1
|
Keller B, Mestre-Pinto JI, Álvaro-Bartolomé M, Martinez-Sanvisens D, Farre M, García-Fuster MJ, García-Sevilla JA, Torrens M. A Biomarker to Differentiate between Primary and Cocaine-Induced Major Depression in Cocaine Use Disorder: The Role of Platelet IRAS/Nischarin (I 1-Imidazoline Receptor). Front Psychiatry 2017; 8:258. [PMID: 29326609 PMCID: PMC5757145 DOI: 10.3389/fpsyt.2017.00258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/13/2017] [Indexed: 12/29/2022] Open
Abstract
The association of cocaine use disorder (CUD) and comorbid major depressive disorder (MDD; CUD/MDD) is characterized by high prevalence and poor treatment outcomes. CUD/MDD may be primary (primary MDD) or cocaine-induced (CUD-induced MDD). Specific biomarkers are needed to improve diagnoses and therapeutic approaches in this dual pathology. Platelet biomarkers [5-HT2A receptor and imidazoline receptor antisera selected (IRAS)/nischarin] were assessed by Western blot in subjects with CUD and primary MDD (n = 16) or CUD-induced MDD (n = 9; antidepressant free, AD-; antidepressant treated, AD+) and controls (n = 10) at basal level and/or after acute tryptophan depletion (ATD). Basal platelet 5-HT2A receptor (monomer) was reduced in comorbid CUD/MDD subjects (all patients: 43%) compared to healthy controls, and this down-regulation was independent of AD medication (decreases in AD-: 47%, and in AD+: 40%). No basal differences were found for IRAS/nischarin contents in AD+ and AD- comorbid CUD/MDD subjects. The comparison of IRAS/nischarin in the different subject groups during/after ATD showed opposite modulations (i.e., increases and decreases) in response to low plasma tryptophan levels with significant differences discriminating between the subgroups of CUD with primary MDD and CUD-induced MDD. These specific alterations suggested that platelet IRAS/nischarin might be useful as a biomarker to discriminate between primary and CUD-induced MDD in this dual pathology.
Collapse
Affiliation(s)
- Benjamin Keller
- Laboratori de Neurofarmacologia, IUNICS, Universitat de les Illes Balears (UIB), Fundació Institut d’Investigació Sanitària Illes Balears (IdISBa), Palma, Majorca, Spain
- Redes Temáticas de Investigación Cooperativa en Salud – Red de Trastornos Adictivos (RETICS-RTA), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Joan-Ignasi Mestre-Pinto
- Redes Temáticas de Investigación Cooperativa en Salud – Red de Trastornos Adictivos (RETICS-RTA), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Hospital del Mar Medical Research Institute (IMIM), Institut de Neuropsiquiatria i addiccions (INAD), Barcelona, Spain
| | - María Álvaro-Bartolomé
- Laboratori de Neurofarmacologia, IUNICS, Universitat de les Illes Balears (UIB), Fundació Institut d’Investigació Sanitària Illes Balears (IdISBa), Palma, Majorca, Spain
- Redes Temáticas de Investigación Cooperativa en Salud – Red de Trastornos Adictivos (RETICS-RTA), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Diana Martinez-Sanvisens
- Redes Temáticas de Investigación Cooperativa en Salud – Red de Trastornos Adictivos (RETICS-RTA), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Hospital del Mar Medical Research Institute (IMIM), Institut de Neuropsiquiatria i addiccions (INAD), Barcelona, Spain
| | - Magí Farre
- Redes Temáticas de Investigación Cooperativa en Salud – Red de Trastornos Adictivos (RETICS-RTA), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Hospital del Mar Medical Research Institute (IMIM), Institut de Neuropsiquiatria i addiccions (INAD), Barcelona, Spain
- Hospital Universitari Germans Trias i Pujol (IGTP), Badalona, Spain
- Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - M. Julia García-Fuster
- Laboratori de Neurofarmacologia, IUNICS, Universitat de les Illes Balears (UIB), Fundació Institut d’Investigació Sanitària Illes Balears (IdISBa), Palma, Majorca, Spain
- Redes Temáticas de Investigación Cooperativa en Salud – Red de Trastornos Adictivos (RETICS-RTA), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Jesús A. García-Sevilla
- Laboratori de Neurofarmacologia, IUNICS, Universitat de les Illes Balears (UIB), Fundació Institut d’Investigació Sanitària Illes Balears (IdISBa), Palma, Majorca, Spain
- Redes Temáticas de Investigación Cooperativa en Salud – Red de Trastornos Adictivos (RETICS-RTA), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Marta Torrens
- Redes Temáticas de Investigación Cooperativa en Salud – Red de Trastornos Adictivos (RETICS-RTA), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Hospital del Mar Medical Research Institute (IMIM), Institut de Neuropsiquiatria i addiccions (INAD), Barcelona, Spain
- Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| |
Collapse
|
2
|
Al Shweiki MHDR, Oeckl P, Steinacker P, Hengerer B, Schönfeldt-Lecuona C, Otto M. Major depressive disorder: insight into candidate cerebrospinal fluid protein biomarkers from proteomics studies. Expert Rev Proteomics 2017; 14:499-514. [DOI: 10.1080/14789450.2017.1336435] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Patrick Oeckl
- Department of Neurology, Ulm University, Ulm, Germany
| | | | - Bastian Hengerer
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | | | - Markus Otto
- Department of Neurology, Ulm University, Ulm, Germany
| |
Collapse
|
3
|
Fang L, Zhou C, Bai S, Huang C, Pan J, Wang L, Wang X, Mao Q, Sun L, Xie P. The C825T Polymorphism of the G-Protein β3 Gene as a Risk Factor for Depression: A Meta-Analysis. PLoS One 2015; 10:e0132274. [PMID: 26147511 PMCID: PMC4493085 DOI: 10.1371/journal.pone.0132274] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 06/11/2015] [Indexed: 12/15/2022] Open
Abstract
Background TheG-protein β3 gene (GNβ3) has been implicated in psychiatric illness through its effects upon intracellular transduction of several neurotransmitter receptors. Multiple studies have investigated the relationship of the C825T polymorphism of the GNβ3 gene (GNβ3 C825T) to depression and antidepressant response. However, the relationship between GNβ3 C825T and depression remains inconsistent. Therefore, here we performed a meta-analysis to investigate the role of GNβ3 C825Tin depression risk. Methods Published case-control studies examining the association between GNβ3 C825T and depression were systematically searched for through several electronic databases (PubMed, Scopus, Science Direct, Springer, Embase, psyINFO, and CNKI). The association between GNβ3 C825T and depression risk were assessed by odd ratios (ORs) and their 95% confidence intervals (CIs) for each study. Pooled ORs were constructed for allele contrast (C versus T), homozygote (CC versus TT) model, heterozygote (CC versus CT) model, dominant model (CC + CT versus TT), and recessive (CC versus TT+CT) model. In order to evaluate possible biases, a sensitivity analysis was conducted by sequential deletion of individual studies in an attempt to assess the contribution of each individual dataset to the pooled OR. Results Nine studies, including 1055 depressed patients and 1325 healthy controls, were included. A significant association between GNβ3 C825Tand depression was found to exist, suggesting that the T-allele of GNβ3 C825Tcan increase susceptibility to depression. After stratification by ethnicity, the same association was found in the Asian subpopulation, but not the Caucasian subpopulation. Conclusions This is the first meta-analysis to reveal a relationship between GNβ3 C825T and depression. Asian T-allele carriers of GNβ3 C825T appear to be more susceptible to depression.
Collapse
Affiliation(s)
- Liang Fang
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Chanjuan Zhou
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Shunjie Bai
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Chenglong Huang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Junxi Pan
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Ling Wang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Xinfa Wang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Qiang Mao
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Lu Sun
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Peng Xie
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
4
|
Rocha L, Alonso-Vanegas M, Orozco-Suárez S, Alcántara-González D, Cruzblanca H, Castro E. Do certain signal transduction mechanisms explain the comorbidity of epilepsy and mood disorders? Epilepsy Behav 2014; 38:25-31. [PMID: 24472685 DOI: 10.1016/j.yebeh.2014.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 01/03/2014] [Accepted: 01/03/2014] [Indexed: 11/29/2022]
Abstract
It is well known that mood disorders are highly prevalent in patients with epilepsy. Although several studies have aimed to characterize alterations in different types of receptors associated with both disturbances, there is a lack of studies focused on identifying the causes of this comorbidity. Here, we described some changes at the biochemical level involving serotonin, dopamine, and γ-aminobutyric acid (GABA) receptors as well as signal transduction mechanisms that may explain the coexistence of both epilepsy and mood disorders. Finally, the identification of common pathophysiological mechanisms associated with receptor-receptor interaction (heterodimers) could allow designing new strategies for treatment of patients with epilepsy and comorbid mood disorders.
Collapse
Affiliation(s)
- Luisa Rocha
- Department of Pharmacobiology, Center of Research and Advanced Studies, Mexico City, Mexico.
| | - Mario Alonso-Vanegas
- National Institute of Neurology and Neurosurgery "Manuel Velasco Suarez", Mexico City, Mexico
| | - Sandra Orozco-Suárez
- Unit for Medical Research in Neurological Diseases, National Medical Center, Mexico City, Mexico
| | | | - Humberto Cruzblanca
- University Center of Biomedical Research, University of Colima, Colima, Mexico
| | - Elena Castro
- University Center of Biomedical Research, University of Colima, Colima, Mexico
| |
Collapse
|
5
|
Cottingham C, Wang Q. α2 adrenergic receptor dysregulation in depressive disorders: implications for the neurobiology of depression and antidepressant therapy. Neurosci Biobehav Rev 2012; 36:2214-25. [PMID: 22910678 DOI: 10.1016/j.neubiorev.2012.07.011] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 06/27/2012] [Accepted: 07/25/2012] [Indexed: 12/25/2022]
Abstract
Dysfunction in noradrenergic neurotransmission has long been theorized to occur in depressive disorders. The α2 adrenergic receptor (AR) family, as a group of key players in regulating the noradrenergic system, has been investigated for involvement in the neurobiology of depression and mechanisms of antidepressant therapies. However, a clear picture of the α2ARs in depressive disorders has not been established due to the existence of apparently conflicting findings in the literature. In this article, we report that a careful accounting of methodological differences within the literature can resolve the present lack of consensus on involvement of α2ARs in depression. In particular, the pharmacological properties of the radioligand (e.g. agonist versus antagonist) utilized for determining receptor density are crucial in determining study outcome. Upregulation of α2AR density detected by radiolabeled agonists but not by antagonists in patients with depressive disorders suggests a selective increase in the density of high-affinity conformational state α2ARs, which is indicative of enhanced G protein coupling to the receptor. Importantly, this high-affinity state α2AR upregulation can be normalized with antidepressant treatments. Thus, depressive disorders appear to be associated with increased α2AR sensitivity and responsiveness, which may represent a physiological basis for the putative noradrenergic dysfunction in depressive disorders. In addition, we review changes in some key α2AR accessory proteins in depressive disorders and discuss their potential contribution to α2AR dysfunction.
Collapse
Affiliation(s)
- Christopher Cottingham
- Department of Cell, Developmental & Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | |
Collapse
|
6
|
González-Maeso J, Meana JJ. Heterotrimeric g proteins: insights into the neurobiology of mood disorders. Curr Neuropharmacol 2010; 4:127-38. [PMID: 18615130 DOI: 10.2174/157015906776359586] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Revised: 11/28/2005] [Accepted: 01/05/2006] [Indexed: 11/22/2022] Open
Abstract
Mood disorders such as major depression and bipolar disorder are common, severe, chronic and often life-threatening illnesses. Suicide is estimated to be the cause of death in up to approximately 10-15% of individuals with mood disorders. Alterations in the signal transduction through G protein-coupled receptor (GPCR) pathways have been reported in the etiopathology of mood disorders and the suicidal behavior. In this regard, the implication of certain GPCR subtypes such as alpha(2A)-adrenoceptor has been repeatedly described using different approaches. However, several discrepancies have been recently reported in density and functional status of the heterotrimeric G proteins both in major depression and bipolar disorder. A compilation of the most relevant research topics about the implication of heterotrimeric G proteins in the etiology of mood disorders (i.e., animal models of mood disorders, studies in peripheral tissue of depressive patients, and studies in postmortem human brain of suicide victims with mood disorders) will provide a broad perspective of this potential therapeutic target field. Proposed causes of the discrepancies reported at the level of G proteins in postmortem human brain of suicide victims will be discussed.
Collapse
|
7
|
Giaroni C, Canciani L, Zanetti E, Giuliani D, Pisani R, Oldrini R, Moro E, Trinchera M, Crema F, Lecchini S, Frigo G. Effects of chronic desipramine treatment on α2-adrenoceptors and μ-opioid receptors in the guinea pig cortex and hippocampus. Eur J Pharmacol 2008; 579:116-25. [DOI: 10.1016/j.ejphar.2007.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 08/02/2007] [Accepted: 10/05/2007] [Indexed: 12/30/2022]
|
8
|
Song Y, Zhou D, Fan J, Luo H, Halbreich U. Effects of electroacupuncture and fluoxetine on the density of GTP-binding-proteins in platelet membrane in patients with major depressive disorder. J Affect Disord 2007; 98:253-7. [PMID: 16919758 DOI: 10.1016/j.jad.2006.07.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 07/14/2006] [Accepted: 07/14/2006] [Indexed: 11/15/2022]
Abstract
BACKGROUND Electroacupuncture (EA) has been used to treat Major Depressive Disorder (MDD). However, its efficacy is inconclusive and the mechanism is still unclear. Thus, the objective of this study is to investigate the therapeutic effect of EA on GTP-binding-protein (G protein) in platelet membrane using fluoxetine as a comparison. METHODS A randomized controlled trial (RCT) was performed on 90 MDD patients, who were divided into three groups treated with fluoxetine, EA and sham EA respectively. Antibodies were utilized to quantify the levels of G protein alpha subtypes in the platelet membrane before and after 6-week anti-depressive treatment. Thirty age and sex-matched normal individuals were used as controls. RESULT All the treatments had the same therapeutic effects in treating moderate depression. Both levels of Galphai and Galphaq in depression patients were significantly higher than those in controls and were not reduced by treatments, although the severity was considerably relieved. LIMITATIONS The duration of treatment was limited to six weeks only. CONCLUSION EA might be served as an alternative treatment for moderate depression and we further demonstrate that the abnormal levels of Galpha protein in platelet membrane might be a potential risk factor for MDD.
Collapse
Affiliation(s)
- YuQing Song
- Institute of Mental Health, Peking University, China.
| | | | | | | | | |
Collapse
|
9
|
Gurguis GN. Psychiatric Disorders. Platelets 2007. [DOI: 10.1016/b978-012369367-9/50806-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Canciani L, Giaroni C, Zanetti E, Giuliani D, Pisani R, Moro E, Trinchera M, Crema F, Lecchini S, Frigo G. Functional interaction between α2-adrenoceptors, μ- and κ-opioid receptors in the guinea pig myenteric plexus: Effect of chronic desipramine treatment. Eur J Pharmacol 2006; 553:269-79. [PMID: 17055479 DOI: 10.1016/j.ejphar.2006.09.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Revised: 09/08/2006] [Accepted: 09/11/2006] [Indexed: 10/24/2022]
Abstract
The existence of a functional interplay between alpha(2)-adrenoceptor and opioid receptor inhibitory pathways modulating neurotransmitter release has been demonstrated in the enteric nervous system by development of sensitivity changes to alpha(2)-adrenoceptor, mu- and kappa-opioid receptor agents on enteric cholinergic neurons after chronic sympathetic denervation. In the present study, to further examine this hypothesis we evaluated whether manipulation of alpha(2)-adrenoceptor pathways by chronic treatment with the antidepressant drug, desipramine (10 mg/kg i.p. daily, for 21 days), could entail changes in enteric mu- and kappa-opioid receptor pathways in the myenteric plexus of the guinea pig distal colon. In this region, subsensitivity to the inhibitory effect of both UK14,304 and U69,593, respectively alpha(2A)-adrenoceptor and kappa-opioid receptor agonist, on the peristaltic reflex developed after chronic desipramine treatment. On opposite, in these experimental conditions, supersensitivity developed to the inhibitory effect of [D-Ala, N-Me-Phe4-Gly-ol5]-enkephalin (DAMGO), mu-opioid receptor agonist, on propulsion velocity. Immunoreactive expression levels of alpha(2A)-adrenoceptors, mu- and kappa-opioid receptors significantly decreased in the myenteric plexus of the guinea pig colon after chronic desipramine treatment. In these experimental conditions, mRNA levels of alpha(2A)-adrenoceptors, mu- and kappa-opioid receptors significantly increased, excluding a direct involvement of transcription mechanisms in the regulation of receptor expression. Levels of G protein-coupled receptor kinase 2/3 and of inhibitory G(i/o) proteins were significantly reduced in the myenteric plexus after chronic treatment with desipramine. Such changes might represent possible molecular mechanisms involved in the development of subsensitivity to UK14,304 and U69,593 on the efficiency of peristalsis. Alternative molecular mechanisms, including a higher efficiency in the coupling between receptor activation and downstream intracellular effector systems, possibly independent from inhibitory G(i/o) proteins, may be accounted for the development of supersensitivity to DAMGO. Increased sensitivity to the mu-opioid agonist might compensate for the development of alpha(2A)-adrenoceptor and kappa-opioid receptor subsensitivity. On the whole, the present data further strengthen the concept that, manipulation of alpha(2)-adrenergic inhibitory receptor pathways in the enteric nervous system entails changes in opioid inhibitory receptor pathways, which might be involved in maintaining homeostasis as suggested for mu-opioid, but not for kappa-opioid receptors.
Collapse
MESH Headings
- Adrenergic alpha-2 Receptor Agonists
- Adrenergic alpha-Agonists/pharmacology
- Analgesics/pharmacology
- Analgesics, Opioid/pharmacology
- Animals
- Antidepressive Agents, Tricyclic/pharmacology
- Benzeneacetamides/pharmacology
- Blotting, Western
- Brimonidine Tartrate
- Desipramine/pharmacology
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- G Protein-Coupled Inwardly-Rectifying Potassium Channels/biosynthesis
- GTP-Binding Proteins/biosynthesis
- Guinea Pigs
- In Vitro Techniques
- Male
- Myenteric Plexus/drug effects
- Peristalsis/drug effects
- Pyrrolidines/pharmacology
- Quinoxalines/pharmacology
- RNA, Messenger/biosynthesis
- Receptors, Adrenergic, alpha-2/drug effects
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/drug effects
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/drug effects
- Reverse Transcriptase Polymerase Chain Reaction
- Synaptosomes/drug effects
- Synaptosomes/metabolism
Collapse
Affiliation(s)
- Luca Canciani
- Clinical and Applied Pharmacology Centre, University of Insubria and University of Pavia, via O Rossi 9, I-21100 Varese, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Bagamery K, Landau R, Kvell K, Graham J. Different platelet activation levels in non-pregnant, normotensive pregnant, pregnancy-induced hypertensive and pre-eclamptic women. A pilot study of flow cytometric analysis. Eur J Obstet Gynecol Reprod Biol 2005; 121:117-8. [PMID: 15951100 DOI: 10.1016/j.ejogrb.2004.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2004] [Revised: 11/19/2004] [Accepted: 12/06/2004] [Indexed: 10/25/2022]
|
12
|
Escribá PV, Ozaita A, García-Sevilla JA. Increased mRNA expression of alpha2A-adrenoceptors, serotonin receptors and mu-opioid receptors in the brains of suicide victims. Neuropsychopharmacology 2004; 29:1512-21. [PMID: 15199368 DOI: 10.1038/sj.npp.1300459] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The development of new therapies for the treatment of psychiatric disorders requires an in-depth knowledge of the molecular bases underlying these pathologies, which remain largely unknown. Alterations in adrenoceptors, serotonin receptors, and other G protein-coupled receptors (GPCRs) have been associated with suicide and depression. However, to date, there is little information about mRNA expression of the GPCRs in the frontal cortex of suicide victims. Our goal was to study the expression in the brain of these receptors. For this purpose, we measured mRNA levels by RT-PCR. We found that the expressions of alpha2A-adrenoceptors, 5-HT1A, 5-HT2A serotonin receptors, and mu-opioid receptors were elevated in the post-mortem brains of these suicide victims with respect to matched controls. Moreover, in the case of alpha2A-adrenoceptors (the only for which these data were available), a significant correlation was observed between the level of mRNA and protein quantified in the brain of the same subjects, indicating that protein synthesis of this receptor was not influenced by post-translational regulatory mechanisms. In addition, the degree of adrenoceptor and 5-HT receptor expressions appeared to be correlated in the brains of suicide victims and control subjects. Alterations in the expression of adrenoceptors, serotonin, and opioid receptors indicate that these signaling proteins might be related to the etiopathology of suicidal and depressive behaviors. Alternatively, such changes may represent adaptive mechanisms to compensate for other as yet unknown alterations. The results also suggest that these receptors could share common regulatory mechanisms.
Collapse
MESH Headings
- Adult
- Aged
- Brain Chemistry/genetics
- Depressive Disorder/genetics
- Depressive Disorder/metabolism
- Female
- Gene Expression Regulation/physiology
- Humans
- Male
- Middle Aged
- Nerve Tissue Proteins/biosynthesis
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Receptors, Adrenergic, alpha-2/biosynthesis
- Receptors, Adrenergic, alpha-2/genetics
- Receptors, Opioid, mu/biosynthesis
- Receptors, Opioid, mu/genetics
- Receptors, Serotonin/biosynthesis
- Receptors, Serotonin/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Suicide
Collapse
Affiliation(s)
- Pablo V Escribá
- Laboratory of Neuropharmacology, Associated Unit of the Cajal Institute (CSIC), Department of Biology, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), University of the Balearic Islands, Palma de Mallorca, Spain. pablo.escriba.uib.es
| | | | | |
Collapse
|
13
|
García-Sevilla JA, Ventayol P, Pérez V, Rubovszky G, Puigdemont D, Ferrer-Alcón M, Andreoli A, Guimón J, Alvarez E. Regulation of platelet alpha 2A-adrenoceptors, Gi proteins and receptor kinases in major depression: effects of mirtazapine treatment. Neuropsychopharmacology 2004; 29:580-8. [PMID: 14628003 DOI: 10.1038/sj.npp.1300356] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Major depression is associated with the upregulation of alpha(2A)-adrenoceptors in brain tissue and blood platelets. The homologous regulation of these receptors by G-protein-coupled receptor kinases (GRKs) might play a relevant role in the pathogenesis and treatment of depression. This study was designed to assess the status of the complex alpha(2A)-adrenoceptor/Galphai/GRK 2 in the platelets of depressed patients (n=22) before and after treatment with the antidepressant mirtazapine, an antagonist at alpha(2A)-adrenoceptors (30-45 mg/day for up to 6 months). A second series of depressed suicide attempters (n=32) were also investigated to further assess the status of platelet GRK 2 and GRK 6. Platelet alpha(2A)-adrenoceptors and Galphai protein immunoreactivities were increased in depressed patients (49 and 35%) compared with matched controls. In contrast, GRK 2 content was decreased in the two series of depressed patients (27 and 28%). GRK 6 (a GRK with different properties) was found unchanged. In drug-free depressed patients, the severity of depression (behavioral ratings with two different instruments) correlated inversely with the content of platelet GRK 2 (r=-0.46, n=22, p=0.032, and r=-0.55, n=22, p=0.009). After 4-24 weeks of treatment, mirtazapine induced downregulation of platelet alpha(2A)-adrenoceptors (up to 34%) and Galphai proteins (up to 28%), and the upregulation of GRK 2 (up to 30%). The results indicate that major depression is associated with reduced platelet GRK 2, suggesting that a defect of this kinase may contribute to the observed upregulation of alpha(2A)-adrenoceptors. Moreover, treatment with mirtazapine reversed this abnormality and induced downregulation of alpha(2A)-adrenoceptor/Galphai complex. The results support a role of supersensitive alpha(2A)-adrenoceptors in the pathogenesis and treatment of major depression.
Collapse
Affiliation(s)
- Jesús A García-Sevilla
- Laboratory of Neuropharmacology, Associate Unit of the Institute of Neurobiology 'Ramón y Cajal', Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Monteleone P, Di Lieto A, Martiadis V, Pannuto M, Maj M. Altered immunoreactive levels of G proteins in peripheral mononuclear cells of patients with anorexia nervosa and bulimia nervosa. Mol Psychiatry 2003; 8:680-4. [PMID: 12874604 DOI: 10.1038/sj.mp.4001304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Alterations of cellular G proteins have been implicated in the pathophysiology of some psychiatric disorders. So far, no study assessed G protein function in anorexia nervosa (AN) and bulimia nervosa (BN). Therefore, we measured immunoreactive levels of G(alpha s), G(alpha i), G(alpha q/11) and G(beta) protein subunits in mononuclear leukocytes of 71 drug-free women, including 25 subjects with AN, 26 individuals with BN and 20 healthy controls. As compared to healthy women, anorexic patients exhibited significantly increased levels of G(alpha i) and G(beta) proteins, while bulimic patients had significantly increased levels of G(alpha s), G(alpha i) and G(beta) proteins. Immunoreactive levels of peripheral G protein subunits were not significantly correlated with demographic or nutritional parameters. These findings, although obtained in peripheral blood cells, may suggest a derangement of G protein-mediated signal transduction in the pathophysiology of eating disorders.
Collapse
Affiliation(s)
- P Monteleone
- Department of Psychiatry, University of Naples S.U.N., Naples, Italy.
| | | | | | | | | |
Collapse
|
15
|
Galeotti N, Bartolini A, Ghelardini C. Inactivation of Gi proteins induces an antidepressant-like effect in the mouse forced-swimming test. Neuropharmacology 2002; 43:457-65. [PMID: 12243776 DOI: 10.1016/s0028-3908(02)00089-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The effect of Gi protein inactivation was evaluated in an animal model of depression, the mouse forced swimming test. Animals were i.c.v. injected with pertussis toxin (PTX) or with antisense oligodeoxynucleotides directed against the alpha subunit of each Gi-protein subtype (anti-Gi alpha(1), anti-Gi alpha(2), anti-Gi alpha(3), anti-Go alpha(1), anti-Go alpha(2)). The administration of PTX (0.25 micro g per mouse i.c.v.) produced an increase in the mobility time. Similarly, anti-Gi alpha(2) (25 micro g per mouse i.c.v.), anti-Gi alpha(3) (25 micro g per mouse i.c.v.), anti-Go alpha(1) (12.5-25 micro g per mouse i.c.v.) and anti-Go alpha(2) (12.5-25 micro g per mouse i.c.v.) increased the mobility time. The antidepressant-like effect obtained was similar to that produced by amitriptyline and clomipramine. By contrast, pretreatment with anti-Gi alpha(1) (3.12-25 micro g per mouse i.c.v.) never modified the mobility time in comparison with control animals. At the highest effective doses, none of the compounds used impaired motor coordination (rota rod test), nor modified spontaneous motility and inspection activity, (hole board test). These results indicate the involvement of Gi(2), Gi(3), Go(1), and Go(2), but not Gi(1), protein subtypes in the transduction mechanism responsible for the induction of an antidepressant-like effect in the mouse forced swimming test.
Collapse
Affiliation(s)
- Nicoletta Galeotti
- Department of Preclinical and Clinical Pharmacology, Univeristy of Florence, Viale G Pieraccini 6, I-50139, Florence, Italy
| | | | | |
Collapse
|
16
|
Odagaki Y, Koyama T. Epinephrine- and thrombin-stimulated high-affinity GTPase activity in platelet membranes from patients with psychiatric disorders. Psychiatry Res 2002; 112:111-9. [PMID: 12429357 DOI: 10.1016/s0165-1781(02)00189-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Although heterotrimeric guanine nucleotide-binding regulatory (G) proteins have been implicated in the pathophysiology of mental illnesses (especially mood disorders), direct evidence has been scarce. This study was designed to reveal possible abnormalities of receptor-coupled G protein function in platelets in patients with psychiatric disorders such as depression and schizophrenia. The functional status of alpha(2A)-adrenergic receptor-coupled G(i2) and thrombin receptor-coupled G proteins (G(i2)+G(q)) was determined by the increase in high-affinity GTPase activity in response to epinephrine and thrombin, respectively, in platelet membranes from 18 patients with mood disorders (15 unipolar and three bipolar subtype), 13 schizophrenic patients, four neurotic patients and 29 healthy control subjects. Neither alpha(2A)-adrenergic receptor-coupled G(i2) nor thrombin receptor-coupled G(q) was functionally altered in platelets from psychiatric patients compared with control subjects. No significant correlation was observed between these biochemical measures in platelets and severity of psychopathological symptoms. The functional coupling efficiency of G proteins with receptors appears intact, at least between alpha(2A)-adrenergic receptors and G(i2), and between thrombin receptors and G(q), in platelets from patients with psychiatric disorders.
Collapse
Affiliation(s)
- Yuji Odagaki
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan.
| | | |
Collapse
|
17
|
Giaroni C, Zanetti E, Vanti A, Canciani L, Lecchini S, Frigo G. Sympathetic denervation-induced changes in G protein expression in enteric neurons of the guinea pig colon. Life Sci 2002; 71:1961-73. [PMID: 12175891 DOI: 10.1016/s0024-3205(02)01961-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chronic sympathetic denervation entails subsensitivity to alpha(2)-adrenoceptor agonists and supersensitivity to kappa- and mu-opioid receptor agonists modulating cholinergic neurons in the guinea pig colon. A possible role for signal transduction G proteins in contributing to development of these sensitivity changes was investigated. Pertussis toxin (PTX), a blocker of the G(i/o)-type family of G proteins significantly reduced the inhibitory effects of UK14,304 (alpha(2)-adrenoceptor agonist), U69593 (kappa-opioid receptor agonist) and DAMGO (mu-opioid receptor agonist) on acetylcholine (ACh) overflow in preparations obtained from normal animals, but not in those obtained from sympathetically denervated animals. In this experimental condition, immunoblot analysis revealed reduced levels of G(alphao), G(alphai2), G(alphai3) and G(beta) in myenteric plexus synaptosomes. On reverse, synaptosomal levels of G(alphai1) and G(alphaz), a PTX-insensitive G-protein, increased after chronic ablation of the sympathetic pathways. These data suggest that changes in the function and expression of inhibitory G proteins coupled to alpha(2)-adrenoceptors, kappa- and mu-opioid receptors occur in the myenteric plexus of the guinea pig colon after chronic sympathetic denervation. The possibility that regulation of G proteins represents one of the biochemical mechanisms at the basis of the changes in sensitivity of enteric cholinergic neurons to alpha(2)-adrenoceptor, kappa- and mu-opioid receptor agonists is discussed.
Collapse
Affiliation(s)
- Cristina Giaroni
- Clinical and Applied Pharmacology Centre, Universities of Insubria and Pavia, via O. Rossi 9, I-21100 Varese, Italy
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
Over the past decade, the focus of research into the pathophysiology of mood disorders (bipolar disorder and unipolar depression in particular) has shifted from an interest in the biogenic amines to an emphasis on second messenger systems within cells. Second messenger systems rely on cell membrane receptors to relay information from the extracellular environment to the interior of the cell. Within the cell, this information is processed and altered, eventually to the point where gene and protein expression patterns are changed. There is a preponderance of evidence implicating second messenger systems and their primary contact with the extracellular environment, G proteins, in the pathophysiology of mood disorders. After an introduction to G proteins and second messenger pathways, this review focuses on the evidence implicating G proteins and two second messenger systems-the adenylate cyclase (cyclic adenosine monophosphate, cAMP) and phosphoinositide (protein kinase C, PKC) intracellular signaling cascades-in the pathophysiology and treatment of bipolar disorder and unipolar depression. Emerging evidence implicates changes in cellular resiliency, neuroplasticity and additional cellular pathways in the pathophysiology of mood disorders. The systems discussed within this review have been implicated in neuroplastic processes and in modulation of many other cellular pathways, making them likely candidates for mediators of these findings.
Collapse
Affiliation(s)
- Todd D Gould
- Laboratory of Molecular Pathophysiology, NIMH, National Institutes of Health, Building 49, Room B1EE16, Bethesda, MD 20892-4405, USA
| | | |
Collapse
|
19
|
Abstract
Mental disorders are highly prevalent and often difficult to diagnose. There is a significant gap between advances in their pharmacotherapy and the present lack of objective biologic tests for diagnosis. The special complexity of diagnosis in psychiatry is related to the absence of objective diagnostic "gold standards", co-morbidity, heterogeneity and equifinality, quantitative trait loci, and locus heterogeneity. Here, we review recent findings relating to diagnostic, pathophysiological, and linkage markers for mood disorders at the biochemical level involving monoamine neurotransmitters, hormones, and signal-transducing G proteins. Identification of biological diagnostic markers could enable segregating mood disorders to several biologically different subtypes. New-era methods and strategies involving genomics, proteomics, multi-marker approach and single nucleotide polymorphisms have the potential to revolutionize future diagnosis in psychiatry.
Collapse
Affiliation(s)
- Sofia Avissar
- Dept of Clinical Pharmacology, Ben Gurion University of the Negev, Beer Sheva, 84105 Israel.
| | | |
Collapse
|
20
|
Perez J, Tardito D. Implications of the cAMP signaling pathway in psychiatric disorders: a systematic review of the evidence. CNS Spectr 2001; 6:294-305. [PMID: 16113628 DOI: 10.1017/s1092852900022008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The last decade has seen a shift in the theoretical framework addressing the pathophysiology of psychiatric disorders. During this period, research endeavors have been directed toward investigating the biochemical mechanisms involved in the transduction of information from the cell surface to the cell interior. The emerging picture, supported by growing evidence, is that in addition to neurotransmitters and their receptors, various signal transduction pathways may be linked to the pathophysiology of major psychiatric disorders. In this review, the role of one such pathway--the cyclic adenosine monophosphate (cAMP) signaling pathway--will be highlighted. We review data suggesting the involvement of the upstream and downstream components of this system in the pathophysiology of psychiatric disorders.
Collapse
Affiliation(s)
- J Perez
- Department of Neuropsychiatric Sciences, Instituto Scientifico H. San Raffaele, University Vita e Salute, Milan, Italy.
| | | |
Collapse
|
21
|
Perez J, Tardito D, Racagni G, Smeraldi E, Zanardi R. Protein kinase A and Rap1 levels in platelets of untreated patients with major depression. Mol Psychiatry 2001; 6:44-9. [PMID: 11244484 DOI: 10.1038/sj.mp.4000795] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have recently reported altered levels of protein kinase A and Rap1 in patients with bipolar disorder. The purpose of the current investigation was to assess the levels of these proteins in platelets from untreated euthymic and depressed patients with major unipolar depression. Platelets were collected from 45 drug-free unipolar patients (13 euthymic and 32 depressed) and 45 healthy subjects. The levels of protein kinase A and Rap1 were assessed by Western blot analysis, immunostaining and computer-assisted imaging. The immunolabeling of the regulatory subunit type II of protein kinase A and that of Rap1 was significantly lower in untreated depressed patients compared with untreated euthymic patients and healthy subjects. No significant differences were found in the immunolabeling of both the regulatory type I and the catalytic subunits of protein kinase A among groups. Levels of the regulatory subunit type II of protein kinase A and Rap1 are altered in platelets of unipolar depressive patients. These findings may provide new insight about the relationship between components of cAMP signaling and affective disorders.
Collapse
Affiliation(s)
- J Perez
- Istituto Scientifico H San Raffaele, Department of Neuropsychiatric Sciences, School of Medicine, University of Milan, Via Stamira d'Ancona 20, 20127 Milan, Italy.
| | | | | | | | | |
Collapse
|
22
|
Abstract
The molecular medicine revolution has resulted in a more complete understanding about the etiology and pathophysiology of a variety of illnesses. This remarkable progress reflects in large part the elucidation of the basic mechanisms of signal transduction, and the application of the powerful tools of molecular biology to the study of human disease. Although we have yet to identify the specific abnormal genes in mood disorders, recent studies have implicated signal transduction pathways, in particular the stimulatory guanine nucleotide binding protein (Gs)/cyclic AMP and protein kinase C pathways, in the pathophysiology and treatment of mood disorders. Recent studies have also shown that mood stabilizers exert neurotrophic and neuroprotective effects not only in preclinical paradigms, but also in humans. Together, these studies suggest that mood disorders may be associated with impaired neuroplasticity and cellular resiliency, findings that may have major implications for our understanding of mood disorders, and for the development of improved therapeutics.
Collapse
Affiliation(s)
- H K Manji
- Laboratory of Molecular Pathophysiology, National Institute of Mental Health, 10 Center Drive, 10/4N-222 MSC 1381, Bethesda, MD, 20892, USA.
| | | |
Collapse
|
23
|
|
24
|
Avissar S. The role of G proteins in the psychobiology and treatment of affective disorders and their integration with the neurotransmitter hypothesis. Curr Psychiatry Rep 1999; 1:148-53. [PMID: 11122917 DOI: 10.1007/s11920-999-0024-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Heterotrimeric G proteins are a crucial point of convergence in the transmission of signals from a variety of primary messengers and their membrane receptors to downstream intracellular second messenger effector enzymes and ionic channels. Thus, these proteins have raised increasing interest in the clinical perspective of altered G protein function. This article addresses the most recent significant findings regarding the role of G proteins in the pathophysiology of mood disorders and in the molecular mechanisms underlying the treatment of these disorders, with emphasis on biochemical and genetic approaches.
Collapse
Affiliation(s)
- S Avissar
- Department of Clinical Pharmacology, Ben Gurion University of the Negev, PO Box 653, Beer Sheva 84105, Israel
| |
Collapse
|
25
|
Chen G, Hasanat KA, Bebchuk JM, Moore GJ, Glitz D, Manji HK. Regulation of signal transduction pathways and gene expression by mood stabilizers and antidepressants. Psychosom Med 1999; 61:599-617. [PMID: 10511011 DOI: 10.1097/00006842-199909000-00004] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To determine whether the currently available evidence supports the hypothesis that antidepressants and mood stabilizers may bring about some of their long-term therapeutic effects by regulating signal transduction pathways and gene expression in the central nervous system. METHODS To address this question, we reviewed the evidence showing that chronic administration of antidepressants and mood stabilizers involves alterations in signaling pathways and gene expression in the central nervous system. RESULTS A large body of data has shown that lithium and valproate exert effects on the protein kinase C signaling pathway and the activator protein 1 family of transcription factors; in contrast, antidepressants affect the cyclic adenosine monophosphate pathway and may bring about their therapeutic effects by modulating cyclic adenosine monophosphate-regulated gene expression in the central nervous system. CONCLUSIONS Given the key roles of these signaling cascades in the amplification and integration of signals in the central nervous system, the findings have clear implications not only for research into the etiology and pathophysiology of the severe mood disorders but also for the development of novel and innovative treatment strategies.
Collapse
Affiliation(s)
- G Chen
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | | | |
Collapse
|
26
|
García-Sevilla JA, Escribá PV, Ozaita A, La Harpe R, Walzer C, Eytan A, Guimón J. Up-regulation of immunolabeled alpha2A-adrenoceptors, Gi coupling proteins, and regulatory receptor kinases in the prefrontal cortex of depressed suicides. J Neurochem 1999; 72:282-91. [PMID: 9886080 DOI: 10.1046/j.1471-4159.1999.0720282.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Suicide and depression are associated with an increased density of alpha2-adrenoceptors (radioligand receptor binding) in specific regions of the human brain. The function of these inhibitory receptors involves various regulatory proteins (Gi coupling proteins and G protein-coupled receptor kinases, GRKs), which work in concert with the receptors. In this study we quantitated in parallel the levels of immunolabeled alpha2A-adrenoceptors and associated regulatory proteins in brains of suicide and depressed suicide victims. Specimens of the prefrontal cortex (Brodmann area 9) were collected from 51 suicide victims and 31 control subjects. Levels of alpha2A-adrenoceptors, Galphai1/2 proteins, and GRK 2/3 were assessed by immunoblotting techniques by using specific polyclonal antisera and the immunoreactive proteins were quantitated by densitometry. Increased levels of alpha2A-adrenoceptors (31-40%), Galphai1/2 proteins (42-63%), and membrane-associated GRK 2/3 (24-32%) were found in the prefrontal cortex of suicide victims and antidepressant-free depressed suicide victims. There were significant correlations between the levels of GRK 2/3 (dependent variable) and those of alpha2A-adrenoceptors and Galphai1/2 proteins (independent variables) in the same brain samples of suicide victims (r = 0.56, p = 0.008) and depressed suicide victims (r = 0.54, p = 0.041). Antemortem antidepressant treatment was associated with a significant reduction in the levels of Galphai1/2 proteins (32%), but with modest decreases in the levels of alpha2A-adrenoceptors (6%) and GRK 2/3 (18%) in brains of depressed suicide victims. The increased levels in concert of alpha2A-adrenoceptors, Galphai1/2 proteins, and GRK 2/3 in brains of depressed suicide victims support the existence of supersensitive alpha2A-adrenoceptors in subjects with major depression.
Collapse
Affiliation(s)
- J A García-Sevilla
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Switzerland
| | | | | | | | | | | | | |
Collapse
|
27
|
García-Sevilla JA, Escribá PV, Ozaita A, Walzer C, Guimón J. Density of imidazoline receptors in platelets of euthymic patients with bipolar affective disorder and in brains of lithium-treated rats. Biol Psychiatry 1998; 43:616-8. [PMID: 9564448 DOI: 10.1016/s0006-3223(97)00398-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Platelet imidazoline receptors have been shown to be up-regulated in patients with unipolar major depression. This study examines the status of imidazoline receptor proteins in platelets of euthymic bipolar patients and in brains of lithium-treated rats. METHODS Platelets were collected from 12 bipolar patients (lithium-treated or drug-free) and brains from chronic lithium-treated rats. Imidazoline receptors were quantitated by immunoblotting, using a specific antiserum, and/or radioligand binding. RESULTS No changes in platelet imidazoline receptors (35-kDa and 45-kDa proteins) were found. Lithium treatment did not alter brain imidazoline receptors (29/30-kDa, 45-kDa, and 66-kDa proteins or density/affinity of [3H]-idazoxan binding sites). CONCLUSIONS Imidazoline receptor proteins are not altered in platelets of euthymic patients with bipolar affective disorder.
Collapse
Affiliation(s)
- J A García-Sevilla
- Department of Psychiatry, Medical School, University of Geneva, Switzerland
| | | | | | | | | |
Collapse
|