1
|
Teng T, Fan L, Yan W, Li X, Zhang Y, Xiang Y, Jiang Y, Yuan K, Yin B, Shi L, Liu X, Yu Y, Zhou X, Lu L, Xie P. A diathesis-stress rat model induced suicide-implicated endophenotypes and prefrontal cortex abnormalities in the PKA and GABA receptor signaling pathways. Prog Neuropsychopharmacol Biol Psychiatry 2022; 116:110538. [PMID: 35189256 DOI: 10.1016/j.pnpbp.2022.110538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 02/16/2022] [Indexed: 10/19/2022]
Abstract
Suicide is one of the leading causes of death and represents a significant public health problem worldwide; however, the underlying mechanism of suicide remains unclear, and there is no animal model with suicide-implicated endophenotypes for investigating the etiology, course and potential treatment targets of suicide. Thus, we generated a diathesis-stress rat model to simulate suicide-implicated endophenotypes. First, two hundred rats were screened in two rounds of learned helplessness (LH) tests and selected as learned helplessness-sensitive (LHS) rats (n = 37) and learned helplessness-resistant (LHR) rats (n = 39). Then, all LHS rats and half of the rats (randomly selected) in the LHR group were exposed to four weeks of social defeat stress (SDS) (LHS + SDS group, n = 37 and LHR + SDS group, n = 20, respectively). The remainder of the LHR rats were handled as controls (LHR + CON group, n = 19). The LHS + SDS group showed significantly more suicide-implicated endophenotypes than the LHR + CON group, including longer immobile times in the forced swim test (hopelessness), higher scores in the irritability test (irritability), shorter latencies to attack (impulsivity), longer total attack times in the resident-intruder test (aggression), and lower sucrose preference indices (anhedonia). Proteomic analyses revealed that the canonical pathways that were the most common between the LHS + SDS and LHR + CON groups were the PKA and GABA receptor pathways in the prefrontal cortex. A diathesis-stress paradigm would be a useful way to establish a rat model with suicide-implicated endophenotypes, providing novel perspectives for revealing the potential mechanism of suicide.
Collapse
Affiliation(s)
- Teng Teng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Function and Disease, Chongqing Medical University, Chongqing, China
| | - Li Fan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Function and Disease, Chongqing Medical University, Chongqing, China
| | - Wei Yan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Xuemei Li
- NHC Key Laboratory of Diagnosis and Treatment on Brain Function and Disease, Chongqing Medical University, Chongqing, China; Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuqing Zhang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Function and Disease, Chongqing Medical University, Chongqing, China; Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yajie Xiang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Function and Disease, Chongqing Medical University, Chongqing, China
| | - Yuanliang Jiang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Function and Disease, Chongqing Medical University, Chongqing, China; Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kai Yuan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Bangmin Yin
- NHC Key Laboratory of Diagnosis and Treatment on Brain Function and Disease, Chongqing Medical University, Chongqing, China; Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Le Shi
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Xueer Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Function and Disease, Chongqing Medical University, Chongqing, China
| | - Ying Yu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Function and Disease, Chongqing Medical University, Chongqing, China
| | - Xinyu Zhou
- NHC Key Laboratory of Diagnosis and Treatment on Brain Function and Disease, Chongqing Medical University, Chongqing, China; Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Function and Disease, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
2
|
Zhou X, Liu L, Zhang Y, Pu J, Yang L, Zhou C, Yuan S, Zhang H, Xie P. Metabolomics identifies perturbations in amino acid metabolism in the prefrontal cortex of the learned helplessness rat model of depression. Neuroscience 2016; 343:1-9. [PMID: 27919695 DOI: 10.1016/j.neuroscience.2016.11.038] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 12/31/2022]
Abstract
Major depressive disorder is a serious psychiatric condition associated with high rates of suicide and is a leading cause of health burden worldwide. However, the underlying molecular mechanisms of major depression are still essentially unclear. In our study, a non-targeted gas chromatography-mass spectrometry-based metabolomics approach was used to investigate metabolic changes in the prefrontal cortex of the learned helplessness (LH) rat model of depression. Body-weight measurements and behavioral tests including the active escape test, sucrose preference test, forced swimming test, elevated plus-maze and open field test were used to assess changes in the behavioral spectrum after inescapable footshock stress. Rats in the stress group exhibited significant learned helpless and depression-like behaviors, while without any significant change in anxiety-like behaviors. Using multivariate and univariate statistical analysis, a total of 18 differential metabolites were identified after the footshock stress protocol. Ingenuity Pathways Analysis and MetaboAnalyst were applied for predicted pathways and biological functions analysis. "Amino Acid Metabolism, Molecule Transport, Small Molecule Biochemistry" was the most significantly altered network in the LH model. Amino acid metabolism, particularly glutamate metabolism, cysteine and methionine metabolism, arginine and proline metabolism, was significantly perturbed in the prefrontal cortex of LH rats.
Collapse
Affiliation(s)
- Xinyu Zhou
- Department of Neurology and Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lanxiang Liu
- Department of Neurology and Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Yuqing Zhang
- Department of Neurology and Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Juncai Pu
- Department of Neurology and Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Lining Yang
- Department of Neurology and Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Chanjuan Zhou
- Department of Neurology and Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Shuai Yuan
- Department of Neurology and Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Hanping Zhang
- Department of Neurology and Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Peng Xie
- Department of Neurology and Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
3
|
Ashrafi M, Bathaie SZ, Abroun S, Azizian M. Effect of Crocin on Cell Cycle Regulators in N-Nitroso-N-Methylurea-Induced Breast Cancer in Rats. DNA Cell Biol 2015; 34:684-91. [PMID: 26394119 PMCID: PMC4642822 DOI: 10.1089/dna.2015.2951] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 06/28/2015] [Accepted: 07/14/2015] [Indexed: 11/12/2022] Open
Abstract
We previously showed the anticancer effect of crocin, a saffron carotenoid, in both breast and gastric cancers in animal models, but its mechanism of action is not clearly known, yet. In this study, the effect of crocin on cell cycle regulators is investigated. Female Wistar Albino rats were divided into two groups, with or without N-nitroso-N-methylurea (NMU) injection. After tumor formation, each group of rats was divided into two subgroups, receiving crocin or vehicle only. After 5 weeks, the rats were sacrificed and the tumors were retained for pathologic investigation and determination of the parameters. Before crocin treatment, the tumor volumes were 13.27±3.77 and 12.37±1.88, but at the end of the experiment, they were 23.66±8.82 and 11.91±2.27 in the control and crocin-treated groups, respectively. Pathologic investigation indicated the adenocarcinoma induction by NMU. Reverse transcription-polymerase chain reaction and Western blot analysis showed overexpression of cyclin D1 and p21(Cip1) in the NMU-induced breast tumors; however, the expression of both of them suppressed by crocin treatment. The previous studies indicated that crocin induces apoptosis in tumor tissue. In this study, we show that it also suppresses tumor growth and induces cell cycle arrest by downregulation of cyclin D1. In addition, crocin suppressed p21(Cip1) in a p53-dependent manner.
Collapse
Affiliation(s)
- Mahboobeh Ashrafi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - S. Zahra Bathaie
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saeid Abroun
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahshid Azizian
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
4
|
Pignatelli M, Vollmayr B, Richter SH, Middei S, Matrisciano F, Molinaro G, Nasca C, Battaglia G, Ammassari-Teule M, Feligioni M, Nisticò R, Nicoletti F, Gass P. Enhanced mGlu5-receptor dependent long-term depression at the Schaffer collateral-CA1 synapse of congenitally learned helpless rats. Neuropharmacology 2012; 66:339-47. [PMID: 22709946 DOI: 10.1016/j.neuropharm.2012.05.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 05/19/2012] [Accepted: 05/31/2012] [Indexed: 12/31/2022]
Abstract
Alterations of the glutamatergic system have been implicated in the pathophysiology and treatment of major depression. In order to investigate the expression and function of mGlu5 receptors in an animal model for treatment-resistant depression we used rats bred for congenital learned helplessness (cLH) and the control strain, bred for resistance against inescapable stress, congenitally. not learned helpless rats (cNLH). Western blot analysis showed an increased expression of mGlu5 (but not mGlu1a) receptors in the hippocampus of cLH rats, as compared with control cNLH rats. We also examined mGlu1/5 receptor signaling by in vivo measurement of DHPG-stimulated polyphosphoinositides hydrolysis. Stimulation of (3)H-inositolmonophosphate formation induced by i.c.v. injection of DHPG was enhanced by about 50% in the hippocampus of cLH rats. Correspondingly, DHPG-induced long-term depression (LTD) at Schaffer collateral/CA1 pyramidal cell synapses was amplified in hippocampal slices of cLH rats, whereas LTD induced by low frequency stimulation of the Schaffer collaterals did not change. Moreover, these effects were associated with decreased basal dendritic spine density of CA1 pyramidal cell in cLH rats. These data raise the attractive possibility that changes in the expression and function of mGlu5 receptors in the hippocampus might underlie the changes in synaptic plasticity associated with the depressive-like phenotype of cLH rats. However, chronic treatment of cLH rats with MPEP did not reverse learned helplessness, indicating that the enhanced mGlu5 receptor function is not the only player in the behavioral phenotype of this genetic model of depression. This article is part of a Special Issue entitled 'Metabotropic Glutamate Receptors'.
Collapse
Affiliation(s)
- Marco Pignatelli
- Department of Physiology and Pharmacology, University of Rome "La Sapienza", 00185 Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Aznar S, Klein AB, Santini MA, Knudsen GM, Henn F, Gass P, Vollmayr B. Aging and depression vulnerability interaction results in decreased serotonin innervation associated with reduced BDNF levels in hippocampus of rats bred for learned helplessness. Synapse 2010; 64:561-5. [DOI: 10.1002/syn.20773] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
6
|
Pollak DD, Rey CE, Monje FJ. Rodent models in depression research: classical strategies and new directions. Ann Med 2010; 42:252-64. [PMID: 20367120 DOI: 10.3109/07853891003769957] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Depression, among other mood disorders, represents one of the most common health problems worldwide, with steadily increasing incidence and major socio-economic consequences. However, since the knowledge about the underlying pathophysiological principles is still very scanty, depression and other mood disorders are currently diagnosed solely on clinical grounds. Currently used treatment modalities would therefore benefit enormously from the development of alternative therapeutic interventions. The implementation of proper animal models is a prerequisite for increasing the understanding of the neurobiological basis of mood disorders and is paving the way for the discovery of novel therapeutic targets. In the past thirty years, since the seminal description of the Forced Swim Test as a system to probe antidepressant activity in rodents, the use of animals to model depression and antidepressant activity has come a long way. In this review we describe some of the most commonly used strategies, ranging from screening procedures, such as the Forced Swim Test and the Tail Suspension Test and animal models, such as those based upon chronic stress procedures, to genetic approaches. Finally we also discuss some of the inherent limitations and caveats that need to be considered when using animals as models for mental disorders in basic research.
Collapse
Affiliation(s)
- Daniela D Pollak
- Department of Physiology, Center for Physiology and Pharmacology, Medical University of Vienna, Austria.
| | | | | |
Collapse
|
7
|
Hu S, Begum AN, Jones MR, Oh MS, Beech WK, Beech BH, Yang F, Chen P, Ubeda OJ, Kim PC, Davies P, Ma Q, Cole GM, Frautschy SA. GSK3 inhibitors show benefits in an Alzheimer's disease (AD) model of neurodegeneration but adverse effects in control animals. Neurobiol Dis 2008; 33:193-206. [PMID: 19038340 DOI: 10.1016/j.nbd.2008.10.007] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 09/19/2008] [Accepted: 10/07/2008] [Indexed: 12/22/2022] Open
Abstract
The dysregulation of glycogen synthase kinase-3 (GSK3) has been implicated in Alzheimer disease (AD) pathogenesis and in Abeta-induced neurotoxicity, leading us to investigate it as a therapeutic target in an intracerebroventricular Abeta infusion model. Infusion of a specific GSK3 inhibitor SB216763 (SB) reduced a downstream target, phospho-glycogen synthase 39%, and increased glycogen levels 44%, suggesting effective inhibition of enzyme activity. Compared to vehicle, Abeta increased GSK3 activity, and was associated with elevations in levels of ptau, caspase-3, the tau kinase phospho-c-jun N-terminal kinase (pJNK), neuronal DNA fragmentation, and gliosis. Co-infusion of SB corrected all responses to Abeta infusion except the induction of gliosis and behavioral deficits in the Morris water maze. Nevertheless, SB alone was associated with induction of neurodegenerative markers and behavioral deficits. These data support a role for GSK3 hyperactivation in AD pathogenesis, but emphasize the importance of developing inhibitors that do not suppress constitutive activity.
Collapse
Affiliation(s)
- Shuxin Hu
- Greater Los Angeles Healthcare System, Geriatric Research Education and Clinical Center, Veteran's Affairs Medical Center, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Nahas Z, Jiang Y, Zeidan YH, Bielawska A, Szulc Z, Devane L, Kalivas P, Hannun YA. Anti-ceramidase LCL385 acutely reduces BCL-2 expression in the hippocampus but is not associated with an increase of learned helplessness in rats. Behav Brain Res 2008; 197:41-4. [PMID: 18768150 DOI: 10.1016/j.bbr.2008.07.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 07/22/2008] [Accepted: 07/24/2008] [Indexed: 12/14/2022]
Abstract
UNLABELLED Evidence from in situ studies supports the role of anti-apoptotic factors in the antidepressant responses of certain psychotropics. The availability of anti-ceramidase pro-apoptocic compound (LCL385) provides an opportunity to test in vivo the relation between hippocampal apopotosis and learned helplessness. METHOD 40 Sprague-Dawley male rodents underwent an FST after a treatment with LCL385, desipramine (DMI), or placebo (SAL) over 3 days. Behavioral responses, including immobility, swimming and climbing were counted during the 6min test. Western blot labeling was used to detect anti-apoptosis in hippocampus. RESULTS DMI alone was associated with reduced immobility and increased climbing whereas LCL385 alone showed a decrease in Bcl-2/beta-actin ratio. CONCLUSIONS Direct modulation of Bcl-2 expression in the hippocampus is not associated with learned helplessness in stressed rats. Three-day administration of DMI and LCL385 show divergent effects on behavioral and anti-apoptotic measures.
Collapse
Affiliation(s)
- Ziad Nahas
- Mood Disorders Program, University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Van Kolen K, Pullan S, Neefs JM, Dautzenberg FM. Nociceptive and behavioural sensitisation by protein kinase Cepsilon signalling in the CNS. J Neurochem 2007; 104:1-13. [PMID: 17971128 DOI: 10.1111/j.1471-4159.2007.04986.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite the apparent homology in the protein kinase C (PKC) family, it has become clear that slight structural differences are sufficient to have unique signalling properties for each individual isoform. For PKCepsilon in depth investigation of these aspects revealed unique actions in the CNS and lead to development of specific modulators with clinical perspective. In this review, we describe to which extent PKCepsilon is distinct from other isoforms on the level of tissue expression and protein structure. As this kinase is highly expressed in the brain, we outline three main aspects of PKCepsilon signalling in the CNS. First, its ability to alter the permeability of N-type Ca2+ channels in dorsal root ganglia has been shown to enhance nociception. Secondly, PKCepsilon increases anxiety by diminishing GABA(A)R-induced inhibitory post-synaptic currents in the prefrontal cortex. Another important aspect of the latter inhibition is the reduced sensitivity of GABA(A) receptors to ethanol, a mechanism potentially contributing to abuse. A third signalling cascade improves cognitive functions by facilitating cholinergic signalling in the hippocampus. Collectively, these findings point to a physical and behavioural sensitising role for this kinase.
Collapse
Affiliation(s)
- Kristof Van Kolen
- CNS Research, Johnson & Johnson Pharmaceutical Research and Development, Beerse, Belgium.
| | | | | | | |
Collapse
|
10
|
Willmore CB, Kohler GD, Makriyannis A. Irt>t schedule controlled behavior in ‘learned-helpless’ rats: Effects from a cannabinoid agonist. Neuropharmacology 2006; 51:90-101. [PMID: 16753187 DOI: 10.1016/j.neuropharm.2006.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Revised: 02/23/2006] [Accepted: 03/06/2006] [Indexed: 11/16/2022]
Abstract
Human depression is partly a congenital disorder. Aspects of the behavior accompanying depression can be magnified by genetic manipulation of bred animal species. Learned Helplessness (LH) is a trait-mark behavior that successfully breeds in rodents. Here, 'congenital' LH (cLH) rats were trained to recognize and respond to 12s long interval cues (irt>12s schedule). Rats compliant to an irt>t schedule will space responses evenly and respond rhythmically. Irt>t schedule derived data are plotted in histograms showing irt (interresponse time) frequencies. A pause response peak emerges, for outbred rats, at irt values approximating the minimum interval for reinforcement. cLH rats [n=9] complied poorly to schedule contingencies when diluent (vehicle) was injected before testing. Moderate and high dose injections of a CB 1 receptor selective agonist drug (AM 411), however, increased operant schedule compliance and normalized the cLH rats' irt>t histogram distributions. Performance indicators for cLH rats are presented alongside coordinate measures from a comparison group [n=5] of normally bred Sprague-Dawley (SD) rats. In both cLH and SD rats, treatment session histograms revealed shifts of the pause response peak not accompanied by a change in motor responsiveness. The irt>12s histogram shifts were absent when AM 411 dosages were arranged to follow pre-medication injections of a CB 1 receptor selective antagonist drug (AM 251). In short, AM 411 increased timing acuity in rats prone to behavioral despair but had opposite timing effects in normally bred SD rats.
Collapse
Affiliation(s)
- C B Willmore
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
11
|
Abstract
Bipolar disorder (BPD) is an often devastating illness characterized by extreme mood dysregulation. Although family, twin and adoption studies consistently indicate a strong genetic component, specific genes that contribute to the illness remain unclear. This study gives an overview of linkage studies of BPD, concluding that the regions with the best evidence for linkage include areas on chromosomes 2p, 4p, 4q, 6q, 8q, 11p, 12q, 13q, 16p, 16q, 18p, 18q, 21q, 22q and Xq. Association studies are summarized, which support a possible role for numerous candidate genes in BPD including COMT, DAT, HTR4, DRD4, DRD2, HTR2A, 5-HTT, the G72/G30 complex, DISC1, P2RX7, MAOA and BDNF. Animal models related to bipolar illness are also reviewed, with special attention paid to those with clear genetic implications. We conclude with suggestions for strategies that may help clarify the genetic bases of this complex illness.
Collapse
Affiliation(s)
- E P Hayden
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202-4887, USA.
| | | |
Collapse
|
12
|
Tardito D, Perez J, Tiraboschi E, Musazzi L, Racagni G, Popoli M. Signaling pathways regulating gene expression, neuroplasticity, and neurotrophic mechanisms in the action of antidepressants: a critical overview. Pharmacol Rev 2006; 58:115-34. [PMID: 16507885 DOI: 10.1124/pr.58.1.7] [Citation(s) in RCA: 236] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Regulation of gene expression represents a major component in antidepressant drug action. The effect of antidepressant treatments on the function of cAMP-responsive element binding protein (CREB), a transcription factor that regulates expression of several genes involved in neuroplasticity, cell survival, and cognition, has been extensively studied. Although there is general agreement that chronic antidepressants stimulate CREB function, conflicting results suggest that different effects may depend on drug type, drug dosage, and different experimental paradigms. CREB function is activated by a vast array of physiological stimuli, conveyed through a number of signaling pathways acting in concert, but thus far the effects of antidepressants on CREB have been analyzed mostly with regard to the cAMP-protein kinase A pathway. A growing body of data shows that other major pathways, such as the calcium/calmodulin-dependent kinase and the mitogen-activated kinase cascades, are involved in activity-dependent regulation of gene expression and may also be implicated in the mechanism of action of antidepressants. In this article the available evidence is reviewed with an attempt to identify the reasons for experimental discrepancies and possible directions for future research. Particularemphasis is given to the regulation of brain-derived neurotrophic factor (BDNF), a CREB-regulated gene, which has been implicated in both the pathophysiology and pharmacology of mood disorders. The array of different results obtained by various groups is analyzed with an eye on recent advancements in the regulation of BDNF transcription, in an attempt to understand better the mechanisms of drug action and dissect molecular requirements for faster and more efficient antidepressant treatment.
Collapse
Affiliation(s)
- Daniela Tardito
- Center of Neuropharmacology, Department of Pharmacological Sciences, University of Milano, Via Balzaretti 9, 20133 Milan, Italy
| | | | | | | | | | | |
Collapse
|
13
|
Cryan JF, Mombereau C, Vassout A. The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neurosci Biobehav Rev 2005; 29:571-625. [PMID: 15890404 DOI: 10.1016/j.neubiorev.2005.03.009] [Citation(s) in RCA: 1114] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Since its introduction almost 20 years ago, the tail suspension test has become one of the most widely used models for assessing antidepressant-like activity in mice. The test is based on the fact that animals subjected to the short-term, inescapable stress of being suspended by their tail, will develop an immobile posture. Various antidepressant medications reverse the immobility and promote the occurrence of escape-related behaviour. This review focuses on the utility this test as part of a research program aimed at understanding the mechanism of action of antidepressants. We discuss the inherent difficulties in modeling depression in rodents. We describe how the tail suspension differs from the closely related forced swim test. Further, we address some key issues associated with using the TST as a model of antidepressant action. We discuss issues regarding whether it satisfies criteria to be a valid model for assessing depression-related behavioural traits. We elaborate on the tests' ease of use, strain differences observed in the test and gender effects in the test. We focus on the utility of the test for genetic analysis. Furthermore, we discuss the concept of whether immobility maybe a behavioural trait relevant to depression. All of the available pharmacological data using the test in genetically modified mice is collated. Special attention is given to selective breeding programs such as the Rouen 'depressed' mice which have been bred for high and low immobility in the tail suspension test. We provide an extensive pooling of the pharmacological studies published to date using the test. Finally, we provide novel pharmacological validation of an automated system (Bioseb) for assessing immobility. Taken together, we conclude that the tail suspension test is a useful test for assessing the behavioural effects of antidepressant compounds and other pharmacological and genetic manipulations relevant to depression.
Collapse
Affiliation(s)
- John F Cryan
- Psychiatry Program, Neuroscience Research, The Novartis Institutes for BioMedical Research WSJ 386.344, Novartis Pharma AG., CH-4002 Basel, Switzerland.
| | | | | |
Collapse
|
14
|
Kohen R, Kirov S, Navaja GP, Happe HK, Hamblin MW, Snoddy JR, Neumaier JF, Petty F. Gene expression profiling in the hippocampus of learned helpless and nonhelpless rats. THE PHARMACOGENOMICS JOURNAL 2005; 5:278-91. [PMID: 16010284 DOI: 10.1038/sj.tpj.6500322] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In the learned helplessness (LH) animal model of depression, failure to attempt escape from avoidable environmental stress, LH, indicates behavioral despair, whereas nonhelpless (NH) behavior reflects behavioral resilience to the effects of environmental stress. Comparing hippocampal gene expression with large-scale oligonucleotide microarrays, we found that stress-resilient (NH) rats, although behaviorally indistinguishable from controls, showed a distinct gene expression profile compared to LH, sham stressed, and naïve control animals. Genes that were confirmed as differentially expressed in the NH group by quantitative PCR strongly correlated in their levels of expression across all four animal groups. Differential expression could not be confirmed at the protein level. We identified several shared degenerate sequence motifs in the 3' untranslated region (3'UTR) of differentially expressed genes that could be a factor in this tight correlation of expression levels among differentially expressed genes.
Collapse
MESH Headings
- Adaptor Proteins, Vesicular Transport
- Animals
- Behavior, Animal/physiology
- Depression/genetics
- Depression/physiopathology
- Disease Models, Animal
- Electroshock
- Gene Expression
- Gene Expression Profiling
- Helplessness, Learned
- Hippocampus/metabolism
- Male
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mitogen-Activated Protein Kinase 9/genetics
- Mitogen-Activated Protein Kinase 9/metabolism
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Oligonucleotide Array Sequence Analysis
- Promoter Regions, Genetic
- RNA, Messenger/analysis
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Stress, Psychological/genetics
- Stress, Psychological/physiopathology
- Untranslated Regions
Collapse
Affiliation(s)
- R Kohen
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, 98108, USA.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Lotrich FE, Pollock BG. Candidate genes for antidepressant response to selective serotonin reuptake inhibitors. Neuropsychiatr Dis Treat 2005; 1:17-35. [PMID: 18568127 PMCID: PMC2426818 DOI: 10.2147/nedt.1.1.17.52301] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Selective serotonin reuptake inhibitors (SSRIs) can safely and successfully treat major depression, although a substantial number of patients benefit only partially or not at all from treatment. Genetic polymorphisms may play a major role in determining the response to SSRI treatment. Nonetheless, it is likely that efficacy is determined by multiple genes, with individual genetic polymorphisms having a limited effect size. Initial studies have identified the promoter polymorphism in the gene coding for the serotonin reuptake transporter as moderating efficacy for several SSRIs. The goal of this review is to suggest additional plausible polymorphisms that may be involved in antidepressant efficacy. These include genes affecting intracellular transductional cascades; neuronal growth factors; stress-related hormones, such as corticotropin-releasing hormone and glucocorticoid receptors; ion channels and synaptic efficacy; and adaptations of monoaminergic pathways. Association analyses to examine these candidate genes may facilitate identification of patients for targeted alternative therapies. Determining which genes are involved may also assist in identifying future, novel treatments.
Collapse
Affiliation(s)
- Francis E Lotrich
- University of Pittsburgh Medical Center, Western Psychiatric Institute and Clinic, Department of Psychiatry Pittsburgh, PA, USA.
| | | |
Collapse
|
16
|
Leonardi-Essmann F, Emig M, Kitamura Y, Spanagel R, Gebicke-Haerter PJ. Fractalkine-upregulated milk-fat globule EGF factor-8 protein in cultured rat microglia. J Neuroimmunol 2005; 160:92-101. [PMID: 15710462 DOI: 10.1016/j.jneuroim.2004.11.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Revised: 11/09/2004] [Accepted: 11/10/2004] [Indexed: 10/25/2022]
Abstract
Fractalkine is the only known member of the CX(3)C-chemokine family, and so is its receptor CX(3)CR1. Fractalkine, typically is expressed by neurons where it is inserted in the plasma membrane ("chemokine on a stalk"). It can, however, be clipped off by a specific enzyme and diffuse into the extracellular space. CX(3)CR1 is primarily expressed by microglia, the phagocytes of the brain. This study was aimed at studying gene expression changes in cultured rat microglia upon fractalkine stimulation using gene chip technology. Six genes turned out to be upregulated, amongst which milk-fat globule EGF factor-8 protein (MFG-E8) was the most surprising, but also the most revealing one. We hypothesize that it serves as a bridging molecule between apoptotic cells (neurons) and microglia. Since the docking to microglia is, in part, mediated by members of the integrin family, six of these molecules have been-post hoc-included in real-time PCR confirmations of chip results. Two of them-integrin alpha(2) and integrin beta(5)-were upregulated as well. These data provide a much closer look into molecular mechanisms involved in apoptosis of neurons and their removal by microglia.
Collapse
|
17
|
Dwivedi Y, Mondal AC, Shukla PK, Rizavi HS, Lyons J. Altered protein kinase a in brain of learned helpless rats: effects of acute and repeated stress. Biol Psychiatry 2004; 56:30-40. [PMID: 15219470 DOI: 10.1016/j.biopsych.2004.03.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2003] [Revised: 03/24/2004] [Accepted: 03/27/2004] [Indexed: 11/27/2022]
Abstract
BACKGROUND Stress-induced learned helplessness (LH) in animals serves as a model of behavioral depression and some aspects of posttraumatic stress disorder. We examined whether LH behavior is associated with alterations in protein kinase A (PKA), a critical phosphorylating enzyme, how long these alterations persist after inescapable shock (IS), and whether repetition of IS prolongs the duration of LH behavior and changes in PKA. METHODS Rats were exposed to IS either on day 1 or twice, on day 1 and day 7. Rats were tested for escape latency on days 2 and 4 after day 1 IS or days 2, 8, and 14 after day 1 and day 7 IS. [(3)H]cAMP (cyclic adenosine monophosphate) binding, catalytic activity and expression of PKA subunits were determined in frontal cortex and hippocampus. RESULTS Higher escape latencies were observed in rats tested on day 2 after single IS and on day 14 after repeated IS. Concurrently, reduced [(3)H]cAMP binding, PKA activity, and expression of selective PKA RIIbeta and Calpha and Cbeta subunits were observed in the brains of these rats. CONCLUSIONS Repeated IS prolongs the duration of LH behavior, and LH behavior is associated with reductions in apparent activity and expression of PKA. These reductions in PKA may be critical in the pathophysiology of depression and other stress-related disorders.
Collapse
Affiliation(s)
- Yogesh Dwivedi
- Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | | | | | | |
Collapse
|
18
|
Huang YH, Cheng CY, Hong CJ, Tsai SJ. Expression of c-Fos-like immunoreactivity in the brain of mice with learned helplessness. Neurosci Lett 2004; 363:280-3. [PMID: 15182960 DOI: 10.1016/j.neulet.2004.04.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2004] [Revised: 04/02/2004] [Accepted: 04/02/2004] [Indexed: 10/26/2022]
Abstract
The learned helplessness (LH) developed after repeat inescapable stress is a well validated animal model of human major depression and is not species specific. c-Fos, the protein product of the protooncogene c-fos, is expressed in neurons under a variety of stressors and could reflect the regional neuronal activation. Using the LH paradigm in mice, we examined c-Fos expression in several brain regions related to stress response or major depression. The LH mice showed significantly lower c-Fos-like immunoreactivity (FLI) in the hippocampus dentate gyrus and the lateral septal nucleus, and higher FLI in the hypothalamic paraventricular nucleus compared with the naive mice. Our finding in the mice LH model supported previous studies in rats showing that the lateral septal nucleus and the hypothalamic paraventricular nucleus are important in LH behaviors. We further demonstrated that hippocampus dentate gyrus, a region important for learning and major depression, may also be involved in the LH behaviors. These related brain regions could provide a basis for further exploration of the molecular mechanisms underlying LH behaviors.
Collapse
Affiliation(s)
- Yn-Ho Huang
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Shih-Pai, Taipei, 112, Taiwan, ROC.
| | | | | | | |
Collapse
|
19
|
Cryan JF, Mombereau C. In search of a depressed mouse: utility of models for studying depression-related behavior in genetically modified mice. Mol Psychiatry 2004; 9:326-57. [PMID: 14743184 DOI: 10.1038/sj.mp.4001457] [Citation(s) in RCA: 450] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ability to modify mice genetically has been one of the major breakthroughs in modern medical science affecting every discipline including psychiatry. It is hoped that the application of such technologies will result in the identification of novel targets for the treatment of diseases such as depression and to gain a better understanding of the molecular pathophysiological mechanisms that are regulated by current clinically effective antidepressant medications. The advent of these tools has resulted in the need to adopt, refine and develop mouse-specific models for analyses of depression-like behavior or behavioral patterns modulated by antidepressants. In this review, we will focus on the utility of current models (eg forced swim test, tail suspension test, olfactory bulbectomy, learned helplessness, chronic mild stress, drug-withdrawal-induced anhedonia) and research strategies aimed at investigating novel targets relevant to depression in the mouse. We will focus on key questions that are considered relevant for examining the utility of such models. Further, we describe other avenues of research that may give clues as to whether indeed a genetically modified animal has alterations relevant to clinical depression. We suggest that it is prudent and most appropriate to use convergent tests that draw on different antidepressant-related endophenotypes, and complimentary physiological analyses in order to provide a program of information concerning whether a given phenotype is functionally relevant to depression-related pathology.
Collapse
Affiliation(s)
- J F Cryan
- Neuroscience Research, The Novartis Institutes for BioMedical Research, Basel, Switzerland.
| | | |
Collapse
|