailable compound capable of scavenging a number of free radicals, and it has been used for treating diseases in which oxidative stress plays a major role. The present study was designed to gain a better understanding for the positive effects of ALA on the models of acute and chronic inflammation in rats, and also determine its anti-oxidative potency. In an acute model, three doses of ALA (50, 100 and 200 mg/kg) and one dose of indomethacin (25 mg/kg) or diclofenac (25 mg/kg) were administered to rats by oral administration. The paw volumes of the animals were calculated plethysmometrically, and 0·1 ml of 1 % carrageenan (CAR) was injected into the hind paw of each animal 1 h after oral drug administration. The change in paw volume was detected as five replicates every 60 min by plethysmometry. In particular, we investigated the activities of catalase, superoxide dismutase (SOD), glutathione S-transferase (GST), glutathione peroxidase (GPx), glutathione reductase (GR), inducible NO synthase (iNOS) and myeloperoxidase (MPx), and the amounts of lipid peroxidation (LPO) or total GSH in the paw tissues of CAR-injected rats. We showed that ALA exhibited anti-inflammatory effects on both acute and chronic inflammations, and a strongly anti-oxidative potency on linoleic acid oxidation. Moreover, the administration of CAR induced oedema in the paws. ALA significantly inhibited the ability of CAR to induce: (1) the degree of acute inflammation, (2) the rise in MPx activity, (3) the increases of GST and iNOS activities and the amount of LPO and (4) the decreases of GPx, GR and SOD activities and the amount of GSH. In conclusion, these results suggest that the anti-inflammatory properties of ALA, which has a strong anti-oxidative potency, could be related to its positive effects on the antioxidant system in a variety of tissues in rats.
Collapse
|
8
|
Roland L, Gagné A, Bélanger MC, Boutet M, Berthiaume L, Fraser WD, Julien P, Bilodeau JF. Existence of Compensatory Defense Mechanisms Against Oxidative Stress and Hypertension in Preeclampsia. Hypertens Pregnancy 2010; 29:21-37. [DOI: 10.3109/10641950902777689] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
9
|
Tanas S, Odabasoglu F, Halici Z, Cakir A, Aygun H, Aslan A, Suleyman H. Evaluation of anti-inflammatory and antioxidant activities of Peltigera rufescens lichen species in acute and chronic inflammation models. J Nat Med 2009; 64:42-9. [PMID: 19830512 DOI: 10.1007/s11418-009-0367-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 09/03/2009] [Indexed: 01/24/2023]
Abstract
The anti-inflammatory effects of the methanol extract of the lichen species Peltigera rufescens (Weis.) Humb (MEPR) (Peltigeraceae) on acute (carrageenan-induced) and chronic (cotton pellet granule) phases of inflammation were investigated. The MEPR was capable of reducing carrageenan-induced inflammation and showed a potent antiproliferative effect (63.5%) in the chronic inflammation model. Inflammation is related to neutrophil infiltration and the production of neutrophil-derived mediators and free radicals. The MEPR reduced the myeloperoxidase and inducible nitric oxide synthase (NOS) activities, which were increased by carrageenan injection. Carrageenan injection also increased the lipid peroxidation (LPO) as compared with untreated paw tissues. The administration of MEPR, diclofenac, and indomethacin reduced the LPO in paw tissues through amelioration of the antioxidant defense systems. Neutrophil infiltration and neutrophil-derived free radicals in tissues therefore appeared to play an important role in the inflammation process induced by carrageenan. The anti-inflammatory effect of MEPR could be attributed to its reducing effect on the neutrophil-derived free radicals and its ameliorating effect on the antioxidant defense systems.
Collapse
Affiliation(s)
- Sevil Tanas
- Department of Biochemistry, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey
| | | | | | | | | | | | | |
Collapse
|
10
|
Ozbakis-Dengiz G, Bakirci A. Anticonvulsant and hypnotic effects of amiodarone. J Zhejiang Univ Sci B 2009; 10:317-22. [PMID: 19353751 DOI: 10.1631/jzus.b0820316] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Amiodarone hydrochloride is a potent anti-arrhythmic agent, known as a multiple ion-channel blocker in the heart. Although it has been detected in the rat brain, there are no data related to its central nervous system (CNS) effects. In this study, we evaluated anticonvulsant and hypnotic effects of amiodarone. Convulsions were induced by phentylenetetrazole (PTZ) (100 mg/kg) or caffeine (300 mg/kg) in mice. In both models, amiodarone prolonged both latency period and time to death, and acted as an anticonvulsant drug. It was found to be more effective in the PTZ model than in the caffeine model; none of the animals treated with 150 mg/kg dose amiodarone had died in the PTZ model. For hypnotic effect, sleeping was induced with pentobarbital (35 mg/kg) in rats. Amiodarone dose-dependently increased the sleeping time (677.7%-725.9%). In the sleeping test, all rats in 200 mg/kg amiodarone group died. In conclusion, anticonvulsant and hypnotic effects of amiodarone have shown the depressant effects on CNS. These effects may be dependent on its pharmacological properties.
Collapse
Affiliation(s)
- Gunnur Ozbakis-Dengiz
- Department of Pharmacology, Medical Faculty, Karaelmas University, 67 600 Zonguldak, Turkey.
| | | |
Collapse
|
11
|
Kaur T, Gupta R, Vaiphei K, Kapoor R, Gupta N, Khanduja K. Interplay Between Oncoproteins and Antioxidant Enzymes in Esophageal Carcinoma Treated Without and With Chemoradiotherapy: A Prospective Study. Int J Radiat Oncol Biol Phys 2008; 70:563-71. [DOI: 10.1016/j.ijrobp.2007.06.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 06/01/2007] [Accepted: 06/11/2007] [Indexed: 10/22/2022]
|
12
|
Gastroprotective and antioxidant effects of amiodarone on indomethacin-induced gastric ulcers in rats. Arch Pharm Res 2008; 30:1426-34. [PMID: 18087811 DOI: 10.1007/bf02977367] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Reactive oxygen species (ROS) have been implicated in the etiology of indomethacin-induced gastric mucosal damage. This study investigated amiodarone's protective effects against oxidative gastric mucosal damage induced by indomethacin. Amiodarone is a widely used antiarrhythmic agent. We have investigated alterations in the glutathione level, and the activities of antioxidative enzymes [superoxide dismutase, catalase, glutathione s-transferase glutathione reductase and myeloperoxidase], as markers for ulceration process following oral administration of amiodarone and ranitidine in rats with indomethacin-induced ulcers. In the present study we found that 1) amiodarone, lansoprazole and ranitidine reduced the development of indomethacin-induced gastric damages, at a greater magnitude for amiodarone and lansoprazole than for ranitidine; 2) amiodarone and ranitidine alleviated increases in the activities of catalase and glutathione s-transferase enzymes resulting from ulcers; 3) amiodarone and ranitidine ameliorated depressions in the glutathione level and the activities of superoxide dismutase and glutathione reductase enzymes caused by indomethacin administration; and 4) all doses of amiodarone amplified the myeloperoxidase activity resulting from indomethacin-induced gastric ulcers. The results indicate that the gastroprotective activity of amiodarone, which may be linked to its intrinsic antioxidant properties, cannot be attributed to its effect on myeloperoxidase activity.
Collapse
|
13
|
Koc M, Imik H, Odabasoglu F. Gastroprotective and anti-oxidative properties of ascorbic acid on indomethacin-induced gastric injuries in rats. Biol Trace Elem Res 2008; 126:222-36. [PMID: 18726076 DOI: 10.1007/s12011-008-8205-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Accepted: 07/18/2008] [Indexed: 10/21/2022]
Abstract
Reactive oxygen species (ROS) have been implicated in the etiology of indomethacin-induced gastric mucosal damage. This study investigated ascorbic acid (vitamin C)'s protective effects against oxidative gastric mucosal damage induced by indomethacin. Ascorbic acid is a powerful antioxidant because it can donate a hydrogen atom and form a relatively stable ascorbyl free radical. We have investigated alterations in the levels of myeloperoxidase, antioxidant system enzymes (glutathione S-transferase, superoxide dismutase, glutathione reductase, catalase, glutathione peroxidase), lipid peroxidation and glutathione, as markers for ulceration process following oral administration of ascorbic acid, famotidine, lansoprazole, and ranitidine in rats with indomethacin-induced ulcers. In the present study, we found that (1) ascorbic acid, famotidine, lansoprazole and ranitidine reduced the development of indomethacin-induced gastric damages; (2) the administration of indomethacin caused a significant decrease in the levels of superoxide dismutase, glutathione peroxidase, glutathione S-transferase and glutathione, and an increase in the lipid peroxidation level; (3) the administration of ascorbic acid reversed the trend, inducing a significant increase of these enzymes' levels and a reduction in lipid peroxidation level in tissues; and (4) catalase, glutathione reductase and myeloperoxidase activities, increased by indomethacin, were found to be lower in the ascorbic acid, famotidine, lansoprazole and ranitidine-treated groups. The results indicate that the gastroprotective properties of ascorbic acid could be related to its positive effects on the antioxidant system and myeloperoxidase activity in indomethacin-induced gastric ulcers in rats.
Collapse
Affiliation(s)
- Murat Koc
- Faculty of Art and Sciences, Department of Biology, Bozok University, Yozgat, Turkey
| | | | | |
Collapse
|
14
|
Dengiz GO, Odabasoglu F, Halici Z, Cadirci E, Suleyman H. Gastroprotective and antioxidant effects of montelukast on indomethacin-induced gastric ulcer in rats. J Pharmacol Sci 2007; 105:94-102. [PMID: 17895592 DOI: 10.1254/jphs.fp0070122] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Montelukast, a selective reversible cysteinyl leukotriene D(4)-receptor (LTD(4) receptor) antagonist, is used in the treatment of asthma. We have investigated alterations in the glutathione (GSH) and activity levels of antioxidative enzymes [superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), and glutathione reductase (GR)] and myeloperoxidase (MPO), as markers of the ulceration process following oral administration of montelukast, lansoprazole, famotidine, and ranitidine, respectively, in rats with indomethacin-induced ulcers. In the present study, we found that 1) montelukast, lansoprazole, famotidine, and ranitidine all reduced the development of indomethacin-induced gastric damage, with this reduction occurring at a greater magnitude for montelukast, famotidine, and lansoprazole than for ranitidine; 2) montelukast and ranitidine both alleviated increases in the activity levels of CAT and GST enzymes resulting from gastric injury; 3) montelukast and ranitidine both ameliorated depressions in the GSH and activity levels of SOD and GR enzymes caused by indomethacin administration; and 4) all doses of montelukast, lansoprazole, and ranitidine decreased amplification of MPO activity resulting from induced gastric injuries. These results suggest that the gastroprotective effects of montelukast on indomethacin-induced ulcerations can be attributed to its ameliorating effect on oxidative damage and MPO activity.
Collapse
|
15
|
Halici Z, Dengiz GO, Odabasoglu F, Suleyman H, Cadirci E, Halici M. Amiodarone has anti-inflammatory and anti-oxidative properties: An experimental study in rats with carrageenan-induced paw edema. Eur J Pharmacol 2007; 566:215-21. [PMID: 17475238 DOI: 10.1016/j.ejphar.2007.03.046] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 03/19/2007] [Accepted: 03/25/2007] [Indexed: 11/18/2022]
Abstract
Amiodarone is a widely used anti-arrhythmic agent. We have investigated alterations in the glutathione (GSH) level and the activities of anti-oxidative enzymes (superoxide dismutase, catalase, glutathione s-transferase and glutathione reductase) and myeloperoxidase, as marker of acute inflammation, following oral administration of amiodarone and diclofenac in rats with carrageenan-induced paw edema. In the present study, we found that 1) Amiodarone reduced the development of carrageenan-induced paw edema, to a greater degree than diclofenac; 2) Amiodarone and diclofenac alleviated increases in the activities of catalase and glutathione s-transferase enzymes resulting from edema; 3) Amiodarone and diclofenac ameliorated depressions in the GSH level and the activities of superoxide dismutase and glutathione reductase enzymes caused by carrageenan injection; and 4) All doses of amiodarone and diclofenac caused an amplification in myeloperoxidase activity resulting from induced paw edema. These results suggest that the anti-inflammatory effect of amiodarone on carrageenan-induced acute inflammation can be attributed to its ameliorating effect on the oxidative damage.
Collapse
Affiliation(s)
- Zekai Halici
- Faculty of Medicine, Department of Pharmacology, Ataturk University, 25240, Erzurum, Turkey.
| | | | | | | | | | | |
Collapse
|
16
|
Fatokun AA, Stone TW, Smith RA. Cell death in rat cerebellar granule neurons induced by hydrogen peroxide in vitro: mechanisms and protection by adenosine receptor ligands. Brain Res 2006; 1132:193-202. [PMID: 17188658 DOI: 10.1016/j.brainres.2006.11.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 11/02/2006] [Accepted: 11/03/2006] [Indexed: 11/23/2022]
Abstract
Oxidative stress, resulting from excessive production of reactive oxygen species (ROS), is a pathological state that causes profound cellular damage and eventual death resulting from the overactivation of glutamate receptors, and the generation of nitric oxide, superoxide and hydrogen peroxide (H(2)O(2)). As such, H(2)O(2) represents an important model for studying the neuropathology of oxidative stress in a variety of CNS disorders. The effects of H(2)O(2) on the viability of post-natal cerebellar granule neurons (CGNs), the nature of the cell death involved and the potential protection by adenosine receptors against the damage were examined in the current study. Hydrogen peroxide (10-400 microM) reduced CGN viability in a concentration- and time-dependent manner. The addition of catalase (100 U/ml) prevented this effect, and the non-specific COX inhibitor aspirin (1 mM) also alleviated the damage. A combination of H(2)O(2) (5 microM) and Cu(2+) (0.5 mM) resulted in a significant damage that was not prevented by the hydroxyl radical scavenger mannitol (50 mM). The permeability transition pore blocker cyclosporin A, the caspase-3 inhibitor Z-DEVD-fmk (40 microM) and the PARP-1 inhibitor DPQ (10 microM) each significantly protected against peroxide damage. While the A(1) adenosine receptor agonist CPA and the A(2A) receptor antagonist ZM241385 (each at 100 nM) elicited protection, the A(1) adenosine receptor blocker DPCPX and the A(2A) receptor agonist CGS21680 (each at 100 nM) showed no effect. The data demonstrate that H(2)O(2) induced oxidative stress in CGNs, involving both apoptotic and necrotic death, and this can be ameliorated by A(1) receptor activation or A(2A) receptor blockade.
Collapse
Affiliation(s)
- Amos A Fatokun
- Division of Neuroscience and Biomedical Systems, Institute of Biomedical and Life Sciences, West Medical Building, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | | | | |
Collapse
|
17
|
Abstract
Hydrogen peroxide (H2O2) is a well-documented component of living cells. It plays important roles in host defense and oxidative biosynthetic reactions. In addition there is growing evidence that at low levels, H2O2 also functions as a signaling agent, particularly in higher organisms. This review evaluates the evidence that H2O2 functions as a signaling agent in higher organisms in light of the known biology and biochemistry of H2O2. All aerobic organisms studied to date from prokaryotes to humans appear to tightly regulate their intracellular H2O2 concentrations at relatively similar levels. Multiple biochemical strategies for rapidly reacting with these low endogenous levels of H2O2 have been elucidated from the study of peroxidases and catalases. Well-defined biochemical pathways involved in the response to exogenous H2O2 have been described in both prokaryotes and yeast. In animals and plants, regulated enzymatic systems for generating H2O2 have been described. In addition oxidation-dependent steps in signal transduction pathways are being uncovered, and evidence is accumulating regarding the nature of the specific reactive oxygen species involved in each of these pathways. Application of physiologic levels of H2O2 to mammalian cells has been shown to stimulate biological responses and to activate specific biochemical pathways in these cells.
Collapse
Affiliation(s)
- James R Stone
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA.
| | | |
Collapse
|
18
|
Godínez-Hernández D, Gallardo-Ortíz IA, López-Sánchez P, Villalobos-Molina R. Captopril therapy decreases both expression and function of alpha1D-adrenoceptors in pre- hypertensive rat aorta. ACTA ACUST UNITED AC 2006; 26:21-9. [PMID: 16371063 DOI: 10.1111/j.1474-8673.2005.00358.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
1.-- The effects of captopril on alpha(1)-adrenoceptor mRNA and protein and phenylephrine-induced contraction was assessed in aorta of pre-hypertensive spontaneously hypertensive rats. 2.-- Four-week-old SHR and WKY rats were treated with captopril [an angiotensin-converting enzyme (ACE) inhibitor] 3 mg kg(-1) day(-1) for 1 week. 3.-- pA(2) values for BMY 7378, an alpha(1D)-adrenoceptor antagonist, were 8.63-9.20 among the different groups. Schild slopes were close to unity suggesting that contraction was produced primarily by alpha(1D)-adrenoceptor stimulation and was not changed with therapy. 4.-- Alpha(1D)-adrenoceptor mRNA and protein values were higher in pre-hypertensive SHR than in WKY, whereas alpha(1A)-adrenoceptor mRNA was higher in WKY and alpha(1B)-adrenoceptors were similar in both strains, and protein was not significantly different for alpha(1A)- and alpha(1B)-subtypes. 5.-- Captopril decreased maximal contraction in SHR, without having effect in WKY rats, while alpha(1D)-adrenoceptor mRNA was decreased in both rat strains but alpha(1D)-adrenoceptor protein was significantly decreased only in SHR, and increased alpha(1A)-mRNA in SHR, no effect of captopril treatment was observed on alpha(1B)-adrenoceptor mRNA and protein nor on alpha(1A)-adrenoceptor protein. 6.-- These data suggest that ACE inhibition by captopril influences both expression and function of alpha(1D)-adrenoceptors in aorta of pre-hypertensive rats, probably avoiding alpha(1D)-subtype expression by blockade of angiotensin II synthesis.
Collapse
MESH Headings
- Adrenergic alpha-Agonists/pharmacology
- Adrenergic alpha-Antagonists/pharmacology
- Angiotensin-Converting Enzyme Inhibitors/administration & dosage
- Angiotensin-Converting Enzyme Inhibitors/pharmacology
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Captopril/administration & dosage
- Captopril/pharmacology
- Dose-Response Relationship, Drug
- Hypertension/etiology
- Hypertension/metabolism
- Hypertension/prevention & control
- Male
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Phenylephrine/pharmacology
- Piperazines/pharmacology
- Rats
- Rats, Inbred SHR
- Rats, Inbred WKY
- Receptors, Adrenergic, alpha-1/drug effects
- Receptors, Adrenergic, alpha-1/metabolism
- Vasoconstriction/drug effects
Collapse
Affiliation(s)
- D Godínez-Hernández
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados-Sede Sur, México, D.F
| | | | | | | |
Collapse
|
19
|
Chen GG, Sin FLF, Leung BCS, Ng HK, Poon WS. Differential role of hydrogen peroxide and staurosporine in induction of cell death in glioblastoma cells lacking DNA-dependent protein kinase. Apoptosis 2005; 10:185-92. [PMID: 15711934 DOI: 10.1007/s10495-005-6073-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Various DNA double-strand break repair mechanisms, in which DNA-dependent protein kinase (DNA-PK) has a major role, are involved both in the development and treatment of glioblastoma. The aim of the present study was to investigate how glioblastoma cells responded to hydrogen peroxide and staurosporine (STS) and how such a response is related to DNA-PK. Two human glioblastoma cell lines, M059J cells that lack DNA-PK activity, and M059K cells that express a normal level of DNA-PK, were exposed to hydrogen peroxide or STS. The response of the cells to hydrogen peroxide or STS was recorded by measuring cell death, which was detected by three different methods-MTT, annexin-V and propidium iodide staining, and JC-1 mitochondrial probe. The result showed that both hydrogen peroxide and STS were able to induce cell death of the glioblastoma cells and that the former was mainly associated with necrosis and the latter with apoptosis. Glioblastoma cells lacking DNA-PK were less sensitive to STS treatment than those containing DNA-PK. However, DNA-PK had no significant influence on hydrogen peroxide treatment. We further found that catalase, an antioxidant enzyme, could prevent cell death induced by hydrogen peroxide but not by STS, suggesting that the pathways leading to cell death by hydrogen peroxide and STS are different. We conclude that hydrogen peroxide and STS have differential effects on cell death of glioblastoma cells lacking DNA-dependent protein kinase. Such differential roles in the induction of glioblastoma cell death can be of significant value in selecting and/or optimizing the treatment for this malignant brain tumor.
Collapse
Affiliation(s)
- G G Chen
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T., Hong Kong.
| | | | | | | | | |
Collapse
|
20
|
Jang BC, Paik JH, Kim SP, Shin DH, Song DK, Park JG, Suh MH, Park JW, Suh SI. Catalase induced expression of inflammatory mediators via activation of NF-κB, PI3K/AKT, p70S6K, and JNKs in BV2 microglia. Cell Signal 2005; 17:625-33. [PMID: 15683737 DOI: 10.1016/j.cellsig.2004.10.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2004] [Revised: 10/11/2004] [Accepted: 10/11/2004] [Indexed: 10/26/2022]
Abstract
Catalase induces COX-2 or iNOS expression in some type of cells, but the mechanism remains unclear. Here we investigated the effect of catalase on COX-2 and iNOS expression in BV2 microglia and the inductive mechanism associated. Exposure of catalase to BV2 microglia induced expression of COX-2 and iNOS that was related with transcriptional up-regulation. Importantly, catalase-induced COX-2 and iNOS expression needed activations of NF-kappaB, PI3K/AKT, and JNKs, which were important for the transcriptional up-regulation of COX-2 and iNOS. Notably, rapamycin inhibition of p70S6K led to down-regulation of COX-2 and iNOS protein expression, but not steady-state mRNA expression and transcription, induced by catalase, suggesting that p70S6K is involved in increased COX-2 and iNOS mRNA translation by catalase. Interestingly, there was PI3K-dependent activation of AKT, p70S6K, JNKs, and NF-kappaB in response to catalase. These data collectively suggest catalase-induced COX-2 and iNOS expression in BV2 microglia is, in part at least, mediated through activation of multiple signaling proteins.
Collapse
Affiliation(s)
- Byeong-Churl Jang
- Chronic Disease Research Center and Institute for Medical Science, Keimyung University School of Medicine, #194 DongSan-Dong, Jung-Gu, Daegu 700-712, South Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Litvinov D, Turpaev K. Extracellular catalase induces cyclooxygenase 2, interleukin 8, and stromelysin genes in primary human chondrocytes. Biochimie 2004; 86:945-50. [PMID: 15667946 DOI: 10.1016/j.biochi.2004.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Accepted: 07/20/2004] [Indexed: 11/29/2022]
Abstract
We investigated the expression of genes in response to exposure of primary human chondrocytes to extracellular catalase. The addition of catalase to culture medium caused a significant up-regulation of cyclooxygenase 2, interleukin 8, and stromelysin mRNA levels. Similar pattern of gene activation occurred in chondrocytes incubated with horseradish peroxidase. On the contrary, ebselen, a glutathione peroxidase mimetic agent, did not affect expression of catalase-inducible genes. Taken together, these observations imply that catalase action is mediated by its side peroxidase-like activity, rather than elimination of H2O2. Genistein suppressed catalase-mediated effects on gene expression. This finding implies that tyrosine kinases are implicated in underlying signaling pathway.
Collapse
Affiliation(s)
- Dmitry Litvinov
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, Vavilov street 32, Moscow 119991, Russia
| | | |
Collapse
|
22
|
Miyahara T, Katoh T, Watanabe M, Mikami Y, Uchida S, Hosoe M, Sakuma T, Nemoto N, Takayama K, Komurasaki T. Involvement of mitogen-activated protein kinases and protein kinase C in cadmium-induced prostaglandin E2 production in primary mouse osteoblastic cells. Toxicology 2004; 200:159-67. [PMID: 15212812 DOI: 10.1016/j.tox.2004.03.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2004] [Revised: 02/11/2004] [Accepted: 03/22/2004] [Indexed: 10/26/2022]
Abstract
We previously reported that cadmium (Cd) induced prostaglandin E2 (PGE2) biosynthesis through the activation of cytosolic phospholipase A2 (cPLA2) and induction of cyclooxygenase 2 (COX-2) in primary mouse osteoblastic cells. In the present study, we further investigated the mechanism of PGE2 production by Cd focusing on the main mitogen-activated protein kinase (MAPK) subfamilies that mediate prostaglandin synthesis, extracellular signal-regulated kinase (ERK1/2 MAPK), c-jun-amino-terminal kinase (JNK MAPK) and p38 MAPK, and protein kinase C (PKC) which is activated by Cd in several kinds of cells. Cd at 2 microM and above stimulated PGE2 production in osteoblastic cells and its production was inhibited by the kinase-specific inhibitors PD98059, SB203580, curcumin, and calphostin C. Calphostin C also inhibited the production of PGE2 by phorbol 12-myristate 13-acetate (PMA), which is a potent activator of PKC. PD98059 inhibited PGE2 production stimulated by PMA as well as Cd, indicating that activation of PKC by ERK1/2 MAPK was necessary for Cd-stimulated PGE2 production. Moreover, Cd stimulated the phosphorylation of these three MAPKs, and inhibition of the phosphorylation of ERK1/2 MAPK by calphostin C was also observed. On the other hand, Cd was found to phosphorylate cPLA2 and the phosphorylation was inhibited by PD98059, indicating that cPLA2 was activated by Cd through ERK1/2 MAPK and released arachidonic acid (AA), a substrate of COX-2, from membranous phospholipids. From these results, it was suggested that activation of each of the ERK1/2, p38, and JNK MAPK cascades in addition to that of PKC and cPLA2 played an important role in the Cd-stimulated biosynthesis of PGE2 in mouse osteoblastic cells.
Collapse
Affiliation(s)
- Tatsuro Miyahara
- Department of Toxicology, Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama-shi, 930-0194, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Jang BC, Kim DH, Park JW, Kwon TK, Kim SP, Song DK, Park JG, Bae JH, Mun KC, Baek WK, Suh MH, Hla T, Suh SI. Induction of cyclooxygenase-2 in macrophages by catalase: role of NF-kappaB and PI3K signaling pathways. Biochem Biophys Res Commun 2004; 316:398-406. [PMID: 15020231 DOI: 10.1016/j.bbrc.2004.02.060] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2004] [Indexed: 10/26/2022]
Abstract
Induction of COX-2 by catalase in smooth muscle cells, endothelial cells, and neuronal cells has been previously reported. However, the mechanism by which catalase up-regulates COX-2 remains poorly understood. In this study, we investigated the effect of catalase on induction of COX-2 in macrophages. The addition of catalase into Raw 264.7 macrophages induced COX-2 expression that was correlated with increased COX-2 transcription and mRNA stability. Catalase also induced activation of NF-kappaB, PI3K, ERKs, p38s, or JNKs. Catalase-induced COX-2 expression was abrogated by treatment of MG-132 (a NF-kappaB inhibitor) or LY294002 (a PI3K inhibitor), but not by treatment of PD98059 (an ERK inhibitor), SB203580 (a p38 inhibitor), or SP600125 (a JNK inhibitor). Moreover, inhibition of PI3K by LY294002 caused partial decrease of catalase-induced COX-2 transcription and steady-state COX-2 transcript levels, but not COX-2 mRNA stability. Together, these results suggest that catalase induces the expression of COX-2 in Raw 264.7 macrophages, and the induction is related with activation of NF-kappaB transcription factor and PI3K signaling pathway.
Collapse
Affiliation(s)
- Byeong-Churl Jang
- Chronic Disease Research Center and Institute for Medical Science, Keimyung University School of Medicine, #194 DongSan-Dong, Jung-Gu, Daegu 700-712, South Korea.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ivanov AI, Scheck AC, Romanovsky AA. Expression of genes controlling transport and catabolism of prostaglandin E2 in lipopolysaccharide fever. Am J Physiol Regul Integr Comp Physiol 2003; 284:R698-706. [PMID: 12399253 DOI: 10.1152/ajpregu.00570.2002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prostaglandin (PG) E(2) is a principal downstream mediator of fever and other symptoms of systemic inflammation. Its inactivation occurs in peripheral tissues, primarily the lungs and liver, via carrier-mediated cellular uptake and enzymatic oxidation. We hypothesized that inactivation of PGE(2) is suppressed during LPS fever and that transcriptional downregulation of PGE(2) carriers and catabolizing enzymes contributes to this suppression. Fever was induced in inbred Wistar-Kyoto rats by intravenous LPS (50 microg/kg); the controls received saline. Samples of the liver, lungs, and hypothalamus were harvested 0, 0.5, 1.5, and 5 h postinjection. The expression of the two principal transmembrane PGE(2) carriers (PG transporter and multispecific organic anion transporter) and the two key PGE(2)-inactivating enzymes [15-hydroxy-PG dehydrogenase (15-PGDH) and carbonyl reductase] was quantified by RT-PCR. All four genes of interest were downregulated in peripheral tissues (but not the brain) during fever. Most remarkably, the expression of hepatic 15-PGDH was decreased 26-fold 5 h post-LPS, whereas expression of pulmonary 15-PGDH was downregulated (as much as 18-fold) throughout the entire febrile course. The transcriptional downregulation of several proteins involved in PGE(2) inactivation, first reported here, is an unrecognized mechanism of systemic inflammation. By increasing the blood-brain gradient of PGE(2), this mechanism likely facilitates penetration of PGE(2) into the brain and prevents its elimination from the brain.
Collapse
Affiliation(s)
- Andrei I Ivanov
- Trauma Research and Neurology Research, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona 85013, USA
| | | | | |
Collapse
|
25
|
Fang X, Chen P, Moore SA. The oxygen radical scavenger pyrrolidine dithiocarbamate enhances interleukin-1beta-induced cyclooxygenase-2 expression in cerebral microvascular smooth muscle cells. Microvasc Res 2002; 64:405-13. [PMID: 12453435 DOI: 10.1006/mvre.2002.2431] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oxidative stress and inducible cyclooxygenase-2 (COX-2)-mediated prostaglandin (PG) formation have been proposed to play an important role in cytokine-induced vascular pathology. To explore the relationship between oxidative stress and COX-2 induction, cultured murine cerebral microvascular smooth muscle cells (SMCs) were stimulated with interleukin-1beta (IL-1beta) in the presence or absence of an oxygen radical scavenger, pyrrolidine dithiocarbamate (PDTC). IL-1beta increased COX-2 protein expression in a dose- and time-dependent manner, an increase that was further enhanced by PDTC in a dose-dependent manner. PDTC did not, however, affect the expression of COX-1 protein. In the presence of 100 microM PDTC, PGE(2) production induced by IL-1beta (5 ng/ml) was increased by threefold as compared with IL-1beta alone. Although PDTC enhanced COX-2 protein expression, it did not increase IL-1beta-induced expression of COX-2 mRNA, indicating that the regulatory effect occurred at the posttranscriptional level. The time course of COX-2 protein degradation indicated that PDTC also did not alter the stability of the COX-2 protein induced by IL-1beta. These results suggest that endogenous oxygen radicals may blunt COX-2 induced by IL-1beta through an effect on translation.
Collapse
Affiliation(s)
- Xiang Fang
- Department of Biochemistry, University of Iowa College of Medicine, Iowa City, IA 52242, USA.
| | | | | |
Collapse
|
26
|
Ivanov AI, Pero RS, Scheck AC, Romanovsky AA. Prostaglandin E(2)-synthesizing enzymes in fever: differential transcriptional regulation. Am J Physiol Regul Integr Comp Physiol 2002; 283:R1104-17. [PMID: 12376404 DOI: 10.1152/ajpregu.00347.2002] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The febrile response to lipopolysaccharide (LPS) consists of three phases (phases I-III), all requiring de novo synthesis of prostaglandin (PG) E(2). The major mechanism for activation of PGE(2)-synthesizing enzymes is transcriptional upregulation. The triphasic febrile response of Wistar-Kyoto rats to intravenous LPS (50 microg/kg) was studied. Using real-time RT-PCR, the expression of seven PGE(2)-synthesizing enzymes in the LPS-processing organs (liver and lungs) and the brain "febrigenic center" (hypothalamus) was quantified. Phase I involved transcriptional upregulation of the functionally coupled cyclooxygenase (COX)-2 and microsomal (m) PGE synthase (PGES) in the liver and lungs. Phase II entailed robust upregulation of all enzymes of the major inflammatory pathway, i.e., secretory (s) phospholipase (PL) A(2)-IIA --> COX-2 --> mPGES, in both the periphery and brain. Phase III was accompanied by the induction of cytosolic (c) PLA(2)-alpha in the hypothalamus, further upregulation of sPLA(2)-IIA and mPGES in the hypothalamus and liver, and a decrease in the expression of COX-1 and COX-2 in all tissues studied. Neither sPLA(2)-V nor cPGES was induced by LPS. The high magnitude of upregulation of mPGES and sPLA(2)-IIA (1,257-fold and 133-fold, respectively) makes these enzymes attractive targets for anti-inflammatory therapy.
Collapse
Affiliation(s)
- Andrei I Ivanov
- Trauma Research, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona 85013, USA
| | | | | | | |
Collapse
|
27
|
Shiokoshi T, Ohsaki Y, Kawabe J, Fujino T, Kikuchi K. Downregulation of nitric oxide accumulation by cyclooxygenase-2 induction and thromboxane A2 production in interleukin-1beta-stimulated rat aortic smooth muscle cells. J Hypertens 2002; 20:455-61. [PMID: 11875313 DOI: 10.1097/00004872-200203000-00021] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Cytokines from inflammatory cells do not produce nitric oxide, but stimulate the production of nitric oxide in vascular smooth muscle cells (VSMC). Thromboxane A2 (TXA2) has been believed to have a key role in atherosclerogenesis and post-angioplasty restenosis. OBJECTIVE To determine whether cytokine-induced nitric oxide production is regulated by the TXA2/prostaglandin H2 (PGH2) receptor. METHODS AND RESULTS We studied the interleukin-1beta (IL-1beta)-induced production of nitric oxide in rat VSMCs using the TXA2/PGH2 receptor antagonists, seratrodast and Bay-u3405, and an agonist, U-46619. Nitrite formation was measured colorimetrically. IL-1beta increased nitrite formation in a time-dependent manner. The nitrite concentration was 1.7 times greater in the presence of seratrodast than that without it. Nitrite accumulation was increased by Bay-u3405, but was decreased in the presence of U-46619, to 44% of that in its absence. Western and Northern blotting showed that seratrodast increased the levels of expression of inducible nitric oxide synthase (iNOS) protein and mRNA in a dose-dependent manner, whereas U-46619 decreased them. We speculated that VSMCs produced TXA2, thereby decreasing nitric oxide production; therefore we measured the accumulation of TXB2 using an enzyme immunoassay. Untreated VSMCs produced about 20 pg/mg protein of TXB2. This was increased by the addition of IL-1beta, to 152.1 +/- 43.0 pg/mg protein after a 24 h incubation; the expression of cyclooxygenase-2 (COX-2) protein was also increased, but there was no effect on the expression of COX-1 and TXA2 synthase. U-63557A, a TXA2 synthase inhibitor, increased the accumulation of nitrite to 1.3-fold that in its absence. CONCLUSIONS These data suggest that the expression of iNOS and the production of nitric oxide are regulated by the TXA2/PGH2 receptor in IL-1beta-stimulated VSMCs. The endogenous production of TXA2 by the induction of COX-2 from IL-1beta-stimulated VSMCs probably downregulated the production of nitric oxide in VSMCs. TXA2/PGH2 receptor inhibitors may contribute to the reduction in formation of atherosclerosis in lesions with vascular injury by enhancing the production of nitric oxide by VSMCs.
Collapse
MESH Headings
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology
- Animals
- Aorta/cytology
- Aorta/drug effects
- Aorta/metabolism
- Benzoquinones/pharmacology
- Cells, Cultured
- Cyclooxygenase 1
- Cyclooxygenase 2
- Down-Regulation
- Enzyme Induction/physiology
- Heptanoic Acids/pharmacology
- Interleukin-1/pharmacology
- Isoenzymes/metabolism
- Male
- Membrane Proteins
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Nitric Oxide/metabolism
- Nitric Oxide Synthase/genetics
- Nitric Oxide Synthase/metabolism
- Nitric Oxide Synthase Type II
- Prostaglandin Antagonists/pharmacology
- Prostaglandin-Endoperoxide Synthases/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Prostaglandin/agonists
- Receptors, Prostaglandin/antagonists & inhibitors
- Receptors, Thromboxane/agonists
- Receptors, Thromboxane/antagonists & inhibitors
- Receptors, Thromboxane A2, Prostaglandin H2
- Thromboxane A2/biosynthesis
Collapse
Affiliation(s)
- Takahiro Shiokoshi
- First Department of Medicine, Asahikawa Medical College, Asahikawa, Japan
| | | | | | | | | |
Collapse
|
28
|
Vazquez-Cruz B, Lopez P, Talamas-Rohana P, Escalante B. Increased renal vasoconstriction and gene expression of cyclooxygenase-1 in renovascular hypertension. J Cardiovasc Pharmacol 2000; 36:577-83. [PMID: 11065217 DOI: 10.1097/00005344-200011000-00006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Vascular responses to arachidonic acid (AA) in the renal circulation are increased in hypertensive rats. We have suggested that these differences are related to changes in AA metabolism. In this study we investigated the mechanism involved in the increased AA-induced renal vasoconstriction. We evaluated vascular renal reactivity in the isolated perfused kidney, cyclooxygenase activity, protein content, and mRNA expression of kidneys from sham operated and aortic coarctation rats. Bolus injection of AA (1, 2, 4, and 8 microg) increased perfusion pressure in a dose-dependent manner by 20 +/- 4, 28 +/- 5, 38 +/- 6, and 44 +/- 7 mm Hg in sham-operated rats and 30 +/- 3, 55 +/- 5, 78 +/- 5, and 113 +/- 8 mm Hg in rats with aortic coarctation. Indomethacin (1 microg/ml) or the endoperoxide/thromboxane blocker SQ29548 (1 microM) prevented AA renal vasoconstriction. Cyclooxygenase activity, cyclooxygenase-1 protein content, and mRNA expression were also increased in the renal tissue from the aortic coarctation rats compared with sham-operated rats. In conclusion, we suggest that during development of hypertension, the cyclooxygenase-1 mRNA is induced, and consequently cyclooxygenase-1 activity and AA metabolism are increased, resulting in augmented production of vasoconstrictor prostaglandins that mediate the potentiated responsiveness to AA or other vascular agonists that release AA, thus increasing peripheral vascular resistance.
Collapse
Affiliation(s)
- B Vazquez-Cruz
- Division of Investigation, Escuela National de Estudios Profesionales Iztacala UNAM, Tlalnepantla, Mexico
| | | | | | | |
Collapse
|
29
|
Fang X, Moore AS, Nwankwo JO, Weintraub LN, Oberley WL, Snyder DG, Spector AA. Induction of cyclooxygenase-2 by overexpression of the human catalase gene in cerebral microvascular endothelial cells. J Neurochem 2000; 75:614-23. [PMID: 10899936 DOI: 10.1046/j.1471-4159.2000.0750614.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Prostaglandin (PG) formation by the inducible (type 2) cyclooxygenase (COX-2) and reactive oxygen species (ROS) have been proposed to play important roles in cerebrovascular pathological processes. To explore the relationship between ROS and COX-2 expression, adenovirus (Ad) vectors containing cDNA for human antioxidant enzymes including catalase (AdCAT:), copper/zinc superoxide dismutase (AdCu/ZnSOD), and manganese superoxide dismutase (AdMnSOD) were transferred into murine cerebral microvascular endothelial cells. AdCAT: (100 multiplicity of infection) infection increased the content and enzymatic activity of cellular Cat threefold and decreased the intracellular peroxide level. The expression of COX-2 mRNA and protein in cell lysates was up-regulated, and the amount of PGE(2) formed from exogenous arachidonic acid increased following AdCAT: infection in a dose-dependent manner, paralleling the expression of COX-2 protein. The AdCAT:-induced increase in PGE(2) formation was inhibited by NS-398, a selective inhibitor of COX-2 enzymatic activity. AdCAT: infection did not change the expression of the constitutive (type 1) COX protein. Although AdCu/ZnSOD and AdMnSOD infection increased the expression of superoxide dismutase proteins, COX-2 expression was not induced. An in vitro nuclear transcription assay indicated that overexpression of the Cat gene increases the transcription of the COX-2 gene. Furthermore, the stability of COX-2 mRNA induced by lipopolysaccharide was increased after AdCAT: gene transfer. These results indicate that AdCAT: gene transfer induces the transcriptional activation of the COX-2 gene and increases COX-2 mRNA stability. Therefore, peroxide may have regulatory effect on COX-2 function in the cerebral microcirculation.
Collapse
Affiliation(s)
- X Fang
- Department of Biochemistry University of Iowa, Iowa City, Iowa, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Wadleigh DJ, Reddy ST, Kopp E, Ghosh S, Herschman HR. Transcriptional activation of the cyclooxygenase-2 gene in endotoxin-treated RAW 264.7 macrophages. J Biol Chem 2000; 275:6259-66. [PMID: 10692422 DOI: 10.1074/jbc.275.9.6259] [Citation(s) in RCA: 291] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cyclooxygenase-2 (COX-2), the enzyme primarily responsible for induced prostaglandin synthesis, is an immediate early gene induced by endotoxin in macrophages. We investigated the cis-acting elements of the COX-2 5'-flanking sequence, the transcription factors and signaling pathways responsible for transcriptional activation of the COX-2 gene in endotoxin-treated murine RAW 264.7 macrophages. Luciferase reporter constructs with alterations in presumptive cis-acting transcriptional regulatory elements demonstrate that the cyclic AMP-response element and two nuclear factor interleukin-6 (CCAAT/enhancer-binding protein (C/EBP)) sites of the COX-2 promoter are required for optimal endotoxin-dependent induction. In contrast, the E-box and NF-kappaB sites are not required for endotoxin-dependent induction. Inhibition of endotoxin-induced NF-kappaB activation by expression of an inhibitor-kappaB alpha mutant does not block endotoxin-dependent COX-2 reporter activity. Overexpression of c-Jun, C/EBPbeta, and C/EBPdelta enhances induction of the COX-2 reporter, while overexpression of cyclic AMP-response element-binding protein or "dominant negative" C/EBPbeta represses COX-2 induction. In addition, endotoxin rapidly and transiently elicits c-Jun phosphorylation in RAW 264.7 macrophages. Cotransfection of the COX-2 reporter with dominant negative expression vectors shows that endotoxin-induced COX-2 gene expression requires signaling through a Ras-independent pathway involving the adapter protein ECSIT and the signaling kinases MEKK1 and JNK. In contrast, endotoxin-induced COX-2 reporter activity is not blocked by overexpression of dominant-negative forms of Raf-1, ERK1, or ERK2.
Collapse
Affiliation(s)
- D J Wadleigh
- Molecular Biology Institute, UCLA, Los Angeles, California 90095, USA
| | | | | | | | | |
Collapse
|
31
|
Wadleigh DJ, Herschman HR. Transcriptional regulation of the cyclooxygenase-2 gene by diverse ligands in murine osteoblasts. Biochem Biophys Res Commun 1999; 264:865-70. [PMID: 10544022 DOI: 10.1006/bbrc.1999.1606] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Osteoblasts produce prostaglandins in response to a wide variety of stimuli. Induced prostaglandin synthesis is generally the consequence of elevated cyclooxygenase-2 (COX-2) expression. Agents as diverse as serum, bFGF, PDGF, PGE(2), or [TNFalpha + IL1beta] rapidly induce expression of COX-2 protein in murine MC3T3-E1 osteogenic cells. Transient transfection studies using reporter constructs containing either wild-type COX-2 regulatory sequences or mutated cis-acting sequences linked to a luciferase reporter gene identify a CRE site and two NF-IL6 (C/EBP) sites which play important roles in the regulation of COX-2 expression in response to all these agents in osteoblasts. Induction of wild-type COX-2 reporter gene expression in MC3T3-E1 cells by all these agents involves signaling through the MEKK/JNK pathway and activation of both c-Jun and the C/EBP family of transcription factors.
Collapse
Affiliation(s)
- D J Wadleigh
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, California, 90095, USA
| | | |
Collapse
|
32
|
Sanchez PL, Salgado LM, Ferreri NR, Escalante B. Effect of cyclooxygenase-2 inhibition on renal function after renal ablation. Hypertension 1999; 34:848-53. [PMID: 10523372 DOI: 10.1161/01.hyp.34.4.848] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Kidney failure is the common end of hypertension and renal diseases. Several authors have suggested that vasodilatory prostaglandins participate in the hemodynamic mechanism responsible for the development of kidney failure. However, the mechanism by which prostaglandins are increased in renal disease is not clear. Recently, 2 isoforms of the enzyme responsible for prostaglandin synthesis, cyclooxygenase, have been described as cyclooxygenase-1 (COX-1), a constitutive isoform, and cyclooxygenase-2 (COX-2), an inducible isoform. In the present study, we investigated whether COX-2-dependent prostaglandins participate in the evolution of renal functional changes after renal ablation. We inhibited prostaglandin synthesis by COX-1 and COX-2 with indomethacin (3 mg/kg) and prostaglandin synthesis by COX-2 with NS-398 (3 mg/kg) and tested the effect of these inhibitors on the renal functional changes elicited by renal ablation. Renal ablation produced an increase in urinary volume, protein, and prostaglandin E(2), whereas urinary sodium and potassium were not affected and urinary osmolarity decreased; treatment with indomethacin or NS-398 partially prevented the renal functional changes elicited by renal ablation. Immunoblots for COX showed an increase in the expression of COX-2 protein 2 days after renal ablation. Furthermore, COX-2 mRNA expression was increased 1 day after renal ablation. These data suggest that COX-2-dependent prostaglandins participate in the renal mechanisms associated with the development of renal functional changes after renal ablation.
Collapse
Affiliation(s)
- P L Sanchez
- Department of Pharmacology and Toxicology, Centro de Investigacion y Estudios Avanzados del IPN, Mexico DF, Mexico.
| | | | | | | |
Collapse
|
33
|
Brown MR, Miller FJ, Li WG, Ellingson AN, Mozena JD, Chatterjee P, Engelhardt JF, Zwacka RM, Oberley LW, Fang X, Spector AA, Weintraub NL. Overexpression of human catalase inhibits proliferation and promotes apoptosis in vascular smooth muscle cells. Circ Res 1999; 85:524-33. [PMID: 10488055 PMCID: PMC3972612 DOI: 10.1161/01.res.85.6.524] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The role of reactive oxygen species, such as superoxide anions (O(2). (-)) and hydrogen peroxide (H(2)O(2)), in modulating vascular smooth muscle cell proliferation and viability is controversial. To investigate the role of endogenously produced H(2)O(2), rat aortic smooth muscle cells were infected with adenoviral vectors containing cDNA for human catalase (AdCat) or a control gene, beta-galactosidase (AdLacZ). Infection with AdCat resulted in dose-dependent increases in intracellular catalase protein, which was predominantly localized to peroxisomes. After infection with 100 multiplicity of infection (MOI) of AdCat, cellular catalase activity was increased by 50- to 100-fold, and intracellular H(2)O(2) concentration was reduced, as compared with control. Infection with AdCat reduced [(3)H]thymidine uptake, an index of DNA synthesis, in cells maintained in medium supplemented with 2% serum (0.37+/-0.09 disintegrations per minute per cell [AdLacZ] versus 0.22+/-0.08 disintegrations per minute per cell [AdCat], P<0.05). Five days after infection with 100 MOI of AdCat, cell numbers were reduced as compared with noninfected or AdLacZ-infected cells (157 780+/-8413 [AdCat], P<0.05 versus 233 700+/-3032 [noninfected] or 222 410+/-5332 [AdLacZ]). Furthermore, the number of apoptotic cells was increased 5-fold after infection with 100 MOI of AdCat as compared with control. Infection with AdCat resulted in induction of cyclooxygenase (COX)-2, and treatment with a COX-2 inhibitor overcame the AdCat-induced reduction in cell numbers. These findings indicate that overexpression of catalase inhibited smooth muscle proliferation while increasing the rate of apoptosis, possibly through a COX-2-dependent mechanism. Our results suggest that endogenously produced H(2)O(2) importantly modulates survival and proliferation of vascular smooth muscle cells.
Collapse
Affiliation(s)
- M R Brown
- Department of Surgery, University of Iowa College of Medicine, Iowa City 52242, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|