1
|
Aksakal N, Zora M. InCl 3-Catalyzed One-Pot Synthesis of Pyrrolo/Indolo- and Benzooxazepino-Fused Quinoxalines. ACS OMEGA 2024; 9:33251-33260. [PMID: 39100308 PMCID: PMC11292660 DOI: 10.1021/acsomega.4c05239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 08/06/2024]
Abstract
In this paper, we describe an efficient InCl3-catalyzed two-component reaction of 1-(2-aminophenyl)pyrroles/indoles and 2-propargyloxybenzaldehydes for the direct synthesis of 12bH-benzo[6,7]1,4-oxazepino[4,5-a]pyrrolo/indolo[2,1-c]quinoxalines. This high atom- and step-economical one-pot process generates three new C/N-C bonds in a single synthetic operation, resulting in the formation of new six- and seven-membered heterocyclic rings. The easy availability of the starting materials, the use of the relatively inexpensive indium catalyst, and the good substrate scope are the salient features of this strategy. The proposed mechanistic pathway involves imine formation, two consecutive cyclizations via electrophilic aromatic substitution and nucleophilic addition reactions, and the H shift step.
Collapse
Affiliation(s)
- Nuray
Esra Aksakal
- Department
of Chemistry, Faculty of Arts and Science, Middle East Technical University, 06800 Ankara, Turkey
- Department
of Nutrition and Dietetics, Faculty of Health Sciences, Halic University, 34060 Istanbul, Turkey
| | - Metin Zora
- Department
of Chemistry, Faculty of Arts and Science, Middle East Technical University, 06800 Ankara, Turkey
| |
Collapse
|
2
|
Basceken S. Theoretical insight into the regioselective formation of pyrazolo[1,4]-oxazepine and -oxazines. J Mol Graph Model 2024; 126:108643. [PMID: 37806144 DOI: 10.1016/j.jmgm.2023.108643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/17/2023] [Accepted: 09/27/2023] [Indexed: 10/10/2023]
Abstract
AuCl-, AuCl3-, or AuClPEt3-catalyzed formation mechanisms of pyrazolo[1,4]oxazepines and the NaH-promoted mechanism of pyrazolo[1,4]oxazines were investigated computationally. The structural properties of the reactants were studied in various solvents and with different functionals. The hybrid functionals B3LYP, M06, M06-2X, PBEPBE, and wB97X-D in density functional theory were used to determine and discuss the energetics of the compounds. The electronic properties of groups (R = H or R ≠ H) attached to the alkyne moiety played an essential role in the corresponding 7-endo-dig cyclization or 6-exo-dig cyclization in the presence of a gold catalyst. The regioselectivities of the products were investigated, and the natural bond orbitals of the reactants were determined. Furthermore, a gold-catalyzed alternative mechanism is suggested for synthesizing pyrazolo[1,4]oxazines using a terminal alkyne (R = H) moiety as substrate.
Collapse
Affiliation(s)
- Sinan Basceken
- Department of Chemistry, Hitit University, 19030, Corum, Turkey.
| |
Collapse
|
3
|
Al-Mustafa A, Al-Zereini W, Ashram M, Al-Sha’er MA. Evaluation of antibacterial, antioxidant, cytotoxic, and acetylcholinesterase inhibition activities of novel [1,4] benzoxazepines fused to heterocyclic systems with a molecular modeling study. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02999-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
4
|
Gharpure SJ, Fartade DJ, Gupta KS, Patel RK. Transposition of an acrylate moiety in TMSOTf-mediated reaction of alkynyl vinylogous carbonates gives heterocyclic dienes. Chem Commun (Camb) 2022; 58:9762-9765. [PMID: 35959727 DOI: 10.1039/d2cc03802a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
TMSOTf-mediated reaction of alkynyl vinylogous carbonates serendipitously gave 1,4-oxazepine and dihydropyran dienes via transposition of an ethyl acrylate moiety involving intramolecular cascade Prins-type cyclization/retro-oxa-Michael reaction/cycloisomerisation. The developed atom-economical protocol selectively provides an E double bond geometry. Dihydropyran dienes could be reduced diastereoselectively using Et3SiH/TMSOTf or could be transformed into polycyclic heterocycles by Heck reaction.
Collapse
Affiliation(s)
- Santosh J Gharpure
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai - 400076, India.
| | - Dipak J Fartade
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai - 400076, India.
| | - Krishna S Gupta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai - 400076, India.
| | - Raj K Patel
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai - 400076, India.
| |
Collapse
|
5
|
Dubovsky SL, Ghosh BM, Serotte JC, Cranwell V. Psychotic Depression: Diagnosis, Differential Diagnosis, and Treatment. PSYCHOTHERAPY AND PSYCHOSOMATICS 2021; 90:160-177. [PMID: 33166960 DOI: 10.1159/000511348] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/30/2020] [Indexed: 11/19/2022]
Abstract
Psychotic depression was initially considered to be at one end of a continuum of severity of major depression. Subsequent experience demonstrated that psychosis is an independent trait that may accompany mood disorders of varying severity. While much has been learned about the impact of severe mood congruent delusions and hallucinations on the course and treatment response of depression, less is known about fleeting or mild psychosis, mood incongruent features, or psychotic symptoms that reflect traumatic experiences. Acute treatment of psychotic unipolar depression generally involves the combination of an antidepressant and an antipsychotic drug or electroconvulsive therapy. There is inadequate information about maintenance treatment of unipolar psychotic depression and acute and chronic treatment of psychotic bipolar disorder. Decision-making therefore still must rely in part on clinical experience.
Collapse
Affiliation(s)
- Steven L Dubovsky
- Department of Psychiatry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA, .,Departments of Psychiatry and Medicine, University of Colorado School of Medicine, Denver, Colorado, USA,
| | - Biswarup M Ghosh
- Department of Psychiatry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Jordan C Serotte
- Department of Psychiatry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Victoria Cranwell
- Department of Psychiatry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
6
|
Eap CB, Gründer G, Baumann P, Ansermot N, Conca A, Corruble E, Crettol S, Dahl ML, de Leon J, Greiner C, Howes O, Kim E, Lanzenberger R, Meyer JH, Moessner R, Mulder H, Müller DJ, Reis M, Riederer P, Ruhe HG, Spigset O, Spina E, Stegman B, Steimer W, Stingl J, Suzen S, Uchida H, Unterecker S, Vandenberghe F, Hiemke C. Tools for optimising pharmacotherapy in psychiatry (therapeutic drug monitoring, molecular brain imaging and pharmacogenetic tests): focus on antidepressants. World J Biol Psychiatry 2021; 22:561-628. [PMID: 33977870 DOI: 10.1080/15622975.2021.1878427] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Objectives: More than 40 drugs are available to treat affective disorders. Individual selection of the optimal drug and dose is required to attain the highest possible efficacy and acceptable tolerability for every patient.Methods: This review, which includes more than 500 articles selected by 30 experts, combines relevant knowledge on studies investigating the pharmacokinetics, pharmacodynamics and pharmacogenetics of 33 antidepressant drugs and of 4 drugs approved for augmentation in cases of insufficient response to antidepressant monotherapy. Such studies typically measure drug concentrations in blood (i.e. therapeutic drug monitoring) and genotype relevant genetic polymorphisms of enzymes, transporters or receptors involved in drug metabolism or mechanism of action. Imaging studies, primarily positron emission tomography that relates drug concentrations in blood and radioligand binding, are considered to quantify target structure occupancy by the antidepressant drugs in vivo. Results: Evidence is given that in vivo imaging, therapeutic drug monitoring and genotyping and/or phenotyping of drug metabolising enzymes should be an integral part in the development of any new antidepressant drug.Conclusions: To guide antidepressant drug therapy in everyday practice, there are multiple indications such as uncertain adherence, polypharmacy, nonresponse and/or adverse reactions under therapeutically recommended doses, where therapeutic drug monitoring and cytochrome P450 genotyping and/or phenotyping should be applied as valid tools of precision medicine.
Collapse
Affiliation(s)
- C B Eap
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Center for Research and Innovation in Clinical Pharmaceutical Sciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Lausanne, Switzerland, Geneva, Switzerland
| | - G Gründer
- Department of Molecular Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - P Baumann
- Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - N Ansermot
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - A Conca
- Department of Psychiatry, Health Service District Bolzano, Bolzano, Italy.,Department of Child and Adolescent Psychiatry, South Tyrolean Regional Health Service, Bolzano, Italy
| | - E Corruble
- INSERM CESP, Team ≪MOODS≫, Service Hospitalo-Universitaire de Psychiatrie, Universite Paris Saclay, Le Kremlin Bicetre, France.,Service Hospitalo-Universitaire de Psychiatrie, Hôpital Bicêtre, Assistance Publique Hôpitaux de Paris, Le Kremlin Bicêtre, France
| | - S Crettol
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - M L Dahl
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - J de Leon
- Eastern State Hospital, University of Kentucky Mental Health Research Center, Lexington, KY, USA
| | - C Greiner
- Bundesinstitut für Arzneimittel und Medizinprodukte, Bonn, Germany
| | - O Howes
- King's College London and MRC London Institute of Medical Sciences (LMS)-Imperial College, London, UK
| | - E Kim
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, South Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
| | - R Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - J H Meyer
- Campbell Family Mental Health Research Institute, CAMH and Department of Psychiatry, University of Toronto, Toronto, Canada
| | - R Moessner
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - H Mulder
- Department of Clinical Pharmacy, Wilhelmina Hospital Assen, Assen, The Netherlands.,GGZ Drenthe Mental Health Services Drenthe, Assen, The Netherlands.,Department of Pharmacotherapy, Epidemiology and Economics, Department of Pharmacy and Pharmaceutical Sciences, University of Groningen, Groningen, The Netherlands.,Department of Psychiatry, Interdisciplinary Centre for Psychopathology and Emotion Regulation, University of Groningen, Groningen, The Netherlands
| | - D J Müller
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - M Reis
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.,Clinical Chemistry and Pharmacology, Skåne University Hospital, Lund, Sweden
| | - P Riederer
- Center of Mental Health, Clinic and Policlinic for Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Würzburg, Germany.,Department of Psychiatry, University of Southern Denmark Odense, Odense, Denmark
| | - H G Ruhe
- Department of Psychiatry, Radboudumc, Nijmegen, the Netherlands.,Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, Netherlands
| | - O Spigset
- Department of Clinical Pharmacology, St. Olav University Hospital, Trondheim, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - E Spina
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - B Stegman
- Institut für Pharmazie der Universität Regensburg, Regensburg, Germany
| | - W Steimer
- Institute for Clinical Chemistry and Pathobiochemistry, Technical University of Munich, Munich, Germany
| | - J Stingl
- Institute for Clinical Pharmacology, University Hospital of RWTH Aachen, Germany
| | - S Suzen
- Department of Toxicology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - H Uchida
- Department of Neuropsychiatry, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - S Unterecker
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Würzburg, Germany
| | - F Vandenberghe
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - C Hiemke
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
7
|
Reddy MK, Bhajammanavar V, Baidya M. Annulation Cascade of Sulfamate-Derived Cyclic Imines with Glycine Aldimino Esters: Synthesis of 1,3-Benzoxazepine Scaffolds. Org Lett 2021; 23:3868-3872. [PMID: 33956452 DOI: 10.1021/acs.orglett.1c01001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An efficient (3 + 2) cycloaddition triggered annulation is reported to access 1,3-benzoxazepine frameworks. With amine base, sulfamate-derived cyclic imines readily react with glycine aldimino esters to furnish benzo-fused seven-membered heterocyclic products in good yields. The cascade reaction involves the formation of one C-C, one C-N, and one C-O bond along with the cleavage of two C-N bonds and one S-O bond. The synthesis of o-tyrosine analogues has also been accomplished from annulation products.
Collapse
Affiliation(s)
- Mallu Kesava Reddy
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| | - Vinod Bhajammanavar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| | - Mahiuddin Baidya
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India
| |
Collapse
|
8
|
Karadeniz E, Kelgokmen Y, Zora M. A new approach for the synthesis of spiro and
gem
‐dimethyl‐substituted 1,4‐oxazepines from
N
‐propargylic β‐enaminones. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.4183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Eda Karadeniz
- Department of Chemistry Middle East Technical University Ankara Turkey
| | - Yilmaz Kelgokmen
- Department of Chemistry Middle East Technical University Ankara Turkey
| | - Metin Zora
- Department of Chemistry Middle East Technical University Ankara Turkey
| |
Collapse
|
9
|
Tukker AM, Wijnolts FMJ, de Groot A, Westerink RHS. Applicability of hiPSC-Derived Neuronal Cocultures and Rodent Primary Cortical Cultures for In Vitro Seizure Liability Assessment. Toxicol Sci 2020; 178:71-87. [PMID: 32866265 PMCID: PMC7657345 DOI: 10.1093/toxsci/kfaa136] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Seizures are life-threatening adverse drug reactions which are investigated late in drug development using rodent models. Consequently, if seizures are detected, a lot of time, money and animals have been used. Thus, there is a need for in vitro screening models using human cells to circumvent interspecies translation. We assessed the suitability of cocultures of human-induced pluripotent stem cell (hiPSC)-derived neurons and astrocytes compared with rodent primary cortical cultures for in vitro seizure liability assessment using microelectrode arrays. hiPSC-derived and rodent primary cortical neuronal cocultures were exposed to 9 known (non)seizurogenic compounds (pentylenetetrazole, amoxapine, enoxacin, amoxicillin, linopirdine, pilocarpine, chlorpromazine, phenytoin, and acetaminophen) to assess effects on neuronal network activity using microelectrode array recordings. All compounds affect activity in hiPSC-derived cocultures. In rodent primary cultures all compounds, except amoxicillin changed activity. Changes in activity patterns for both cell models differ for different classes of compounds. Both models had a comparable sensitivity for exposure to amoxapine (lowest observed effect concentration [LOEC] 0.03 µM), linopirdine (LOEC 1 µM), and pilocarpine (LOEC 0.3 µM). However, hiPSC-derived cultures were about 3 times more sensitive for exposure to pentylenetetrazole (LOEC 30 µM) than rodent primary cortical cultures (LOEC 100 µM). Sensitivity of hiPSC-derived cultures for chlorpromazine, phenytoin, and enoxacin was 10-30 times higher (LOECs 0.1, 0.3, and 0.1 µM, respectively) than in rodent cultures (LOECs 10, 3, and 3 µM, respectively). Our data indicate that hiPSC-derived neuronal cocultures may outperform rodent primary cortical cultures with respect to detecting seizures, thereby paving the way towards animal-free seizure assessment.
Collapse
Affiliation(s)
- Anke M Tukker
- Neurotoxicology Research Group, Toxicology Division, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, NL-3508 TD Utrecht, The Netherlands
| | - Fiona M J Wijnolts
- Neurotoxicology Research Group, Toxicology Division, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, NL-3508 TD Utrecht, The Netherlands
| | - Aart de Groot
- Neurotoxicology Research Group, Toxicology Division, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, NL-3508 TD Utrecht, The Netherlands
| | - Remco H S Westerink
- Neurotoxicology Research Group, Toxicology Division, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, NL-3508 TD Utrecht, The Netherlands
| |
Collapse
|
10
|
Ibis O, Zora M. A facile synthesis of 6-chloro-2-methylene-2,3-dihydro-1,4-oxazepines from N-propargylic β-enaminones. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
11
|
Kelgokmen Y, Korkmaz E, Zora M. A facile synthesis of 6-[(4-nitrophenyl)thio]-substituted 2-methylene-2,3-dihydro-1,4-oxazepines from N-propargylic β-enaminones. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1837171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yilmaz Kelgokmen
- Department of Chemistry, Middle East Technical University, Ankara, Turkey
| | - Esra Korkmaz
- Department of Chemistry, Middle East Technical University, Ankara, Turkey
| | - Metin Zora
- Department of Chemistry, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
12
|
Thummala Y, Raju CE, Purnachandar D, Sreenivasulu G, Doddi VR, Karunakar GV. Gold‐Catalyzed Regioselective Synthesis of Pyrazolo[1,4]oxazepines via Intramolecular
7
‐
endo‐dig
Cyclization. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901852] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Yadagiri Thummala
- Fluoro and Agrochemicals Department CSIR‐Indian Institute of Chemical Technology 500007 Hyderabad India
- Academy of Scientific and Innovative Research 201002 Ghaziabad India
| | - Chittala Emmaniel Raju
- Fluoro and Agrochemicals Department CSIR‐Indian Institute of Chemical Technology 500007 Hyderabad India
- Academy of Scientific and Innovative Research 201002 Ghaziabad India
| | - Dalovai Purnachandar
- Fluoro and Agrochemicals Department CSIR‐Indian Institute of Chemical Technology 500007 Hyderabad India
- Academy of Scientific and Innovative Research 201002 Ghaziabad India
| | - Gottam Sreenivasulu
- Fluoro and Agrochemicals Department CSIR‐Indian Institute of Chemical Technology 500007 Hyderabad India
- Academy of Scientific and Innovative Research 201002 Ghaziabad India
| | - Venkata Ramana Doddi
- Department of Chemistry and Chemical Sciences Central University of Karnataka 585367 Kadaganchi Karnataka India
| | - Galla V. Karunakar
- Fluoro and Agrochemicals Department CSIR‐Indian Institute of Chemical Technology 500007 Hyderabad India
- Academy of Scientific and Innovative Research 201002 Ghaziabad India
| |
Collapse
|
13
|
Hu W, Teng F, Hu H, Luo S, Zhu Q. Pd-Catalyzed C(sp 2)-H Imidoylative Annulation: A General Approach To Construct Dibenzoox(di)azepines. J Org Chem 2019; 84:6524-6535. [PMID: 31050283 DOI: 10.1021/acs.joc.9b00683] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A general method to construct the scaffolds of dibenzooxazepine and dibenzodiazepine, through Pd-catalyzed isocyanide insertion and intramolecular C(sp2)-H activation, has been developed. This is the first example of seven-membered heterocycle formation by C-H imidoylative annulation.
Collapse
Affiliation(s)
- Weiming Hu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health , Chinese Academy of Sciences , 190 Kaiyuan Avenue , Guangzhou 510530 , China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road , Shijingshan District, Beijing 100049 , China
| | - Fan Teng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health , Chinese Academy of Sciences , 190 Kaiyuan Avenue , Guangzhou 510530 , China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road , Shijingshan District, Beijing 100049 , China
| | - Huaanzi Hu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health , Chinese Academy of Sciences , 190 Kaiyuan Avenue , Guangzhou 510530 , China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road , Shijingshan District, Beijing 100049 , China
| | - Shuang Luo
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health , Chinese Academy of Sciences , 190 Kaiyuan Avenue , Guangzhou 510530 , China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road , Shijingshan District, Beijing 100049 , China
| | - Qiang Zhu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health , Chinese Academy of Sciences , 190 Kaiyuan Avenue , Guangzhou 510530 , China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road , Shijingshan District, Beijing 100049 , China
| |
Collapse
|
14
|
|
15
|
Kelgokmen Y, Cayan Y, Zora M. Zinc Chloride Mediated Synthesis of 1,4-Oxazepines fromN-Propargylic β-Enaminones. European J Org Chem 2017. [DOI: 10.1002/ejoc.201701433] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yilmaz Kelgokmen
- Department of Chemistry; Middle East Technical University; 06800 Ankara Turkey
| | - Yasemin Cayan
- Department of Chemistry; Middle East Technical University; 06800 Ankara Turkey
| | - Metin Zora
- Department of Chemistry; Middle East Technical University; 06800 Ankara Turkey
| |
Collapse
|
16
|
Li Y, Meng JP, Lei J, Chen ZZ, Tang DY, Zhu J, Zhang J, Xu ZG. Efficient Synthesis of Fused Oxazepino-isoquinoline Scaffolds via an Ugi, Followed by an Intramolecular Cyclization. ACS COMBINATORIAL SCIENCE 2017; 19:324-330. [PMID: 28271876 DOI: 10.1021/acscombsci.7b00002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A mild and efficient protocol was developed for the synthesis of oxazepino-isoquinolines via a one-pot Ugi four-component reaction, followed by the intramolecular addition of the resulting alcohol to an alkyne moiety under microwave irradiation conditions. Notably, this process only required one purification step, providing facile access to two series of complex and potentially interesting biologically active scaffolds.
Collapse
Affiliation(s)
- Yong Li
- Chongqing
Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing
Key Laboratory of Kinase Modulators as Innovative Medicine, IATTI, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
- Key
Laboratory for Asymmetric Synthesis and Chiral Technology of Sichuan
Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences. Chengdu 610041, China
| | - Jiang-Ping Meng
- Chongqing
Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing
Key Laboratory of Kinase Modulators as Innovative Medicine, IATTI, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| | - Jie Lei
- Chongqing
Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing
Key Laboratory of Kinase Modulators as Innovative Medicine, IATTI, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
- Key
Laboratory for Asymmetric Synthesis and Chiral Technology of Sichuan
Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences. Chengdu 610041, China
| | - Zhong-Zhu Chen
- Chongqing
Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing
Key Laboratory of Kinase Modulators as Innovative Medicine, IATTI, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| | - Dian-Yong Tang
- Chongqing
Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing
Key Laboratory of Kinase Modulators as Innovative Medicine, IATTI, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| | - Jin Zhu
- Chongqing
Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing
Key Laboratory of Kinase Modulators as Innovative Medicine, IATTI, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
- Key
Laboratory for Asymmetric Synthesis and Chiral Technology of Sichuan
Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences. Chengdu 610041, China
| | - Jin Zhang
- Chongqing
Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing
Key Laboratory of Kinase Modulators as Innovative Medicine, IATTI, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| | - Zhi-Gang Xu
- Chongqing
Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing
Key Laboratory of Kinase Modulators as Innovative Medicine, IATTI, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| |
Collapse
|
17
|
Xu J, Li Y, Meng JP, Lei J, Chen ZZ, Tang DY, Zhu J, Xu ZG. Efficient microwave-assisted synthesis of fused benzoxazepine–isoquinoline derivatives via an Ugi reaction/tautomerization/intramolecular SNAr reaction sequence. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.03.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Goutham K, Ashok Kumar D, Suresh S, Sridhar B, Narender R, Karunakar GV. Gold-Catalyzed Intramolecular Cyclization of N-Propargylic β-Enaminones for the Synthesis of 1,4-Oxazepine Derivatives. J Org Chem 2015; 80:11162-8. [DOI: 10.1021/acs.joc.5b01733] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kommuru Goutham
- Crop Protection Chemicals Division, ‡Academy of Scientific and Innovative
Research, §Organic and Biomolecular
Chemistry Division, and ∥Center for X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Desamala Ashok Kumar
- Crop Protection Chemicals Division, ‡Academy of Scientific and Innovative
Research, §Organic and Biomolecular
Chemistry Division, and ∥Center for X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Surisetti Suresh
- Crop Protection Chemicals Division, ‡Academy of Scientific and Innovative
Research, §Organic and Biomolecular
Chemistry Division, and ∥Center for X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Balasubramanian Sridhar
- Crop Protection Chemicals Division, ‡Academy of Scientific and Innovative
Research, §Organic and Biomolecular
Chemistry Division, and ∥Center for X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Ravirala Narender
- Crop Protection Chemicals Division, ‡Academy of Scientific and Innovative
Research, §Organic and Biomolecular
Chemistry Division, and ∥Center for X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Galla V. Karunakar
- Crop Protection Chemicals Division, ‡Academy of Scientific and Innovative
Research, §Organic and Biomolecular
Chemistry Division, and ∥Center for X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| |
Collapse
|
19
|
Salvo F, Raschi E, Moretti U, Chiarolanza A, Fourrier-Réglat A, Moore N, Sturkemboom M, De Ponti F, Poluzzi E, Pariente A. Pharmacological prioritisation of signals of disproportionate reporting: proposal of an algorithm and pilot evaluation. Eur J Clin Pharmacol 2014; 70:617-25. [DOI: 10.1007/s00228-014-1657-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 02/10/2014] [Indexed: 11/24/2022]
|
20
|
PET measurement of receptor occupancy as a tool to guide dose selection in neuropharmacology: are we asking the right questions? J Clin Psychopharmacol 2013; 33:725-8. [PMID: 24100788 DOI: 10.1097/jcp.0b013e3182a88654] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Receptor occupancy studies are becoming commonplace for verifying drug mechanism of action and selecting early development candidates. Positron emission tomography (PET) has been applied to pharmacodynamic (PD) studies in several therapeutic areas including neurology, cardiology, and oncology. Prospective use of PET to define dosing requirements has been proposed particularly for central nervous system (CNS)-targeted drugs; however, correlations with clinical outcomes have been mostly anecdotal and not causally established.
Collapse
|
21
|
Reeves KC, Virk S, Niedermier J, Duchemin AM. Addition of amoxapine improves positive and negative symptoms in a patient with schizophrenia. Ther Adv Psychopharmacol 2013; 3:340-2. [PMID: 24294487 PMCID: PMC3840811 DOI: 10.1177/2045125313499363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Kevin C Reeves
- Wexner Medical at the Ohio State University, 1670 Upham Drive, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
22
|
Barth V, Need AB, Tzavara ET, Giros B, Overshiner C, Gleason SD, Wade M, Johansson AM, Perry K, Nomikos GG, Witkin JM. In vivo occupancy of dopamine D3 receptors by antagonists produces neurochemical and behavioral effects of potential relevance to attention-deficit-hyperactivity disorder. J Pharmacol Exp Ther 2012. [PMID: 23197772 DOI: 10.1124/jpet.112.198895] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dopamine D(3) receptors have eluded definitive linkage to neurologic and psychiatric disorders since their cloning over 20 years ago. We report a new method that does not employ a radiolabel for simultaneously defining in vivo receptor occupancy of D(3) and D(2) receptors in rat brain after systemic dosing using the tracer epidepride (N-[[(2S)-1-ethylpyrrolidin-2-yl]methyl]-5-iodo-2,3-dimethoxybenzamide). Decreases in epidepride binding in lobule 9 of cerebellum (rich in D(3) receptors) were compared with nonspecific binding in the lateral cerebellum. The in vivo occupancy of the dopamine D(3) receptors was dose dependently increased by SB-277011A (trans-N-[4-[2-(6-cyano-1,2,3,4-tetrahydroisoquinolin-2-yl)ethyl]cyclohexyl]-4-quinolinecarboxamide) and U99194 (2,3-dihydro-5,6-dimethoxy- N,N-dipropyl-1H-inden-2-amine). Both antagonists increased extracellular levels of acetylcholine (ACh) in the medial prefrontal cortex of rats and modified brain-tissue levels of ACh and choline. Consistent with these findings, the D(3) receptor antagonists enhanced the acquisition of learning of rats either alone or in the presence of the norepinephrine uptake blocker reboxetine as with the attention-deficit-hyperactivity disorder (ADHD) drug methylphenidate. Like reboxetine, the D(3) receptor antagonists also prevented deficits induced by scopolamine in object recognition memory of rats. Mice in which the dopamine transporter (DAT) has been deleted exhibit hyperactivity that is normalized by compounds that are effective in the treatment of ADHD. Both D(3) receptor antagonists decreased the hyperactivity of DAT(-/-) mice without affecting the activity of wild type controls. The present findings indicate that dopamine D(3) receptor antagonists engender cognition-enhancing and hyperactivity-dampening effects. Thus, D(3) receptor blockade could be considered as a novel treatment approach for cognitive deficits and hyperactivity syndromes, including those observed in ADHD.
Collapse
Affiliation(s)
- V Barth
- Psychiatric Drug Discovery, Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN 46285-0501, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Roberts PD, Spiros A, Geerts H. Simulations of symptomatic treatments for Alzheimer's disease: computational analysis of pathology and mechanisms of drug action. ALZHEIMERS RESEARCH & THERAPY 2012. [PMID: 23181523 PMCID: PMC3580459 DOI: 10.1186/alzrt153] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Introduction A substantial number of therapeutic drugs for Alzheimer's disease (AD) have failed in late-stage trials, highlighting the translational disconnect with pathology-based animal models. Methods To bridge the gap between preclinical animal models and clinical outcomes, we implemented a conductance-based computational model of cortical circuitry to simulate working memory as a measure for cognitive function. The model was initially calibrated using preclinical data on receptor pharmacology of catecholamine and cholinergic neurotransmitters. The pathology of AD was subsequently implemented as synaptic and neuronal loss and a decrease in cholinergic tone. The model was further calibrated with clinical Alzheimer's Disease Assessment Scale-cognitive subscale (ADAS-Cog) results on acetylcholinesterase inhibitors and 5-HT6 antagonists to improve the model's prediction of clinical outcomes. Results As an independent validation, we reproduced clinical data for apolipoprotein E (APOE) genotypes showing that the ApoE4 genotype reduces the network performance much more in mild cognitive impairment conditions than at later stages of AD pathology. We then demonstrated the differential effect of memantine, an N-Methyl-D-aspartic acid (NMDA) subunit selective weak inhibitor, in early and late AD pathology, and show that inhibition of the NMDA receptor NR2C/NR2D subunits located on inhibitory interneurons compensates for the greater excitatory decline observed with pathology. Conclusions This quantitative systems pharmacology approach is shown to be complementary to traditional animal models, with the potential to assess potential off-target effects, the consequences of pharmacologically active human metabolites, the effect of comedications, and the impact of a small number of well described genotypes.
Collapse
Affiliation(s)
- Patrick D Roberts
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 SW Bond Avenue, Portland, OR 97239 USA ; In Silico Biosciences, Inc., 405 Waltham Street, Lexington, MA 02421 USA
| | - Athan Spiros
- In Silico Biosciences, Inc., 405 Waltham Street, Lexington, MA 02421 USA
| | - Hugo Geerts
- In Silico Biosciences, Inc., 405 Waltham Street, Lexington, MA 02421 USA
| |
Collapse
|
24
|
Spiros A, Roberts P, Geerts H. A Quantitative Systems Pharmacology Computer Model for Schizophrenia Efficacy and Extrapyramidal Side Effects. Drug Dev Res 2012. [DOI: 10.1002/ddr.21008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
25
|
Newberg AB, Moss AS, Monti DA, Alavi A. Positron emission tomography in psychiatric disorders. Ann N Y Acad Sci 2011; 1228:E13-25. [DOI: 10.1111/j.1749-6632.2011.06162.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Yang G, Zhou MH, Ren Z, Xu JJ, Mei YA. Amoxapine inhibits delayed outward rectifier K(+) currents in cerebellar granule cells via dopamine receptor and protein kinase A activation. Cell Physiol Biochem 2011; 28:163-74. [PMID: 21865859 DOI: 10.1159/000331725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Although tricyclic antidepressants amoxapine is proposed to target 5-HT and D2 receptors, very few studies have addressed the effect of amoxapine on molecular and cellular mechanisms via receptor pathways. In this study, we test the effect of amoxapine on rat cerebellar granule neurons (CGNs) to address this possibility. METHODS CGNs cell culture, whole-cell current recording using a patch-clamp technique, western blot and non-radioactive detection analysis of phosphorylated protein kinase A (PKA) were used. RESULTS Amoxapine inhibits delayed rectifier potassium (I(K)) current in a dose-dependent manner and modulates inactivation properties in CGNs. Those effects were not eliminated by preincubation with 5-HT or 5-HT receptor antagonists, but abolished by dopamine and D1/D5 receptor antagonists. Application of GTPγ-S and inhibitor of the Gs signalling cascade abolished the amoxapine-induced effect on I(K). The application of forskolin or dibutyryl-cAMP mimicked the inhibitory effect of amoxapine on I(K). Western blotting for phosphorylated PKA revealed that amoxapine significantly increased the intracellular levels of phosphorylated PKA, a marker of PKA activation. CONCLUSION Amoxapine inhibits I(K) currents in rat CGNs via cAMP/PKA-dependent pathways, as in mouse cortical neurons we reported earlier, but that involves D1-like receptors instead of 5-HT receptors.
Collapse
Affiliation(s)
- Guang Yang
- Institutes of Brain Science, School of Life Sciences and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, PR China
| | | | | | | | | |
Collapse
|
27
|
|
28
|
He YL, Zhan XQ, Yang G, Sun J, Mei YA. Amoxapine inhibits the delayed rectifier outward K+ current in mouse cortical neurons via cAMP/protein kinase A pathways. J Pharmacol Exp Ther 2009; 332:437-45. [PMID: 19915071 DOI: 10.1124/jpet.109.159160] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ion channels are known to be modulated by antidepressant drugs, but the molecular mechanisms are not known. We have shown that the antidepressant drug amoxapine suppresses rectifier outward K(+) (I(K)) currents in mouse cortical neurons. At a concentration of 10 to 500 muM, amoxapine reversibly inhibited I(K) in a dose-dependent manner and modulated both steady-state activation and inactivation properties. The application of forskolin or dibutyryl cAMP mimicked the inhibitory effect of amoxapine on I(K) and abolished further inhibition by amoxapine. N-[2-(p-Bromocinnamylamino)ethyl]-5-iso-quinolinesulphonamide (H-89), a protein kinase A (PKA) inhibitor, augmented I(K) amplitudes and completely eliminated amoxapine inhibition of I(K). Amoxapine was also found to significantly increase intracellular cAMP levels. The effects of amoxapine on I(K) were abolished by preincubation with 5-hydroxytryptamine (5-HT) and the antagonists of 5-HT(2) receptor. Moreover, intracellular application of guanosine 5'-[gammathio]-triphosphate increased I(K) amplitudes and prevented amoxapine-induced inhibition. The selective Kv2.1 subunit blocker Jingzhaotoxin-III reduced I(K) amplitudes by 30% and also significantly abolished the inhibitory effect of amoxapine. Together these results suggest that amoxapine inhibits I(K) in mouse cortical neurons by cAMP/PKA-dependent pathway associated with the 5-HT receptor, and suggest that the Kv2.1 alpha-subunit may be the target for this inhibition.
Collapse
Affiliation(s)
- Yan-Lin He
- nstitutes of Brain Science, School of Life Sciences and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | | | | | | | | |
Collapse
|
29
|
Abstract
Converging data from multiple lines of research provide growing understanding of the pharmacological basis of the efficacy and tolerability of antipsychotic agents. This review highlights some of the drawbacks of the current practice of classifying antipsychotic agents into first- and second-generation agents, and argues that much of what is known about an antipsychotic agent in terms of its efficacy and tolerability can be predicted from its binding affinity at different receptors. This makes a case for a new system of classification that reflects the receptor binding affinity profiles of individual antipsychotic agents. In its quest to make a compelling case, the review provides detailed explanations for the pharmacological basis of antipsychotic efficacy, antipsychotic-induced weight gain and diabetes mellitus, cognitive effects and other adverse effects.
Collapse
Affiliation(s)
- Ripu D Jindal
- Department of Psychiatry, University of Ottawa School of Medicine, Ottawa, Ontario, Canada.
| | | |
Collapse
|
30
|
Abstract
It has been proposed that the lack of extrapyramidal side effects of atypical antipsychotic drugs is caused by their fast dissociation or low affinity for the D2 receptor or their concomitant high affinity for other receptors, for example, 5HT2 and D4. We noted that amoxapine, an established antidepressant, has affinity for 5HT2 and D2 receptors, and its effects in preclinical model are very similar to atypical antipsychotics. The objective of this study was to examine the antipsychotic effect and side effect profile of amoxapine versus haloperidol in a double-blind study for 6 weeks in patients with schizophrenia. A total of 54 patients with schizophrenia were titrated to the starting dose of 150 mg/d of amoxapine or 5 mg/d of haloperidol within 3 days. Clinical efficacy and side effects were monitored at baseline, and Weeks 2, 4, and 6.Forty-one patients completed 5 weeks, and 36 patients completed the 6 weeks of follow-up. Both treatment groups showed significant improvement in Positive and Negative Syndrome Scale positive (30%) and total scores (20%), without significant differences between the groups. In addition, in the amoxapine group, significant improvement was seen in the negative symptoms and the Clinical Global Impression. No significant changes were seen on Calgary Depression Scale for Schizophrenia, side effect checklists, and prolactin levels in both groups. The results suggest that amoxapine may be as effective an antipsychotic as haloperidol as predicted by its affinity for D2 and 5HT2 receptors, supporting earlier studies. However, it did not prove to have fewer extrapyramidal side effects than haloperidol, possibly because the baseline scores were very low.
Collapse
|
31
|
Barth VN, Chernet E, Martin LJ, Need AB, Rash KS, Morin M, Phebus LA. Comparison of rat dopamine D2 receptor occupancy for a series of antipsychotic drugs measured using radiolabeled or nonlabeled raclopride tracer. Life Sci 2006; 78:3007-12. [PMID: 16434058 DOI: 10.1016/j.lfs.2005.11.031] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Revised: 11/18/2005] [Accepted: 11/27/2005] [Indexed: 11/24/2022]
Abstract
Preclinical brain receptor occupancy measures have heretofore been conducted by quantifying the brain distribution of a radiolabeled tracer ligand using either scintillation spectroscopy or tomographic imaging. For smaller animals like rodents, the majority of studies employ tissue dissection and scintillation spectroscopy. These measurements can also be accomplished using liquid chromatography coupled to mass spectral detection to measure the brain distribution of tracer molecules, obviating the need for radioligands. In order to validate mass spectroscopy-based receptor occupancy methods, we examined dopamine D2 receptor dose-occupancy curves for a number of antipsychotic drugs in parallel experiments using either mass spectroscopy or radioligand-based approaches. Oral dose-occupancy curves were generated for 8 antipsychotic compounds in parallel experiments using either radiolabeled or unlabeled raclopride tracer. When curves generated by these two methods were compared and ED(50) values determined, remarkably similar data were obtained. Occupancy ED(50) values were (mg/kg): chlorpromazine, 5.1 and 2.7; clozapine, 41 and 40; haloperidol, 0.2 and 0.3; olanzapine, 2.1 and 2.2; risperidone, 0.1 and 0.4; spiperone, 0.5 and 0.4; thioridazine 9.2 and 9.5; and ziprasidone 1.4 and 2.1 (unlabeled and radiolabeled raclopride tracer, respectively). The observation that in vivo application of both techniques led to comparable data adds to the validation state of the mass spectroscopy-based approach to receptor occupancy assays.
Collapse
Affiliation(s)
- Vanessa N Barth
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Apiquian R, Fresan A, Ulloa RE, de la Fuente-Sandoval C, Herrera-Estrella M, Vazquez A, Nicolini H, Kapur S. Amoxapine as an atypical antipsychotic: a comparative study vs risperidone. Neuropsychopharmacology 2005; 30:2236-44. [PMID: 15956984 DOI: 10.1038/sj.npp.1300796] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Amoxapine is marketed as an antidepressant. However, its in-vitro profile, receptor occupancy and preclinical effects are very similar to atypical antipsychotics. Amoxapine has also shown efficacy as an atypical antipsychotic in open trials. The objective of this study was to compare the antipsychotic and side effect profile of amoxapine and risperidone in a randomised assignment, standardized dosing, double-blind trial of acutely psychotic patients with schizophrenia. A total of 48 schizophrenic patients were enrolled and randomized in a double-blind 6-week trial to receive either risperidone (up to 5 mg/day) or amoxapine (up to 250 mg/day). Positive, negative, affective symptoms and motor side effects were measured using standardized weekly assessments. Prolactin levels were also determined at baseline and at the end of the study. A total of 39 patients (amoxapine, n=22; risperidone, n=21) completed the trial. Both pharmacological treatments, amoxapine 228.0 mg/day (SD=34.6) and risperidone 4.5 mg/day (SD=0.7), showed equivalent improvement in positive, negative, and depressive symptoms. Amoxapine was associated with less EPS and less prolactin elevation than risperidone. These data support previous reports about the efficacy of amoxapine as an atypical antipsychotic. Since amoxapine is off-patent, it may be a valuable low-cost alternative to new atypical antipsychotics, particularly in low-income countries where the majority of the patients are still treated with typical antipsychotics.
Collapse
Affiliation(s)
- Rogelio Apiquian
- Department of Psychiatry, National Institute of Neurology and Neurosurgery Manuel Velasco Suarez, Av. Insurgentes Sur 3877, Mexico City, 14296 Mexico.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Apiquian R, Ulloa E, Fresan A, Loyzaga C, Nicolini H, Kapur S. Amoxapine shows atypical antipsychotic effects in patients with schizophrenia: results from a prospective open-label study. Schizophr Res 2003; 59:35-9. [PMID: 12413640 DOI: 10.1016/s0920-9964(01)00342-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Amoxapine is marketed as an antidepressant. However, its receptor occupancy, in vitro and in vivo, and its effects in pre-clinical models are very similar to atypical antipsychotics. To examine if this leads to an atypical antipsychotic effect in the clinical context, the authors examined the antipsychotic and side-effect profile of amoxapine in acutely psychotic patients with schizophrenia. METHODS Seventeen patients were enrolled and 15 completed a prospective open-label 6-week study of amoxapine starting with a fixed-starting dose (150 mg/h) with standardized titration up to 250 mg/h, if required. Positive, negative, affective symptoms and side-effects were monitored using standardized weekly assessments. RESULTS Amoxapine (median final dose 210 mg/h) was well-tolerated and showed significant improvement in positive and negative symptoms (both p<0.001), with a trend towards improvement in mood symptoms and no treatment-emergent extrapyramidal side-effects, akathisia or weight gain. Prolactin elevation was observed. CONCLUSION These clinical data lend support to the pre-clinical suggestions that amoxapine may be an atypical antipsychotic. Given its lack of weight gain and that it is considerably less expensive than current options, amoxapine could be a valuable alternative for some patients. These considerations strongly call for more systematic, double-blind studies of amoxapine as an atypical antipsychotic.
Collapse
|
35
|
Liégeois JF, Eyrolles L, Ellenbroek BA, Lejeune C, Carato P, Bruhwyler J, Géczy J, Damas J, Delarge J. New pyridobenzodiazepine derivatives: modifications of the basic side chain differentially modulate binding to dopamine (D(4.2), D(2L)) and serotonin (5-HT(2A)) receptors. J Med Chem 2002; 45:5136-49. [PMID: 12408724 DOI: 10.1021/jm0104825] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of new pyridobenzodiazepines with variation of the basic side chain were synthesized and evaluated for their binding to D(4.2), D(2L), and 5-HT(2A) receptors in comparison with clozapine, haloperidol, and two parent compounds previously described, 8-chloro-6-(4-methyl-1-piperazinyl)-11H-pyrido[2,3-b][1,4]benzodiazepine (8) and 8-methyl-6-(4-methyl-1-piperazinyl)-11H-pyrido[2,3-b][1,4]benzodiazepine (9). In the piperazine series, replacing the N-methyl group by a N-phenyl moiety (15-17, 30-32) provided a dramatic decrease of affinity for all receptors (K(i) > 1000 nM). A N-cyclohexyl group (20, 35) restored some affinity. Compounds with a N-benzyl (18, 33) or N-phenethyl side chain (19, 34) had significant affinities at D(4.2) and 5-HT(2A) receptors. Homologation of the piperazine nucleus (29, 44) led to a significant decrease of the affinity at all receptors investigated. In the 4-aminopiperidine series, N-methyl derivatives (21, 36) possessed less affinity in comparison with the N-methylpiperazine analogues (8, 9) while the N-benzyl congeners (22, 37) showed similar affinities. The rigidification of piperidine nucleus as obtained in azabicyclo[3.2.1]octane derivatives (23, 38) involved a slight reduction of the affinity at D(4.2) and 5-HT(2A) receptors while the affinity at D(2L) receptors was dramatically increased. The introduction of N-substituted aminoalkylamines to replace N-methylpiperazine generally led to a significant decrease in the affinity for D(4.2) receptors but some of these molecules (24, 25, 41) presented a significant 5-HT(2A) binding affinity. The presence of a more flexible side chain induced an increased conformational freedom. Consequently, the preferential position of the distal nitrogen or its basicity in piperazine derivatives was greatly modified. 19 with a high D(4.2) and 5-HT(2A) affinity (K(i) = 40 and 103 nM, respectively) did not induce cataleptic phenomenon in the paw test in rats but significantly reduced the immobility time in Porsolt's test in mice suggesting antidepressant properties.
Collapse
MESH Headings
- Amines/chemical synthesis
- Amines/chemistry
- Amines/pharmacology
- Animals
- Antidepressive Agents/chemical synthesis
- Antidepressive Agents/chemistry
- Antidepressive Agents/pharmacology
- Benzodiazepines/chemical synthesis
- Benzodiazepines/chemistry
- Benzodiazepines/pharmacology
- Catalepsy/chemically induced
- Cell Line
- Dopamine Agents/chemical synthesis
- Dopamine Agents/chemistry
- Dopamine Agents/pharmacology
- Female
- Humans
- Mice
- Molecular Conformation
- Piperazines/chemical synthesis
- Piperazines/chemistry
- Piperazines/pharmacology
- Piperidines/chemical synthesis
- Piperidines/chemistry
- Piperidines/pharmacology
- Radioligand Assay
- Rats
- Rats, Wistar
- Receptor, Serotonin, 5-HT2A
- Receptors, Adrenergic, alpha-1/drug effects
- Receptors, Adrenergic, alpha-1/metabolism
- Receptors, Dopamine D2/drug effects
- Receptors, Dopamine D2/metabolism
- Receptors, Dopamine D4
- Receptors, Serotonin/drug effects
- Receptors, Serotonin/metabolism
- Serotonin Agents/chemical synthesis
- Serotonin Agents/chemistry
- Serotonin Agents/pharmacology
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Jean-François Liégeois
- Natural and Synthetic Drugs Research Center, Laboratory of Medicinal Chemistry, University of Liège, avenue de l'Hôpital 1 (B36), Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
DeBattista C, Rothschild AJ, Schatzberg AF. A Dynamic Algorithm for the Treatment of Psychotic Major Depression. Psychiatr Ann 2002. [DOI: 10.3928/0048-5713-20021101-07] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Sa DS, Kapur S, Lang AE. Amoxapine shows an antipsychotic effect but worsens motor function in patients with Parkinson's disease and psychosis. Clin Neuropharmacol 2001; 24:242-4. [PMID: 11479398 DOI: 10.1097/00002826-200107000-00010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Amoxapine, a dibenzoxazepine antidepressant, has been suggested to have atypical antipsychotic properties. We tested it to control psychosis in three patients with Parkinson's disease (PD). Two patients had significant improvement in hallucinations, whereas the third could not tolerate the drug for a sufficient period. All three patients experienced a decline in motor function; two also had concomitant reduction in dyskinesias. Therefore, although we found some support for amoxapine having antipsychotic properties, this drug seems to carry a risk of worsening motor function in patients with PD.
Collapse
Affiliation(s)
- D S Sa
- Movement Disorders Unit, Division of Neurology, Toronto Western Hospital, ON, Canada
| | | | | |
Collapse
|
38
|
Verbeeck WJ, Berk M, Paiker J, Jersky B. The prolactin response to sulpiride in major depression: the role of the D2 receptor in depression. Eur Neuropsychopharmacol 2001; 11:215-20. [PMID: 11418281 DOI: 10.1016/s0924-977x(01)00086-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Multiple lines of investigations have implicated the role of the dopaminergic system in depression. The aim of the study was to characterise the Dopamine D2 receptor sensitivity status in depressed patients versus controls by means of a novel neuro-endocrine challenge test, the prolactin response to sulpiride. In this intervention, ten patients and ten age matched male volunteers were studied. The patients were diagnosed according to DSM-IV criteria, and Montgomery Asberg and Zung scales were done. There was no significant difference in baseline levels of prolactin between the depressed and control groups. Significantly higher prolactin levels after sulpiride challenge were however found in depressed patients than controls at all time points after sulpiride administration. This neuroendocrine challenge paradigm suggests that the prolactin response to sulpiride, a D2 receptor antagonist, is enhanced in depression, which suggests that this receptor might be supersensitive in depression compared to controls. This adds to the data implicating the dopaminergic system in the pathophysiology of depression, and suggests that dopaminergic mechanisms might be a target of therapeutic interest.
Collapse
Affiliation(s)
- W J Verbeeck
- Department of Psychiatry, University of the Witwatersrand, Johannesburg, South Africa
| | | | | | | |
Collapse
|
39
|
Abstract
Presently in the United States, 21 compounds have been approved by the Food and Drug Administration as antidepressants. Two additional drugs marketed outside the United States as antidepressants have been approved for obsessive-compulsive disorder. Nearly one half of all these compounds became available within the past 12 years, whereas the first antidepressant was available more than 40 years ago. After the clinical aspects of depression are introduced in this article, the pharmacology of the newer generation drugs is reviewed in relationship to the older compounds. The information in this review will help clinicians treat acute depression with pharmacological agents.
Collapse
Affiliation(s)
- E Richelson
- Department of Psychiatry and Psychology, Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL 32224, USA.
| |
Collapse
|
40
|
Wheeler Vega JA, Mortimer AM, Tyson PJ. Somatic treatment of psychotic depression: review and recommendations for practice. J Clin Psychopharmacol 2000; 20:504-19. [PMID: 11001234 DOI: 10.1097/00004714-200010000-00003] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The diagnosis, classification, and course of psychotic major depression (PMD) is considered with regard to its status as a distinct syndrome. Several factors, especially biological markers, suggest, although as yet do not confirm, that PMD is distinct from nonpsychotic major depression (NPMD), particularly for the purposes of treatment. This article provides a critical review of somatic treatments for PMD, with attention to problems of inadequate treatment, as well as underused and more recently introduced treatments. The somatic treatment options reviewed include (1) combined antidepressant (AD) and antipsychotic (AP) therapy with tricyclic antidepressants (TCAs) and typical APs; (2) electroconvulsive therapy (ECT); (3) amoxapine; (4) selective serotonin reuptake inhibitors (SSRIs), alone and in combination; (5) several atypical APs, alone and in combination; (6) mood stabilizers and anticonvulsants; and (7) some experimental treatments and surgery. A comprehensive treatment algorithm (heuristic) is presented, which draws on some previous guidelines and the critical review. This heuristic is conservative in its aims, but forward-looking in its recommendations. The status of the TCA plus typical AP regime is challenged as the default first-line treatment, and preferable alternatives are discussed. ECT has been shown to be at least as effective in short-term treatment and should be considered more frequently, especially in severe presentations and as a maintenance treatment. Some single compounds should be considered as first-line monotherapies in less severe cases. For cases in which combined AD+AP regimes are instituted, SSRIs and atypical APs should be used before older classes of drugs are considered. These recommendations aim to minimize the number of treatments used and unwanted effects experienced.
Collapse
|
41
|
Moody JD, Zhang D, Heinze TM, Cerniglia CE. Transformation of amoxapine by Cunninghamella elegans. Appl Environ Microbiol 2000; 66:3646-9. [PMID: 10919836 PMCID: PMC92200 DOI: 10.1128/aem.66.8.3646-3649.2000] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We examined Cunninghamella elegans to determine its ability to transform amoxapine, a tricyclic antidepressant belonging to the dibenzoxazepine class of drugs. Approximately 57% of the exogenous amoxapine was metabolized to three metabolites that were isolated by high-performance liquid chromatography and were identified by nuclear magnetic resonance and mass spectrometry as 7-hydroxyamoxapine (48%), N-formyl-7-hydroxyamoxapine (31%), and N-formylamoxapine (21%). 7-Hydroxyamoxapine, a mammalian metabolite with biological activity, now can be produced in milligram quantities for toxicological evaluation.
Collapse
Affiliation(s)
- J D Moody
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079, USA
| | | | | | | |
Collapse
|
42
|
Wadenberg MG, Sills TL, Fletcher PJ, Kapur S. Antipsychoticlike effects of amoxapine, without catalepsy, using the prepulse inhibition of the acoustic startle reflex test in rats. Biol Psychiatry 2000; 47:670-6. [PMID: 10745061 DOI: 10.1016/s0006-3223(99)00267-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND The dibenzoxazepine amoxapine was introduced as an antidepressant but has shown antipsychoticlike activity in a number of animal screening tests. A recent positron emission tomography study showed a 5-HT(2)/D(2) receptor occupancy profile of amoxapine that is very similar to that of established atypical antipsychotics. Schizophrenics display deficits in sensory gating mechanisms, such as prepulse inhibition (PPI) of the acoustic startle reflex. A similar deficit can be produced by dopamine (DA) and by 5-HT(2A/C) receptor agonists in rats. Antipsychotic compounds reverse this effect. METHODS Effects of amoxapine on apomorphine- or 1-(2, 5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI)-induced disruption of PPI were studied in adult male Sprague-Dawley rats. The extrapyramidal side effect (EPS) liability of amoxapine was assessed using the inclined grid catalepsy (CAT) test. Statistical analyses were performed by analysis of variance (ANOVA) for fully repeated measures (PPI) and by the Kruskal-Wallis one-way ANOVA by ranks (CAT). RESULTS Apomorphine (0.5 mg/kg) produced a significant reduction in PPI compared with the case of rats in the saline control group. Pretreatment with amoxapine (10 mg/kg) significantly attenuated the apomorphine-induced disruption of PPI. DOI (0.5 mg/kg) significantly reduced PPI compared with saline controls. Pretreatment with amoxapine (5 or 10 mg/kg) produced a significant attenuation of the DOI-induced disruption of PPI. Amoxapine by itself did not alter PPI. Amoxapine (5 or 10 mg/kg) did not produce CAT. CONCLUSIONS The DA D(2)/5-HT(2) receptor antagonist amoxapine produced an antipsychoticlike reversal of both apomorphine- and DOI-induced disruption of PPI. Furthermore, the same doses of amoxapine that reversed disruption of PPI did not produce CAT. The results confirm and lend further support to the results of previous studies on amoxapine, suggesting that amoxapine might possess antipsychotic activity with little propensity for producing EPS.
Collapse
Affiliation(s)
- M G Wadenberg
- Centre for Addiction and Mental Health, Toronto, Canada
| | | | | | | |
Collapse
|