1
|
Roohi A, Housaindokht MR, Bozorgmehr MR, Vakili M. Impact of surface-active ionic solutions on the structure and function of laccase from trametes versicolor: Insights from molecular dynamics simulations. J Mol Graph Model 2024; 132:108844. [PMID: 39116656 DOI: 10.1016/j.jmgm.2024.108844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 06/22/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
Many protein-ionic liquid investigations have examined laccase interactions. Laccases are a class of poly-copper oxidoreductases that retain significant biotechnological relevance owing to their notable oxidative capabilities and their application in the elimination of synthetic dyes, phenolic compounds, insecticides, and various other substances. This study investigates the impact of surface active ionic liquids (SAILs), namely, decyltrimethylammonium bromide [N10111][Br] and 1-decyl-3-methylimidazolium chloride [C10mim][Cl] as cationic surfactant ionic liquids and cholinium decanoate [Chl][Dec], an anionic surfactant ionic liquid, on the structure and function of laccase from the fungus Trametes versicolor (TvL) by the molecular dynamics (MD) simulation method. In summary, this study showed that laccase solvent-accessible surface area increased in the ionic liquid [Chl][Dec] while it decreased in the other two ionic liquids. Interestingly, [Chl][Dec] ionic liquid components formed hydrogen bonds with laccase, while [N10111][Br] and [C10mim][Cl] components were unable to form hydrogen bonds with laccase. The quantity of hydrogen bonds formed between water molecules and the enzyme was also diminished in the presence of [Chl][Dec] in comparison to the other two ionic liquids. especially at a concentration of 250 mM. In 250 mM concentrations of [N10111][Br] and [C10mim][Cl], clusters of long-chain cations are likely to form near the copper T1 site. However, even at low [Chl][Dec] concentrations, long [Dec]- chains were observed to penetrate the enzyme near the copper T1 site, and at 250 mM [Chl][Dec], a large cluster of anions occupied the opening of the active site. The results of the analysis also show that the interaction between the [Dec]- anion and the enzyme is stronger than the interaction between [N10111]+ and [C10mim]+ with laccase; in addition, the [Dec]- anion, compared to [Br]- and [Cl]- has a much greater tendency to bind with the enzyme residues.
Collapse
Affiliation(s)
- Azam Roohi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Reza Housaindokht
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Research and Technology Center of Biomolecules, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | | | - Mohammad Vakili
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
2
|
Riadi Y, Afzal O, Kumar S, Varadharajan V, Geesi MH. Synthesis of novel ( R)-carvone-tagged thiazolidinone as anticancer leads: characterization, in vitro antiproliferative evaluation and in silico studies. J Biomol Struct Dyn 2024:1-14. [PMID: 38523573 DOI: 10.1080/07391102.2024.2331095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
This work describes the successful synthesis of a series of three novel thiazolidinone-carvone-O-alkyl hybrids through a two-step approach involving heterocyclization and O-alkylation reactions. Comprehensive structural characterization of the obtained products was achieved using NMR and HRMS spectroscopic techniques. This study assessed in vitro antiproliferative activity of synthesized thiazolidinone-carvone-O-alkyl hybrids (5a-c) against various human cancer cell lines, viz. HT-1080 (fibrosarcoma), A-549 (lung cancer), MCF-7 (breast cancer) and MDA-MB-231 (breast cancer). MTT assay revealed promising results for compounds 5b and 5c, demonstrating good antiproliferative activity against A-549 and MCF-7 cell lines comparable to the positive control, Doxorubicin. Compound 5a, harbouring an O-acetoxy group, displayed limited anticancer activity against MCF-7 and MDA-MB-231 cells, with IC50 values of 69.33 ± 0.42 µM and >100 µM, respectively. Docking results confirmed that the compounds 5a-c binds at the active site of p21 with docking scores -2.0, -4.8, and -7.0 kcal/mol, respectively. Compound 5a-c also showed good binding potential against Bcl2 protein with docking score of -4.9, -6.0, -5.5 kcal/mol, respectively. Furthermore, binding energy analysis and dynamics simulation studies of compounds towards p21 and Bcl2 yielded promising results. In PAK4 assay, compound 5c showed comparable potency (IC50 6.76 µM) with the standard control UC2288 (IC50 6.40 µM), while in BCL-2 TR-FRET assay, 5c exhibited good inhibition (IC50 1.78 µM) as compared to Venetoclax (IC50 0.016 µM). In conclusion, compounds 5a-c could be used as a structural framework for the discovery of novel therapeutics to combat different types of cancer.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yassine Riadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Shashank Kumar
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda, India
| | | | - Mohammed H Geesi
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
3
|
Fukuda I, Moritsugu K, Higo J, Fukunishi Y. A cutoff-based method with charge-distribution-data driven pair potentials for efficiently estimating electrostatic interactions in molecular systems. J Chem Phys 2023; 159:234116. [PMID: 38112509 DOI: 10.1063/5.0172270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023] Open
Abstract
We introduce a simple cutoff-based method for precise electrostatic energy calculations in the molecular dynamics (MD) simulations of point-particle systems. Our method employs a theoretically derived smooth pair potential function to define electrostatic energy, offering stability and computational efficiency in MD simulations. Instead of imposing specific physical conditions, such as dielectric environments or charge neutrality, we focus on the relationship represented by a single summation formula of charge-weighted pair potentials. This approach allows an accurate energy approximation for each particle, enabling a straightforward error analysis. The resulting particle-dependent pair potential captures the charge distribution information, making it suitable for heterogeneous systems and ensuring an enhanced accuracy through distant information inclusion. Numerical investigations of the Madelung constants of crystalline systems validate the method's accuracy.
Collapse
Affiliation(s)
- Ikuo Fukuda
- Graduate School of Science, Osaka Metropolitan University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8231, Japan
- Japan Biological Informatics Consortium, 2-4-32 Aomi, Koto-ku, Tokyo, 135-8073, Japan
| | - Kei Moritsugu
- Graduate School of Science, Osaka Metropolitan University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8231, Japan
| | - Junichi Higo
- Graduate School of Information Science, University of Hyogo, 7-1-28 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo650-0047, Japan
- Research Organization of Science and Technology, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Yoshifumi Fukunishi
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-3-26, Aomi, Koto-ku, Tokyo 135-0064, Japan
| |
Collapse
|
4
|
Ait Elmachkouri Y, Irrou E, Thiruvalluvar AA, Anouar EH, Varadharajan V, Ouachtak H, Mague JT, Sebbar NK, Essassi EM, Labd Taha M. Synthesis, crystal structure, spectroscopic characterization, DFT calculations, Hirshfeld surface analysis, molecular docking, and molecular dynamics simulation investigations of novel pyrazolopyranopyrimidine derivatives. J Biomol Struct Dyn 2023:1-19. [PMID: 37817543 DOI: 10.1080/07391102.2023.2268187] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/03/2023] [Indexed: 10/12/2023]
Abstract
A series of new pyrazolopyranopyrimidine derivatives (3-9) were synthesized from 5-amino-2,4-dihydro-3-methyl-4-phenylpyrano-[2,3-c]pyrazole-5-carbonitrile (2) by multicomponent reactions (MCR) involving malononitrile, benzaldehyde, and pyrazolone under refluxing ethanol in the presence of piperidine. Compound (2) was then converted to 2-acetylpyrazolopyranopyrimidine (3) through a reaction with acetic anhydride. The deprotection of 3 using ammonium hydroxide in ethanol, leads to 4. Subsequent chlorination of 4 by phosphorus oxychloride affords 5 which was alkylated using methyl iodide and ethyl bromoacetate in DMF, leading to regioisomers 6-9. The products were characterized by spectroscopic techniques (1H and 13C NMR) and confirmed by single crystal X-ray diffraction (XRD) studies for 2, 5, 6, and 9. Moreover, the geometrical parameters, molecular orbital calculations, and spectral data of 2, 5, 6, and 9 were compared by DFT at the B3LYP/6-311G(d,p) level of theory. There is good agreement between the calculated results and the experimental data. The intermolecular contacts for 2, 5, 6, and 9 were studied by Hirshfeld surface analysis. In addition, the molecular docky study was conducted to investigate the binding patterns of 2, 5, 6, and 9 within the binding site of cyclin-dependent kinase 2 (CDK2) and penicillin-binding protein 1 A. After the docking process, molecular dynamics (MD) simulations for 100 ns were performed on CDK2 and PBP 1 A proteins in the complex with 5.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Younesse Ait Elmachkouri
- Laboratory of Organic and Physical Chemistry, Applied Bioorganic Chemistry Team, Faculty of Sciences, Ibnou Zohr University, Agadir, Morocco
| | - Ezaddine Irrou
- Laboratory of Organic and Physical Chemistry, Applied Bioorganic Chemistry Team, Faculty of Sciences, Ibnou Zohr University, Agadir, Morocco
| | | | - El Hassane Anouar
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | | | - Hassan Ouachtak
- Laboratory of Organic and Physical Chemistry, Applied Bioorganic Chemistry Team, Faculty of Sciences, Ibnou Zohr University, Agadir, Morocco
| | - Joel T Mague
- Department of Chemistry, Tulane University, New Orleans, LA, USA
| | - Nada Kheira Sebbar
- Laboratory of Organic and Physical Chemistry, Applied Bioorganic Chemistry Team, Faculty of Sciences, Ibnou Zohr University, Agadir, Morocco
- Laboratory of Heterocyclic Organic Chemistry, Pharmacochemistry Competence, Center, Drug Science Research Center, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - El Mokhtar Essassi
- Laboratory of Heterocyclic Organic Chemistry, Pharmacochemistry Competence, Center, Drug Science Research Center, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Mohamed Labd Taha
- Laboratory of Organic and Physical Chemistry, Applied Bioorganic Chemistry Team, Faculty of Sciences, Ibnou Zohr University, Agadir, Morocco
| |
Collapse
|
5
|
Jaffrelot Inizan T, Plé T, Adjoua O, Ren P, Gökcan H, Isayev O, Lagardère L, Piquemal JP. Scalable hybrid deep neural networks/polarizable potentials biomolecular simulations including long-range effects. Chem Sci 2023; 14:5438-5452. [PMID: 37234902 PMCID: PMC10208042 DOI: 10.1039/d2sc04815a] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 04/03/2023] [Indexed: 07/28/2023] Open
Abstract
Deep-HP is a scalable extension of the Tinker-HP multi-GPU molecular dynamics (MD) package enabling the use of Pytorch/TensorFlow Deep Neural Network (DNN) models. Deep-HP increases DNNs' MD capabilities by orders of magnitude offering access to ns simulations for 100k-atom biosystems while offering the possibility of coupling DNNs to any classical (FFs) and many-body polarizable (PFFs) force fields. It allows therefore the introduction of the ANI-2X/AMOEBA hybrid polarizable potential designed for ligand binding studies where solvent-solvent and solvent-solute interactions are computed with the AMOEBA PFF while solute-solute ones are computed by the ANI-2X DNN. ANI-2X/AMOEBA explicitly includes AMOEBA's physical long-range interactions via an efficient Particle Mesh Ewald implementation while preserving ANI-2X's solute short-range quantum mechanical accuracy. The DNN/PFF partition can be user-defined allowing for hybrid simulations to include key ingredients of biosimulation such as polarizable solvents, polarizable counter ions, etc.… ANI-2X/AMOEBA is accelerated using a multiple-timestep strategy focusing on the model's contributions to low-frequency modes of nuclear forces. It primarily evaluates AMOEBA forces while including ANI-2X ones only via correction-steps resulting in an order of magnitude acceleration over standard Velocity Verlet integration. Simulating more than 10 μs, we compute charged/uncharged ligand solvation free energies in 4 solvents, and absolute binding free energies of host-guest complexes from SAMPL challenges. ANI-2X/AMOEBA average errors are discussed in terms of statistical uncertainty and appear in the range of chemical accuracy compared to experiment. The availability of the Deep-HP computational platform opens the path towards large-scale hybrid DNN simulations, at force-field cost, in biophysics and drug discovery.
Collapse
Affiliation(s)
- Théo Jaffrelot Inizan
- Sorbonne Université, Laboratoire de Chimie Théorique UMR 7616 CNRS Paris 75005 France
| | - Thomas Plé
- Sorbonne Université, Laboratoire de Chimie Théorique UMR 7616 CNRS Paris 75005 France
| | - Olivier Adjoua
- Sorbonne Université, Laboratoire de Chimie Théorique UMR 7616 CNRS Paris 75005 France
| | - Pengyu Ren
- Department of Biomedical Engineering, University of Texas at Austin Austin Texas USA
| | - Hatice Gökcan
- Department of Chemistry, Carnegie Mellon University Pittsburgh Pennsylvania USA
| | - Olexandr Isayev
- Department of Chemistry, Carnegie Mellon University Pittsburgh Pennsylvania USA
| | - Louis Lagardère
- Sorbonne Université, Laboratoire de Chimie Théorique UMR 7616 CNRS Paris 75005 France
- Sorbonne Université, Institut Parisien de Chimie Physique et Théorique FR 2622 CNRS Paris France
| | - Jean-Philip Piquemal
- Sorbonne Université, Laboratoire de Chimie Théorique UMR 7616 CNRS Paris 75005 France
- Department of Biomedical Engineering, University of Texas at Austin Austin Texas USA
| |
Collapse
|
6
|
Pérez-Barcia Á, Cárdenas G, Nogueira JJ, Mandado M. Effect of the QM Size, Basis Set, and Polarization on QM/MM Interaction Energy Decomposition Analysis. J Chem Inf Model 2023; 63:882-897. [PMID: 36661314 PMCID: PMC9930123 DOI: 10.1021/acs.jcim.2c01184] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Herein, an Energy Decomposition Analysis (EDA) scheme extended to the framework of QM/MM calculations in the context of electrostatic embeddings (QM/MM-EDA) including atomic charges and dipoles is applied to assess the effect of the QM region size on the convergence of the different interaction energy components, namely, electrostatic, Pauli, and polarization, for cationic, anionic, and neutral systems interacting with a strong polar environment (water). Significant improvements are found when the bulk solvent environment is described by a MM potential in the EDA scheme as compared to pure QM calculations that neglect bulk solvation. The predominant electrostatic interaction requires sizable QM regions. The results reported here show that it is necessary to include a surprisingly large number of water molecules in the QM region to obtain converged values for this energy term, contrary to most cluster models often employed in the literature. Both the improvement of the QM wave function by means of a larger basis set and the introduction of polarization into the MM region through a polarizable force field do not translate to a faster convergence with the QM region size, but they lead to better results for the different interaction energy components. The results obtained in this work provide insight into the effect of each energy component on the convergence of the solute-solvent interaction energy with the QM region size. This information can be used to improve the MM FFs and embedding schemes employed in QM/MM calculations of solvated systems.
Collapse
Affiliation(s)
- Álvaro Pérez-Barcia
- Department
of Physical Chemistry, University of Vigo, Lagoas-Marcosende s\n, ES-36310-Vigo, Galicia, Spain
| | - Gustavo Cárdenas
- Department
of Chemistry, Universidad Autónoma
de Madrid, 28049, Madrid, Spain
| | - Juan J. Nogueira
- Department
of Chemistry, Universidad Autónoma
de Madrid, 28049, Madrid, Spain,Institute
for Advanced Research in Chemistry (IAdChem), Universidad Autónoma de Madrid, 28049Madrid, Spain,E-mail:
| | - Marcos Mandado
- Department
of Physical Chemistry, University of Vigo, Lagoas-Marcosende s\n, ES-36310-Vigo, Galicia, Spain,E-mail:
| |
Collapse
|
7
|
Fukuda I, Nakamura H. Non-Ewald methods for evaluating the electrostatic interactions of charge systems: similarity and difference. Biophys Rev 2022; 14:1315-1340. [PMID: 36659982 PMCID: PMC9842848 DOI: 10.1007/s12551-022-01029-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/30/2022] [Indexed: 01/13/2023] Open
Abstract
In molecular simulations, it is essential to properly calculate the electrostatic interactions of particles in the physical system of interest. Here we consider a method called the non-Ewald method, which does not rely on the standard Ewald method with periodic boundary conditions, but instead relies on the cutoff-based techniques. We focus on the physicochemical and mathematical conceptual aspects of the method in order to gain a deeper understanding of the simulation methodology. In particular, we take into account the reaction field (RF) method, the isotropic periodic sum (IPS) method, and the zero-multipole summation method (ZMM). These cutoff-based methods are based on different physical ideas and are completely distinguishable in their underlying concepts. The RF and IPS methods are "additive" methods that incorporate information outside the cutoff region, via dielectric medium and isotropic boundary condition, respectively. In contrast, the ZMM is a "subtraction" method that tries to remove the artificial effects, generated near the boundary, from the cutoff sphere. Nonetheless, we find physical and/or mathematical similarities between these methods. In particular, the modified RF method can be derived by the principle of neutralization utilized in the ZMM, and we also found a direct relationship between IPS and ZMM.
Collapse
Affiliation(s)
- Ikuo Fukuda
- Graduate School of Information Science, University of Hyogo, 7-1-28 Minatojima, Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047 Japan
| | - Haruki Nakamura
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871 Japan
| |
Collapse
|
8
|
Contreras-Torres E, Marrero-Ponce Y, Terán JE, Agüero-Chapin G, Antunes A, García-Jacas CR. Fuzzy spherical truncation-based multi-linear protein descriptors: From their definition to application in structural-related predictions. Front Chem 2022; 10:959143. [PMID: 36277354 PMCID: PMC9585278 DOI: 10.3389/fchem.2022.959143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
This study introduces a set of fuzzy spherically truncated three-dimensional (3D) multi-linear descriptors for proteins. These indices codify geometric structural information from kth spherically truncated spatial-(dis)similarity two-tuple and three-tuple tensors. The coefficients of these truncated tensors are calculated by applying a smoothing value to the 3D structural encoding based on the relationships between two and three amino acids of a protein embedded into a sphere. At considering, the geometrical center of the protein matches with center of the sphere, the distance between each amino acid involved in any specific interaction and the geometrical center of the protein can be computed. Then, the fuzzy membership degree of each amino acid from an spherical region of interest is computed by fuzzy membership functions (FMFs). The truncation value is finally a combination of the membership degrees from interacting amino acids, by applying the arithmetic mean as fusion rule. Several fuzzy membership functions with diverse biases on the calculation of amino acids memberships (e.g., Z-shaped (close to the center), PI-shaped (middle region), and A-Gaussian (far from the center)) were considered as well as traditional truncation functions (e.g., Switching). Such truncation functions were comparatively evaluated by exploring: 1) the frequency of membership degrees, 2) the variability and orthogonality analyses among them based on the Shannon Entropy’s and Principal Component’s methods, respectively, and 3) the prediction performance of alignment-free prediction of protein folding rates and structural classes. These analyses unraveled the singularity of the proposed fuzzy spherically truncated MDs with respect to the classical (non-truncated) ones and respect to the MDs truncated with traditional functions. They also showed an improved prediction power by attaining an external correlation coefficient of 95.82% in the folding rate modelling and an accuracy of 100% in distinguishing structural protein classes. These outcomes are better than the ones attained by existing approaches, justifying the theoretical contribution of this report. Thus, the fuzzy spherically truncated-based protein descriptors from MuLiMs-MCoMPAs (http://tomocomd.com/mulims-mcompas) are promising alignment-free predictors for modeling protein functions and properties.
Collapse
Affiliation(s)
- Ernesto Contreras-Torres
- Grupo de Medicina Molecular y Traslacional (MeM&T), Colegio de Ciencias de la Salud (COCSA), Escuela de Medicina, Universidad San Francisco de Quito (USFQ), Quito, Pichincha, Ecuador
- Instituto de Simulación Computacional (ISC-USFQ), Quito, Pichincha, Ecuador
- BCAM—Basque Center for Applied Mathematics, Bilbao, Spain
| | - Yovani Marrero-Ponce
- Grupo de Medicina Molecular y Traslacional (MeM&T), Colegio de Ciencias de la Salud (COCSA), Escuela de Medicina, Universidad San Francisco de Quito (USFQ), Quito, Pichincha, Ecuador
- Instituto de Simulación Computacional (ISC-USFQ), Quito, Pichincha, Ecuador
- Computer-Aided Molecular “Biosilico” Discovery and Bioinformatics Research International Network (CAMD-BIR IN), Quito, Ecuador
- *Correspondence: Yovani Marrero-Ponce, , , César R. García-Jacas, , ,
| | - Julio E. Terán
- Grupo de Medicina Molecular y Traslacional (MeM&T), Colegio de Ciencias de la Salud (COCSA), Escuela de Medicina, Universidad San Francisco de Quito (USFQ), Quito, Pichincha, Ecuador
- Instituto de Simulación Computacional (ISC-USFQ), Quito, Pichincha, Ecuador
- Department of Textile Engineering, Chemistry and Science, College of Textiles, North Carolina State University, Raleigh, NC, United States
| | - Guillermin Agüero-Chapin
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Porto, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Agostinho Antunes
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Porto, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - César R. García-Jacas
- Cátedras Conacyt—Departamento de Ciencias de la Computación, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California, Mexico
- *Correspondence: Yovani Marrero-Ponce, , , César R. García-Jacas, , ,
| |
Collapse
|
9
|
Kulke M, Vermaas JV. Reversible Unwrapping Algorithm for Constant-Pressure Molecular Dynamics Simulations. J Chem Theory Comput 2022; 18:6161-6171. [PMID: 36129782 DOI: 10.1021/acs.jctc.2c00327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Molecular simulation technologies have afforded researchers a unique look into the nanoscale interactions driving physical processes. However, a limitation for molecular dynamics (MD) simulations is that they must be performed on finite-sized systems in order to map onto computational resources. To minimize artifacts arising from finite-sized simulation systems, it is common practice for MD simulations to be performed with periodic boundary conditions (PBCs). However, in order to calculate specific physical properties, such as mean square displacements to calculate diffusion coefficients, continuous particle trajectories where the atomic movements are continuous and do not jump between cell faces are required. In these cases, modifying atomic coordinates through unwrapping schemes is an essential post-processing tool to remove these jumps. Here, two established trajectory unwrapping schemes are applied to 1 μs wrapped trajectories for a small water box and lysozyme in water. The existing schemes can result in spurious diffusion coefficients, long bonds within unwrapped molecules, and inconsistent atomic coordinates when coordinates are rewrapped after unwrapping. We determine that prior unwrapping schemes do not account for changing periodic box dimensions and introduce an additional correction term to the existing displacement unwrapping scheme to correct for these artifacts. We also demonstrate that the resulting algorithm is a hybrid between the existing heuristic and displacement unwrapping schemes. After treatment using this new unwrapping scheme, molecular geometries are correct even after long simulations. In anticipation for longer MD trajectories, we develop implementations for this new scheme in multiple PBC handling tools.
Collapse
Affiliation(s)
- Martin Kulke
- MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, 612 Wilson Rd, East Lansing, Michigan 48824, United States
| | - Josh V Vermaas
- MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, 612 Wilson Rd, East Lansing, Michigan 48824, United States
| |
Collapse
|
10
|
Electrostatics in Computational Biophysics and Its Implications for Disease Effects. Int J Mol Sci 2022; 23:ijms231810347. [PMID: 36142260 PMCID: PMC9499338 DOI: 10.3390/ijms231810347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 12/25/2022] Open
Abstract
This review outlines the role of electrostatics in computational molecular biophysics and its implication in altering wild-type characteristics of biological macromolecules, and thus the contribution of electrostatics to disease mechanisms. The work is not intended to review existing computational approaches or to propose further developments. Instead, it summarizes the outcomes of relevant studies and provides a generalized classification of major mechanisms that involve electrostatic effects in both wild-type and mutant biological macromolecules. It emphasizes the complex role of electrostatics in molecular biophysics, such that the long range of electrostatic interactions causes them to dominate all other forces at distances larger than several Angstroms, while at the same time, the alteration of short-range wild-type electrostatic pairwise interactions can have pronounced effects as well. Because of this dual nature of electrostatic interactions, being dominant at long-range and being very specific at short-range, their implications for wild-type structure and function are quite pronounced. Therefore, any disruption of the complex electrostatic network of interactions may abolish wild-type functionality and could be the dominant factor contributing to pathogenicity. However, we also outline that due to the plasticity of biological macromolecules, the effect of amino acid mutation may be reduced, and thus a charge deletion or insertion may not necessarily be deleterious.
Collapse
|
11
|
1,2,3-Triazolyl-tetrahydropyrimidine Conjugates as Potential Sterol Carrier Protein-2 Inhibitors: Larvicidal Activity against the Malaria Vector Anopheles arabiensis and In Silico Molecular Docking Study. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092676. [PMID: 35566029 PMCID: PMC9102322 DOI: 10.3390/molecules27092676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 12/18/2022]
Abstract
Alteration of insect growth regulators by the action of inhibitors is becoming an attractive strategy to combat disease-transmitting insects. In the present study, we investigated the larvicidal effect of 1,2,3-triazolyl-pyrimidinone derivatives against the larvae of the mosquito Anopheles arabiensis, a vector of malaria. All compounds demonstrated insecticidal activity against mosquito larvae in a dose-dependent fashion. A preliminary study of the structure-activity relationship indicated that the electron-withdrawing substituent in the para position of the 4-phenyl-pyrimidinone moiety enhanced the molecules' potency. A docking study of these derivatives revealed favorable binding affinity for the sterol carrier protein-2 receptor, a protein present in the intestine of the mosquito larvae. Being effective insecticides against the malaria-transmitting Anopheles arabiensis, 1,2,3-triazole-based pyrimidinones represent a starting point to develop novel inhibitors of insect growth regulators.
Collapse
|
12
|
Design, synthesis, and biological evaluation of SMYD3 inhibitors possessing N-thiazole benzenesulfonamide moiety as potential anti-cancer agents. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Fakhouri LI, Al-Shar'i NA. The design of TOPK inhibitors using structure-based pharmacophore modeling and molecular docking based on an MD-refined homology model. Mol Divers 2022; 26:2679-2702. [PMID: 35031933 DOI: 10.1007/s11030-021-10361-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 12/01/2021] [Indexed: 11/27/2022]
Abstract
The TOPK enzyme (also known as PBK) is a serine-threonine protein kinase that is rarely detected in normal tissues yet is found to be overexpressed and activated in a variety of cancers such as lung, colorectal, breast, and esophageal cancer. Its prevalence in cancerous cells is associated with their poor prognosis and responsiveness to treatment. This enzyme plays a vital role in cell division, specifically in regulating cytokinesis. Unlike drugs targeting early phases in mitosis, inhibition of cytokinesis by targeting biomolecules that are unique to multiplying cells poses no threat to the normal function of non-multiplying cells. Studies have shown that inhibition of cytokinesis is promising in suppressing the growth of proliferating cancerous cells as exemplified by the complete tumor regression seen with the suppression of TOPK. Herein, we report the identification of potent TOPK inhibitors with anticancer potential using a structure-based drug design approach. The only available crystal structure of TOPK corresponds to a double mutant (T9E and T198E) dimer with a distorted N-lobe conformation, thus 3D homology modeling was implemented to rebuild the enzyme's native conformation. The resulting refined model was used to generate 3D pharmacophore models for the virtual screening of small molecules databases. Retrieved hits were filtered, docked into the ATP binding site of the enzyme, rescored, and the binding free energies for the top consensually scoring hits were calculated. Consequently, 45 compounds were selected and their in vitro inhibitory activity against TOPK was tested revealing four potential hits with the most active compound having an IC50 of 3.85 µM. This compound will be chosen as a lead compound to synthesize analogs aiming to enhance potency and drug-like properties and to enrich the SAR data.
Collapse
Affiliation(s)
- Lara I Fakhouri
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan.
| | - Nizar A Al-Shar'i
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan.
| |
Collapse
|
14
|
Pramanik S, Semenova MV, M Rozhkova A, Zorov IN, Korotkova O, Sinitsyn AP, Davari MD. An engineered cellobiohydrolase I for sustainable degradation of lignocellulosic biomass. Biotechnol Bioeng 2021; 118:4014-4027. [PMID: 34196389 DOI: 10.1002/bit.27877] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/29/2021] [Accepted: 06/20/2021] [Indexed: 11/11/2022]
Abstract
This study provides computational-assisted engineering of the cellobiohydrolase I (CBH-I) from Penicillium verruculosum with simultaneous enhanced thermostability and tolerance in ionic liquids, deep eutectic solvent, and concentrated seawater without affecting its wild-type activity. Engineered triple variant CBH-I R1 (A65R-G415R-S181F) showed 2.48-fold higher thermostability in terms of relative activity at 65°C after 1 h of incubation when compared with CBH-I wild type. CBH-I R1 exhibited 1.87-fold, 1.36-fold, and 1.57-fold higher specific activities compared with CBH-I wild type in [Bmim]Cl (50 g/L), [Ch]Cl (50 g/L), and two-fold concentrated seawater, respectively. In the multicellulases mixture, CBH-I R1 showed higher hydrolytic efficiency to hydrolyze aspen wood compared with CBH-I wild type in the buffer, [Bmim]Cl (50 g/L), and two-fold concentrated seawater, respectively. Structural analysis revealed a molecular basis for the higher stability of the CBH-I structure in which A65R and G415R substitutions form salt bridges (D64 … R65, E411 … R415) and S181F forms π-π interaction (Y155 … F181), leading to stabilize surface-exposed flexible α-helixes and loop in the multidomain β-jelly roll fold structure, respectively. In conclusion, the variant CBH-I R1 could enable efficient lignocellulosic biomass degradation as a cost-effective alternative for the sustainable production of biofuels and value-added chemicals.
Collapse
Affiliation(s)
- Subrata Pramanik
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Margarita V Semenova
- Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, Russia
| | - Aleksandra M Rozhkova
- Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, Russia
| | - Ivan N Zorov
- Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, Russia.,Department of Chemistry, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - Olga Korotkova
- Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, Russia
| | - Arkady P Sinitsyn
- Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, Russia.,Department of Chemistry, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - Mehdi D Davari
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
15
|
Nikam RR, Harikrishna S, Gore KR. Synthesis, Structural, and Conformational Analysis of 4′‐
C
‐Alkyl‐2′‐
O
‐Ethyl‐Uridine Modified Nucleosides. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Rahul R. Nikam
- Department of Chemistry University of Mumbai Mumbai 400098 India
| | - S. Harikrishna
- Center for Structural Biology Vanderbilt University Nashville, Tennessee 37232 United States
| | - Kiran R. Gore
- Department of Chemistry University of Mumbai Mumbai 400098 India
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur, West Bengal 721302 India
| |
Collapse
|
16
|
First JT, Novelli ET, Webb LJ. Beyond pKa: Experiments and Simulations of Nitrile Vibrational Probes in Staphylococcal Nuclease Show the Importance of Local Interactions. J Phys Chem B 2020; 124:3387-3399. [DOI: 10.1021/acs.jpcb.0c00747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jeremy T. First
- Department of Chemistry, Texas Materials Institute, and Institute for Cell and Molecular Biology The University of Texas at Austin 105 East 24th Street STOP A5300, Austin, Texas 78712-1224, United States
| | - Elisa T. Novelli
- Department of Chemistry, Texas Materials Institute, and Institute for Cell and Molecular Biology The University of Texas at Austin 105 East 24th Street STOP A5300, Austin, Texas 78712-1224, United States
| | - Lauren J. Webb
- Department of Chemistry, Texas Materials Institute, and Institute for Cell and Molecular Biology The University of Texas at Austin 105 East 24th Street STOP A5300, Austin, Texas 78712-1224, United States
| |
Collapse
|
17
|
Martínez R, Bernal C, Álvarez R, Concha C, Araya F, Cabrera R, Dhoke GV, Davari MD. Deletion and Randomization of Structurally Variable Regions in B. subtilis Lipase A (BSLA) Alter Its Stability and Hydrolytic Performance Against Long Chain Fatty Acid Esters. Int J Mol Sci 2020; 21:ijms21061990. [PMID: 32183336 PMCID: PMC7139672 DOI: 10.3390/ijms21061990] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 12/16/2022] Open
Abstract
The continuous search for novel enzyme backbones and the engineering of already well studied enzymes for biotechnological applications has become an increasing challenge, especially by the increasing potential diversity space provided by directed enzyme evolution approaches and the demands of experimental data generated by rational design of enzymes. In this work, we propose a semi-rational mutational strategy focused on introducing diversity in structurally variable regions in enzymes. The identified sequences are subjected to a progressive deletion of two amino acids and the joining residues are subjected to saturation mutagenesis using NNK degenerate codons. This strategy offers a novel library diversity approach while simultaneously decreasing enzyme size in the variable regions. In this way, we intend to identify and reduce variable regions found in enzymes, probably resulting from neutral drift evolution, and simultaneously studying the functional effect of said regions. This strategy was applied to Bacillus. subtilis lipase A (BSLA), by selecting and deleting six variable enzyme regions (named regions 1 to 6) by the deletion of two amino acids and additionally randomizing the joining amino acid residues. After screening, no active variants were found in libraries 1% and 4%, 15% active variants were found in libraries 2% and 3%, and 25% for libraries 5 and 6 (n = 3000 per library, activity detected using tributyrin agar plates). Active variants were assessed for activity in microtiter plate assay (pNP-butyrate), thermal stability, substrate preference (pNP-butyrate, -palmitate), and compared to wildtype BSLA. From these analyses, variant P5F3 (F41L-ΔW42-ΔD43-K44P), from library 3 was identified, showing increased activity towards longer chain p-nitrophenyl fatty acid esters, when compared to BSLA. This study allowed to propose the targeted region 3 (positions 40-46) as a potential modulator for substrate specificity (fatty acid chain length) in BSLA, which can be further studied to increase its substrate spectrum and selectivity. Additionally, this variant showed a decreased thermal resistance but interestingly, higher isopropanol and Triton X-100 resistance. This deletion-randomization strategy could help to expand and explore sequence diversity, even in already well studied and characterized enzyme backbones such as BSLA. In addition, this strategy can contribute to investigate and identify important non-conserved regions in classic and novel enzymes, as well as generating novel biocatalysts with increased performance in specific processes, such as enzyme immobilization.
Collapse
Affiliation(s)
- Ronny Martínez
- Departamento de Ingeniería en Alimentos, Instituto de Investigación Multidisciplinaria en Ciencia y Tecnología, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1720010, Chile; (C.B.); (R.Á.); (C.C.)
- Correspondence: ; Tel.: +56-51-2334661; Fax: +56-51-2204446
| | - Claudia Bernal
- Departamento de Ingeniería en Alimentos, Instituto de Investigación Multidisciplinaria en Ciencia y Tecnología, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1720010, Chile; (C.B.); (R.Á.); (C.C.)
| | - Rodrigo Álvarez
- Departamento de Ingeniería en Alimentos, Instituto de Investigación Multidisciplinaria en Ciencia y Tecnología, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1720010, Chile; (C.B.); (R.Á.); (C.C.)
- Escuela de Tecnología Médica, Facultad de Salud, Sede La Serena, Universidad Santo Tomás, La Serena 1710172, Chile
| | - Christopher Concha
- Departamento de Ingeniería en Alimentos, Instituto de Investigación Multidisciplinaria en Ciencia y Tecnología, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1720010, Chile; (C.B.); (R.Á.); (C.C.)
| | - Fernando Araya
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile; (F.A.); (R.C.)
| | - Ricardo Cabrera
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile; (F.A.); (R.C.)
| | - Gaurao V. Dhoke
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany; (G.V.D.); (M.D.D.)
| | - Mehdi D. Davari
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany; (G.V.D.); (M.D.D.)
| |
Collapse
|
18
|
García-Jacas CR, Marrero-Ponce Y, Vivas-Reyes R, Suárez-Lezcano J, Martinez-Rios F, Terán JE, Aguilera-Mendoza L. Distributed and multicore QuBiLS-MIDAS software v2.0: Computing chiral, fuzzy, weighted and truncated geometrical molecular descriptors based on tensor algebra. J Comput Chem 2020; 41:1209-1227. [PMID: 32058625 DOI: 10.1002/jcc.26167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/22/2020] [Accepted: 01/26/2020] [Indexed: 12/12/2022]
Abstract
Advances to the distributed, multi-core and fully cross-platform QuBiLS-MIDAS software v2.0 (http://tomocomd.com/qubils-midas) are reported in this article since the v1.0 release. The QuBiLS-MIDAS software is the only one that computes atom-pair and alignment-free geometrical MDs (3D-MDs) from several distance metrics other than the Euclidean distance, as well as alignment-free 3D-MDs that codify structural information regarding the relations among three and four atoms of a molecule. The most recent features added to the QuBiLS-MIDAS software v2.0 are related (a) to the calculation of atomic weightings from indices based on the vertex-degree invariant (e.g., Alikhanidi index); (b) to consider central chirality during the molecular encoding; (c) to use measures based on clustering methods and statistical functions to codify structural information among more than two atoms; (d) to the use of a novel method based on fuzzy membership functions to spherically truncate inter-atomic relations; and (e) to the use of weighted and fuzzy aggregation operators to compute global 3D-MDs according to the importance and/or interrelation of the atoms of a molecule during the molecular encoding. Moreover, a novel module to compute QuBiLS-MIDAS 3D-MDs from their headings was also developed. This module can be used either by the graphical user interface or by means of the software library. By using the library, both the predictive models built with the QuBiLS-MIDAS 3D-MDs and the QuBiLS-MIDAS 3D-MDs calculation can be embedded in other tools. A set of predefined QuBiLS-MIDAS 3D-MDs with high information content and low redundancy on a set comprised of 20,469 compounds is also provided to be employed in further cheminformatics tasks. This set of predefined 3D-MDs evidenced better performance than all the universe of Dragon (v5.5) and PaDEL 0D-to-3D MDs in variability studies, whereas a linear independence study proved that these QuBiLS-MIDAS 3D-MDs codify chemical information orthogonal to the Dragon 0D-to-3D MDs. This set of predefined 3D-MDs would be periodically updated as long as new results be achieved. In general, this report highlights our continued efforts to provide a better tool for a most suitable characterization of compounds, and in this way, to contribute to obtaining better outcomes in future applications.
Collapse
Affiliation(s)
- César R García-Jacas
- Cátedras Conacyt - Departamento de Ciencias de la Computación, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja, California, Mexico
| | - Yovani Marrero-Ponce
- Universidad San Francisco de Quito (USFQ), Grupo de Medicina Molecular y Traslacional (MeM&T), Colegio de Ciencias de la Salud (COCSA), Escuela de Medicina, Edificio de Especialidades Médicas, Quito, Pichincha, Ecuador.,Instituto de Simulación Computacional (ISC-USFQ), Diego de Robles y vía Interoceánica, Quito, Pichincha, Ecuador.,Grupo GINUMED, Corporacion Universitaria Rafael Nuñez, Facultad de Salud, Programa de Medicina, Cartagena, Colombia.,Unidad de Investigación de Diseño de Fármacos y Conectividad Molecular, Departamento de Química Física, Facultad de Farmacia, Universitat de València, Spain
| | - Ricardo Vivas-Reyes
- Grupo de Química Cuántica y Teórica de la Universidad de Cartagena - Facultad de Ciencias Exactas y Naturales. Programa de Química. Campus de San Pablo, Cartagena, Colombia.,Grupo CipTec, Facultad de Ingenierias. Fundacion Universitaria Tecnologico Comfenalco - Cartagena, Cartagena, Bolívar, Colombia
| | - José Suárez-Lezcano
- Pontificia Universidad Católica del Ecuador Sede Esmeraldas (PUCESE), Esmeraldas, Ecuador
| | | | - Julio E Terán
- Department of Textile Engineering, Chemistry and Science, College of Textiles, NorthCarolina State University, Raleigh, NC, USA
| | - Longendri Aguilera-Mendoza
- Departamento de Ciencias de la Computación, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California, Mexico
| |
Collapse
|
19
|
Critical effect of proline on thermostability of endoglucanase II from Penicillium verruculosum. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107395] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
20
|
Furman D, Wales DJ. Transforming the Accuracy and Numerical Stability of ReaxFF Reactive Force Fields. J Phys Chem Lett 2019; 10:7215-7223. [PMID: 31682448 DOI: 10.1021/acs.jpclett.9b02810] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Molecular dynamics (MD) simulations provide an important link between theories and experiments. While ab initio methods can be prohibitively costly, the ReaxFF force field has facilitated in silico studies of chemical reactivity in complex, condensed-phase systems. However, the relatively poor energy conservation in ReaxFF MD has either limited the applicability to short time scales, in cases where energy propagation is important, or has required a continuous coupling of the system to a heat bath. In this study, we reveal the root cause of the unsatisfactory energy conservation, and offer a straightforward solution. The new scheme results in orders of magnitude improvement in energy conservation, numerical stability, and accuracy of ReaxFF force fields, compared to the previous state-of-the-art, at no additional cost. We anticipate that these improvements will open new avenues of research for more accurate reactive simulations in complex systems on long time scales.
Collapse
Affiliation(s)
- David Furman
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
- Division of Chemistry , NRCN , P.O. Box 9001, Beer-Sheva 84190 , Israel
| | - David J Wales
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| |
Collapse
|
21
|
García-Jacas CR, Marrero-Ponce Y, Brizuela CA, Suárez-Lezcano J, Martinez-Rios F. Smoothed Spherical Truncation based on Fuzzy Membership Functions: Application to the Molecular Encoding. J Comput Chem 2019; 41:203-217. [PMID: 31647589 DOI: 10.1002/jcc.26089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/26/2019] [Accepted: 10/02/2019] [Indexed: 11/09/2022]
Abstract
A novel spherical truncation method, based on fuzzy membership functions, is introduced to truncate interatomic (or interaminoacid) relations according to smoothing values computed from fuzzy membership degrees. In this method, the molecules are circumscribed into a sphere, so that the geometric centers of the molecules are the centers of the spheres. The fuzzy membership degree of each atom (or aminoacid) is computed from its distance with respect to the geometric center of the molecule, by using a fuzzy membership function. So, the smoothing value to be applied in the truncation of a relation (or interaction) is computed by averaging the fuzzy membership degrees of the atoms (or aminoacids) involved in the relation. This truncation method is rather different from the existing ones, at considering the geometric center for the whole molecule and not only for atom-groups, as well as for using fuzzy membership functions to compute the smoothing values. A variability study on a set comprised of 20,469 compounds (15,050 drug-like compounds, 2994 drugs approved, 880 natural products from African sources, and 1545 plant-derived natural compounds exhibiting anti-cancerous activity) demonstrated that the truncation method proposed allows to determine molecular encodings with better ability for discriminating among structurally different molecules than the encodings obtained without applying truncation or applying non-fuzzy truncation functions. Moreover, a principal component analysis revealed that orthogonal chemical information of the molecules is encoded by using the method proposed. Lastly, a modeling study proved that the truncation method improves the modeling ability of existing geometric molecular descriptors, at allowing to develop more robust models than the ones built only using non-truncated descriptors. In this sense, a comparison and statistical assessment were performed on eight chemical datasets. As a result, the models based on the truncated molecular encodings yielded statistically better results than 12 procedures considered from the literature. It can thus be stated that the proposed truncation method is a relevant strategy for obtaining better molecular encodings, which will be ultimately useful in enhancing the modeling ability of existing encodings both on small-to-medium size molecules and biomacromolecules. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- César R García-Jacas
- Cátedras CONACYT-Departamento de Ciencias de la Computación, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California, Mexico
| | - Yovani Marrero-Ponce
- Universidad San Francisco de Quito (USFQ), Grupo de Medicina Molecular y Traslacional (MeM&T), Colegio de Ciencias de la Salud (COCSA), Escuela de Medicina, Edificio de Especialidades Médicas; and Instituto de Simulación Computacional (ISC-USFQ), Quito, Pichincha, Ecuador.,Grupo GINUMED, Corporacion Universitaria Rafael Nuñez. Facultad de Salud, Programa de Medicina, Cartagena, Colombia.,Unidad de Investigación de Diseño de Fármacos y Conectividad Molecular, Departamento de Química Física, Facultad de Farmacia, Universitat de València, Spain
| | - Carlos A Brizuela
- Departamento de Ciencias de la Computación, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California, Mexico
| | - José Suárez-Lezcano
- Pontificia Universidad Católica del Ecuador Sede Esmeraldas (PUCESE), Esmeraldas, Ecuador
| | | |
Collapse
|
22
|
Poier PP, Lagardère L, Piquemal JP, Jensen F. Molecular Dynamics Using Nonvariational Polarizable Force Fields: Theory, Periodic Boundary Conditions Implementation, and Application to the Bond Capacity Model. J Chem Theory Comput 2019; 15:6213-6224. [DOI: 10.1021/acs.jctc.9b00721] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Pier Paolo Poier
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus, Denmark
| | - Louis Lagardère
- Sorbonne Université, Institut Parisien de Chimie Physique et Théorique, 75005, Paris, France
- Sorbonne Université, Institut des Sciences du Calcul et des Données, 75005, Paris, France
| | - Jean-Philip Piquemal
- Sorbonne Université, Laboratoire de Chimie Théorique, 75005, Paris, France
- Sorbonne Université, Institut Universitaire de France, 75005, Paris, France
- University of Texas, Department of Biomedical Engineering, Austin, Texas, United States
| | - Frank Jensen
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus, Denmark
| |
Collapse
|
23
|
Peng Y, Yang Y, Li L, Jia Z, Cao W, Alexov E. DFMD: Fast and Effective DelPhiForce Steered Molecular Dynamics Approach to Model Ligand Approach Toward a Receptor: Application to Spermine Synthase Enzyme. Front Mol Biosci 2019; 6:74. [PMID: 31552265 PMCID: PMC6737077 DOI: 10.3389/fmolb.2019.00074] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 08/07/2019] [Indexed: 12/25/2022] Open
Abstract
Here we report a novel approach, the DelPhiForce Molecular Dynamics (DFMD) method, for steered molecular dynamics simulations to model receptor-ligand association involving charged species. The main purpose of developing DFMD is to simulate ligand's trajectory toward the receptor and thus to predict the "entrance" of the binding pocket and conformational changes associated with the binding. We demonstrate that the DFMD is superior compared with molecular dynamics simulations applying standard cut-offs, provides correct binding forces, allows for modeling the ligand approach at long distances and thus guides the ligand toward the correct binding spot, and it is very fast (frequently the binding is completed in <1 ns). The DFMD is applied to model the binding of two ligands to a receptor (spermine synthase) and it is demonstrated that it guides the ligands toward the corresponding pockets despite of the initial ligand's position with respect to the receptor. Predicted conformational changes and the order of ligand binding are experimentally verified.
Collapse
Affiliation(s)
- Yunhui Peng
- Computational Biophysics and Bioinformatics Lab, Department of Physics, Clemson University, Clemson, SC, United States
| | - Ye Yang
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, United States
| | - Lin Li
- Department of Physics, University of Texas, El Paso, TX, United States
| | - Zhe Jia
- Computational Biophysics and Bioinformatics Lab, Department of Physics, Clemson University, Clemson, SC, United States
| | - Weiguo Cao
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, United States
| | - Emil Alexov
- Computational Biophysics and Bioinformatics Lab, Department of Physics, Clemson University, Clemson, SC, United States,*Correspondence: Emil Alexov
| |
Collapse
|
24
|
Bergonzo C, Grishaev A. Maximizing accuracy of RNA structure in refinement against residual dipolar couplings. JOURNAL OF BIOMOLECULAR NMR 2019; 73:117-139. [PMID: 31049778 DOI: 10.1007/s10858-019-00236-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 02/12/2019] [Indexed: 06/09/2023]
Abstract
Structural information about ribonucleic acid (RNA) is lagging behind that of proteins, in part due to its high charge and conformational variability. Molecular dynamics (MD) has played an important role in describing RNA structure, complementing information from both nuclear magnetic resonance (NMR), or X-ray crystallography. We examine the impact of the choice of the empirical force field for RNA structure refinement using cross-validation against residual dipolar couplings (RDCs) as structural accuracy reporter. Four force fields, representing both the state-of-the art in RNA simulation and the most popular selections in NMR structure determination, are compared for a prototypical A-RNA helix. RNA structural accuracy is also evaluated as a function of both density and nature of input NMR data including RDCs, anisotropic chemical shifts, and distance restraints. Our results show a complex interplay between the experimental restraints and the force fields indicating two best-performing choices: high-fidelity refinement in explicit solvent, and the conformational database-derived potentials. Accuracy of RNA models closely tracks the density of 1-bond C-H RDCs, with other data types having beneficial, but smaller effects. At lower RDC density, or when refining against NOEs only, the two selected force fields are capable of accurately describing RNA helices with little or no experimental RDC data, making them available for the higher order structure assembly or better quantification of the intramolecular dynamics. Unrestrained simulations of simple RNA motifs with state-of-the art MD force fields appear to capture the flexibility inherent in nucleic acids while also maintaining a good agreement with the experimental observables.
Collapse
Affiliation(s)
- Christina Bergonzo
- National Institute of Standards and Technology and Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD, 20850, USA
| | - Alexander Grishaev
- National Institute of Standards and Technology and Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD, 20850, USA.
| |
Collapse
|
25
|
Bashirova A, Pramanik S, Volkov P, Rozhkova A, Nemashkalov V, Zorov I, Gusakov A, Sinitsyn A, Schwaneberg U, Davari MD. Disulfide Bond Engineering of an Endoglucanase from Penicillium verruculosum to Improve Its Thermostability. Int J Mol Sci 2019; 20:E1602. [PMID: 30935060 PMCID: PMC6479618 DOI: 10.3390/ijms20071602] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 01/29/2023] Open
Abstract
Endoglucanases (EGLs) are important components of multienzyme cocktails used in the production of a wide variety of fine and bulk chemicals from lignocellulosic feedstocks. However, a low thermostability and the loss of catalytic performance of EGLs at industrially required temperatures limit their commercial applications. A structure-based disulfide bond (DSB) engineering was carried out in order to improve the thermostability of EGLII from Penicillium verruculosum. Based on in silico prediction, two improved enzyme variants, S127C-A165C (DSB2) and Y171C-L201C (DSB3), were obtained. Both engineered enzymes displayed a 15⁻21% increase in specific activity against carboxymethylcellulose and β-glucan compared to the wild-type EGLII (EGLII-wt). After incubation at 70 °C for 2 h, they retained 52⁻58% of their activity, while EGLII-wt retained only 38% of its activity. At 80 °C, the enzyme-engineered forms retained 15⁻22% of their activity after 2 h, whereas EGLII-wt was completely inactivated after the same incubation time. Molecular dynamics simulations revealed that the introduced DSB rigidified a global structure of DSB2 and DSB3 variants, thus enhancing their thermostability. In conclusion, this work provides an insight into DSB protein engineering as a potential rational design strategy that might be applicable for improving the stability of other enzymes for industrial applications.
Collapse
Affiliation(s)
- Anna Bashirova
- Federal Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences, Moscow 119071, Russia.
| | - Subrata Pramanik
- Institute of Biotechnology, RWTH Aachen University, Aachen 52074, Worringerweg 3, Germany.
| | - Pavel Volkov
- Federal Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences, Moscow 119071, Russia.
| | - Aleksandra Rozhkova
- Federal Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences, Moscow 119071, Russia.
| | - Vitaly Nemashkalov
- G.K.Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino 142292, Moscow region, Russia.
| | - Ivan Zorov
- Federal Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences, Moscow 119071, Russia.
- Department of Chemistry, M.V.Lomonosov Moscow State University, Moscow 119991, Russia.
| | - Alexander Gusakov
- Department of Chemistry, M.V.Lomonosov Moscow State University, Moscow 119991, Russia.
| | - Arkady Sinitsyn
- Federal Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences, Moscow 119071, Russia.
- Department of Chemistry, M.V.Lomonosov Moscow State University, Moscow 119991, Russia.
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Aachen 52074, Worringerweg 3, Germany.
- DWI-Leibniz Institut für Interaktive Materialien, Forckenbeckstrasse 50, Aachen 52056, Germany.
| | - Mehdi D Davari
- Institute of Biotechnology, RWTH Aachen University, Aachen 52074, Worringerweg 3, Germany.
| |
Collapse
|
26
|
Combining Structural Data with Computational Methodologies to Investigate Structure-Function Relationships in TRP Channels. Methods Mol Biol 2019; 1987:65-82. [PMID: 31028674 DOI: 10.1007/978-1-4939-9446-5_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Since the emergence of high-resolution three-dimensional structures of membrane proteins, and the increasing availability of state-of-the-art algorithms and high-performance-computing facilities, classical molecular dynamics (MD) simulations have become a routine device to explore the molecular behavior of these proteins. The rise of cryo-electron microscopy (cryo-EM) as a credible experimental tool to resolve structures at an atomic level has revolutionized structural biology in recent years, culminating in the disclosure of the first high-resolution three-dimensional structure of a transient receptor potential (TRP) channel, the vanilloid receptor 1 (TRPV1). As a result, the number of research articles investigating the molecular behavior of TRP channels using macromolecular simulation techniques has proliferated. This review provides an overview of the current state of this field, including our understanding of TRP channel structure, the framework of classical MD simulations, and how to perform such simulations to investigate structure-function relationships in TRP channels.
Collapse
|
27
|
Jungjohann KL, Wheeler DR, Polsky R, Brozik SM, Brozik JA, Rudolph AR. Liquid-cell scanning transmission electron microscopy and fluorescence correlation spectroscopy of DNA-directed gold nanoparticle assemblies. Micron 2018; 119:54-63. [PMID: 30660856 DOI: 10.1016/j.micron.2018.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 11/13/2018] [Accepted: 11/19/2018] [Indexed: 10/27/2022]
Abstract
In the use of solution-based 3D nanoarchitectures for optics, drug delivery, and cancer treatment, the precise nanoparticle architecture morphologies, architecture sizes, interparticle distances, and the assembly stability are all critical to their functionality. 3D nanoparticle architectures in solution are difficult to characterize, as few techniques can provide individualized information on interparticle spacing (defined by linkage molecule), nanoparticle assembly size, morphology, and identification of false aggregation. Bulk characterization techniques, including small angle x-ray scattering, can provide architecture sizes, though they are unable to precisely measure differences within interparticle spacings for individual architectures and can falsely measure assemblies caused by non-linkage grouped nanoparticles. Two solution-based characterization techniques were used to determine which assembly type and linkage length would produce the fastest assembly rate for large DNA-directed gold nanoparticle assemblies. In-situ liquid-cell scanning transmission electron microscopy (LC-STEM), measured interparticle spacings between DNA-functionalized nanoparticles, and fluorescence correlation spectroscopy provided the bulk volume fraction of large and small assemblies for nanoparticle architectures that were assembled using two different types: (1) the hybrid assemblies join two complementary single-stranded DNA linkages, and (2) the bridged assemblies are comprised of single-stranded DNA (bridging component) that is double the length of two different complementary single-stranded DNA-functionalized gold nanoparticles. Assembly times were tested at 24-hrs intervals over 3 days. Statistics derived from the in-situ LC-STEM images provided data for interparticle distance measurements, which identified the fraction of nanoparticles within the images acquired that were at the expected double-stranded DNA-binding distance of the linkages (varied in three distances for each of the two different architectures). In general, longer linkage lengths assembled in the shortest amount of time. The bridged assemblies formed fewer large architectures at 24-hrs but ultimately assembled a greater fraction of nanoparticles, which was due to the longer functionalized DNA lengths for individual nanoparticles. Fluorescence correlation spectroscopy provided a bulk average of the gold nanoparticle assembly sizes over time, which supported the conclusions drawn from the in-situ LC-STEM data. The microscopy provided sub-2 nm precision in the interparticle distances between gold nanoparticles in a solution environment. This coupled microscopy and spectroscopy characterization approach can provide more detailed information than bulk characterization methods.
Collapse
Affiliation(s)
- Katherine L Jungjohann
- Center for Integrated Nanotechnologies, Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM, 87185, USA.
| | - David R Wheeler
- Nano and Micro Sensors, Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM, 87185, USA
| | - Ronen Polsky
- Nano and Micro Sensors, Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM, 87185, USA
| | - Susan M Brozik
- Nano and Micro Sensors, Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM, 87185, USA
| | - James A Brozik
- Department of Chemistry, Washington State University, PO Box 644630, Pullman, WA, 99164, USA
| | - Angela R Rudolph
- Nano and Micro Sensors, Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM, 87185, USA; Department of Chemistry, Washington State University, PO Box 644630, Pullman, WA, 99164, USA
| |
Collapse
|
28
|
Takahashi KZ, Nozawa T, Yasuoka K. A fast and accurate computational method for the linear-combination-based isotropic periodic sum. Sci Rep 2018; 8:11880. [PMID: 30089878 PMCID: PMC6082916 DOI: 10.1038/s41598-018-30364-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/16/2018] [Indexed: 12/13/2022] Open
Abstract
An isotropic periodic sum (IPS) is a powerful technique to reasonably calculate intermolecular interactions for wide range of molecular systems under periodic boundary conditions. A linear-combination-based IPS (LIPS) has been developed to attain computational accuracy close to an exact lattice sum, such as the Ewald sum. The algorithm of the original LIPS method has a high computational cost because it needs long-range interaction calculations in real space. This becomes a performance bottleneck for long-time molecular simulations. In this work, the combination of an LIPS and fast Fourier transform (FFT) was developed, and evaluated on homogeneous and heterogeneous molecular systems. This combinational approach of LIPS/FFT attained computational efficiency close to that of a smooth particle mesh Ewald while maintaining the same high accuracy as the original LIPS. We concluded that LIPS/FFT has great potential to extend the capability of IPS techniques for the fast and accurate computation of many types of molecular systems.
Collapse
Affiliation(s)
- Kazuaki Z Takahashi
- Research Center for Computational Design of Advanced Functional Materials, National Institute of Advanced Industrial Science and Technology (AIST), Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8568, Japan.
| | - Takuma Nozawa
- Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Kenji Yasuoka
- Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| |
Collapse
|
29
|
|
30
|
Pyrlin SV, Hine NDM, Kleij AW, Ramos MMD. Self-assembly of bis-salphen compounds: from semiflexible chains to webs of nanorings. SOFT MATTER 2018; 14:1181-1194. [PMID: 29349462 DOI: 10.1039/c7sm02371e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The recently-observed self-assembly of certain salphen-based compounds into neuron-like networks of microrings interconnected with nano-thin strings may suggest a new highly-potent tool for nanoscale patterning. However, the mechanism behind such phenomena needs to be clarified before they can be applied in materials design. Here we show that, in contrast with what was initially presumed, the emergence of a "rings-and-rods" pattern is unlikely to be explained by merging, collapse and piercing of vesicles as in previously reported cases of nanorings self-assembly via non-bonding interactions. We propose an alternative explanation: the compounds under study form a 1D coordination polymer, the fibres of which are elastic enough to fold into toroidal globules upon solvent evaporation, while being able to link separate chains into extended networks. This becomes possible because the structure of the compound's scaffold is found to adopt a very different conformation from that inferred in the original work. Based on ab initio and molecular dynamics calculations we propose a step-by-step description of self-assembly process of a supramolecular structure which explains all the observed phenomena in a simple and clear way. The individual roles of the compound' s scaffold structure, coordination centres, functional groups and solvent effects are also explained, opening a route to control the morphology of self-assembled networks and to synthesize new compounds exhibiting similar behaviour.
Collapse
Affiliation(s)
- Sergey V Pyrlin
- Department of Physics and Center of Physics, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal.
| | | | | | | |
Collapse
|
31
|
Takahashi KZ. Combined use of periodic reaction field and coarse-grained molecular dynamics simulations. I. phospholipid monolayer systems. MOLECULAR SIMULATION 2017. [DOI: 10.1080/08927022.2016.1271948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Kazuaki Z. Takahashi
- Multi-scale Soft-matter Simulation Team, Research Center for Computational Design of Advanced Functional Materials, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|
32
|
Fang T, Wang M, Wang C, Liu B, Shen Y, Dai C, Zhang J. Oil detachment mechanism in CO 2 flooding from silica surface: Molecular dynamics simulation. Chem Eng Sci 2017. [DOI: 10.1016/j.ces.2017.01.067] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Abstract
The energetics of B-DNA bending toward the major and minor grooves were quantified by free energy simulations at four different KCl concentrations. Increased [KCl] led to more flexible DNA, with persistence lengths that agreed well with experimental values. At all salt concentrations, major groove bending was preferred, although preferences for major and minor groove bending were similar for the A-tract containing sequence. Since the phosphate repulsions and DNA internal energy favored minor groove bending, the preference for major groove bending was thought to originate from differences in solvation. Water in the minor groove was tighter bound than water in the major groove, and harder to displace than major groove water, which favored the compression of the major groove upon bending. Higher [KCl] decreased the persistence length for both major and minor groove bending but did not greatly affect the free energy spacing between the minor and major groove bending curves. For sequences without A-tracts, salt affected major and minor bending to nearly the same degree, and did not change the preference for major groove bending. For the A-tract containing sequence, an increase in salt concentration decreased the already small energetic difference between major and minor groove bending. Since salts did not significantly affect the relative differences in bending energetics and hydration, it is likely that the increased bending flexibilities upon salt increase are simply due to screening.
Collapse
Affiliation(s)
- Ning Ma
- Department of Chemistry, University of South Florida , 4202 East Fowler Avenue CHE 205, Tampa, Florida 33620, United States
| | - Arjan van der Vaart
- Department of Chemistry, University of South Florida , 4202 East Fowler Avenue CHE 205, Tampa, Florida 33620, United States
| |
Collapse
|
34
|
Reißer S, Poger D, Stroet M, Mark AE. Real Cost of Speed: The Effect of a Time-Saving Multiple-Time-Stepping Algorithm on the Accuracy of Molecular Dynamics Simulations. J Chem Theory Comput 2017; 13:2367-2372. [DOI: 10.1021/acs.jctc.7b00178] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sabine Reißer
- Institute
of Biological Interfaces (IBG-2) and ‡Department of Theoretical Chemical
Biology, Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
- School of Chemistry and Molecular Biosciences and §Institute for Molecular
Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David Poger
- Institute
of Biological Interfaces (IBG-2) and ‡Department of Theoretical Chemical
Biology, Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
- School of Chemistry and Molecular Biosciences and §Institute for Molecular
Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Martin Stroet
- Institute
of Biological Interfaces (IBG-2) and ‡Department of Theoretical Chemical
Biology, Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
- School of Chemistry and Molecular Biosciences and §Institute for Molecular
Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Alan E. Mark
- Institute
of Biological Interfaces (IBG-2) and ‡Department of Theoretical Chemical
Biology, Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
- School of Chemistry and Molecular Biosciences and §Institute for Molecular
Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
35
|
Skolnick J. Perspective: On the importance of hydrodynamic interactions in the subcellular dynamics of macromolecules. J Chem Phys 2016; 145:100901. [PMID: 27634243 PMCID: PMC5018002 DOI: 10.1063/1.4962258] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/01/2016] [Indexed: 12/30/2022] Open
Abstract
An outstanding challenge in computational biophysics is the simulation of a living cell at molecular detail. Over the past several years, using Stokesian dynamics, progress has been made in simulating coarse grained molecular models of the cytoplasm. Since macromolecules comprise 20%-40% of the volume of a cell, one would expect that steric interactions dominate macromolecular diffusion. However, the reduction in cellular diffusion rates relative to infinite dilution is due, roughly equally, to steric and hydrodynamic interactions, HI, with nonspecific attractive interactions likely playing rather a minor role. HI not only serve to slow down long time diffusion rates but also cause a considerable reduction in the magnitude of the short time diffusion coefficient relative to that at infinite dilution. More importantly, the long range contribution of the Rotne-Prager-Yamakawa diffusion tensor results in temporal and spatial correlations that persist up to microseconds and for intermolecular distances on the order of protein radii. While HI slow down the bimolecular association rate in the early stages of lipid bilayer formation, they accelerate the rate of large scale assembly of lipid aggregates. This is suggestive of an important role for HI in the self-assembly kinetics of large macromolecular complexes such as tubulin. Since HI are important, questions as to whether continuum models of HI are adequate as well as improved simulation methodologies that will make simulations of more complex cellular processes practical need to be addressed. Nevertheless, the stage is set for the molecular simulations of ever more complex subcellular processes.
Collapse
Affiliation(s)
- Jeffrey Skolnick
- Center for the Study of Systems Biology, School of Biology, Georgia Institute of Technology, 950 Atlantic Dr., NW, Atlanta, Georgia 30332, USA
| |
Collapse
|
36
|
Vasilevskaya T, Thiel W. Periodic Boundary Conditions in QM/MM Calculations: Implementation and Tests. J Chem Theory Comput 2016; 12:3561-70. [DOI: 10.1021/acs.jctc.6b00269] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Walter Thiel
- Max-Planck-Institut
für Kohlenforschung, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
37
|
Al-Shar'i NA, Alnabulsi SM. Explaining the autoinhibition of the SMYD enzyme family: A theoretical study. J Mol Graph Model 2016; 68:147-157. [PMID: 27447830 DOI: 10.1016/j.jmgm.2016.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/09/2016] [Accepted: 07/11/2016] [Indexed: 10/21/2022]
Abstract
The SMYD enzymes (SMYD1-5) are lysine methyltransferases that have diverse biological functions including gene expression and regulation of skeletal and cardiac muscle development and function. Recently, they have gained more attention as potential drug targets because of their involvement in cardiovascular diseases and in the progression of different cancer types. Their activity has been suggested to be regulated by a posttranslational mechanism and by autoinhibition. The later relies on a hinge-like movement of the N- and C-lobes to adopt an open or closed conformation, consequently, determining the accessibility of the active site and substrate specificity. In this study we aim to investigate and explain the possibility of the regulatory autoinhibition process of the SMYD enzymes by a thorough computational exploration of their dynamic, energetic, and structural changes by using extended molecular dynamics simulations; normal mode analysis (NMA); and energy correlations. Three SMYD models (SMYD1-3) were used in this study. Our results showed an obvious hinge-like motion between the N- and C-lobes. Also, we identified interaction energy pathways within the 3D structures of the proteins, and hot spots on their surfaces that could be of particular importance for the regulation of their activities via allosteric means. These results can help in a better understanding of the nature of these promising drug targets; and in designing selective drugs that can interfere with (inhibit) the function of a specific SMYD member by disrupting its dynamical and conformational behaviour without disrupting the function of the entire SMYD proteins.
Collapse
Affiliation(s)
- Nizar A Al-Shar'i
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan.
| | - Soraya M Alnabulsi
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan.
| |
Collapse
|
38
|
Supercritical CO 2 selective extraction inducing wettability alteration of oil reservoir. J Supercrit Fluids 2016. [DOI: 10.1016/j.supflu.2015.09.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
39
|
Narth C, Lagardère L, Polack É, Gresh N, Wang Q, Bell DR, Rackers JA, Ponder JW, Ren PY, Piquemal JP. Scalable improvement of SPME multipolar electrostatics in anisotropic polarizable molecular mechanics using a general short-range penetration correction up to quadrupoles. J Comput Chem 2016; 37:494-506. [PMID: 26814845 PMCID: PMC4730919 DOI: 10.1002/jcc.24257] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 08/02/2015] [Accepted: 10/21/2015] [Indexed: 12/25/2022]
Abstract
We propose a general coupling of the Smooth Particle Mesh Ewald SPME approach for distributed multipoles to a short-range charge penetration correction modifying the charge-charge, charge-dipole and charge-quadrupole energies. Such an approach significantly improves electrostatics when compared to ab initio values and has been calibrated on Symmetry-Adapted Perturbation Theory reference data. Various neutral molecular dimers have been tested and results on the complexes of mono- and divalent cations with a water ligand are also provided. Transferability of the correction is adressed in the context of the implementation of the AMOEBA and SIBFA polarizable force fields in the TINKER-HP software. As the choices of the multipolar distribution are discussed, conclusions are drawn for the future penetration-corrected polarizable force fields highlighting the mandatory need of non-spurious procedures for the obtention of well balanced and physically meaningful distributed moments. Finally, scalability and parallelism of the short-range corrected SPME approach are addressed, demonstrating that the damping function is computationally affordable and accurate for molecular dynamics simulations of complex bio- or bioinorganic systems in periodic boundary conditions.
Collapse
Affiliation(s)
- Christophe Narth
- UPMC Univ. Paris 06, UMR 7616, Laboratoire de Chimie Théorique, F-75005, Paris, France
| | - Louis Lagardère
- UPMC Univ. Paris 06, Institut du Calcul et de la Simulation, F-75005, Paris, France
| | - Étienne Polack
- UPMC Univ. Paris 06, UMR 7616, Laboratoire de Chimie Théorique, F-75005, Paris, France
- UPMC Univ. Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris, France
| | - Nohad Gresh
- UPMC Univ. Paris 06, UMR 7616, Laboratoire de Chimie Théorique, F-75005, Paris, France
- Chemistry and Biology Nucleo(s)tides and immunology for Therapy (CBNIT), UMR 8601 CNRS, UFR Biomédicale, Paris 75006, France
| | - Qiantao Wang
- Department of Biomedical Engineering, The University of Texas at Austin, Texas 78712
| | - David R. Bell
- Department of Biomedical Engineering, The University of Texas at Austin, Texas 78712
| | - Joshua A. Rackers
- Department of Biochemistry and Molecular Biophysics, Washington University, St. Louis, Missouri 63110
| | - Jay W. Ponder
- Department of Biochemistry and Molecular Biophysics, Washington University, St. Louis, Missouri 63110
| | - Pengyu Y. Ren
- Department of Biomedical Engineering, The University of Texas at Austin, Texas 78712
| | - Jean-Philip Piquemal
- UPMC Univ. Paris 06, UMR 7616, Laboratoire de Chimie Théorique, F-75005, Paris, France
| |
Collapse
|
40
|
The good, the bad and the user in soft matter simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2529-2538. [PMID: 26862882 DOI: 10.1016/j.bbamem.2016.02.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 11/21/2022]
Abstract
Molecular dynamics (MD) simulations have become popular in materials science, biochemistry, biophysics and several other fields. Improvements in computational resources, in quality of force field parameters and algorithms have yielded significant improvements in performance and reliability. On the other hand, no method of research is error free. In this review, we discuss a few examples of errors and artifacts due to various sources and discuss how to avoid them. Besides bringing attention to artifacts and proper practices in simulations, we also aim to provide the reader with a starting point to explore these issues further. In particular, we hope that the discussion encourages researchers to check software, parameters, protocols and, most importantly, their own practices in order to minimize the possibility of errors. The focus here is on practical issues. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.
Collapse
|
41
|
Wang J, Yang F, Zhao J. Selectively Probing the Structures and Dynamics of β-Peptide Aggregates Using the Amide-A Vibrational Marker. J Phys Chem B 2015; 119:15451-9. [PMID: 26601794 DOI: 10.1021/acs.jpcb.5b10249] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The N-H stretching vibration in a β-peptide model compound, N-ethylpropionamide (NEPA), was characterized by one-dimensional infrared (1D IR) and two-dimensional (2D) IR experiments and ab initio anharmonic frequency computations. A narrowband pump-broadband probe 2D IR method was applied to selectively probe a subensemble of the N-H stretching vibrations from a mixture of different NEPA molecular aggregates that were formed via an intermolecular hydrogen bond. Vibrational lifetime and anharmonicity were found to be sensitive to the aggregation ensembles. In particular, diagonal anharmonicities were observed experimentally and confirmed computationally to be smaller for NEPA trimer than for dimer, which was explained by the presence of non-negligible off-diagonal anharmonicities in coupled N-H stretching modes.
Collapse
Affiliation(s)
- Jianping Wang
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Fan Yang
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Juan Zhao
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| |
Collapse
|
42
|
Nozawa T, Takahashi KZ, Narumi T, Yasuoka K. Comparison of the accuracy of periodic reaction field methods in molecular dynamics simulations of a model liquid crystal system. J Comput Chem 2015; 36:2406-11. [PMID: 26525311 DOI: 10.1002/jcc.24222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 07/22/2015] [Accepted: 09/07/2015] [Indexed: 11/09/2022]
Abstract
A periodic reaction field (PRF) method is a technique to estimate long-range interactions. The method has the potential to effectively reduce the computational cost while maintaining adequate accuracy. We performed molecular dynamics (MD) simulations of a model liquid-crystal system to assess the accuracy of some variations of the PRF method in low-charge-density systems. All the methods had adequate accuracy compared with the results of the particle mesh Ewald (PME) method, except for a few simulation conditions. Furthermore, in all of the simulation conditions, one of the PRF methods had the same accuracy as the PME method.
Collapse
Affiliation(s)
- Takuma Nozawa
- Department of Mechanical Engineering, Keio University, Yokohama, 223-8522, Japan
| | - Kazuaki Z Takahashi
- Department of Mechanical Engineering, Keio University, Yokohama, 223-8522, Japan.,Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8568, Japan
| | - Tetsu Narumi
- Department of Computer Science, University of Electro-Communications, Tokyo, 182-8585, Japan
| | - Kenji Yasuoka
- Department of Mechanical Engineering, Keio University, Yokohama, 223-8522, Japan
| |
Collapse
|
43
|
Chen H, Liu P, Voth GA. Efficient Multistate Reactive Molecular Dynamics Approach Based on Short-Range Effective Potentials. J Chem Theory Comput 2015; 6:3039-47. [PMID: 26616768 DOI: 10.1021/ct100318f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nonbonded interactions between molecules usually include the van der Waals force and computationally expensive long-range electrostatic interactions. This article develops a more efficient approach: the effective-interaction multistate empirical-valence-bond (EI-MS-EVB) model. The EI-MS-EVB method relies on a mapping of all interactions onto a short-range and thus, computationally efficient effective potential. The effective potential is tabulated by matching its force to known trajectories obtained from the full-potential empirical multistate empirical-valence-bond (MS-EVB) model. The effective pairwise interaction depends on and is uniquely determined by the atomic configuration of the system, varying only with respect to the hydrogen-bonding topology. By comparing the EI-MS-EVB and full MS-EVB calculations of several equilibrium and dynamic properties important to hydrated excess proton solvation and transport, we show that the EI-MS-EVB model produces very accurate results for the specific system in which the tabulated potentials were generated. The EI-MS-EVB potential also transfers reasonably well to similar systems with different temperatures and box sizes. The EI-MS-EVB method also reduces the computational cost of the nonbonded interactions by about 1 order of magnitude in comparison with the full algorithm.
Collapse
Affiliation(s)
- Hanning Chen
- Department of Chemistry, James Franck Institute, and Computation Institute, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, and Johnson & Johnson Pharmaceutical Research & Development, 665 Stockton Drive, Exton, Pennsylvania 19341
| | - Pu Liu
- Department of Chemistry, James Franck Institute, and Computation Institute, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, and Johnson & Johnson Pharmaceutical Research & Development, 665 Stockton Drive, Exton, Pennsylvania 19341
| | - Gregory A Voth
- Department of Chemistry, James Franck Institute, and Computation Institute, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, and Johnson & Johnson Pharmaceutical Research & Development, 665 Stockton Drive, Exton, Pennsylvania 19341
| |
Collapse
|
44
|
Wang J, Yang F, Shi J, Zhao J. Structural dynamics of N-ethylpropionamide clusters examined by nonlinear infrared spectroscopy. J Chem Phys 2015; 143:185102. [PMID: 26567687 DOI: 10.1063/1.4935579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In this work, the structural dynamics of N-ethylpropionamide (NEPA), a model molecule of β-peptides, in four typical solvents (DMSO, CH3CN, CHCl3, and CCl4), were examined using the N-H stretching vibration (or the amide-A mode) as a structural probe. Steady-state and transient infrared spectroscopic methods in combination with quantum chemical computations and molecular dynamics simulations were used. It was found that in these solvents, NEPA exists in different aggregation forms, including monomer, dimer, and oligomers. Hydrogen-bonding interaction and local-solvent environment both affect the amide-A absorption profile and its vibrational relaxation dynamics and also affect the structural dynamics of NEPA. In particular, a correlation between the red-shifted frequency for the NEPA monomer from nonpolar to polar solvent and the vibrational excitation relaxation rate of the N-H stretching mode was observed.
Collapse
Affiliation(s)
- Jianping Wang
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Fan Yang
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Jipei Shi
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Juan Zhao
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| |
Collapse
|
45
|
Voinov MA, Smirnov AI. Ionizable Nitroxides for Studying Local Electrostatic Properties of Lipid Bilayers and Protein Systems by EPR. Methods Enzymol 2015; 564:191-217. [PMID: 26477252 PMCID: PMC5008871 DOI: 10.1016/bs.mie.2015.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Electrostatic interactions are known to play a major role in the myriad of biochemical and biophysical processes. Here, we describe biophysical methods to probe local electrostatic potentials of proteins and lipid bilayer systems that are based on an observation of reversible protonation of nitroxides by electron paramagnetic resonance (EPR). Two types of probes are described: (1) methanethiosulfonate derivatives of protonatable nitroxides for highly specific covalent modification of the cysteine's sulfhydryl groups and (2) spin-labeled phospholipids with a protonatable nitroxide tethered to the polar head group. The probes of both types report on their ionization state through changes in magnetic parameters and degree of rotational averaging, thus, allowing the electrostatic contribution to the interfacial pKa of the nitroxide, and, therefore, the local electrostatic potential to be determined. Due to their small molecular volume, these probes cause a minimal perturbation to the protein or lipid system. Covalent attachment secures the position of the reporter nitroxides. Experimental procedures to characterize and calibrate these probes by EPR, and also the methods to analyze the EPR spectra by simulations are outlined. The ionizable nitroxide labels and the nitroxide-labeled phospholipids described so far cover an exceptionally wide range of ca. 2.5-7.0 pH units, making them suitable to study a broad range of biophysical phenomena, especially at the negatively charged lipid bilayer surfaces. The rationale for selecting proper electrostatically neutral interface for probe calibration, and examples of lipid bilayer surface potential studies, are also described.
Collapse
Affiliation(s)
- Maxim A Voinov
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, USA
| | - Alex I Smirnov
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, USA.
| |
Collapse
|
46
|
Probing the relationship between anti-Pneumocystis carinii activity and DNA binding of bisamidines by molecular dynamics simulations. Molecules 2015; 20:5942-64. [PMID: 25854757 PMCID: PMC6272165 DOI: 10.3390/molecules20045942] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 03/26/2015] [Accepted: 03/30/2015] [Indexed: 11/17/2022] Open
Abstract
The anti-Pneumocystis carinii activity of 13 synthetic pentamidine analogs was analyzed. The experimental differences in melting points of DNA dodecamer 5'-(CGCGAATTCGCG)2-3' complexes (ΔTm), and in the biological activity measured using ATP bioluminescence assay (IC50) together with the theoretical free energy of DNA-ligand binding estimated by the proposed computational protocol, showed that the experimental activity of the tested pentamidines appeared to be due to the binding to the DNA minor groove with extended AT sequences. The effect of heteroatoms in the aliphatic linker, and the sulfonamide or methoxy substituents on the compound inducing changes in the interactions with the DNA minor groove was examined and was correlated with biological activity. In computational analysis, the explicit solvent approximation with the discrete water molecules was taken into account, and the role of water molecules in the DNA-ligand complexes was defined.
Collapse
|
47
|
Nozawa T, Takahashi KZ, Kameoka S, Narumi T, Yasuoka K. Application of isotropic periodic sum method for 4-pentyl-4′-cyanobiphenyl liquid crystal. MOLECULAR SIMULATION 2015. [DOI: 10.1080/08927022.2014.998210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
48
|
Reif MM, Oostenbrink C. Toward the correction of effective electrostatic forces in explicit-solvent molecular dynamics simulations: restraints on solvent-generated electrostatic potential and solvent polarization. Theor Chem Acc 2015; 134:2. [PMID: 26097404 PMCID: PMC4470580 DOI: 10.1007/s00214-014-1600-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 11/19/2014] [Indexed: 11/26/2022]
Abstract
Despite considerable advances in computing power, atomistic simulations under nonperiodic boundary conditions, with Coulombic electrostatic interactions and in systems large enough to reduce finite-size associated errors in thermodynamic quantities to within the thermal energy, are still not affordable. As a result, periodic boundary conditions, systems of microscopic size and effective electrostatic interaction functions are frequently resorted to. Ensuing artifacts in thermodynamic quantities are nowadays routinely corrected a posteriori, but the underlying configurational sampling still descends from spurious forces. The present study addresses this problem through the introduction of on-the-fly corrections to the physical forces during an atomistic molecular dynamics simulation. Two different approaches are suggested, where the force corrections are derived from special potential energy terms. In the first approach, the solvent-generated electrostatic potential sampled at a given atom site is restrained to a target value involving corrections for electrostatic artifacts. In the second approach, the long-range regime of the solvent polarization around a given atom site is restrained to the Born polarization, i.e., the solvent polarization corresponding to the ideal situation of a macroscopic system under nonperiodic boundary conditions and governed by Coulombic electrostatic interactions. The restraints are applied to the explicit-water simulation of a hydrated sodium ion, and the effect of the restraints on the structural and energetic properties of the solvent is illustrated. Furthermore, by means of the calculation of the charging free energy of a hydrated sodium ion, it is shown how the electrostatic potential restraint translates into the on-the-fly consideration of the corresponding free-energy correction terms. It is discussed how the restraints can be generalized to situations involving several solute particles. Although the present study considers a very simple system only, it is an important step toward the on-the-fly elimination of finite-size and approximate-electrostatic artifacts during atomistic molecular dynamics simulations.
Collapse
Affiliation(s)
- Maria M. Reif
- Institute for Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Chris Oostenbrink
- Institute for Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
49
|
Bergonzo C, Galindo-Murillo R, Cheatham TE. Molecular modeling of nucleic Acid structure: electrostatics and solvation. CURRENT PROTOCOLS IN NUCLEIC ACID CHEMISTRY 2014; 55:7.9.1-27. [PMID: 25631536 DOI: 10.1002/0471142700.nc0709s55] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This unit presents an overview of computer simulation techniques as applied to nucleic acid systems, ranging from simple in vacuo molecular modeling techniques to more complete all-atom molecular dynamics treatments that include an explicit representation of the environment. The third in a series of four units, this unit focuses on critical issues in solvation and the treatment of electrostatics. UNITS 7.5 & 7.8 introduced the modeling of nucleic acid structure at the molecular level. This included a discussion of how to generate an initial model, how to evaluate the utility or reliability of a given model, and ultimately how to manipulate this model to better understand its structure, dynamics, and interactions. Subject to an appropriate representation of the energy, such as a specifically parameterized empirical force field, the techniques of minimization and Monte Carlo simulation, as well as molecular dynamics (MD) methods, were introduced as a way of sampling conformational space for a better understanding of the relevance of a given model. This discussion highlighted the major limitations with modeling in general. When sampling conformational space effectively, difficult issues are encountered, such as multiple minima or conformational sampling problems, and accurately representing the underlying energy of interaction. In order to provide a realistic model of the underlying energetics for nucleic acids in their native environments, it is crucial to include some representation of solvation (by water) and also to properly treat the electrostatic interactions. These subjects are discussed in detail in this unit.
Collapse
Affiliation(s)
- Christina Bergonzo
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah
| | | | | |
Collapse
|
50
|
Shi J, Wang J. Interaction between Metal Cation and Unnatural Peptide Backbone Mediated by Polarized Water Molecules: Study of Infrared Spectroscopy and Computations. J Phys Chem B 2014; 118:12336-47. [DOI: 10.1021/jp504615f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jipei Shi
- Beijing
National Laboratory for Molecular Sciences; Molecular Reaction Dynamics
Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jianping Wang
- Beijing
National Laboratory for Molecular Sciences; Molecular Reaction Dynamics
Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|