1
|
Aceves-Serrano L, Neva JL, Munro J, Vavasour IM, Parent M, Boyd LA, Doudet DJ. Evaluation of microglia activation related markers following a clinical course of TBS: A non-human primate study. PLoS One 2024; 19:e0301118. [PMID: 38753646 PMCID: PMC11098425 DOI: 10.1371/journal.pone.0301118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 03/11/2024] [Indexed: 05/18/2024] Open
Abstract
While the applicability and popularity of theta burst stimulation (TBS) paradigms remain, current knowledge of their neurobiological effects is still limited, especially with respect to their impact on glial cells and neuroinflammatory processes. We used a multimodal imaging approach to assess the effects of a clinical course of TBS on markers for microglia activation and tissue injury as an indirect assessment of neuroinflammatory processes. Healthy non-human primates received continuous TBS (cTBS), intermittent TBS (iTBS), or sham stimulation over the motor cortex at 90% of resting motor threshold. Stimulation was delivered to the awake subjects 5 times a week for 3-4 weeks. Translocator protein (TSPO) expression was evaluated using Positron Emission Tomography and [11C]PBR28, and myo-inositol (mI) and N-acetyl-aspartate (NAA) concentrations were assessed with Magnetic Resonance Spectroscopy. Animals were then euthanized, and immunofluorescence staining was performed using antibodies against TSPO. Paired t-tests showed no significant changes in [11C]PBR28 measurements after stimulation. Similarly, no significant changes in mI and NAA concentrations were found. Post-mortem TSPO evaluation showed comparable mean immunofluorescence intensity after active TBS and sham delivery. The current study suggests that in healthy brains a clinical course of TBS, as evaluated with in-vivo imaging techniques (PET and MRS), did not measurably modulate the expression of glia related markers and metabolite associated with neural viability.
Collapse
Affiliation(s)
- Lucero Aceves-Serrano
- Department of Medicine, Division of Neurology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jason L. Neva
- Faculté de Médecine, École de Kinésiologie et des Sciences de l’activité Physique, Université de Montréal, Montreal, Quebec, Canada
- Centre de Recherche de l’institut Universitaire de Gériatrie de Montréal, Montreal, QC, Canada
| | - Jonathan Munro
- CERVO Brain Research Centre, Laval University, Quebec City, Quebec, Canada
| | - Irene M. Vavasour
- Faculty of Medicine, UBC MRI Research Center, University of British Columbia, Vancouver, British Columbia, Canada
| | - Martin Parent
- CERVO Brain Research Centre, Laval University, Quebec City, Quebec, Canada
| | - Lara A. Boyd
- Faculty of Medicine, Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada
- Faculty of Medicine, Graduate Program of Rehabilitation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Doris J. Doudet
- Department of Medicine, Division of Neurology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Lövdén M, Karalija N, Andersson M, Wåhlin A, Axelsson J, Köhncke Y, Jonasson LS, Rieckman A, Papenberg G, Garrett DD, Guitart-Masip M, Salami A, Riklund K, Bäckman L, Nyberg L, Lindenberger U. Latent-Profile Analysis Reveals Behavioral and Brain Correlates of Dopamine-Cognition Associations. Cereb Cortex 2019; 28:3894-3907. [PMID: 29028935 DOI: 10.1093/cercor/bhx253] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 09/07/2017] [Indexed: 01/14/2023] Open
Abstract
Evidence suggests that associations between the neurotransmitter dopamine and cognition are nonmonotonic and open to modulation by various other factors. The functional implications of a given level of dopamine may therefore differ from person to person. By applying latent-profile analysis to a large (n = 181) sample of adults aged 64-68 years, we probabilistically identified 3 subgroups that explain the multivariate associations between dopamine D2/3R availability (probed with 11C-raclopride-PET, in cortical, striatal, and hippocampal regions) and cognitive performance (episodic memory, working memory, and perceptual speed). Generally, greater receptor availability was associated with better cognitive performance. However, we discovered a subgroup of individuals for which high availability, particularly in striatum, was associated with poor performance, especially for working memory. Relative to the rest of the sample, this subgroup also had lower education, higher body-mass index, and lower resting-state connectivity between caudate nucleus and dorsolateral prefrontal cortex. We conclude that a smaller subset of individuals induces a multivariate non-linear association between dopamine D2/3R availability and cognitive performance in this group of older adults, and discuss potential reasons for these differences that await further empirical scrutiny.
Collapse
Affiliation(s)
- Martin Lövdén
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Nina Karalija
- Department of Radiation Sciences, Umeå University, Umeå, Sweden.,Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Micael Andersson
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden.,Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Anders Wåhlin
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Jan Axelsson
- Department of Radiation Sciences, Umeå University, Umeå, Sweden.,Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Ylva Köhncke
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Lars S Jonasson
- Department of Radiation Sciences, Umeå University, Umeå, Sweden.,Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden.,Center for Aging and Demographic Research, CEDAR, Umeå University, Umeå, Sweden
| | - Anna Rieckman
- Department of Radiation Sciences, Umeå University, Umeå, Sweden.,Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Goran Papenberg
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Douglas D Garrett
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany.,Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Marc Guitart-Masip
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Alireza Salami
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Katrine Riklund
- Department of Radiation Sciences, Umeå University, Umeå, Sweden.,Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Lars Bäckman
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Lars Nyberg
- Department of Radiation Sciences, Umeå University, Umeå, Sweden.,Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden.,Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Ulman Lindenberger
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany.,Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.,European University Institute, San Domenico di Fiesole (FI), Italy
| |
Collapse
|
3
|
Karalija N, Papenberg G, Wåhlin A, Johansson J, Andersson M, Axelsson J, Riklund K, Lövdén M, Lindenberger U, Bäckman L, Nyberg L. C957T-mediated Variation in Ligand Affinity Affects the Association between 11C-raclopride Binding Potential and Cognition. J Cogn Neurosci 2019; 31:314-325. [DOI: 10.1162/jocn_a_01354] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The dopamine (DA) system plays an important role in cognition. Accordingly, normal variation in DA genes has been found to predict individual differences in cognitive performance. However, little is known of the impact of genetic differences on the link between empirical indicators of the DA system and cognition in humans. The present work used PET with 11C-raclopride to assess DA D2-receptor binding potential (BP) and links to episodic memory, working memory, and perceptual speed in 179 healthy adults aged 64–68 years. Previously, the T-allele of a DA D2-receptor single-nucleotide polymorphism, C957T, was associated with increased apparent affinity of 11C-raclopride, giving rise to higher BP values despite similar receptor density values between allelic groups. Consequently, we hypothesized that 11C-raclopride BP measures inflated by affinity rather than D2-receptor density in T-allele carriers would not be predictive of DA integrity and therefore prevent finding an association between 11C-raclopride BP and cognitive performance. In accordance with previous findings, we show that 11C-raclopride BP was increased in T-homozygotes. Importantly, 11C-raclopride BP was only associated with cognitive performance in groups with low or average ligand affinity (C-allele carriers of C957T, n = 124), but not in the high-affinity group (T-homozygotes, n = 55). The strongest 11C-raclopride BP–cognition associations and the highest level of performance were found in C-homozygotes. These findings show that genetic differences modulate the link between BP and cognition and thus have important implications for the interpretation of DA assessments with PET and 11C-raclopride in multiple disciplines ranging from cognitive neuroscience to psychiatry and neurology.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ulman Lindenberger
- Max Planck Institute for Human Development
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research
| | | | | |
Collapse
|
4
|
A single-scan protocol for absolute D2/3 receptor quantification with [123I]IBZM SPECT. Neuroimage 2017; 147:461-472. [DOI: 10.1016/j.neuroimage.2016.12.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/24/2016] [Accepted: 12/18/2016] [Indexed: 11/19/2022] Open
|
5
|
Niccolini F, Su P, Politis M. Dopamine receptor mapping with PET imaging in Parkinson's disease. J Neurol 2014; 261:2251-63. [PMID: 24627109 DOI: 10.1007/s00415-014-7302-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 02/22/2014] [Accepted: 02/24/2014] [Indexed: 01/30/2023]
Abstract
Parkinson's disease (PD) is a chronic neurodegenerative disorder characterised pathologically by the loss of dopaminergic neurons in the substantia nigra pars compacta. These neurons project to the striatum, and their loss leads to alterations in the activity of the neural circuits that regulate movement. The striatal output of the circuit related to the control of movement is mediated by two pathways: the direct striatal pathway, which is mediated through facilitation of D1 receptors, and the indirect striatal pathway, mediated through D2 receptors. Positron emission tomography (PET) molecular imaging is a powerful in vivo technique in which using selective dopaminergic radioligands has been employed to investigate the dopaminergic system in humans. In this article we aim to review the role of PET imaging in understanding the postsynaptic dopaminergic mechanisms in PD. PET studies have allowed us to gain important insights into the functions of the dopaminergic system, the mechanisms of drug-induced motor and non-motor complications, and the placebo effect in PD.
Collapse
Affiliation(s)
- Flavia Niccolini
- Neurodegeneration Imaging Group, Department of Clinical Neuroscience, King's College London, London, SE5 8AF, UK
| | | | | |
Collapse
|
6
|
Kuntner C. Kinetic modeling in pre-clinical positron emission tomography. Z Med Phys 2014; 24:274-85. [PMID: 24629308 DOI: 10.1016/j.zemedi.2014.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 02/11/2014] [Accepted: 02/11/2014] [Indexed: 12/11/2022]
Abstract
Pre-clinical positron emission tomography (PET) has evolved in the last few years from pure visualization of radiotracer uptake and distribution towards quantification of the physiological parameters. For reliable and reproducible quantification the kinetic modeling methods used to obtain relevant parameters of radiotracer tissue interaction are important. Here we present different kinetic modeling techniques with a focus on compartmental models including plasma input models and reference tissue input models. The experimental challenges off deriving the plasma input function in rodents and the effect of anesthesia are discussed. Finally, in vivo application of kinetic modeling in various areas of pre-clinical research is presented and compared to human data.
Collapse
Affiliation(s)
- Claudia Kuntner
- Biomedical Systems, Health & Environment Department, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria.
| |
Collapse
|
7
|
Abnormal striatal dopaminergic neurotransmission during rest and task production in spasmodic dysphonia. J Neurosci 2013; 33:14705-14. [PMID: 24027271 DOI: 10.1523/jneurosci.0407-13.2013] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Spasmodic dysphonia is a primary focal dystonia characterized by involuntary spasms in the laryngeal muscles during speech production. The pathophysiology of spasmodic dysphonia is thought to involve structural and functional abnormalities in the basal ganglia-thalamo-cortical circuitry; however, neurochemical correlates underpinning these abnormalities as well as their relations to spasmodic dysphonia symptoms remain unknown. We used positron emission tomography with the radioligand [(11)C]raclopride (RAC) to study striatal dopaminergic neurotransmission at the resting state and during production of symptomatic sentences and asymptomatic finger tapping in spasmodic dysphonia patients. We found that patients, compared to healthy controls, had bilaterally decreased RAC binding potential (BP) to striatal dopamine D2/D3 receptors on average by 29.2%, which was associated with decreased RAC displacement (RAC ΔBP) in the left striatum during symptomatic speaking (group average difference 10.2%), but increased RAC ΔBP in the bilateral striatum during asymptomatic tapping (group average difference 10.1%). Patients with more severe voice symptoms and subclinically longer reaction time to initiate the tapping sequence had greater RAC ΔBP measures, while longer duration of spasmodic dysphonia was associated with a decrease in task-induced RAC ΔBP. Decreased dopaminergic transmission during symptomatic speech production may represent a disorder-specific pathophysiological trait involved in symptom generation, whereas increased dopaminergic function during unaffected task performance may be explained by a compensatory adaptation of the nigrostriatal dopaminergic system possibly due to decreased striatal D2/D3 receptor availability. These changes can be linked to the clinical and subclinical features of spasmodic dysphonia and may represent the neurochemical basis of basal ganglia alterations in this disorder.
Collapse
|
8
|
Leyton M, Vezina P. Striatal ups and downs: their roles in vulnerability to addictions in humans. Neurosci Biobehav Rev 2013; 37:1999-2014. [PMID: 23333263 PMCID: PMC3743927 DOI: 10.1016/j.neubiorev.2013.01.018] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 01/03/2013] [Accepted: 01/07/2013] [Indexed: 01/05/2023]
Abstract
Susceptibility to addictive behaviors has been related to both increases and decreases in striatal function. Both profiles have been reported in humans as well as in animal models. Yet, the mechanisms underlying these opposing effects and the manner in which they relate to the behavioral development and expression of addiction remain unclear. In the present review of human studies, we describe a number of factors that could influence whether striatal hyper- or hypo-function is observed and propose a model that integrates the influence of these opposite responses on the expression of addiction related behaviors. Central to this model is the role played by the presence versus absence of addiction related cues and their ability to regulate responding to abused drugs and other rewards. Striatal function and incentive motivational states are increased in the presence of these cues and decreased in their absence. Alternations between these states might account for the progressive narrowing of interests as addictions develop and point to relevant processes to target in treatment.
Collapse
Affiliation(s)
- Marco Leyton
- Department of Psychiatry, McGill University, 1033 Pine Avenue West, Montreal, Quebec, H3A 1A1 Canada.
| | | |
Collapse
|
9
|
Lawrence AD, Brooks DJ, Whone AL. Ventral striatal dopamine synthesis capacity predicts financial extravagance in Parkinson's disease. Front Psychol 2013; 4:90. [PMID: 23450713 PMCID: PMC3583186 DOI: 10.3389/fpsyg.2013.00090] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 02/07/2013] [Indexed: 02/01/2023] Open
Abstract
Impulse control disorders (ICDs), including disordered gambling, can occur in a significant number of patients with Parkinson’s disease (PD) receiving dopaminergic therapy. The neurobiology underlying susceptibility to such problems is unclear, but risk likely results from an interaction between dopaminergic medication and a pre-existing trait vulnerability. Impulse control and addictive disorders form part of a broader psychopathological spectrum of disorders, which share a common underlying genetic vulnerability, referred to as externalizing. The broad externalizing risk factor is a continuously varying trait reflecting vulnerability to various impulse control problems, manifested at the overt level by disinhibitory symptoms and at the personality level by antecedent traits such as impulsivity and novelty/sensation seeking. Trait “disinhibition” is thus a core endophenotype of ICDs, and a key target for neurobiological investigation. The ventral striatal dopamine system has been hypothesized to underlie individual variation in behavioral disinhibition. Here, we examined whether individual differences in ventral striatal dopamine synthesis capacity predicted individual variation in disinhibitory temperament traits in individuals with PD. Eighteen early-stage male PD patients underwent 6-[18F]Fluoro-l-DOPA (FDOPA) positron emission tomography scanning to measure striatal dopamine synthesis capacity, and completed a measure of disinhibited personality. Consistent with our predictions, we found that levels of ventral, but not dorsal, striatal dopamine synthesis capacity predicted disinhibited personality, particularly a propensity for financial extravagance. Our results are consistent with recent preclinical models of vulnerability to behavioral disinhibition and addiction proneness, and provide novel insights into the neurobiology of potential vulnerability to impulse control problems in PD and other disorders.
Collapse
|
10
|
Howes OD, Kambeitz J, Kim E, Stahl D, Slifstein M, Abi-Dargham A, Kapur S. The nature of dopamine dysfunction in schizophrenia and what this means for treatment. ACTA ACUST UNITED AC 2012; 69:776-86. [PMID: 22474070 DOI: 10.1001/archgenpsychiatry.2012.169] [Citation(s) in RCA: 669] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CONTEXT Current drug treatments for schizophrenia are inadequate for many patients, and despite 5 decades of drug discovery, all of the treatments rely on the same mechanism: dopamine D(2) receptor blockade. Understanding the pathophysiology of the disorder is thus likely to be critical to the rational development of new treatments for schizophrenia. OBJECTIVE To investigate the nature of the dopaminergic dysfunction in schizophrenia using meta-analysis of in vivo studies. DATA SOURCES The MEDLINE, EMBASE, and PsycINFO databases were searched for studies from January 1, 1960, to July 1, 2011. STUDY SELECTION A total of 44 studies were identified that compared 618 patients with schizophrenia with 606 controls, using positron emission tomography or single-photon emission computed tomography to measure in vivo striatal dopaminergic function. DATA EXTRACTION Demographic, clinical, and imaging variables were extracted from each study, and effect sizes were determined for the measures of dopaminergic function. Studies were grouped into those of presynaptic function and those of dopamine transporter and receptor availability. Sensitivity analyses were conducted to explore the consistency of effects and the effect of clinical and imaging variables. DATA SYNTHESIS There was a highly significant elevation (P.<001) in presynaptic dopaminergic function in schizophrenia with a large effect size (Cohen d=0.79). There was no evidence of alterations in dopamine transporter availability. There was a small elevation in D(2/3) receptor availability (Cohen d=0.26), but this was not evident in drug-naive patients and was influenced by the imaging approach used. CONCLUSIONS The locus of the largest dopaminergic abnormality in schizophrenia is presynaptic, which affects dopamine synthesis capacity, baseline synaptic dopamine levels, and dopamine release. Current drug treatments, which primarily act at D(2/3) receptors, fail to target these abnormalities. Future drug development should focus on the control of presynaptic dopamine synthesis and release capacity.
Collapse
Affiliation(s)
- Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, Camberwell, UK.
| | | | | | | | | | | | | |
Collapse
|
11
|
Nahimi A, Høltzermann M, Landau AM, Simonsen M, Jakobsen S, Alstrup AKO, Vang K, Møller A, Wegener G, Gjedde A, Doudet DJ. Serotonergic modulation of receptor occupancy in rats treated with l-DOPA after unilateral 6-OHDA lesioning. J Neurochem 2012; 120:806-17. [DOI: 10.1111/j.1471-4159.2011.07598.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Fischer K, Sossi V, Schmid A, Thunemann M, Maier FC, Judenhofer MS, Mannheim JG, Reischl G, Pichler BJ. Noninvasive Nuclear Imaging Enables the In Vivo Quantification of Striatal Dopamine Receptor Expression and Raclopride Affinity in Mice. J Nucl Med 2011; 52:1133-41. [DOI: 10.2967/jnumed.110.086942] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
13
|
Landau AM, Chakravarty MM, Clark CM, Zis AP, Doudet DJ. Electroconvulsive therapy alters dopamine signaling in the striatum of non-human primates. Neuropsychopharmacology 2011; 36:511-8. [PMID: 20944554 PMCID: PMC3055667 DOI: 10.1038/npp.2010.182] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Electroconvulsive therapy (ECT) is one of the most effective therapies for depression and has beneficial motor effects in parkinsonian patients. However, little is known about the mechanisms of therapeutic action of ECT for either condition. The aim of this work was to explore the impact of ECT on dopaminergic function in the striatum of non-human primates. Rhesus monkeys underwent a course of six ECT treatments under a human clinical protocol. Longitudinal effects on the dopaminergic nigrostriatal system were studied over 6 weeks using the in vivo capabilities of positron emission tomography (PET). PET scans were performed prior to the onset of ECT treatments and at 24-48 h, 8-10 days, and 6 weeks after the final ECT treatment. Early increases in dopamine transporter and vesicular monoamine transporter 2 binding returned to baseline levels by 6 weeks post-ECT. Transient increases in D1 receptor binding were also observed, whereas the binding potential to D2 receptors was unaltered. The increase in dopaminergic neurotransmission suggested by our results may account in part for the therapeutic effect of ECT in mood disorders and Parkinson's disease.
Collapse
Affiliation(s)
- Anne M Landau
- Aarhus PET Center and Center of Functionally Integrative Neuroscience, Aarhus University Hospital, Aarhus, Denmark,Department of Medicine/Neurology, University of British Columbia, Vancouver, BC, Canada
| | - M Mallar Chakravarty
- Aarhus PET Center and Center of Functionally Integrative Neuroscience, Aarhus University Hospital, Aarhus, Denmark,Rotman Research Institute, Baycrest Hospital and Mouse Imaging Centre, Sick Children's Hospital, Toronto, ON, Canada
| | - Campbell M Clark
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Athanasios P Zis
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Doris J Doudet
- Aarhus PET Center and Center of Functionally Integrative Neuroscience, Aarhus University Hospital, Aarhus, Denmark,Department of Medicine/Neurology, University of British Columbia, Vancouver, BC, Canada,Department of Medicine/Neurology, University of British Columbia, 2221 Wesbrook Mall, Purdy Pavilion M36, Vancouver, BC, V6T 2B5, Canada. Tel: +6 04 822 7163; Fax: +6 04 822 7866; E-mail:
| |
Collapse
|
14
|
Ginovart N. Imaging the dopamine system with in vivo [11C]raclopride displacement studies: understanding the true mechanism. Mol Imaging Biol 2008; 7:45-52. [PMID: 15912275 DOI: 10.1007/s11307-005-0932-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Measuring changes in dopamine (DA) levels in humans using radioligand-displacement studies and positron emission tomography (PET) has provided important empirical findings in diseases and normal neurophysiology. These studies are based on the assumption that DA exerts a competitive inhibition on D(2)-radioligand binding. However, the transfer of this hypothesis to a proven mechanism has not been fully achieved yet and an accumulating number of studies challenge it. In addition, new evidence suggests that DA exerts a noncompetitive inhibition on D(2)-radioligand binding under amphetamine conditions. This article reviews the theoretical basis for the DA competition hypothesis, the in vivo and in vitro evidences supporting a noncompetitive action of DA on D(2)-radioligand binding under amphetamine conditions, and discusses possible mechanisms underlying this noncompetitive interaction. Finally, we propose that such noncompetitive interactions may have important implications for how one interprets findings obtained from radioligand-displacement PET studies in neuropsychiatric diseases, especially in schizophrenia in which a dysregulation of the DA-promoted internalization of D(2) receptors was recently suggested.
Collapse
Affiliation(s)
- Nathalie Ginovart
- PET Centre, Centre for Addiction and Mental Health, University of Toronto, 250 College Street, M5T 1R8, Toronto, Ontario, Canada.
| |
Collapse
|
15
|
Abstract
The use of molecular imaging techniques in the central nervous system (CNS) has a rich history. Most of the important developments in imaging-such as computed tomography, magnetic resonance imaging, single photon emission computed tomography, and positron emission tomography-began with neuropsychiatric applications. These techniques and modalities were then found to be useful for imaging other organs involved with various disease processes. Molecular imaging of the CNS has enabled scientists and researchers to understand better the basic biology of brain function and the way in which various disease processes affect the brain. Unlike other organs, the brain is not easily accessible, and it has a highly selective barrier at the endothelial cell level known as the blood-brain barrier. Furthermore, the brain is the most complex cellular network known to exist. Various neurotransmitters act in either an excitatory or an inhibitory fashion on adjacent neurons through a multitude of mechanisms. The various neuronal systems and the myriad of neurotransmitter systems become altered in many diseases. Some of the most devastating diseases, including Alzheimer disease, Parkinson disease, brain tumors, psychiatric disease, and numerous degenerative neurologic diseases, affect only the brain. Molecular neuroimaging will be critical to the future understanding and treatment of these diseases. Molecular neuroimaging of the brain shows tremendous promise for clinical application. In this article, the current state and clinical applications of molecular neuroimaging will be reviewed.
Collapse
Affiliation(s)
- Dima A Hammoud
- Department of Radiology, Johns Hopkins University School of Medicine, 1550 Orleans St, CRB-2, Room 492, Baltimore, MD 21231, USA
| | | | | |
Collapse
|
16
|
Kuroda Y, Motohashi N, Ito H, Ito S, Takano A, Nishikawa T, Suhara T. Effects of repetitive transcranial magnetic stimulation on [11C]raclopride binding and cognitive function in patients with depression. J Affect Disord 2006; 95:35-42. [PMID: 16781779 DOI: 10.1016/j.jad.2006.03.029] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Revised: 02/09/2006] [Accepted: 03/29/2006] [Indexed: 11/20/2022]
Abstract
BACKGROUND Several studies have demonstrated that repetitive transcranial magnetic stimulation (rTMS) elicits moderate antidepressant effects. Several previous studies suggested that the dopaminergic system might be related to this therapeutic action of rTMS. We attempted to determine the effects of chronic rTMS on central dopaminergic function in depression using positron emission tomography (PET) with [11C]raclopride. METHODS Nine patients with depression were treated with 10 daily sessions of rTMS (10 Hz, 5 s train, 20 trains at 100% motor threshold per session) over the left dorsolateral prefrontal cortex (DLPFC). Each patient underwent two [11C]raclopride PET scans and neuropsychological tests - before rTMS and 1 day after rTMS. RESULTS In five patients, the Hamilton Rating Scale for Depression (HRSD) significantly decreased. Patients showed significant improvement in verbal memory following rTMS. There were no changes in [11C]raclopride binding in the caudate nucleus and putamen after rTMS treatment. LIMITATIONS Our sample size was limited, and our study was an open trial lacking sham-treated controls. CONCLUSION This study suggests that rTMS may be effective for the treatment of depression and also may improve verbal memory function. We observed no changes in [11C]raclopride binding, suggesting that there was no measurable increase in the release of dopamine at the second PET scan. Several animal studies and healthy human studies have indicated that dopamine can be released soon after acute rTMS. Our results suggest that release of striatal dopamine induced by rTMS may be only transient, or that dopamine release may be attenuated following chronic rTMS.
Collapse
Affiliation(s)
- Yuko Kuroda
- Section of Psychiatry and Behavioral Science, Graduate School of Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Zhou Y, Chen MK, Endres CJ, Ye W, Brasić JR, Alexander M, Crabb AH, Guilarte TR, Wong DF. An extended simplified reference tissue model for the quantification of dynamic PET with amphetamine challenge. Neuroimage 2006; 33:550-63. [PMID: 16920365 DOI: 10.1016/j.neuroimage.2006.06.038] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Revised: 05/11/2006] [Accepted: 06/25/2006] [Indexed: 10/24/2022] Open
Abstract
BACKGROUND Equilibrium analysis to quantify dynamic positron emission tomography (PET) with bolus followed by continuous tracer infusion and acute amphetamine challenge assumes that all tissue kinetics attain steady states during pre- and post-challenge phases. Violations of this assumption may result in unreliable estimation of the amphetamine-induced percent change in the binding potential (DeltaBP%). METHOD We derived an extended simplified reference tissue model (ESRTM) for modeling tracer kinetics in the pre- and post-challenge phases. Ninety-minute [11C]raclopride PET studies with bolus injection followed by continuous tracer infusion were performed on 18 monkeys and 2 baboons. Forty minutes after the bolus injection, a single acute intravenous amphetamine administration was given of 2.0 mg/kg to monkeys and of 0.05, 0.1, 0.5, and 1.5 mg/kg to baboons. Computer simulations further evaluated and characterized the ESRTM. RESULTS In monkey studies, the DeltaBP% estimated by the ESRTM was 32+/-11, whereas, the DeltaBP% obtained using the equilibrium methods was 32% to 81% lower. In baboon studies, the DeltaBP% values estimated with the ESRTM showed a linear relationship between the DeltaBP% and the natural logarithm of amphetamine dose (R2=0.96), where the DeltaBP%=10.67Ln(dose)+33.79 (0.05<or=dose in mg/kg<or=1.5). At 1.5 mg/kg amphetamine, the DeltaBP% estimates from equilibrium methods were 18% to 40% lower than those estimated by the ESRTM. Results showed that the nonsteady state of tracer kinetics produced an underestimation of the DeltaBP% from the equilibrium analysis. The accuracy of the DeltaBP% estimates from the equilibrium analysis was significantly improved by the ESRTM. The DeltaBP% estimated by the ESRTM in the study was consistent with that from previous [11C] raclopride PET with amphetamine challenge. CONCLUSION In conclusion, the ESRTM is a robust kinetic modeling approach and is proposed for the quantification of dynamic PET with acute amphetamine stimulation.
Collapse
Affiliation(s)
- Yun Zhou
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 N. Caroline St., JHOC room 3245, Baltimore, MD 21287, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Caligiuri MP, Buitenhuys C. Do preclinical findings of methamphetamine-induced motor abnormalities translate to an observable clinical phenotype? Neuropsychopharmacology 2005; 30:2125-34. [PMID: 16123755 DOI: 10.1038/sj.npp.1300859] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review summarizes the preclinical literature of the effects of methamphetamine (MA) on subcortical dopaminergic and GABAergic mechanisms underlying motor behavior with the goal of elucidating the clinical presentation of human MA-induced movement disorders. Acute and chronic MA exposure in laboratory animal can lead to a variety of motor dysfunctions including increased locomotor activity, stereotypies, diminished or enhanced response times, and parkinsonian-like features. With the exception of psychomotor impairment and hyperkinesia, MA-induced movement disorders are not well documented in humans. This review attempts to draw parallels between the animal and human changes in basal ganglia neurochemistry associated with MA exposure and offers explanations for why a parkinsonian phenotype is not apparent among individuals who use and abuse MA. Significant differences in the expression of neurotoxicity and presence of multiple environmental and pharmacologic confounds may account for the lack of a parkinsonian phenotype in humans despite evidence of altered dopamine function.
Collapse
Affiliation(s)
- Michael P Caligiuri
- UCSD School of Medicine, Department of Psychiatry and Psychiatry Service, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | | |
Collapse
|
19
|
Strome EM, Clark CM, Zis AP, Doudet DJ. Electroconvulsive shock decreases binding to 5-HT2 receptors in nonhuman primates: an in vivo positron emission tomography study with [18F]setoperone. Biol Psychiatry 2005; 57:1004-10. [PMID: 15860341 DOI: 10.1016/j.biopsych.2005.01.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Revised: 01/07/2005] [Accepted: 01/14/2005] [Indexed: 11/26/2022]
Abstract
BACKGROUND Dysfunction within the serotonin (5-HT) system plays a major role in the etiology of human depression, and treatment with antidepressant drugs downregulates 5-HT(2) receptors in rodents and humans. The consequences of another effective antidepressant treatment, electroconvulsive therapy (ECT), on 5-HT(2) receptors are less established. METHODS We studied the effects of a course of electroconvulsive shock (ECS) on 5-HT(2) receptor binding in nonhuman primates in vivo using positron emission tomography (PET) and the radiotracer [(18)F]setoperone. Seven adult male rhesus monkeys received two bilateral ECS treatments per week for 3 weeks; PET scans were performed before treatment, and 24 hours, 1 week, and 4-6 weeks after completion of the course of ECS. Regions of interest were placed throughout the cortex, and the data analyzed as the ratio of specific:nonspecific radioactivity accumulation, with the cerebellum used as a measure of nonspecific binding. RESULTS Serotonin 5-HT(2) binding was significantly decreased at 24 hours and 1 week post-ECS, but returned to baseline 4-6 weeks posttreatment. CONCLUSIONS These results show for the first time in a primate species that chronic ECS decreases binding to 5-HT(2) receptors and indicate that 5-HT(2) receptor downregulation may be a common effect of both pharmacologic and nonpharmacologic antidepressant treatments.
Collapse
Affiliation(s)
- Elissa M Strome
- Pacific Parkinson's Research Centre, University of British Columbia, Vancouver, BC, Canada.
| | | | | | | |
Collapse
|
20
|
Lind NM, Olsen AK, Moustgaard A, Jensen SB, Jakobsen S, Hansen AK, Arnfred SM, Hemmingsen RP, Gjedde A, Cumming P. Mapping the amphetamine-evoked dopamine release in the brain of the Göttingen minipig. Brain Res Bull 2005; 65:1-9. [PMID: 15680539 DOI: 10.1016/j.brainresbull.2004.08.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Accepted: 08/14/2004] [Indexed: 10/26/2022]
Abstract
The availability of dopamine D(2/3) binding sites in brain of six male and six female Göttingen minipigs was measured in a baseline condition and after challenge with amphetamine sulfate (1mg/kg, i.v.) in PET studies with [(11)C]raclopride. Maps of the binding potential (pB; B(max)/K(d)) of [(11)C]raclopride were spatially normalized and co-registered to a common stereotaxic coordinate system for pig brain. The pB maps were then analyzed by volume of interest and voxel-wise comparisons of gender and condition. The mean baseline pB tended to be 10-20% higher in striatum of the female group, but this gender difference was not significant. Variance of the mean baseline pB was higher in the males (44%) than in females (30%), but there was no correlation between pB and individual plasma cortisol or testosterone concentrations. Using statistical parametric mapping, we detected a focus in the right posterior putamen where the magnitude of the amphetamine-evoked decrease in pB was greater in the male than in the female group. Thus, the spatial pattern of reactivity of dopamine D(2/3) receptor availability to amphetamine challenge is not identical in male and female pigs. Within the entire population, the decline in pB evoked by amphetamine (Delta pB) was greater in the ventral striatum (-28%) than in the caudate nucleus (-17%), consistent with earlier reports in monkeys and humans. The magnitude of Delta pB correlated highly with the baseline pB values in all divisions of the striatum. Based upon the principles of competitive binding, the slope of this empirical relationship, f(i), is equal to the fraction of [(11)C]raclopride binding sites sensitive to endogenous dopamine; the magnitude of this fraction ranged from 0.29 in the caudate to 0.36 in the ventral striatum.
Collapse
Affiliation(s)
- Nanna Marie Lind
- Department of Psychiatry, University Hospital of Copenhagen, Bispebjerg, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Holden JE, Doudet DJ. Positron emission tomography receptor assay with multiple ligand concentrations: an equilibrium approach. Methods Enzymol 2004; 385:169-84. [PMID: 15130739 DOI: 10.1016/s0076-6879(04)85010-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Affiliation(s)
- James E Holden
- Department of Medical Physics, University of Wisconsin, Madison, WI 53706, USA
| | | |
Collapse
|
22
|
Ginovart N, Wilson AA, Houle S, Kapur S. Amphetamine pretreatment induces a change in both D2-Receptor density and apparent affinity: a [11C]raclopride positron emission tomography study in cats. Biol Psychiatry 2004; 55:1188-94. [PMID: 15184038 DOI: 10.1016/j.biopsych.2004.02.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2003] [Revised: 02/10/2004] [Accepted: 02/19/2004] [Indexed: 11/19/2022]
Abstract
BACKGROUND Measuring changes in dopamine (DA) levels in humans using radioligand-displacement studies and positron emission tomography (PET) has provided important empirical findings in disease and normal neurophysiology. These studies are based on the assumption that DA exerts a competitive inhibition on radioligand binding. To test this, we used PET and a Scatchard approach to investigate whether the decrease in [11C]raclopride binding following amphetamine results from competitive or noncompetitive interactions with DA. METHODS Scatchard analyses of [11C]raclopride/PET data were used to quantify changes in apparent D2-receptor density (Bmax) and radioligand apparent affinity (K'D) at baseline and after amphetamine pretreatment (2 mg/kg; intravenous) in cats. RESULTS Amphetamine induced a 46% decrease in [11C]raclopride binding in the striatum of five cats. Scatchard analyses revealed that this decrease in binding was due to a 28% decrease in Bmax and a concomitant 35% increase in K'D. CONCLUSIONS Competition with DA is an insufficient explanation for the decrease in [11C]raclopride binding observed after amphetamine. Noncompetitive interactions, likely representing D2-receptor internalization, also play an important role in this phenomenon. This finding may have important implications for the interpretation of amphetamine-raclopride PET studies in schizophrenia because dysregulation of the agonist-induced internalization of D2 receptors was recently suggested in this disorder.
Collapse
Affiliation(s)
- Nathalie Ginovart
- Positron Emission Tomography Centre, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|