1
|
Nakahara H, Hiranita T, Shibata O. A Sigma 1 Receptor Agonist Alters Fluidity and Stability of Lipid Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6484-6492. [PMID: 38470245 PMCID: PMC11554242 DOI: 10.1021/acs.langmuir.4c00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Interactions between the sigma1 receptor agonist PRE-084 and various lipid monolayers, including dipalmitoylphosphatidylcholine (DPPC), DPP-ethanolamine (DPPE), DPP-glycerol (DPPG), DPP-serine (DPPS), palmitoylsphingomyelin (PSM), and cholesterol (Ch), were investigated to elucidate the effects of PRE-084 on membrane fluidity and stability. Their interactions with sigma1 receptor agonists have potential implications for neuroprotection, antidepressant, analgesic, and cognitive enhancement effects. In this study, we observed that the presence of PRE-084 in the subphase led to increased fluidity in DPPC and DPPE monolayers, whereas decreasing fluidity was observed in DPPG, DPPS, and PSM monolayers. The interaction of PRE-084 with Ch monolayers was found to be distinct from its interaction with other lipids. Fluorescence microscopy images revealed changes in the size and shape of liquid-condensed domains in the presence of PRE-084, supporting the notion of altered membrane fluidity. Our findings provide new insights into the interaction of PRE-084 with lipid monolayers and its potential implications for biological and membrane science.
Collapse
Affiliation(s)
- Hiromichi Nakahara
- Department of Industrial Pharmacy, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan
| | - Takato Hiranita
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
- Addiction Research, Treatment & Training Center of Excellence, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Osamu Shibata
- Department of Biophysical Chemistry, Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo, Nagasaki 859-3298, Japan
| |
Collapse
|
2
|
Budai L, Budai M, Bozó T, Agócs G, Kellermayer M, Antal I. Determination of the Main Phase Transition Temperature of Phospholipids by Oscillatory Rheology. Molecules 2023; 28:5125. [PMID: 37446784 DOI: 10.3390/molecules28135125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Knowledge of the physical and chemical properties of phospholipids, such as phase transition temperatures (Tc), is of great importance in order to reveal the functionalities of biological and artificial membranes. Our research group developed an oscillatory rheological method for the simple and rapid determination of phase transition temperatures (Tc). The phospholipids constructing the membranes undergo conformational changes at their Tc, which cause alterations of viscoelastic properties of the molecules. The oscillatory technique recommended by us proved to be appropriate to reveal the altered molecular properties of phospholipids as tracking the slightest changes in the viscoelasticity. Our study demonstrates the abrupt changes in rheological properties at Tc for the following phospholipids: 1,2-Dimyristoyl-sn-glycero-3-Phosphocholine (DMPC), 1,2-Dipalmitoyl-sn-glycero-3-Phosphatidylcholine (DPPC), and 1,2-Distearoyl-sn-glycero-3-Phosphocholine (DSPC), proving that the applied methodology is adequate for determining the Tc of phospholipids.
Collapse
Affiliation(s)
- Lívia Budai
- Department of Pharmaceutics, Semmelweis University, Hőgyes Str. 7, 1092 Budapest, Hungary
| | - Marianna Budai
- Department of Pharmaceutics, Semmelweis University, Hőgyes Str. 7, 1092 Budapest, Hungary
| | - Tamás Bozó
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó Str. 37-7, 1094 Budapest, Hungary
| | - Gergely Agócs
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó Str. 37-7, 1094 Budapest, Hungary
| | - Miklós Kellermayer
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó Str. 37-7, 1094 Budapest, Hungary
| | - István Antal
- Department of Pharmaceutics, Semmelweis University, Hőgyes Str. 7, 1092 Budapest, Hungary
| |
Collapse
|
3
|
Pruchnik H, Włoch A, Gładkowski W, Grudniewska A, Chojnacka A, Krzemiński M, Rudzińska M. Effect of Distigmasterol-Modified Acylglycerols on the Fluidity and Phase Transition of Lipid Model Membranes. MEMBRANES 2022; 12:membranes12111054. [PMID: 36363609 PMCID: PMC9698068 DOI: 10.3390/membranes12111054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 05/10/2023]
Abstract
Plant sterols are known for their health-promoting effects, lowering blood cholesterol levels and alleviating cardiovascular disease. In this work, we continue our research on the asymmetric acylglycerols in which fatty acid residues are replaced by two stigmasterol residues in sn-1 and sn-2 or sn-2 and sn-3 positions as new thermostable carriers of phytosterols for their potential application in foods or as components of new liposomes in the pharmaceutical industry. The aim of this manuscript was to compare and analyze the effects of four distigmasterol-modified acylglycerols (dStigMAs) on the fluidity and the main phase transition temperature of the model phospholipid membrane. Their properties were determined using differential scanning calorimetry (DSC), steady-state fluorimetry and attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR). The determination of the effect of the tested compounds on the mentioned physicochemical parameters of the model membranes will allow for the determination of their properties and stability, which is essential for their practical application. The results indicated that all compounds effect on the physicochemical properties of the model membrane. The degree of these changes depends on the structure of the compound, especially the type of linker by which stigmasterol is attached to the glycerol backbone, as well as on the type of hydrocarbon chain.
Collapse
Affiliation(s)
- Hanna Pruchnik
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Aleksandra Włoch
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
- Correspondence:
| | - Witold Gładkowski
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Aleksandra Grudniewska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Anna Chojnacka
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Mateusz Krzemiński
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Magdalena Rudzińska
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, 60-637 Poznań, Poland
| |
Collapse
|
4
|
Enoki TA, Feigenson GW. Improving our picture of the plasma membrane: Rafts induce ordered domains in a simplified model cytoplasmic leaflet. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183995. [PMID: 35753393 DOI: 10.1016/j.bbamem.2022.183995] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 01/06/2023]
Abstract
By study of asymmetric membranes, models of the cell plasma membrane (PM) have improved, with more realistic properties of the asymmetric lipid composition of the membrane being explored. We used hemifusion of symmetric giant unilamellar vesicles (GUVs) with a supported lipid bilayer (SLB) to engineer bilayer leaflets of different composition. During hemifusion, only the outer leaflets of GUV and SLB are connected, exchanging lipids by simple diffusion. aGUVs were detached from the SLB for study. In general these aGUVs are formed with one leaflet that phase-separates into Ld (liquid disordered) + Lo (liquid ordered) phases, and another leaflet with lipid composition that would form a single fluid phase in a symmetric bilayer. We observed that ordered phases of either Lo or Lβ (gel phase) induce an ordered domain in the apposed fluid leaflet that lacks high melting lipids. Results suggest both an inter-leaflet and an intra-leaflet redistribution of cholesterol. We used C-Laurdan spectral images to investigate the lipid packing/order of aGUVs, finding that cholesterol partitions into the induced ordered domains. We suggest this behavior to be commonplace, that when Ld + Lo phase separation occurs in a cell PM exoplasmic leaflet, an induced order domain forms in the cytoplasmic leaflet.
Collapse
Affiliation(s)
- Thais A Enoki
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| | - Gerald W Feigenson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
5
|
Klaiss-Luna MC, Manrique-Moreno M. Infrared Spectroscopic Study of Multi-Component Lipid Systems: A Closer Approximation to Biological Membrane Fluidity. MEMBRANES 2022; 12:534. [PMID: 35629860 PMCID: PMC9147058 DOI: 10.3390/membranes12050534] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/05/2022] [Accepted: 05/16/2022] [Indexed: 01/10/2023]
Abstract
Membranes are essential to cellular organisms, and play several roles in cellular protection as well as in the control and transport of nutrients. One of the most critical membrane properties is fluidity, which has been extensively studied, using mainly single component systems. In this study, we used Fourier transform infrared spectroscopy to evaluate the thermal behavior of multi-component supported lipid bilayers that mimic the membrane composition of tumoral and non-tumoral cell membranes, as well as microorganisms such as Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus. The results showed that, for tumoral and non-tumoral membrane models, the presence of cholesterol induced a loss of cooperativity of the transition. However, in the absence of cholesterol, the transitions of the multi-component lipid systems had sigmoidal curves where the gel and fluid phases are evident and where main transition temperatures were possible to determine. Additionally, the possibility of designing multi-component lipid systems showed the potential to obtain several microorganism models, including changes in the cardiolipin content associated with the resistance mechanism in Staphylococcus aureus. Finally, the potential use of multi-component lipid systems in the determination of the conformational change of the antimicrobial peptide LL-37 was studied. The results showed that LL-37 underwent a conformational change when interacting with Staphylococcus aureus models, instead of with the erythrocyte membrane model. The results showed the versatile applications of multi-component lipid systems studied by Fourier transform infrared spectroscopy.
Collapse
Affiliation(s)
| | - Marcela Manrique-Moreno
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, A.A. 1226, Medellin 050010, Colombia;
| |
Collapse
|
6
|
Gorman A, Hossain KR, Cornelius F, Clarke RJ. Penetration of phospholipid membranes by poly-l-lysine depends on cholesterol and phospholipid composition. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183128. [PMID: 31734310 DOI: 10.1016/j.bbamem.2019.183128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/28/2019] [Accepted: 11/08/2019] [Indexed: 10/25/2022]
Abstract
Clusters of positively-charged basic amino acid residues, particularly lysine, are known to promote the interaction of many peripheral membrane proteins with the cytoplasmic surface of the plasma membrane via electrostatic interactions. In this work, cholesterol's effects on the interaction between lysine residues and membranes have been studied. Using poly-l-lysine (PLL) and vesicles as models to mimic the interaction between lysine-rich protein domains and the plasma membrane, light scattering measurements indicated cholesterol enhanced the electrostatic interaction through indirectly affecting the negatively charged phospholipid dioleoylphosphatidylserine, DOPS. Addition of PLL to lipid vesicles containing DOPS showed an initial increase in static light scattering (SLS), attributed to binding of PLL to the vesicle surface, followed by a slower continuously declining SLS signal, which, from comparison with fluorescent dye leakage studies could be attributed to vesicle lysis. Although electrostatic interactions between PLL and the membrane were not necessary for penetration to occur, cholesterol promoted membrane disruption of negatively charged vesicles, possibly by increasing the electrostatic interactions between PLL and the membrane. In contrast, cholesterol lowered the susceptibility of uncharged vesicles (formed using dioleoylphosphatidylcholine, DOPC) to PLL penetration. This can be explained by the absence of electrostatic interactions and cholesterol's known ability to increase membrane thickness and mechanical strength. Thus, the ability of cationic peptides to penetrate membranes including cholesterol is likely to depend on the membrane's PS:PC ratio.
Collapse
Affiliation(s)
- Amy Gorman
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia; Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | | | - Flemming Cornelius
- Department of Biomedicine, University of Aarhus, DK-8000 Aarhus C, Denmark
| | - Ronald J Clarke
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia; The University of Sydney Nano Institute, Sydney, NSW 2006, Australia.
| |
Collapse
|
7
|
Genova J, Chamati H, Slavkova Z, Petrov M. Differential Scanning Calorimetric Study of the Effect of Cholesterol on the Thermotropic Phase Behavior of the Phospholipid 1‐Stearoyl‐2‐Oleoyl‐sn‐Glycero‐3‐Phosphocholine. J SURFACTANTS DETERG 2019. [DOI: 10.1002/jsde.12289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Julia Genova
- Acad. G. Nadjakov Institute of Solid State PhysicsBulgarian Academy of Sciences Sofia Bulgaria
| | - Hassan Chamati
- Acad. G. Nadjakov Institute of Solid State PhysicsBulgarian Academy of Sciences Sofia Bulgaria
| | - Zdravka Slavkova
- Acad. G. Nadjakov Institute of Solid State PhysicsBulgarian Academy of Sciences Sofia Bulgaria
| | - Minko Petrov
- Acad. G. Nadjakov Institute of Solid State PhysicsBulgarian Academy of Sciences Sofia Bulgaria
| |
Collapse
|
8
|
Chang WH, Chuang YT, Yu CY, Chang CH, Yang YM. Effects of Sterol-Like Additives on Phase Transition Behavior of Ion-Pair Amphiphile Bilayers. J Oleo Sci 2017; 66:1229-1238. [PMID: 29021491 DOI: 10.5650/jos.ess17086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The incorporation of additive in lipid bilayers is one of the ordinary approaches for modulating their properties. Additive effect on phase transition of ion-pair amphiphile (IPA) bilayers, however, is not known. In this work, four double-chained IPAs with different hydrocarbon chain lengths and symmetry were designed and synthesized from single-chained cationic and anionic surfactants by the precipitation method. By using differential scanning calorimetry (DSC), the thermotropic transition behavior from gel phase (Lβ) through rippled phase (Pβ') if any to liquid-crystalline phase (Lα) was studied for bilayers of these lipid-like IPAs in excess water. The effects of three sterol-like additives (cholesterol, α-tocopherol, and α-tocopheryl acetate) in IPA bilayers on thermal phase behavior were then systematically investigated. The experimental results revealed that with increasing concentration of additive, the phase transition temperatures were unaffected on the one hand and the enthalpies of phase transition were decreased on the other hand. When the addition of additive exceeded a specific amount, the phase transition disappeared. More hasty disappearance of phase transition was found for IPAs with lower total number of carbon atoms in the hydrocarbon chains. For IPAs with the same total number of carbon atoms in the hydrocarbon chains, the disappearance of phase transition is more hasty for the asymmetric one than for the symmetric one. Similar effects on thermal phase behavior of four IPA bilayers were exhibited by the three additives with similar chemical structures. Possible mechanism of additive effects on phase transition of IPA bilayers was then proposed in line with that of lipid bilayers.
Collapse
Affiliation(s)
- Wei-Han Chang
- Department of Chemical Engineering, National Cheng Kung University
| | - Yun-Ting Chuang
- Department of Chemical Engineering, National Cheng Kung University
| | - Cheng-Yeh Yu
- Department of Chemical Engineering, National Cheng Kung University
| | | | - Yu-Min Yang
- Department of Chemical Engineering, National Cheng Kung University
| |
Collapse
|
9
|
Choi JS, Doh KO, Kim BK, Seu YB. Synthesis of cholesteryl doxorubicin and its anti-cancer activity. Bioorg Med Chem Lett 2017; 27:723-728. [DOI: 10.1016/j.bmcl.2017.01.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/30/2016] [Accepted: 01/14/2017] [Indexed: 01/12/2023]
|
10
|
Epand RM, Bach D, Wachtel E. In vitro determination of the solubility limit of cholesterol in phospholipid bilayers. Chem Phys Lipids 2016; 199:3-10. [DOI: 10.1016/j.chemphyslip.2016.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Manrique-Moreno M, Heinbockel L, Suwalsky M, Garidel P, Brandenburg K. Biophysical study of the non-steroidal anti-inflammatory drugs (NSAID) ibuprofen, naproxen and diclofenac with phosphatidylserine bilayer membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2123-2131. [DOI: 10.1016/j.bbamem.2016.06.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/19/2016] [Accepted: 06/10/2016] [Indexed: 11/27/2022]
|
12
|
In vitro determination of the solubility limit of cholesterol in phospholipid bilayers. Chem Phys Lipids 2016. [DOI: 10.1016/j.chemphyslip.2016.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Cholesterol Promotes Interaction of the Protein CLIC1 with Phospholipid Monolayers at the Air-Water Interface. MEMBRANES 2016; 6:membranes6010015. [PMID: 26875987 PMCID: PMC4812421 DOI: 10.3390/membranes6010015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 01/27/2016] [Accepted: 01/29/2016] [Indexed: 11/17/2022]
Abstract
CLIC1 is a Chloride Intracellular Ion Channel protein that exists either in a soluble state in the cytoplasm or as a membrane bound protein. Members of the CLIC family are largely soluble proteins that possess the intriguing property of spontaneous insertion into phospholipid bilayers to form integral membrane ion channels. The regulatory role of cholesterol in the ion-channel activity of CLIC1 in tethered lipid bilayers was previously assessed using impedance spectroscopy. Here we extend this investigation by evaluating the influence of cholesterol on the spontaneous membrane insertion of CLIC1 into Langmuir film monolayers prepared using 1-palmitoyl-2-oleoylphosphatidylcholine, 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-ethanolamine and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine alone or in combination with cholesterol. The spontaneous membrane insertion of CLIC1 was shown to be dependent on the presence of cholesterol in the membrane. Furthermore, pre-incubation of CLIC1 with cholesterol prior to its addition to the Langmuir film, showed no membrane insertion even in monolayers containing cholesterol, suggesting the formation of a CLIC1-cholesterol pre-complex. Our results therefore suggest that CLIC1 membrane interaction involves CLIC1 binding to cholesterol located in the membrane for its initial docking followed by insertion. Subsequent structural rearrangements of the protein would likely also be required along with oligomerisation to form functional ion channels.
Collapse
|
14
|
Epand RM, Bach D, Wachtel E. Comment on "Cholesterol solubility limit in lipid membranes probed by small angle neutron scattering and MD simulations" by S. Garg et al., Soft Matter, 2014, 10, 9313. SOFT MATTER 2015; 11:5580-5584. [PMID: 26080705 DOI: 10.1039/c4sm02819h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In a recent article, Garg et al. used neutron scattering techniques to determine the limiting amount of cholesterol which vesicles of either POPS or POPC can accommodate. This amount was called "the cholesterol solubility limit". In light of extensive literature on cholesterol phase separation in phospholipid bilayers, the way in which "solubility limit" is defined in this article and the conclusions derived are misleading and require some clarification.
Collapse
Affiliation(s)
- Richard M Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University Health Sciences Centre, Hamilton, Canada.
| | | | | |
Collapse
|
15
|
Role of Aminophospholipids in the Formation of Lipid Rafts in Model Membranes. J Fluoresc 2015; 25:1037-43. [DOI: 10.1007/s10895-015-1589-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 06/04/2015] [Indexed: 01/06/2023]
|
16
|
Effects of the PEG molecular weight of a PEG-lipid and cholesterol on PEG chain flexibility on liposome surfaces. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.03.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
A DSC and FTIR spectroscopic study of the effects of the epimeric coprostan-3-ols and coprostan-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes: Comparison with their 5-cholesten analogues. Chem Phys Lipids 2015; 188:10-26. [DOI: 10.1016/j.chemphyslip.2015.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 03/19/2015] [Accepted: 03/20/2015] [Indexed: 11/19/2022]
|
18
|
A DSC and FTIR spectroscopic study of the effects of the epimeric cholestan-3-ols and cholestan-3-one on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes: Comparison with their 5-cholesten analogs. Chem Phys Lipids 2015; 187:34-49. [DOI: 10.1016/j.chemphyslip.2015.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 02/06/2015] [Accepted: 02/07/2015] [Indexed: 11/23/2022]
|
19
|
Barroso RP, Basso LGM, Costa-Filho AJ. Interactions of the antimalarial amodiaquine with lipid model membranes. Chem Phys Lipids 2014; 186:68-78. [PMID: 25555567 DOI: 10.1016/j.chemphyslip.2014.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 12/24/2014] [Accepted: 12/26/2014] [Indexed: 11/28/2022]
Abstract
A detailed molecular description of the mechanism of action of the antimalarial drug amodiaquine (AQ) is still an open issue. To gain further insights on that, we studied the interactions of AQ with lipid model membranes composed of dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylserine (DPPS) by spin labeling electron spin resonance (ESR) and differential scanning calorimetry (DSC). Both techniques indicate a coexistence of an ordered DPPS-rich domain with a disordered DPPC-rich domain in the binary DPPC/DPPS system. We found that AQ slightly lowered the melting transition temperatures associated to both domains and significantly increased the enthalpy change of the whole DPPC/DPPS phase transition. DSC and ESR data also suggest that AQ increases the number of DPPC molecules in the DPPC-rich domains. AQ also causes opposing ordering effects on different regions of the bilayer: while the drug increases the ordering of the lipid acyl chains from carbon 7 to 16, it decreases the order parameter of the lipid head group and of carbon 5. The gel phase was mostly affected by the presence of AQ, suggesting that AQ is able to influence more organized lipid domains. Moreover, the effects of AQ and cholesterol on lipid acyl chain ordering and mobility were compared at physiological temperature and, in a general way, they are similar. Our results suggest that the quinoline ring of AQ is located completely inside the lipid bilayers with its phenol ring and the tertiary amine directed towards the head group region. The nonspecific interaction between AQ and DPPC/DPPS bilayers is a combination of electrostatic and hydrophobic interactions.
Collapse
Affiliation(s)
- Rafael P Barroso
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto. Av. Bandeirantes, 3900, 14040-901 Ribeirao Preto, SP, Brazil
| | - Luis G M Basso
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto. Av. Bandeirantes, 3900, 14040-901 Ribeirao Preto, SP, Brazil
| | - Antonio J Costa-Filho
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto. Av. Bandeirantes, 3900, 14040-901 Ribeirao Preto, SP, Brazil.
| |
Collapse
|
20
|
Garg S, Castro-Roman F, Porcar L, Butler P, Bautista PJ, Krzyzanowski N, Perez-Salas U. Cholesterol solubility limit in lipid membranes probed by small angle neutron scattering and MD simulations. SOFT MATTER 2014; 10:9313-9317. [PMID: 25338228 DOI: 10.1039/c4sm01219d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The solubility limits of cholesterol in small unilamellar vesicles made of POPS and POPC were probed using Small Angle Neutron Scattering (SANS) and coarse grained (CG) molecular dynamics (MD) simulations. SANS, being non-invasive, allowed the direct and quantitative measurement of cholesterol in intact vesicles. Our experimental measurements reveal a 61% mole fraction solubility limit of cholesterol in POPC, consistent with previous studies. However, in POPS the solubility limit of cholesterol is found to be 73% mole fraction. Previous work reports solubility limits of cholesterol in POPS varying significantly, ranging from 36% up to 66%. The CG MD simulations are in remarkable quantitative agreement with our experimental results showing similar solubility limits. Further, neither experiments nor simulations show evidence of stable nanodomains of cholesterol in POPS membranes as suggested in some previous reports.
Collapse
Affiliation(s)
- Sumit Garg
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Benesch MG, Lewis RN, Mannock DA, McElhaney RN. A DSC and FTIR spectroscopic study of the effects of the epimeric 4,6-cholestadien-3-ols and 4,6-cholestadien-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes. Chem Phys Lipids 2014; 183:142-58. [DOI: 10.1016/j.chemphyslip.2014.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 05/27/2014] [Accepted: 06/10/2014] [Indexed: 10/25/2022]
|
22
|
Enhancing physical stability of positively charged catanionic vesicles in the presence of calcium chloride via cholesterol-induced fluidic bilayer characteristic. Colloid Polym Sci 2014. [DOI: 10.1007/s00396-014-3285-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
A comparative calorimetric study of the effects of cholesterol and the plant sterols campesterol and brassicasterol on the thermotropic phase behavior of dipalmitoylphosphatidylcholine bilayer membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1941-9. [PMID: 24704414 DOI: 10.1016/j.bbamem.2014.03.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/25/2014] [Accepted: 03/26/2014] [Indexed: 11/20/2022]
Abstract
We present a comparative differential scanning calorimetric study of the effects of the animal sterol cholesterol (Chol) and the plant sterols campesterol (Camp) and brassicasterol (Bras) on the thermotropic phase behavior of dipalmitoylphosphatidylcholine (DPPC) bilayers. Camp and Bras differ from Chol in having a C24 methyl group and, additionally for Bras, a C22 trans-double bond. Camp and especially Bras decrease the temperature, cooperativity and enthalpy of the DPPC pretransition more than Chol, although these effects are attenuated at higher sterol levels. This indicates that they destabilize gel-state DPPC bilayers to a greater extent, but are less soluble, than Chol. Not surprisingly, all three sterols have similar effects on the sterol-poor sharp component of the DPPC main phase transition. However, Camp and especially Bras less effectively increase the temperature and decrease the cooperativity and enthalpy of the broad component of the main transition than Chol. This indicates that at higher sterol concentrations, Camp and Bras are less miscible and less effective than Chol at ordering the hydrocarbon chains of the sterol-enriched fluid DPPC bilayers. Overall, these alkyl side chain modifications generally reduce the ability of Chol to produce its characteristic effects on DPPC bilayer physical properties. These differences are likely due to the less extended and more bent conformations of the alkyl side chains of Camp and Bras, producing sterols with a greater effective cross-sectional area and reduced length than Chol. Hence, the structure of Chol is likely optimized for maximum solubility in, as opposed to maximum ordering of, phospholipid bilayers.
Collapse
|
24
|
Chou TH, Chen CW, Liang CH, Yeh LH, Qian S. Simple synthesis, self-assembly, and cytotoxicity of novel dimeric cholesterol derivatives. Colloids Surf B Biointerfaces 2014; 116:153-9. [DOI: 10.1016/j.colsurfb.2013.12.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 12/07/2013] [Accepted: 12/20/2013] [Indexed: 01/07/2023]
|
25
|
Tamai N, Izumikawa T, Fukui S, Uemura M, Goto M, Matsuki H, Kaneshina S. How does acyl chain length affect thermotropic phase behavior of saturated diacylphosphatidylcholine-cholesterol binary bilayers? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2513-23. [PMID: 23791704 DOI: 10.1016/j.bbamem.2013.06.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 05/31/2013] [Accepted: 06/11/2013] [Indexed: 11/28/2022]
Abstract
Thermotropic phase behavior of diacylphosphatidylcholine (CnPC)-cholesterol binary bilayers (n=14-16) was examined by fluorescence spectroscopy using 6-propionyl-2-(dimethylamino)naphthalene (Prodan) and differential scanning calorimetry. The former technique can detect structural changes of the bilayer in response to the changes in polarity around Prodan molecules partitioned in a relatively hydrophilic region of the bilayer, while the latter is sensitive to the conformational changes of the acyl chains. On the basis of the data from both techniques, we propose possible temperature T-cholesterol composition Xch phase diagrams for these binary bilayers. A notable feature of our phase diagrams, including our previous results for diheptadecanoylphosphatidylcholine (C17PC) and distearoylphosphatidylcholine (C18PC), is that there is a peritectic-like point around Xch=0.15, which can be interpreted as indicating the formation of a 1:6-complex of cholesterol and CnPCs within the binary bilayer irrespective of the acyl chain length. We could give a reasonable explanation for such complex formation using the modified superlattice view. Our results also showed that the Xch value of the abolition of the main transition is almost constant for n=14-17 (ca. 0.33), while it increases to ca. 0.50 for n=18. By contrast, a biphasic n-dependence of Xch was observed for the abolition of the pretransition, suggesting that there are at least two antagonistic n-dependent factors. We speculate that this could be explained by the enhancement of the van der Waals interaction with increases in n and the weakening of the repulsion between the neighboring headgroups with decreases in n.
Collapse
Affiliation(s)
- Nobutake Tamai
- Department of Life System, Institute of Technology and Science, The University of Tokushima, 2-1 Minamijosanjima-cho, Tokushima 770-8506, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Wydro P. The influence of cholesterol on multicomponent Langmuir monolayers imitating outer and inner leaflet of human erythrocyte membrane. Colloids Surf B Biointerfaces 2013. [DOI: 10.1016/j.colsurfb.2012.10.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
27
|
Hąc-Wydro K, Lenartowicz R, Dynarowicz-Łątka P. The influence of plant stanol (β-sitostanol) on inner leaflet of human erythrocytes membrane modeled with the Langmuir monolayer technique. Colloids Surf B Biointerfaces 2013; 102:178-88. [DOI: 10.1016/j.colsurfb.2012.07.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Revised: 06/27/2012] [Accepted: 07/02/2012] [Indexed: 10/28/2022]
|
28
|
|
29
|
Externalization of phosphatidylserine from inner to outer layer may alter the effect of plant sterols on human erythrocyte membrane — The Langmuir monolayer studies. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2184-91. [DOI: 10.1016/j.bbamem.2012.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 05/06/2012] [Accepted: 05/08/2012] [Indexed: 11/21/2022]
|
30
|
Bandekar A, Sofou S. Floret-shaped solid domains on giant fluid lipid vesicles induced by pH. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:4113-4122. [PMID: 22276950 DOI: 10.1021/la204765r] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Lateral lipid phase separation of titratable PS or PA lipids and their assembly in domains induced by changes in pH are significant in liposome-based drug delivery: environmentally responsive lipid heterogeneities can be tuned to alter collective membrane properties such as permeability (altering drug release) and surface topography (altering drug carrier reactivity) impacting, therefore, the therapeutic outcomes. At the micrometer scale fluorescence microscopy on giant unilamellar fluid vesicles (GUVs) shows that lowering pH (from 7.0 to 5.0) promotes condensation of titratable PS or PA lipids into beautiful floret-shaped domains in which lipids are tightly packed via hydrogen-bonding and van der Waals interactions. The order of lipid packing within domains increases radially toward the domain center. Lowering pH enhances the lipid packing order, and at pH 5.0 domains appear to be entirely in the solid (gel) phase. Domains phenomenologically comprise a circular "core" cap beyond which interfacial instabilities emerge resembling leaf-like stripes. At pH 5.0 stripes are of almost vanishing Gaussian curvature independent of GUVs' preparation path and in agreement with a general condensation mechanism. Increasing incompressibility of domains is strongly correlated with a larger number of thinner stripes per domain and increasing relative rigidity of domains with smaller core cap areas. Line tension drives domain ripening; however, the final domain shape is a result of enhanced incompressibility and rigidity maximized by domain coupling across the bilayer. Introduction of a transmembrane osmotic gradient (hyperosmotic on the outer lipid leaflet) allows the domain condensation process to reach its maximum extent which, however, is limited by the minimal expansivity of the continuous fluid membrane.
Collapse
Affiliation(s)
- Amey Bandekar
- Biomedical Engineering and Chemical and Biochemical Engineering, Rutgers University, Piscataway, New Jersey 08854, United States
| | | |
Collapse
|
31
|
Serum antibody coupled with the construction of gentamicin sulfate for the Escherichia coli targeted drug. Res Vet Sci 2011; 91:e136-43. [DOI: 10.1016/j.rvsc.2011.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2009] [Revised: 01/10/2011] [Accepted: 01/23/2011] [Indexed: 11/17/2022]
|
32
|
Benesch MGK, Mannock DA, Lewis RNAH, McElhaney RN. A Calorimetric and Spectroscopic Comparison of the Effects of Lathosterol and Cholesterol on the Thermotropic Phase Behavior and Organization of Dipalmitoylphosphatidylcholine Bilayer Membranes. Biochemistry 2011; 50:9982-97. [DOI: 10.1021/bi200721j] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Matthew G. K. Benesch
- Department of Biochemistry, School of Translational
Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - David A. Mannock
- Department of Biochemistry, School of Translational
Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Ruthven N. A. H. Lewis
- Department of Biochemistry, School of Translational
Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Ronald N. McElhaney
- Department of Biochemistry, School of Translational
Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| |
Collapse
|
33
|
The influence of plant stanol on phospholipids monolayers – The effect of phospholipid structure. J Colloid Interface Sci 2011; 360:681-9. [DOI: 10.1016/j.jcis.2011.04.089] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Revised: 04/20/2011] [Accepted: 04/21/2011] [Indexed: 11/18/2022]
|
34
|
Sergelius C, Yamaguchi S, Yamamoto T, Slotte JP, Katsumura S. N-cholesteryl sphingomyelin—A synthetic sphingolipid with unique membrane properties. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:1054-62. [DOI: 10.1016/j.bbamem.2010.12.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 12/02/2010] [Accepted: 12/03/2010] [Indexed: 12/24/2022]
|
35
|
Mannock DA, Lewis RN, McMullen TP, McElhaney RN. The effect of variations in phospholipid and sterol structure on the nature of lipid–sterol interactions in lipid bilayer model membranes. Chem Phys Lipids 2010; 163:403-48. [DOI: 10.1016/j.chemphyslip.2010.03.011] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 03/13/2010] [Accepted: 03/27/2010] [Indexed: 01/30/2023]
|
36
|
Jaikishan S, Björkbom A, Slotte JP. Phosphatidyl alcohols: effect of head group size on domain forming properties and interactions with sterols. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1615-22. [PMID: 20359462 DOI: 10.1016/j.bbamem.2010.03.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 03/19/2010] [Accepted: 03/24/2010] [Indexed: 01/22/2023]
Abstract
In this study, we have examined the membrane properties and sterol interactions of phosphatidyl alcohols varying in the size of the alcohol head group coupled to the sn-3-linked phosphate. Phosphatidyl alcohols of interest were dipalmitoyl derivatives with methanol (DPPMe), ethanol (DPPEt), propanol (DPPPr), or butanol (DPPBu) head groups. The Phosphatidyl alcohols are biologically relevant, because they can be formed in membranes by the phospholipase D reaction in the presence of alcohol. The melting behavior of pure phosphatidyl alcohols and mixtures with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or cholesterol was assessed using high sensitivity differential scanning calorimetry (DSC). DPPMe had the highest melting temperature ( approximately 49 degrees C), whereas the other phosphatidyl alcohols had similar melting temperatures as DPPC ( approximately 40-41 degrees C). All phosphatidyl alcohols, except DPPMe, also showed good miscibility with DPPC. The effects of cholesterol on the melting behavior and membrane order in multilamellar bilayer vesicles were assessed using steady-state anisotropy of 1,6-diphenyl-1,3,5-hexatriene (DPH) and DSC. The ordering effect of cholesterol in the fluid phase was lower for all phosphatidyl alcohols as compared to DPPC and decreased with increasing head group size. The formation of ordered domains containing the phosphatidyl alcohols in complex bilayer membranes was determined using fluorescence quenching of DPH or the sterol analogue cholesta-5,7,(11)-trien-3-beta-ol (CTL). The phosphatidyl alcohols did not appear to form sterol-enriched ordered domains, whereas DPPMe, DPPEt appeared to form ordered domains in the temperature window examined (10-50 degrees C). The partitioning of CTL into bilayer membranes containing phosphatidyl alcohols was to a small extent increased for DPPMe and DPPEt, but in general, sterol interactions were weak or unfavorable for the phosphatidyl alcohols. Our results show that the biophysical and sterol interacting properties of phosphatidyl alcohols, having identical acyl chain structures, are markedly dependent on the size of the head group.
Collapse
Affiliation(s)
- Shishir Jaikishan
- Biochemistry, Department of biosciences, Abo Akademi University, 20520 Turku, Finland
| | | | | |
Collapse
|
37
|
Factors effect on the loading efficiency of Vitamin C loaded chitosan-coated nanoliposomes. Colloids Surf B Biointerfaces 2010; 76:16-9. [DOI: 10.1016/j.colsurfb.2009.09.041] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 09/30/2009] [Accepted: 09/30/2009] [Indexed: 11/23/2022]
|
38
|
Mannock DA, Lewis RN, McElhaney RN. A calorimetric and spectroscopic comparison of the effects of ergosterol and cholesterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:376-88. [DOI: 10.1016/j.bbamem.2009.09.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 08/06/2009] [Accepted: 09/06/2009] [Indexed: 11/16/2022]
|
39
|
Bhagat M, Sofou S. Membrane heterogeneities and fusogenicity in phosphatidylcholine-phosphatidic acid rigid vesicles as a function of pH and lipid chain mismatch. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:1666-1673. [PMID: 19813725 DOI: 10.1021/la9026283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The role of pH-dependent lipid heterogeneities on the fusogenicity of membranes was evaluated on model lipid bilayers in the form of unilamellar vesicles composed of lipid pairs at a fixed equimolar ratio of phosphatidylcholine (PC) and phosphatidic acid (PA) headgroups. The pH and the hydrophobic composition (lipid acyl tails) of membranes were systematically altered, and their effect on vesicle aggregation, membrane fusogenicity, content release, and content mixing was evaluated. Lowering pH increases the extent of protonated PA headgroups forming phase-separated PA-rich heterogeneities and giving rise to molecular packing defects originating at the phase boundaries. Phase boundaries within the membrane's hydrophobic portion are affected by the lipid acyl-tail dynamics (fluidity) and the matching or nonmatching lengths of the acyl tails of lipid pairs comprising the membrane. The aggregates' size increases with lowering pH and is independent of the membrane's hydrophobic composition. Contrary to aggregation, the initial rates of lipid mixing are proportional to pH and also depend on membrane's hydrophobic composition. The apparent lipid-mixing rate constants are greater for membranes containing lipid pairs with mismatched acyl-tail lengths, followed by pairs with matching acyl tails in the gel state and by pairs with matching tails where one lipid is close to its transition temperature. Addition of cholesterol conserves the independence of vesicle aggregation from the membrane's hydrophobic composition. However, it decreases the aggregation rates and inverts the tendency for fusion, among the three types of hydrophobic compositions, suggesting a role of cholesterol's preferential partition in different regions of membrane's heterogeneities. We propose a phenomenological model where the membrane phase boundaries containing molecular packing defects act as "sticking points" on the vesicle exterior via which vesicles aggregate upon contact followed by defect merging via intervesicle lipid exchange and mixing. Such heterogeneous bilayers in the form of drug encapsulating liposomes may potentially improve the therapeutic efficacy by fusing with endosomal membranes, thus increasing drug bioavailability.
Collapse
Affiliation(s)
- Manali Bhagat
- Othmer-Jacobs Department of Chemical and Biological Engineering, Polytechnic Institute of New York University, Six MetroTech Center, Brooklyn, New York 11201, USA
| | | |
Collapse
|
40
|
Thermotropic and structural evaluation of the interaction of natural sphingomyelins with cholesterol. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1877-89. [DOI: 10.1016/j.bbamem.2009.07.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Revised: 06/24/2009] [Accepted: 07/08/2009] [Indexed: 11/23/2022]
|
41
|
Kempegowda GB, Karve S, Bandekar A, Adhikari A, Khaimchayev T, Sofou S. pH-dependent formation of lipid heterogeneities controls surface topography and binding reactivity in functionalized bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:8144-8151. [PMID: 19594187 DOI: 10.1021/la9004032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
During direct cell-to-cell communication, lipids on the extracellular side of plasma membranes reorganize, and membrane-associated communication-related molecules colocalize. At colocalization sites, sometimes identified as rafts, the local cell surface topography and reactivity are altered. The processes regulating these changes are largely unknown. On model lipid membranes, study of simplified processes that control surface topography and reactivity may potentially contribute to the understanding and control of related cell functions and associated diseases. Integration of these processes on nanometer-sized lipid vesicles used as drug delivery carriers would precisely control their interactions with diseased cells minimizing toxicities. Here we design such basic pH-dependent processes on model functionalized lipid bilayers, and we demonstrate reversible sharp changes in binding reactivity within a narrow pH window. Cholesterol enables tuning of the membrane reorganization to occur at pH values not necessarily close to the reported pK(a)'s of the constituent titratable lipids, and bilayer reorganization over repeated cycles of induced pH changes exhibits hysteresis.
Collapse
Affiliation(s)
- Gautam Bajagur Kempegowda
- Othmer-Jacobs Department of Chemical and Biological Engineering, Polytechnic Institute of New York University, Brooklyn, NY 11201, USA
| | | | | | | | | | | |
Collapse
|
42
|
Liu J, Conboy JC. Phase Behavior of Planar Supported Lipid Membranes Composed of Cholesterol and 1,2-Distearoyl-sn-Glycerol-3-Phosphocholine Examined by Sum-Frequency Vibrational Spectroscopy. VIBRATIONAL SPECTROSCOPY 2009; 50:106-115. [PMID: 20361007 PMCID: PMC2846528 DOI: 10.1016/j.vibspec.2008.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The influence of cholesterol (CHO) on the phase behavior of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) planar supported lipid bilayers (PSLBs) was investigated by sum-frequency vibrational spectroscopy (SFVS). The intrinsic symmetry constraints of SFVS were exploited to measure the asymmetric distribution of phase segregated phospholipid domains in the proximal and distal layers of DSPC + CHO binary mixtures as a function of CHO content and temperature. The SFVS results suggest that cholesterol significantly affects the phase segregation and domain distribution in PSLBs of DSPC in a concentration dependent manner, similar to that found in bulk suspensions. The SFVS spectroscopic measurements of phase segregation and structure change in the binary mixture indicate that membrane asymmetry must be present in order for the changes in SFVS signal to be observed. These results therefore provide important evidence for the delocalization and segregation of different phase domain structures in PSLBs due to the interaction of cholesterol and phospholipids.
Collapse
|
43
|
Abstract
Cholesterol plays an important role in regulating the properties of phospholipid membranes. To obtain a detailed understanding of the lipid-cholesterol interactions, we have developed a mesoscopic water-lipid-cholesterol model. In this model, we take into account the hydrophobic-hydrophilic interactions and the structure of the molecules. We compute the phase diagram of dimyristoylphosphatidylcholine-cholesterol by using dissipative particle dynamics and show that our model predicts many of the different phases that have been observed experimentally. In quantitative agreement with experimental data our model also shows the condensation effect; upon the addition of cholesterol, the area per lipid decreases more than one would expect from ideal mixing. Our calculations show that this effect is maximal close to the main-phase transition temperature, the lowest temperature for which the membrane is in the liquid phase, and is directly related to the increase of this main-phase transition temperature upon addition of cholesterol. We demonstrate that no condensation is observed if we slightly change the structure of the cholesterol molecule by adding an extra hydrophilic head group or if we decrease the size of the hydrophobic part of cholesterol.
Collapse
|
44
|
Zarubica A, Plazzo AP, Stöckl M, Trombik T, Hamon Y, Müller P, Pomorski T, Herrmann A, Chimini G. Functional implications of the influence of ABCA1 on lipid microenvironment at the plasma membrane: a biophysical study. FASEB J 2009; 23:1775-85. [PMID: 19151332 DOI: 10.1096/fj.08-122192] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The ABCA1 transporter orchestrates cellular lipid homeostasis by promoting the release of cholesterol to plasmatic acceptors. The molecular mechanism is, however, unknown. We report here on the biophysical analysis in living HeLa cells of the ABCA1 lipid microenvironment at the plasma membrane. The modifications of membrane attributes induced by ABCA1 were assessed at both the outer and inner leaflet by monitoring either the lifetime of membrane inserted fluorescent lipid analogues by fluorescence lifetime imaging microscopy (FLIM) or, respectively, the membrane translocation of cationic sensors. Analysis of the partitioning of dedicated probes in plasma membrane blebs vesiculated from these cells allowed visualization of ABCA1 partitioning into the liquid disordered-like phase and corroborated the idea that ABCA1 destabilizes the lipid arrangement at the membrane. Specificity was demonstrated by comparison with cells expressing an inactive transporter. The physiological relevance of these modifications was finally demonstrated by the reduced membrane mobility and function of transferrin receptors under the influence of an active ABCA1. Collectively, these data assess that the control of both transversal and lateral lipid distribution at the membrane is the primary function of ABCA1 and positions the effluxes of cholesterol from cell membranes downstream to the redistribution of the sterol into readily extractable membrane pools.
Collapse
Affiliation(s)
- Ana Zarubica
- Centre d'Immunologie de Marseille Luminy, Institut National de la Santè et de la Recherche Médicale, Centre National de la Recherche Scientifique, Université de la Méditerranée, Parc Scientifique de Luminy case 906, 13288 Marseille, Cedex 09 France
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Ordering effects of cholesterol and its analogues. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:97-121. [DOI: 10.1016/j.bbamem.2008.08.022] [Citation(s) in RCA: 450] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 08/27/2008] [Accepted: 08/31/2008] [Indexed: 12/12/2022]
|
46
|
McMullen TPW, Lewis RNAH, McElhaney RN. Calorimetric and spectroscopic studies of the effects of cholesterol on the thermotropic phase behavior and organization of a homologous series of linear saturated phosphatidylglycerol bilayer membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1788:345-57. [PMID: 19083990 DOI: 10.1016/j.bbamem.2008.11.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 11/06/2008] [Accepted: 11/06/2008] [Indexed: 11/26/2022]
Abstract
We have examined the effects of cholesterol (Chol) on the thermotropic phase behavior and organization of aqueous dispersions of a homologous series of linear disaturated phosphatidylglycerols (PGs) by high-sensitivity differential scanning calorimetry and Fourier transform infrared and 31P NMR spectroscopy. We find that the incorporation of increasing quantities of Chol alters the temperature and progressively reduces the enthalpy and cooperativity of the gel-to-liquid-crystalline phase transition of the host PG bilayer. With dimyristoyl-PG:Chol mixtures, cooperative chain-melting phase transitions are completely or almost completely abolished at Chol concentrations near 50 mol%, whereas with the dipalmitoyl- and distearoyl-PG:Chol mixtures, cooperative hydrocarbon chain-melting phase transitions are still discernable at Chol concentrations near 50 mol%. We are also unable to detect the presence of significant populations of separate domains of the anhydrous or monohydrate forms of Chol in our binary mixtures, in contrast to previous reports. We ascribe the previously reported large scale formation of Chol crystallites to the fractional crystallization of the Chol and phospholipid phases during the removal of organic solvent from the binary mixture before the hydration of the sample. We further show that the direction and magnitude of the change in the phase transition temperature induced by Chol addition is dependent on the hydrocarbon chain length of the PG studied. This finding agrees with our previous results with phosphatidylcholine bilayers, where we found that Chol increases or decreases the phase transition temperature in a hydrophobic mismatch-dependent manner (Biochemistry 1993, 32:516-522), but is in contrast to our previous results for phosphatidylethanolamine (Biochim. Biophys. Acta 1999, 1416:119-234) and phosphatidylserine (Biophys. J. 2000, 79:2056-2065) bilayers, where no such hydrophobic mismatch-dependent effects were observed. We also show that the addition of Chol facilitates the formation of the lamellar crystalline phase in PG bilayers, as it does in phosphatidylethanolamine and phosphatidylserine bilayers, whereas the formation of such phases in phosphatidylcholine bilayers is inhibited by the presence of Chol. Moreover, the formation of the lamellar crystalline phase in PG bilayers at lower temperatures excludes Chol, resulting in an apparent Chol immiscibility in gel-state PG bilayers. We suggest that the magnitude of the effect of Chol on the thermotropic phase behavior of the host phospholipid bilayer, and its miscibility in phospholipids dispersions generally, depend on the strength of the attractive interactions between the polar headgroups and the hydrocarbon chains of the phospholipid molecule, and not on the charge of the polar headgroups per se.
Collapse
Affiliation(s)
- Todd P W McMullen
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | |
Collapse
|
47
|
Mannock DA, Lee MYT, Lewis RNAH, McElhaney RN. Comparative calorimetric and spectroscopic studies of the effects of cholesterol and epicholesterol on the thermotropic phase behaviour of dipalmitoylphosphatidylcholine bilayer membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:2191-202. [PMID: 18539134 DOI: 10.1016/j.bbamem.2008.05.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 04/26/2008] [Accepted: 05/08/2008] [Indexed: 11/28/2022]
Abstract
We carried out comparative differential scanning calorimetric and Fourier transform infrared spectroscopic studies of the effects of cholesterol (Chol) and epicholesterol (EChol) on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine (DPPC) bilayers. EChol is an epimer of Chol in which the axially oriented hydroxyl group of C3 of Chol is replaced by an equatorially oriented hydroxyl group, resulting in a different orientation of the hydroxyl group relative to sterol fused ring system. Our calorimetric studies indicate that the incorporation of EChol is more effective than Chol is in reducing the enthalpy of the pretransition of DPPC. EChol is also initially more effective than Chol in reducing the enthalpies of both the sharp and broad components of the main phase transition of DPPC. However, at higher EChol concentrations (~30-50 mol%), EChol becomes less effective than Chol in reducing the enthalpy and cooperativity of the main phase transition, such that at sterol concentrations of 50 mol%, EChol does not completely abolish the cooperative hydrocarbon chain-melting phase transition of DPPC, while Chol does. However, EChol does not appear to form a calorimetrically detectable crystallite phase at higher sterol concentrations, suggesting that EChol, unlike Chol, may form dimers or lower order aggregates at higher sterol concentrations. Our spectroscopic studies demonstrate that EChol incorporation produces more ordered gel and comparably ordered liquid-crystalline bilayers compared to Chol, which are characterized by increased hydrogen bonding in the glycerol backbone region of the DPPC bilayer. These and other results indicate that monomeric EChol is less miscible in DPPC bilayers than is Chol at higher sterol concentrations, but perturbs their organization to a greater extent at lower sterol concentrations, probably due primarily to the larger effective cross-sectional area of the EChol molecule. Nevertheless, EChol does appear to produce a lamellar liquid-ordered phase in DPPC bilayers.
Collapse
Affiliation(s)
- David A Mannock
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | | | |
Collapse
|
48
|
Demana PH, Davies NM, Hook S, Rades T. Analysis of Quil A–phospholipid mixtures using drift spectroscopy. Int J Pharm 2007; 342:49-61. [PMID: 17555894 DOI: 10.1016/j.ijpharm.2007.04.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Revised: 04/24/2007] [Accepted: 04/29/2007] [Indexed: 11/28/2022]
Abstract
The aim of this study was to investigate molecular interactions between Quil A and phosphatidylcholine in the solid state using diffuse reflectance infrared Fourier-transform spectroscopy (DRIFTS). Analysis of the interactions was characterized on the different regions of phosphatidylcholine: hydrophobic chain, interfacial and headgroup regions. The spectra of the hydrocarbon region of phosphatidylcholine alone compared to that for the binary mixture of Quil A and phosphatidylcholine were similar. These findings suggest that Quil A did not cause conformational disorder of the fatty acyl chains of the phospholipid. In contrast, a shift in the wavenumber of the choline group and a broad band in this moiety indicate a modification of the phospholipid in the headgroup region due to interaction between Quil A and phosphatidylcholine. These results suggest possibly ionic interactions between the negatively charged glucuronic acid moiety of the Quil A molecule with the positively charged choline group. The findings could also be the result of conformational changes in the choline group because of the intercalation of sugar moieties in Quil A between the choline and phosphate groups due to hydrogen bonding. Shift of wavenumbers to lower values on the carbonyl group was observed suggesting hydrogen bonding between Quil A and phosphatidylcholine. The difference in degrees of wavenumber shift (choline>phosphate>carbonyl group) and observed broad bands indicated that Quil A preferentially interacted with phosphatidylcholine on the hydrophilic headgroup. Cholesterol influenced such interactions at relatively high concentration (60%, w/w).
Collapse
Affiliation(s)
- Patrick H Demana
- School of Pharmacy, Tshwane University of Technology, Pretoria, South Africa.
| | | | | | | |
Collapse
|
49
|
Abstract
The interaction of proteins with an aqueous environment leads to a thin region of "biological water", the molecules of which have properties that differ from those of bulk water, in particular, reduced absorption of far-infrared radiation caused by protein-induced hindrance of the water rotational and vibrational degrees of freedom. New results at terahertz (THz) frequencies, however, show that absorption per protein molecule is increased by the presence of biological water. Absorption measurements were made of the heme protein myoglobin mixed with water from 3.6 to 98 wt % in the frequency range of 0.1-1.2 THz, using THz time-domain spectroscopy. Analysis shows greater THz absorption when compared to a non-interacting protein-water model. Including the suppressed absorption of biological water leads to a substantial hydration-dependent increase in absorption per protein molecule over a wide range of concentration and frequencies, meaning that water increases the protein's polarizability.
Collapse
Affiliation(s)
- Chenfeng Zhang
- Department of Physics, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
50
|
Mannock DA, Lewis RNAH, McElhaney RN. Comparative calorimetric and spectroscopic studies of the effects of lanosterol and cholesterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes. Biophys J 2006; 91:3327-40. [PMID: 16905603 PMCID: PMC1614484 DOI: 10.1529/biophysj.106.084368] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We carried out comparative DSC and Fourier transform infrared spectroscopic studies of the effects of cholesterol and lanosterol on the thermotropic phase behavior and organization of DPPC bilayers. Lanosterol is the biosynthetic precursor of cholesterol and differs in having three rather than two axial methyl groups projecting from the beta-face of the planar steroid ring system and one axial methyl group projecting from the alpha-face, whereas cholesterol has none. Our DSC studies indicate that the incorporation of lanosterol is more effective than cholesterol is in reducing the enthalpy of the pretransition. Lanosterol is also initially more effective than cholesterol in reducing the enthalpies of both the sharp and broad components of the main phase transition. However, at sterol concentrations of 50 mol %, lanosterol does not abolish the cooperative hydrocarbon chain-melting phase transition as does cholesterol. Moreover, at higher lanosterol concentrations ( approximately 30-50 mol %), both sharp and broad low-temperature endotherms appear in the DSC heating scans, suggestive of the formation of lanosterol crystallites, and of the lateral phase separation of lanosterol-enriched phospholipid domains, respectively, at low temperatures, whereas such behavior is not observed with cholesterol at comparable concentrations. Our Fourier transform infrared spectroscopic studies demonstrate that lanosterol incorporation produces a less tightly packed bilayer than does cholesterol, which is characterized by increased hydration in the glycerol backbone region of the DPPC bilayer. These and other results indicate that lanosterol is less miscible in DPPC bilayers than is cholesterol, but perturbs their organization to a greater extent, probably due primarily to the rougher faces and larger cross-sectional area of the lanosterol molecule and perhaps secondarily to its decreased ability to form hydrogen bonds with adjacent DPPC molecules. Nevertheless, lanosterol does appear to produce a lamellar liquid-ordered phase in DPPC bilayers, although this phase is not as tightly packed as comparable cholesterol/DPPC mixtures.
Collapse
Affiliation(s)
- David A Mannock
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|