1
|
Chen YS, Garcia-Castañeda M, Charalambous M, Rossi D, Sorrentino V, Van Petegem F. Cryo-EM investigation of ryanodine receptor type 3. Nat Commun 2024; 15:8630. [PMID: 39366997 PMCID: PMC11452665 DOI: 10.1038/s41467-024-52998-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024] Open
Abstract
Ryanodine Receptor isoform 3 (RyR3) is a large ion channel found in the endoplasmic reticulum membrane of many different cell types. Within the hippocampal region of the brain, it is found in dendritic spines and regulates synaptic plasticity. It controls myogenic tone in arteries and is upregulated in skeletal muscle in early development. RyR3 has a unique functional profile with a very high sensitivity to activating ligands, enabling high gain in Ca2+-induced Ca2+ release. Here we solve high-resolution cryo-EM structures of RyR3 in non-activating and activating conditions, revealing structural transitions that occur during channel opening. Addition of activating ligands yields only open channels, indicating an intrinsically high open probability under these conditions. RyR3 has reduced binding affinity to the auxiliary protein FKBP12.6 due to several sequence variations in the binding interface. We map disease-associated sequence variants and binding sites for known pharmacological agents. The N-terminal region contains ligand binding sites for a putative chloride anion and ATP, both of which are targeted by sequence variants linked to epileptic encephalopathy.
Collapse
Affiliation(s)
- Yu Seby Chen
- Department of Biochemistry and Molecular Biology, the Life Sciences Centre, University of British Columbia, Vancouver, BC, Canada
| | - Maricela Garcia-Castañeda
- Department of Biochemistry and Molecular Biology, the Life Sciences Centre, University of British Columbia, Vancouver, BC, Canada
| | - Maria Charalambous
- Department of Biochemistry and Molecular Biology, the Life Sciences Centre, University of British Columbia, Vancouver, BC, Canada
| | - Daniela Rossi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Vincenzo Sorrentino
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, the Life Sciences Centre, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
2
|
Griffin JA, Li X, Lehmler HJ, Holland EB. Predicted versus observed activity of PCB mixtures toward the ryanodine receptor. Neurotoxicology 2024; 100:25-34. [PMID: 38065417 PMCID: PMC10842331 DOI: 10.1016/j.neuro.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/15/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
Non-dioxin-like polychlorinated biphenyls (NDL PCBs) alter the activity of the ryanodine receptor (RyR), and this activity is linked to developmental neurotoxicity. Most work to date has focused on the activity of single congeners rather than relevant mixtures. The current study assessed the RyR activity of single congeners or binary, tertiary, and complex PCB mixtures. Observed mixture activity was then compared to the expected activity calculated using the concentration addition (CA) model or a RyR-specific neurotoxic equivalency scheme (rNEQ). The predictions of the CA model were consistent with the observed activity of binary mixtures at the lower portion of the concentration-response curve, supporting the additivity of RyR1 active PCBs. Findings also show that minimally active congeners can compete for the RyR1 binding site, and congeners that do not activate the RyR1 do not interfere with the activity of a full agonist. Complex PCB mixtures that mimic PCB profiles detected in indoor air, fish tissue, and the serum of mothers and children activated the RyR1 and displayed similar efficacy and potency regardless of varying congener profiles. Neither the CA model nor the rNEQ perfectly predicted the observed activity of complex mixtures, but predictions were often within one magnitude of change from the observed response. Importantly, PCB mixtures approximating profiles found in environmental samples or human serum displayed RyR1 activity at concentrations reported in published research. The work presented will aid in the development of risk assessment platforms for NDL PCBs and similar compounds toward RyR1 activation and related neurotoxicity.
Collapse
Affiliation(s)
- Justin A Griffin
- Department of Biological Science, California State University of Long Beach, Long Beach, CA, USA
| | - Xueshu Li
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Erika B Holland
- Department of Biological Science, California State University of Long Beach, Long Beach, CA, USA.
| |
Collapse
|
3
|
Balderas-Villalobos J, Steele TWE, Eltit JM. Physiological and Pathological Relevance of Selective and Nonselective Ca 2+ Channels in Skeletal and Cardiac Muscle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1349:225-247. [PMID: 35138617 PMCID: PMC10683374 DOI: 10.1007/978-981-16-4254-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Contraction of the striated muscle is fundamental for human existence. The action of voluntary skeletal muscle enables activities such as breathing, establishing body posture, and diverse body movements. Additionally, highly precise motion empowers communication, artistic expression, and other activities that define everyday human life. The involuntary contraction of striated muscle is the core function of the heart and is essential for blood flow. Several ion channels are important in the transduction of action potentials to cytosolic Ca2+ signals that enable muscle contraction; however, other ion channels are involved in the progression of muscle pathologies that can impair normal life or threaten it. This chapter describes types of selective and nonselective Ca2+ permeable ion channels expressed in the striated muscle, their participation in different aspects of muscle excitation and contraction, and their relevance to the progression of some pathological states.
Collapse
Affiliation(s)
- Jaime Balderas-Villalobos
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Tyler W E Steele
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Jose M Eltit
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
4
|
Lawal TA, Wires ES, Terry NL, Dowling JJ, Todd JJ. Preclinical model systems of ryanodine receptor 1-related myopathies and malignant hyperthermia: a comprehensive scoping review of works published 1990-2019. Orphanet J Rare Dis 2020; 15:113. [PMID: 32381029 PMCID: PMC7204063 DOI: 10.1186/s13023-020-01384-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/14/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Pathogenic variations in the gene encoding the skeletal muscle ryanodine receptor (RyR1) are associated with malignant hyperthermia (MH) susceptibility, a life-threatening hypermetabolic condition and RYR1-related myopathies (RYR1-RM), a spectrum of rare neuromuscular disorders. In RYR1-RM, intracellular calcium dysregulation, post-translational modifications, and decreased protein expression lead to a heterogenous clinical presentation including proximal muscle weakness, contractures, scoliosis, respiratory insufficiency, and ophthalmoplegia. Preclinical model systems of RYR1-RM and MH have been developed to better understand underlying pathomechanisms and test potential therapeutics. METHODS We conducted a comprehensive scoping review of scientific literature pertaining to RYR1-RM and MH preclinical model systems in accordance with the PRISMA Scoping Reviews Checklist and the framework proposed by Arksey and O'Malley. Two major electronic databases (PubMed and EMBASE) were searched without language restriction for articles and abstracts published between January 1, 1990 and July 3, 2019. RESULTS Our search yielded 5049 publications from which 262 were included in this review. A majority of variants tested in RYR1 preclinical models were localized to established MH/central core disease (MH/CCD) hot spots. A total of 250 unique RYR1 variations were reported in human/rodent/porcine models with 95% being missense substitutions. The most frequently reported RYR1 variant was R614C/R615C (human/porcine total n = 39), followed by Y523S/Y524S (rabbit/mouse total n = 30), I4898T/I4897T/I4895T (human/rabbit/mouse total n = 20), and R163C/R165C (human/mouse total n = 18). The dyspedic mouse was utilized by 47% of publications in the rodent category and its RyR1-null (1B5) myotubes were transfected in 23% of publications in the cellular model category. In studies of transfected HEK-293 cells, 57% of RYR1 variations affected the RyR1 channel and activation core domain. A total of 15 RYR1 mutant mouse strains were identified of which ten were heterozygous, three were compound heterozygous, and a further two were knockout. Porcine, avian, zebrafish, C. elegans, canine, equine, and drosophila model systems were also reported. CONCLUSIONS Over the past 30 years, there were 262 publications on MH and RYR1-RM preclinical model systems featuring more than 200 unique RYR1 variations tested in a broad range of species. Findings from these studies have set the foundation for therapeutic development for MH and RYR1-RM.
Collapse
Affiliation(s)
- Tokunbor A Lawal
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Emily S Wires
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Nancy L Terry
- National Institutes of Health Library, National Institutes of Health, Bethesda, MD, USA
| | - James J Dowling
- Program for Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Joshua J Todd
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
5
|
Ogawa H, Kurebayashi N, Yamazawa T, Murayama T. Regulatory mechanisms of ryanodine receptor/Ca 2+ release channel revealed by recent advancements in structural studies. J Muscle Res Cell Motil 2020; 42:291-304. [PMID: 32040690 PMCID: PMC8332584 DOI: 10.1007/s10974-020-09575-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/05/2020] [Indexed: 02/07/2023]
Abstract
Ryanodine receptors (RyRs) are huge homotetrameric Ca2+ release channels localized to the sarcoplasmic reticulum. RyRs are responsible for the release of Ca2+ from the SR during excitation–contraction coupling in striated muscle cells. Recent revolutionary advancements in cryo-electron microscopy have provided a number of near-atomic structures of RyRs, which have enabled us to better understand the architecture of RyRs. Thus, we are now in a new era understanding the gating, regulatory and disease-causing mechanisms of RyRs. Here we review recent advances in the elucidation of the structures of RyRs, especially RyR1 in skeletal muscle, and their mechanisms of regulation by small molecules, associated proteins and disease-causing mutations.
Collapse
Affiliation(s)
- Haruo Ogawa
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan.
| | - Nagomi Kurebayashi
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, 113-8421, Japan
| | - Toshiko Yamazawa
- Department of Molecular Physiology, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Takashi Murayama
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, 113-8421, Japan
| |
Collapse
|
6
|
Holland EB, Goldstone JV, Pessah IN, Whitehead A, Reid NM, Karchner SI, Hahn ME, Nacci DE, Clark BW, Stegeman JJ. Ryanodine receptor and FK506 binding protein 1 in the Atlantic killifish (Fundulus heteroclitus): A phylogenetic and population-based comparison. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 192:105-115. [PMID: 28942070 PMCID: PMC5662517 DOI: 10.1016/j.aquatox.2017.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/01/2017] [Accepted: 09/02/2017] [Indexed: 05/12/2023]
Abstract
Non-dioxin-like polychlorinated biphenyls (NDL PCBs) activate ryanodine receptors (RyR), microsomal Ca2+ channels of broad significance. Teleost fish may be important models for NDL PCB neurotoxicity, and we used sequencing databases to characterize teleost RyR and FK506 binding protein 12 or 12.6kDa (genes FKBP1A; FKBP1B), which promote NDL PCB-triggered Ca2+ dysregulation. Particular focus was placed on describing genes in the Atlantic killifish (Fundulus heteroclitus) genome and searching available RNA-sequencing datasets for single nucleotide variants (SNV) between PCB tolerant killifish from New Bedford Harbor (NBH) versus sensitive killifish from Scorton Creek (SC), MA. Consistent with the teleost whole genome duplication (tWGD), killifish have six RyR genes, corresponding to a and b paralogs of mammalian RyR1, 2 and 3. The presence of six RyR genes was consistent in all teleosts investigated including zebrafish. Killifish have four FKBP1; one FKBP1b and three FKBP1a named FKBP1aa, FKBP1ab, likely from the tWGD and a single gene duplicate FKBP1a3 suggested to have arisen in Atherinomorphae. The RyR and FKBP1 genes displayed tissue and developmental stage-specific mRNA expression, and the previously uncharacterized RyR3, herein named RyR3b, and all FKBP1 genes were prominent in brain. We identified a SNV in RyR3b encoding missense mutation E1458D. In NBH killifish, 57% were heterozygous and 28% were homozygous for this SNV, whereas almost all SC killifish (94%) lacked the variant (n≥39 per population). The outlined sequence differences between mammalian and teleost RyR and FKBP1 together with outlined population differences in SNV frequency may contribute to our understanding of NDL PCB neurotoxicity.
Collapse
Affiliation(s)
- Erika B Holland
- Department of Biological Sciences, California State University of Long Beach, Long Beach, CA, USA; Department of Biology, Woods Hole Oceanographic Institution, Woods Hole MA, USA; Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA.
| | - Jared V Goldstone
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole MA, USA
| | - Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Andrew Whitehead
- Department of Environmental Toxicology, College of Agricultural and Environmental Sciences,University of California Davis, Davis, CA, USA
| | - Noah M Reid
- Department of Environmental Toxicology, College of Agricultural and Environmental Sciences,University of California Davis, Davis, CA, USA
| | - Sibel I Karchner
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole MA, USA
| | - Mark E Hahn
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole MA, USA
| | - Diane E Nacci
- Atlantic Ecology Division, Office of Research and Development, US Environmental Protection Agency, Narragansett, RI, USA
| | - Bryan W Clark
- Oak Ridge Institute for Science and Education at the United States Environmental Protection Agency, Office of Research and Development, Narragansett, RI, 02882, USA
| | - John J Stegeman
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole MA, USA
| |
Collapse
|
7
|
Guo Y, Zhang Z, Wu HE, Luo ZD, Hogan QH, Pan B. Increased thrombospondin-4 after nerve injury mediates disruption of intracellular calcium signaling in primary sensory neurons. Neuropharmacology 2017; 117:292-304. [PMID: 28232180 DOI: 10.1016/j.neuropharm.2017.02.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 01/31/2017] [Accepted: 02/18/2017] [Indexed: 12/14/2022]
Abstract
Painful nerve injury disrupts Ca2+ signaling in primary sensory neurons by elevating plasma membrane Ca2+-ATPase (PMCA) function and depressing sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) function, which decreases endoplasmic reticulum (ER) Ca2+ stores and stimulates store-operated Ca2+ entry (SOCE). The extracellular matrix glycoprotein thrombospondin-4 (TSP4), which is increased after painful nerve injury, decreases Ca2+ current (ICa) through high-voltage-activated Ca2+ channels and increases ICa through low-voltage-activated Ca2+ channels in dorsal root ganglion neurons, which are events similar to the effect of nerve injury. We therefore examined whether TSP4 plays a critical role in injury-induced disruption of intracellular Ca2+ signaling. We found that TSP4 increases PMCA activity, inhibits SERCA, depletes ER Ca2+ stores, and enhances store-operated Ca2+ influx. Injury-induced changes of SERCA and PMCA function are attenuated in TSP4 knock-out mice. Effects of TSP4 on intracellular Ca2+ signaling are attenuated in voltage-gated Ca2+ channel α2δ1 subunit (Cavα2δ1) conditional knock-out mice and are also Protein Kinase C (PKC) signaling dependent. These findings suggest that TSP4 elevation may contribute to the pathogenesis of chronic pain following nerve injury by disrupting intracellular Ca2+ signaling via interacting with the Cavα2δ1 and the subsequent PKC signaling pathway. Controlling TSP4 mediated intracellular Ca2+ signaling in peripheral sensory neurons may be a target for analgesic drug development for neuropathic pain.
Collapse
Affiliation(s)
- Yuan Guo
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Zhiyong Zhang
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Hsiang-En Wu
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Z David Luo
- Department of Anesthesiology & Perioperative Care, University of California Irvine, Irvine, CA 92697, United States; Department of Pharmacology, University of California Irvine, Irvine, CA 92697, United States
| | - Quinn H Hogan
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Bin Pan
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States.
| |
Collapse
|
8
|
Carlo C, Pura B, Magaly R, Marino D. Differential effects of contractile potentiators on action potential-induced Ca 2+ transients of frog and mouse skeletal muscle fibres. J Muscle Res Cell Motil 2016; 37:169-180. [PMID: 27590123 DOI: 10.1007/s10974-016-9455-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/22/2016] [Indexed: 10/21/2022]
Abstract
Muscle fibres, isolated from frog tibialis anterior and mouse flexor digitorum brevis (FDB) were loaded with the fast dye MagFluo-4 to study the effects of potentiators caffeine, nitrate, Zn2+ and perchlorate on Ca2+ transients elicited by single action potentials. Overall, the potentiators doubled the transients amplitude and prolonged by about 1.5-fold their decay time. In contrast, as shown here for the first time, nitrate and Zn2+, but not caffeine, activated a late, secondary component of the transient rising phase of frog but not mouse, fibres. The rise time was increased from 1.9 ms in normal solution (NR) to 3.3 ms (nitrate) and 4.4 ms (Zn2+). In NR, a single exponential, fitted the rising phase of calcium transients of frog (τ1 = 0.47 ms) and mouse (τ1 = 0.28 ms). In nitrate and Zn2+ only frog transients showed a secondary exponential component, τ2 = 0.72 ms (nitrate) and 0.94 ms, (Zn2+). We suggest that nitrate and Zn2+ activate a late slower component of the ΔF/F signals of frog but not of mouse fibres, possibly promoting Ca2+ induced Ca2+ release at level of the RyR3, that in frog muscle fibres are localized in the para-junctional region of the triads and are absent in mouse FDB muscle fibres.
Collapse
Affiliation(s)
- Caputo Carlo
- Laboratorio de Fisiología Celular, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, IVIC, Apartado 21827, Caracas, 1020, Venezuela.
| | - Bolaños Pura
- Laboratorio de Fisiología Celular, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, IVIC, Apartado 21827, Caracas, 1020, Venezuela
| | - Ramos Magaly
- Laboratorio de Fisiología Celular, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, IVIC, Apartado 21827, Caracas, 1020, Venezuela
| | - DiFranco Marino
- Department of Physiology, David Geffen School of Medicine, UCLA, Los Angeles, CF, USA
| |
Collapse
|
9
|
Cong X, Doering J, Grange RW, Jiang H. Defective excitation-contraction coupling is partially responsible for impaired contractility in hindlimb muscles of Stac3 knockout mice. Sci Rep 2016; 6:26194. [PMID: 27184118 PMCID: PMC4868984 DOI: 10.1038/srep26194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/28/2016] [Indexed: 01/13/2023] Open
Abstract
The Stac3 gene is exclusively expressed in skeletal muscle, and Stac3 knockout is perinatal lethal in mice. Previous data from Stac3-deleted diaphragms indicated that Stac3-deleted skeletal muscle could not contract because of defective excitation-contraction (EC) coupling. In this study, we determined the contractility of Stac3-deleted hindlimb muscle. In response to frequent electrostimulation, Stac3-deleted hindlimb muscle contracted but the maximal tension generated was only 20% of that in control (wild type or heterozygous) muscle (P < 0.05). In response to high [K(+)], caffeine, and 4-chloro-m-cresol (4-CMC), the maximal tensions generated in Stac3-deleted muscle were 29% (P < 0.05), 58% (P = 0.08), and 55% (P < 0.05) of those in control muscle, respectively. In response to 4-CMC or caffeine, over 90% of myotubes formed from control myoblasts contracted, but only 60% of myotubes formed from Stac3-deleted myoblasts contracted (P = 0.05). However, in response to 4-CMC or caffeine, similar increases in intracellular calcium concentration were observed in Stac3-deleted and control myotubes. Gene expression and histological analyses revealed that Stac3-deleted hindlimb muscle contained more slow type-like fibers than control muscle. These data together confirm a critical role of STAC3 in EC coupling but also suggest that STAC3 may have additional functions in skeletal muscle, at least in the hindlimb muscle.
Collapse
Affiliation(s)
- Xiaofei Cong
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Jonathan Doering
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA
| | - Robert W Grange
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA
| | - Honglin Jiang
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
10
|
Sekulic-Jablanovic M, Ullrich ND, Goldblum D, Palmowski-Wolfe A, Zorzato F, Treves S. Functional characterization of orbicularis oculi and extraocular muscles. J Gen Physiol 2016; 147:395-406. [PMID: 27069119 PMCID: PMC4845688 DOI: 10.1085/jgp.201511542] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 03/25/2016] [Indexed: 12/17/2022] Open
Abstract
Facial muscles are skeletal muscles that control facial expression. Sekulic-Jablanovic et al. characterize orbicularis oculi and extraocular muscles and find divergence in the expression of key molecules for muscle function between facial, extraocular, and quadriceps muscles. The orbicularis oculi are the sphincter muscles of the eyelids and are involved in modulating facial expression. They differ from both limb and extraocular muscles (EOMs) in their histology and biochemistry. Weakness of the orbicularis oculi muscles is a feature of neuromuscular disorders affecting the neuromuscular junction, and weakness of facial muscles and ptosis have also been described in patients with mutations in the ryanodine receptor gene. Here, we investigate human orbicularis oculi muscles and find that they are functionally more similar to quadriceps than to EOMs in terms of excitation–contraction coupling components. In particular, they do not express the cardiac isoform of the dihydropyridine receptor, which we find to be highly expressed in EOMs where it is likely responsible for the large depolarization-induced calcium influx. We further show that human orbicularis oculi and EOMs express high levels of utrophin and low levels of dystrophin, whereas quadriceps express dystrophin and low levels of utrophin. The results of this study highlight the notion that myotubes obtained by explanting satellite cells from different muscles are not functionally identical and retain the physiological characteristics of their muscle of origin. Furthermore, our results indicate that sparing of facial and EOMs in patients with Duchenne muscular dystrophy is the result of the higher levels of utrophin expression.
Collapse
Affiliation(s)
- Marijana Sekulic-Jablanovic
- Department of Anesthesia, Basel University Hospital, 4031 Basel, Switzerland Department of Biomedicine, Basel University Hospital, 4031 Basel, Switzerland
| | - Nina D Ullrich
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, University of Heidelberg, 69120 Heidelberg, Germany
| | - David Goldblum
- Eye Clinic, Basel University and Basel University Hospital, 4031 Basel, Switzerland
| | - Anja Palmowski-Wolfe
- Eye Clinic, Basel University and Basel University Hospital, 4031 Basel, Switzerland
| | - Francesco Zorzato
- Department of Anesthesia, Basel University Hospital, 4031 Basel, Switzerland Department of Biomedicine, Basel University Hospital, 4031 Basel, Switzerland Department of Life Sciences and Biotechnology, General Pathology Section, University of Ferrara, 44100 Ferrara, Italy
| | - Susan Treves
- Department of Anesthesia, Basel University Hospital, 4031 Basel, Switzerland Department of Biomedicine, Basel University Hospital, 4031 Basel, Switzerland Department of Life Sciences and Biotechnology, General Pathology Section, University of Ferrara, 44100 Ferrara, Italy
| |
Collapse
|
11
|
Rebbeck RT, Willemse H, Groom L, Casarotto MG, Board PG, Beard NA, Dirksen RT, Dulhunty AF. Regions of ryanodine receptors that influence activation by the dihydropyridine receptor β1a subunit. Skelet Muscle 2015. [PMID: 26203350 PMCID: PMC4510890 DOI: 10.1186/s13395-015-0049-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background Although excitation-contraction (EC) coupling in skeletal muscle relies on physical activation of the skeletal ryanodine receptor (RyR1) Ca2+ release channel by dihydropyridine receptors (DHPRs), the activation pathway between the DHPR and RyR1 remains unknown. However, the pathway includes the DHPR β1a subunit which is integral to EC coupling and activates RyR1. In this manuscript, we explore the isoform specificity of β1a activation of RyRs and the β1a binding site on RyR1. Methods We used lipid bilayers to measure single channel currents and whole cell patch clamp to measure L-type Ca2+ currents and Ca2+ transients in myotubes. Results We demonstrate that both skeletal RyR1 and cardiac RyR2 channels in phospholipid bilayers are activated by 10–100 nM of the β1a subunit. Activation of RyR2 by 10 nM β1a was less than that of RyR1, suggesting a reduced affinity of RyR2 for β1a. A reduction in activation was also observed when 10 nM β1a was added to the alternatively spliced (ASI(−)) isoform of RyR1, which lacks ASI residues (A3481-Q3485). It is notable that the equivalent region of RyR2 also lacks four of five ASI residues, suggesting that the absence of these residues may contribute to the reduced 10 nM β1a activation observed for both RyR2 and ASI(−)RyR1 compared to ASI(+)RyR1. We also investigated the influence of a polybasic motif (PBM) of RyR1 (K3495KKRRDGR3502) that is located immediately downstream from the ASI residues and has been implicated in EC coupling. We confirmed that neutralizing the basic residues in the PBM (RyR1 K-Q) results in an ~50 % reduction in Ca2+ transient amplitude following expression in RyR1-null (dyspedic) myotubes and that the PBM is also required for β1a subunit activation of RyR1 channels in lipid bilayers. These results suggest that the removal of β1a subunit interaction with the PBM in RyR1 could contribute directly to ~50 % of the Ca2+ release generated during skeletal EC coupling. Conclusions We conclude that the β1a subunit likely binds to a region that is largely conserved in RyR1 and RyR2 and that this region is influenced by the presence of the ASI residues and the PBM in RyR1. Electronic supplementary material The online version of this article (doi:10.1186/s13395-015-0049-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Robyn T Rebbeck
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN USA
| | - Hermia Willemse
- John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital, PO Box 334, Canberra, ACT 2601 Australia
| | - Linda Groom
- Department of Physiology and Pharmacology, University of Rochester Medical Center, Rochester, NY USA
| | - Marco G Casarotto
- John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital, PO Box 334, Canberra, ACT 2601 Australia
| | - Philip G Board
- John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital, PO Box 334, Canberra, ACT 2601 Australia
| | - Nicole A Beard
- Discipline of Biomedical Sciences, Centre for Research in Therapeutic Solutions, University of Canberra, Canberra, ACT 2601 Australia
| | - Robert T Dirksen
- Department of Physiology and Pharmacology, University of Rochester Medical Center, Rochester, NY USA
| | - Angela F Dulhunty
- John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital, PO Box 334, Canberra, ACT 2601 Australia
| |
Collapse
|
12
|
Gartz Hanson M, Niswander LA. Rectification of muscle and nerve deficits in paralyzed ryanodine receptor type 1 mutant embryos. Dev Biol 2015; 404:76-87. [PMID: 26025922 DOI: 10.1016/j.ydbio.2015.05.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 05/21/2015] [Accepted: 05/22/2015] [Indexed: 02/05/2023]
Abstract
Locomotion and respiration require motor axon connectivity and activation of the neuromuscular junction (NMJ). Through a forward genetic screen for muscle weakness, we recently reported an allele of ryanodine receptor type 1 (Ryr1(AG)). Here we reveal a role for functional RyR1 during acetylcholine receptor (AChR) cluster formation and embryonic synaptic transmission. Ryr1(AG) homozygous embryos are non-motile. Motor axons extend past AChR clusters and enlarged AChR clusters are found under fasciculated nerves. Using physiological and pharmacological methods, we show that contractility can be resumed through the masking of a potassium leak, and evoked vesicular release can be resumed via bypassing the defect in RyR1 induced calcium release. Moreover, we show the involvement of ryanodine receptors in presynaptic release at the NMJ. This data provides evidence of a role for RyR1 on both the pre- and postsynaptic sides of the NMJ.
Collapse
Affiliation(s)
- M Gartz Hanson
- Department of Pediatrics University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO 80045, United States.
| | - Lee A Niswander
- Department of Pediatrics University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO 80045, United States
| |
Collapse
|
13
|
Ryanodine receptor 2 contributes to hemorrhagic shock-induced bi-phasic vascular reactivity in rats. Acta Pharmacol Sin 2014; 35:1375-84. [PMID: 25263335 DOI: 10.1038/aps.2014.83] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 06/05/2014] [Indexed: 01/14/2023] Open
Abstract
AIM Ryanodine receptor 2 (RyR2) is a critical component of intracellular Ca(2+) signaling in vascular smooth muscle cells (VSMCs). The aim of this study was to investigate the role of RyR2 in abnormal vascular reactivity after hemorrhagic shock in rats. METHODS SD rats were hemorrhaged and maintained mean arterial pressure (MAP) at 40 mmHg for 30 min or 2 h, and then superior mesenteric arteries (SMA) rings were prepared to measure the vascular reactivity. In other experiments, SMA rings of normal rats and rat VSMCs were exposed to a hypoxic medium for 10 min or 3 h. SMA rings of normal rats and VSMCs were transfected with siRNA against RyR2. Intracellular Ca(2+) release in VSMCs was assessed using Fura-2/AM. RESULTS The vascular reactivity of the SMA rings from hemorrhagic rats was significantly increased in the early stage (30 min), but decreased in the late stage (2 h) of hemorrhagic shock. Similar results were observed in the SMA rings exposed to hypoxia for 10 min or 3 h. The enhanced vascular reactivity of the SMA rings exposed to hypoxia for 10 min was partly attenuated by transfection with RyR2 siRNA, whereas the blunted vascular reactivity of the SMA rings exposed to hypoxia for 3 h was partly restored by transfection with RyR2 siRNA. Treatment with the RyR agonist caffeine (1 mmol/L) significantly increased Ca(2+) release in VSMCs exposed to hypoxia for 10 min or 3 h, which was partially antagonized by transfection with RyR2 siRNA. CONCLUSION RyR2-mediated Ca(2+) release contributes to the development of bi-phasic vascular reactivity induced by hemorrhagic shock or hypoxia.
Collapse
|
14
|
Myoplasmic resting Ca2+ regulation by ryanodine receptors is under the control of a novel Ca2+-binding region of the receptor. Biochem J 2014; 460:261-71. [PMID: 24635445 PMCID: PMC4019983 DOI: 10.1042/bj20131553] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Passive SR (sarcoplasmic reticulum) Ca2+ leak through the RyR (ryanodine receptor) plays a critical role in the mechanisms that regulate [Ca2+]rest (intracellular resting myoplasmic free Ca2+ concentration) in muscle. This process appears to be isoform-specific as expression of either RyR1 or RyR3 confers on myotubes different [Ca2+]rest. Using chimaeric RyR3–RyR1 receptors expressed in dyspedic myotubes, we show that isoform-dependent regulation of [Ca2+]rest is primarily defined by a small region of the receptor encompassing amino acids 3770–4007 of RyR1 (amino acids 3620–3859 of RyR3) named as the CLR (Ca2+ leak regulatory) region. [Ca2+]rest regulation by the CLR region was associated with alteration of RyRs’ Ca2+-activation profile and changes in SR Ca2+-leak rates. Biochemical analysis using Tb3+-binding assays and intrinsic tryptophan fluorescence spectroscopy of purified CLR domains revealed that this determinant of RyRs holds a novel Ca2+-binding domain with conformational properties that are distinctive to each isoform. Our data suggest that the CLR region provides channels with unique functional properties that modulate the rate of passive SR Ca2+ leak and confer on RyR1 and RyR3 distinctive [Ca2+]rest regulatory properties. The identification of a new Ca2+-binding domain of RyRs with a key modulatory role in [Ca2+]rest regulation provides new insights into Ca2+-mediated regulation of RyRs. This paper reports the finding of a new class of Ca2+-binding domain of intracellular Ca2+ channels from muscle cells. This domain provides channels with distinctive properties that result in channel-specific modulation of the intracellular resting Ca2+ concentration.
Collapse
|
15
|
Wagner LE, Groom LA, Dirksen RT, Yule DI. Characterization of ryanodine receptor type 1 single channel activity using "on-nucleus" patch clamp. Cell Calcium 2014; 56:96-107. [PMID: 24972488 DOI: 10.1016/j.ceca.2014.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 05/27/2014] [Accepted: 05/28/2014] [Indexed: 12/13/2022]
Abstract
In this study, we provide the first description of the biophysical and pharmacological properties of ryanodine receptor type 1 (RyR1) expressed in a native membrane using the on-nucleus configuration of the patch clamp technique. A stable cell line expressing rabbit RyR1 was established (HEK-RyR1) using the FLP-in 293 cell system. In contrast to untransfected cells, RyR1 expression was readily demonstrated by immunoblotting and immunocytochemistry in HEK-RyR1 cells. In addition, the RyR1 agonists 4-CMC and caffeine activated Ca(2+) release that was inhibited by high concentrations of ryanodine. On nucleus patch clamp was performed in nuclei prepared from HEK-RyR1 cells. Raising the [Ca(2+)] in the patch pipette resulted in the appearance of a large conductance cation channel with well resolved kinetics and the absence of prominent subconductance states. Current versus voltage relationships were ohmic and revealed a chord conductance of ∼750pS or 450pS in symmetrical 250mM KCl or CsCl, respectively. The channel activity was markedly enhanced by caffeine and exposure to ryanodine resulted in the appearance of a subconductance state with a conductance ∼40% of the full channel opening with a Po near unity. In total, these properties are entirely consistent with RyR1 channel activity. Exposure of RyR1 channels to cyclic ADP ribose (cADPr), nicotinic acid adenine dinucleotide phosphate (NAADP) or dantrolene did not alter the single channel activity stimulated by Ca(2+), and thus, it is unlikely these molecules directly modulate RyR1 channel activity. In summary, we describe an experimental platform to monitor the single channel properties of RyR channels. We envision that this system will be influential in characterizing disease-associated RyR mutations and the molecular determinants of RyR channel modulation.
Collapse
Affiliation(s)
- Larry E Wagner
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Ave, Rochester, NY 14642, United States
| | - Linda A Groom
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Ave, Rochester, NY 14642, United States
| | - Robert T Dirksen
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Ave, Rochester, NY 14642, United States
| | - David I Yule
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Ave, Rochester, NY 14642, United States.
| |
Collapse
|
16
|
BDE-47 and 6-OH-BDE-47 modulate calcium homeostasis in primary fetal human neural progenitor cells via ryanodine receptor-independent mechanisms. Arch Toxicol 2014; 88:1537-48. [PMID: 24599297 DOI: 10.1007/s00204-014-1217-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 02/19/2014] [Indexed: 02/04/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are bioaccumulating flame retardants found in rising concentrations in human tissue. Epidemiological and animal studies have raised concern for their potential to induce developmental neurotoxicity (DNT). Considering the essential role of calcium homeostasis in neurodevelopment, PBDE-induced disturbance of intracellular calcium concentration ([Ca(2+)]i) may underlie PBDE-induced DNT. To test this hypothesis, we investigated acute effects of BDE-47 and 6-OH-BDE-47 on [Ca(2+)]i in human neural progenitor cells (hNPCs) and unraveled involved signaling pathways. Short-time differentiated hNPCs were exposed to BDE-47, 6-OH-BDE-47, and multiple inhibitors/stimulators of presumably involved signaling pathways to determine possible effects on [Ca(2+)]i by single-cell microscopy with the fluorescent dye Fura-2. Initial characterization of calcium signaling pathways confirmed the early developmental stage of hNPCs. In these cells, BDE-47 (2 μM) and 6-OH-BDE-47 (0.2 μM) induce [Ca(2+)]i transients. This increase in [Ca(2+)]i is due to extracellular Ca(2+) influx and intracellular release of Ca(2+), mainly from the endoplasmic reticulum (ER). While extracellular Ca(2+) seems to enter the cytoplasm upon 6-OH-BDE-47 by interfering with the cell membrane and independent of Ca(2+) ion channels, ER-derived Ca(2+) is released following activation of protein lipase C and inositol 1,4,5-trisphosphate receptor, but independently of ryanodine receptors. These findings illustrate that immature developing hNPCs respond to low concentrations of 6-OH-BDE-47 by an increase in [Ca(2+)]i and provide new mechanistic explanations for such BDE-induced calcium disruption. Thus, these data support the possibility of a critical window of PBDE exposure, i.e., early human brain development, which has to be acknowledged in risk assessment.
Collapse
|
17
|
Fritsch EB, Pessah IN. Structure-activity relationship of non-coplanar polychlorinated biphenyls toward skeletal muscle ryanodine receptors in rainbow trout (Oncorhynchus mykiss). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 140-141:204-12. [PMID: 23827775 PMCID: PMC3813431 DOI: 10.1016/j.aquatox.2013.06.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 06/05/2013] [Accepted: 06/05/2013] [Indexed: 05/15/2023]
Abstract
Research addressing the health impacts of polychlorinated biphenyls (PCBs) has primarily focused on the effects of coplanar, or dioxin-like (DL), congeners, which is especially true for research assessing impacts in fish species. Ortho substituted non-coplanar, termed non-dioxin-like (NDL), PCBs have received less attention. In mammals, NDL PCBs enhance the activity of ryanodine receptors (RyR), calcium release channels necessary for engaging excitation-contraction (EC) coupling in striated muscle. We utilized in vitro receptor binding analysis to determine whether NDL PCB congeners detected in aquatic environments alter the activity of RyR isoform 1 (RyR1) found in the skeletal muscle of rainbow trout. Congeners 52, 95, 136, and149 were the most efficacious leading to an increase in receptor activity that was approximately 250% greater than that found under solvent control conditions. Other environmentally relevant congeners, namely PCB 153, 151 and 101, which all contain two or more chlorines in the ortho-position, enhanced receptor activity by greater than 160% of baseline. The mono-ortho congeners or the non-ortho PCB 77 had negligible impact on the RyR1. When combined, in binary or environmentally relevant mixtures, congeners shown to enhance receptor activity appeared to display additivity and when the active PCB 95 was present with the non-active congener PCB 77 the impact on receptor activity was reduced from 250% to 230%. The important role of the RyR and the demonstrated additive nature of NDL congeners toward altering channel function calls for further investigation into the ecological implications of altered RyR function in fish with high PCB burdens.
Collapse
Affiliation(s)
- Erika B Fritsch
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA.
| | | |
Collapse
|
18
|
Altomare C, Barile L, Rocchetti M, Sala L, Crippa S, Sampaolesi M, Zaza A. Altered functional differentiation of mesoangioblasts in a genetic myopathy. J Cell Mol Med 2013; 17:419-28. [PMID: 23387296 PMCID: PMC3823023 DOI: 10.1111/jcmm.12023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 12/04/2012] [Indexed: 11/29/2022] Open
Abstract
Mutations underlying genetic cardiomyopathies might affect differentiation commitment of resident progenitor cells. Cardiac mesoangioblasts (cMabs) are multipotent progenitor cells resident in the myocardium. A switch from cardiac to skeletal muscle differentiation has been recently described in cMabs from β-sarcoglycan-null mice (βSG−/−), a murine model of genetic myopathy with early myocardial involvement. Although complementation with βSG gene was inconsequential, knock-in of miRNA669a (missing in βSG−/− cMabs) partially rescued the mutation-induced molecular phenotype. Here, we undertook a detailed evaluation of functional differentiation of βSG−/− cMabs and tested the effects of miRNA669a-induced rescue in vitro. To this end, cMabs were compared with neonatal cardiomyocytes (CMs) and skeletal muscle C2C12 cells, representative of cardiac and skeletal muscle respectively. Consistent with previous data on molecular patterns, electrophysiological and Ca2+-handling properties of βSG−/− cMabs were closer to C2C12 cells than to CM ones. Nevertheless, subtler aspects, including action potential contour, Ca2+-spark properties and RyR isoform expression, distinguished βSG−/− cMabs from C2C12 cells. Contrary to previous reports, wild-type cMabs failed to show functional differentiation towards either cell type. Knock-in of miRNA669a in βSG−/− cMabs rescued the wild-type functional phenotype, i.e. it completely prevented development of skeletal muscle functional responses. We conclude that miRNA669a expression, ablated by βSG deletion, may prevent functional differentiation of cMabs towards the skeletal muscle phenotype.
Collapse
Affiliation(s)
- Claudia Altomare
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
19
|
Smith FL, LeBlanc SJ, Carter R. Influence of intracellular Ca2+ release modulating drugs on bupivacaine infiltration anesthesia in mice. Eur J Pain 2012; 8:153-61. [PMID: 14987625 DOI: 10.1016/s1090-3801(03)00089-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2003] [Accepted: 07/04/2003] [Indexed: 10/27/2022]
Abstract
The endoplasmic reticulum inside neurons can provide enormous amounts of releasable Ca2+ to increase cytosolic Ca2+ levels through the activation of endoplasmic membrane ion channels. Ryanodine (RyR) channels release Ca2+ into the cytosol when activated by Ca2+ influx through voltage-gated channels, or by cyclicADP ribose. Inositol tris-phosphate (IP3) channels are stimulated by phospolipid metabolism and the release of IP3. The hypothesis was tested that drugs that bind RyR or IP3 channels would affect the anesthetic potency of bupivacaine. The radiant heat tail-flick test was used to assess for anesthesia following subcutaneous infiltration of bupivacaine and Ca2+ modulating drugs in the tails of mice. No musculature is contained in the tail that could result in motor block. The RyR channel agonists 4-chloro-m-cresol and poly-L-lysine significantly reduced the anesthetic potency of bupivacaine. The plant alkaloid ryanodine elicited a bi-phasic effect, with low concentrations blocking bupivacaine anesthesia, and a high concentration enhancing anesthesia. Alternatively, the RyR channel antagonist dantrolene sodium dose-dependently increased bupivacaine's potency. However, the IP3 channel drugs were inactive. The IP3 agonist adenophostin A failed to affect bupivacaine anesthesia. Furthermore, bupivacaine was unaffected by the IP3 channel antagonists xestospongin C or low molecular weight heparin. Our results indicate that only the RyR channel drugs modulated the anesthetic effects of bupivacaine. Electrophysiological and molecular studies of sensory dorsal root ganglia neurons, the source of Adelta and C-fiber nociceptors, have demonstrated the presence of RyR3 Ca2+ release channels. This provides the first evidence that RyR channels might affect bupivacaine anesthesia in some fashion.
Collapse
Affiliation(s)
- Forrest L Smith
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus of Virginia Commonwealth University, P.O. Box 980613, Richmond, VA 23298-0613, USA.
| | | | | |
Collapse
|
20
|
Kim EJ, Kim DK, Kim SH, Lee KM, Park HS, Kim SH. Alteration of Ryanodine-receptors in Cultured Rat Aortic Smooth Muscle Cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2011; 15:431-6. [PMID: 22359482 PMCID: PMC3282232 DOI: 10.4196/kjpp.2011.15.6.431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 11/25/2011] [Accepted: 11/25/2011] [Indexed: 12/02/2022]
Abstract
Vascular smooth muscle cells can obtain a proliferative function in environments such as atherosclerosis in vivo or primary culture in vitro. Proliferation of vascular smooth muscle cells is accompanied by changes in ryanodine receptors (RyRs). In several studies, the cytosolic Ca2+ response to caffeine is decreased during smooth muscle cell culture. Although caffeine is commonly used to investigate RyR function because it is difficult to measure Ca2+ release from the sarcoplasmic reticulum (SR) directly, caffeine has additional off-target effects, including blocking inositol trisphosphate receptors and store-operated Ca2+ entry. Using freshly dissociated rat aortic smooth muscle cells (RASMCs) and cultured RASMCs, we sought to provide direct evidence for the operation of RyRs through the Ca2+- induced Ca2+-release pathway by directly measuring Ca2+ release from SR in permeabilized cells. An additional goal was to elucidate alterations of RyRs that occurred during culture. Perfusion of permeabilized, freshly dissociated RASMCs with Ca2+ stimulated Ca2+ release from the SR. Caffeine and ryanodine also induced Ca2+ release from the SR in dissociated RASMCs. In contrast, ryanodine, caffeine and Ca2+ failed to trigger Ca2+ release in cultured RASMCs. These results are consistent with results obtained by immunocytochemistry, which showed that RyRs were expressed in dissociated RASMCs, but not in cultured RASMCs. This study is the first to demonstrate Ca2+ release from the SR by cytosolic Ca2+ elevation in vascular smooth muscle cells, and also supports previous studies on the alterations of RyRs in vascular smooth muscle cells associated with culture.
Collapse
Affiliation(s)
- Eun Ji Kim
- Department of Physiology, College of Medicine, Konyang University, Daejeon 302-718, Korea
| | | | | | | | | | | |
Collapse
|
21
|
Kim KH, Bose DD, Ghogha A, Riehl J, Zhang R, Barnhart CD, Lein PJ, Pessah IN. Para- and ortho-substitutions are key determinants of polybrominated diphenyl ether activity toward ryanodine receptors and neurotoxicity. ENVIRONMENTAL HEALTH PERSPECTIVES 2011; 119:519-26. [PMID: 21106467 PMCID: PMC3080935 DOI: 10.1289/ehp.1002728] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 11/24/2010] [Indexed: 05/17/2023]
Abstract
BACKGROUND Polybrominated diphenyl ethers (PBDEs) are widely used flame retardants that bioaccumulate in human tissues. Their neurotoxicity involves dysregulation of calcium ion (Ca(2+))signaling; however, specific mechanisms have yet to be defined. OBJECTIVE We aimed to define the structure-activity relationship (SAR) for PBDEs and their metabolites toward ryanodine receptors type 1 (RyR1) and type 2 (RyR2) and to determine whether it predicts neurotoxicity. METHODS We analyzed [3H]ryanodine binding, microsomal Ca(2+) fluxes, cellular measurements of Ca(2+) homeostasis, and neurotoxicity to define mechanisms and specificity of PBDE-mediated Ca(2+) dysregulation. RESULTS PBDEs possessing two ortho-bromine substituents and lacking at least one para-bromine substituent (e.g., BDE-49) activate RyR1 and RyR2 with greater efficacy than corresponding congeners with two para-bromine substitutions (e.g., BDE-47). Addition of a methoxy group in the free para position reduces the activity of parent PBDEs. The hydroxylated BDEs 6-OH-BDE-47 and 4´-OH-BDE-49 are biphasic RyR modulators. Pretreatment of HEK293 cells (derived from human embryonic kidney cells) expressing either RyR1 or RyR2 with BDE-49 (250 nM) sensitized Ca2+ flux triggered by RyR agonists, whereas BDE-47 (250 nM) had negligible activity. The divergent activity of BDE-49, BDE-47, and 6-OH-BDE-47 toward RyRs predicted neurotoxicity in cultures of cortical neurons. CONCLUSIONS We found that PBDEs are potent modulators of RyR1 and RyR2. A stringent SAR at the ortho and para position determined whether a congener enhanced, inhibited, or exerted nonmonotonic actions toward RyRs. These results identify a convergent molecular target of PBDEs previously identified for noncoplanar polychlorinated biphenyls (PCBs) that predicts their cellular neurotoxicity and therefore could be a useful tool in risk assessment of PBDEs and related compounds.
Collapse
Affiliation(s)
- Kyung Ho Kim
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California-Davis, Davis, California 95616, USA.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Webb SE, Miller AL. Visualization of Ca²+ signaling during embryonic skeletal muscle formation in vertebrates. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a004325. [PMID: 21421918 DOI: 10.1101/cshperspect.a004325] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Dynamic changes in cytosolic and nuclear Ca(2+) concentration are reported to play a critical regulatory role in different aspects of skeletal muscle development and differentiation. Here we review our current knowledge of the spatial dynamics of Ca(2+) signals generated during muscle development in mouse, rat, and Xenopus myocytes in culture, in the exposed myotome of dissected Xenopus embryos, and in intact normally developing zebrafish. It is becoming clear that subcellular domains, either membrane-bound or otherwise, may have their own Ca(2+) signaling signatures. Thus, to understand the roles played by myogenic Ca(2+) signaling, we must consider: (1) the triggers and targets within these signaling domains; (2) interdomain signaling, and (3) how these Ca(2+) signals integrate with other signaling networks involved in myogenesis. Imaging techniques that are currently available to provide direct visualization of these Ca(2+) signals are also described.
Collapse
Affiliation(s)
- Sarah E Webb
- Section of Biochemistry and Cell Biology, and State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, PRC
| | | |
Collapse
|
23
|
Murayama T, Kurebayashi N. Two ryanodine receptor isoforms in nonmammalian vertebrate skeletal muscle: possible roles in excitation-contraction coupling and other processes. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2010; 105:134-44. [PMID: 21029746 DOI: 10.1016/j.pbiomolbio.2010.10.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 10/13/2010] [Accepted: 10/19/2010] [Indexed: 01/13/2023]
Abstract
The ryanodine receptor (RyR) is a Ca(2+) release channel in the sarcoplasmic reticulum in vertebrate skeletal muscle and plays an important role in excitation-contraction (E-C) coupling. Whereas mammalian skeletal muscle predominantly expresses a single RyR isoform, RyR1, skeletal muscle of many nonmammalian vertebrates expresses equal amounts of two distinct isoforms, α-RyR and β-RyR, which are homologues of mammalian RyR1 and RyR3, respectively. In this review we describe our current understanding of the functions of these two RyR isoforms in nonmammalian vertebrate skeletal muscle. The Ca(2+) release via the RyR channel can be gated by two distinct modes: depolarization-induced Ca(2+) release (DICR) and Ca(2+)-induced Ca(2+) release (CICR). In frog muscle, α-RyR acts as the DICR channel, whereas β-RyR as the CICR channel. However, several lines of evidence suggest that CICR by β-RyR may make only a minor contribution to Ca(2+) release during E-C coupling. Comparison of frog and mammalian RyR isoforms highlights the marked differences in the patterns of Ca(2+) release mediated by RyR1 and RyR3 homologues. Interestingly, common features in the Ca(2+) release patterns are noticed between β-RyR and RyR1. We will discuss possible roles and significance of the two RyR isoforms in E-C coupling and other processes in nonmammalian vertebrate skeletal muscle.
Collapse
Affiliation(s)
- Takashi Murayama
- Department of Pharmacology, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo, Japan
| | | |
Collapse
|
24
|
Nogueira L, Hogan MC. Phenol increases intracellular [Ca2+] during twitch contractions in intact Xenopus skeletal myofibers. J Appl Physiol (1985) 2010; 109:1384-93. [PMID: 20724558 DOI: 10.1152/japplphysiol.00660.2010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Phenol is a neurolytic agent used for management of spasticity in patients with either motoneuron lesions or stroke. In addition, compounds that enhance muscle contractility (i.e., polyphenols, etc.) may affect muscle function through the phenol group. However, the effects of phenol on muscle function are unknown, and it was, therefore, the purpose of the present investigation to examine the effects of phenol on tension development and Ca(2+) release in intact skeletal muscle fibers. Dissected intact muscle fibers from Xenopus laevis were electrically stimulated, and cytosolic Ca(2+) concentration ([Ca(2+)](c)) and tension development were recorded. During single twitches and unfused tetani, phenol significantly increased [Ca(2+)](c) and tension without affecting myofilament Ca(2+) sensitivity. To investigate the phenol effects on Ca(2+) channel/ryanodine receptors, single fibers were treated with different concentrations of caffeine in the presence and absence of phenol. Low concentrations of phenol significantly increased the caffeine sensitivity (P < 0.01) and reduced the caffeine concentrations necessary to produce nonstimulated contraction (contracture). However, at high phenol concentrations, caffeine did not increase tension or Ca(2+) release. These results suggest that phenol affects the ability of caffeine to release Ca(2+) through an effect on the ryanodine receptors, or on the sarcoplasmic reticulum Ca(2+) pump. During tetanic contractions inducing fatigue, phenol application decreased the time to fatigue. In summary, phenol increases intracellular [Ca(2+)] during twitch contractions in muscle fibers without altering myofilament Ca(2+) sensitivity and may be used as a new agent to study skeletal muscle Ca(2+) handling.
Collapse
Affiliation(s)
- Leonardo Nogueira
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0623, USA
| | | |
Collapse
|
25
|
Kashiyama T, Murayama T, Suzuki E, Allen PD, Ogawa Y. Frog alpha- and beta-ryanodine receptors provide distinct intracellular Ca2+ signals in a myogenic cell line. PLoS One 2010; 5:e11526. [PMID: 20634947 PMCID: PMC2902508 DOI: 10.1371/journal.pone.0011526] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 06/16/2010] [Indexed: 11/18/2022] Open
Abstract
Background In frog skeletal muscle, two ryanodine receptor (RyR) isoforms, α-RyR and β-RyR, are expressed in nearly equal amounts. However, the roles and significance of the two isoforms in excitation-contraction (E-C) coupling remains to be elucidated. Methodology/Principal Findings In this study, we expressed either or both α-RyR and β-RyR in 1B5 RyR-deficient myotubes using the herpes simplex virus 1 helper-free amplicon system. Immunological characterizations revealed that α-RyR and β-RyR are appropriately expressed and targeted at the junctions in 1B5 myotubes. In Ca2+ imaging studies, each isoform exhibited caffeine-induced Ca2+ transients, an indicative of Ca2+-induced Ca2+ release (CICR). However, the fashion of Ca2+ release events was fundamentally different: α-RyR mediated graded and sustained Ca2+ release observed uniformly throughout the cytoplasm, whereas β-RyR supported all-or-none type regenerative Ca2+ oscillations and waves. α-RyR but not β-RyR exhibited Ca2+ transients triggered by membrane depolarization with high [K+]o that were nifedipine-sensitive, indicating that only α-RyR mediates depolarization-induced Ca2+ release. Myotubes co-expressing α-RyR and β-RyR demonstrated high [K+]o-induced Ca2+ transients which were indistinguishable from those with myotubes expressing α-RyR alone. Furthermore, procaine did not affect the peak height of high [K+]o-induced Ca2+ transients, suggesting minor amplification of Ca2+ release by β-RyR via CICR in 1B5 myotubes. Conclusions/Significance These findings suggest that α-RyR and β-RyR provide distinct intracellular Ca2+ signals in a myogenic cell line. These distinct properties may also occur in frog skeletal muscle and will be important for E-C coupling.
Collapse
Affiliation(s)
- Taku Kashiyama
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan
| | - Takashi Murayama
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan
- * E-mail:
| | - Erika Suzuki
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan
| | - Paul D. Allen
- Department of Anesthesia, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Yasuo Ogawa
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
26
|
Liu Z, Wang R, Tian X, Zhong X, Gangopadhyay J, Cole R, Ikemoto N, Chen SRW, Wagenknecht T. Dynamic, inter-subunit interactions between the N-terminal and central mutation regions of cardiac ryanodine receptor. J Cell Sci 2010; 123:1775-84. [PMID: 20427316 PMCID: PMC2864716 DOI: 10.1242/jcs.064071] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2010] [Indexed: 11/20/2022] Open
Abstract
Naturally occurring mutations in the cardiac ryanodine receptor (RyR2) have been linked to certain types of cardiac arrhythmias and sudden death. Two mutation hotspots that lie in the N-terminal and central regions of RyR2 are predicted to interact with one another and to form an important channel regulator switch. To monitor the conformational dynamics involving these regions, we generated a fluorescence resonance energy transfer (FRET) pair. A yellow fluorescent protein (YFP) was inserted into RyR2 after residue Ser437 in the N-terminal region, and a cyan fluorescent protein (CFP) was inserted after residue Ser2367 in the central region, to form a dual YFP- and CFP-labeled RyR2 (RyR2(S437-YFP/S2367-CFP)). We transfected HEK293 cells with RyR2(S437-YFP/S2367-CFP) cDNAs, and then examined them by using confocal microscopy and by measuring the FRET signal in live cells. The FRET signals are influenced by modulators of RyR2, by domain peptides that mimic the effects of disease causing RyR2 mutations, and by various drugs. Importantly, FRET signals were also readily detected in cells co-transfected with single CFP (RyR2(S437-YFP)) and single YFP (RyR2(S2367-CFP)) labeled RyR2, indicating that the interaction between the N-terminal and central mutation regions is an inter-subunit interaction. Our studies demonstrate that FRET analyses of this CFP- and YFP-labeled RyR2 can be used not only for investigating the conformational dynamics associated with RyR2 channel gating, but potentially, also for identifying drugs that are capable of stabilizing the conformations of RyR2.
Collapse
Affiliation(s)
- Zheng Liu
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Rigoard P, Buffenoir K, Wager M, Bauche S, Giot JP, Lapierre F. [Molecular architecture of the sarcoplasmic reticulum and its role in the ECC]. Neurochirurgie 2009; 55 Suppl 1:S83-91. [PMID: 19233437 DOI: 10.1016/j.neuchi.2008.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 05/09/2008] [Indexed: 11/16/2022]
Abstract
The sarcoplasmic reticulum (SR) plays a fundamental role in excitation-contraction coupling, which propagates the electric signal conversion along the muscle fiber's plasmic membrane to a mechanical event manifested as a muscle contraction. It plays a crucial role in calcium homeostasis and intracellular calcium storage control (storage, liberation and uptake) necessary for fiber muscle contraction and then relaxation. These functions take place at the triad, made up of individualized SR subdomains where the protein-specific organization provides efficient and fast coupling. Ryanodine receptors (RyR) and dihydropyridine receptors (DHPR) mainly act in calcium exchanges in the SR. This particular structural and molecular architecture must be correlated to its functional specificity.
Collapse
Affiliation(s)
- P Rigoard
- Service de neurochirurgie, CHU La Milétrie, 2, rue de la Milétrie, BP 577, 86021 Poitiers cedex, France.
| | | | | | | | | | | |
Collapse
|
28
|
Kimura T, Lueck JD, Harvey PJ, Pace SM, Ikemoto N, Casarotto MG, Dirksen RT, Dulhunty AF. Alternative splicing of RyR1 alters the efficacy of skeletal EC coupling. Cell Calcium 2009; 45:264-74. [PMID: 19131108 DOI: 10.1016/j.ceca.2008.11.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 11/05/2008] [Accepted: 11/13/2008] [Indexed: 11/16/2022]
Abstract
Alternative splicing of ASI residues (Ala(3481)-Gln(3485)) in the skeletal muscle ryanodine receptor (RyR1) is developmentally regulated: the residues are present in adult ASI(+)RyR1, but absent in the juvenile ASI(-)RyR1 which is over-expressed in adult myotonic dystrophy type 1 (DM1). Although this splicing switch may influence RyR1 function in developing muscle and DM1, little is known about the properties of the splice variants. We examined excitation-contraction (EC) coupling and the structure and interactions of the ASI domain (Thr(3471)-Gly(3500)) in the splice variants. Depolarisation-dependent Ca(2+) release was enhanced by >50% in myotubes expressing ASI(-)RyR1 compared with ASI(+)RyR1, although DHPR L-type currents and SR Ca(2+) content were unaltered, while ASI(-)RyR1 channel function was actually depressed. The effect on EC coupling did not depend on changes in ASI domain secondary structure. Probing RyR1 function with peptides possessing the ASI domain sequence indicated that the domain contributes to an inhibitory module in RyR1. The action of the peptide depended on a sequence of basic residues and their alignment in an alpha-helix adjacent to the ASI splice site. This is the first evidence that the ASI residues contribute to an inhibitory module in RyR1 that influences EC coupling. Implications for development and DM1 are discussed.
Collapse
Affiliation(s)
- Takashi Kimura
- Hyogo College of Medicine, 1-1 Mukogawa-cho Nishinomiya, Hyogo 663-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Ahn KC, Zhao B, Chen J, Cherednichenko G, Sanmarti E, Denison MS, Lasley B, Pessah IN, Kültz D, Chang DP, Gee SJ, Hammock BD. In vitro biologic activities of the antimicrobials triclocarban, its analogs, and triclosan in bioassay screens: receptor-based bioassay screens. ENVIRONMENTAL HEALTH PERSPECTIVES 2008; 116:1203-10. [PMID: 18795164 PMCID: PMC2535623 DOI: 10.1289/ehp.11200] [Citation(s) in RCA: 272] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 05/15/2008] [Indexed: 05/02/2023]
Abstract
BACKGROUND Concerns have been raised about the biological and toxicologic effects of the antimicrobials triclocarban (TCC) and triclosan (TCS) in personal care products. Few studies have evaluated their biological activities in mammalian cells to assess their potential for adverse effects. OBJECTIVES In this study, we assessed the activity of TCC, its analogs, and TCS in in vitro nuclear-receptor-responsive and calcium signaling bioassays. MATERIALS AND METHODS We determined the biological activities of the compounds in in vitro, cell-based, and nuclear-receptor-responsive bioassays for receptors for aryl hydrocarbon (AhR), estrogen (ER), androgen (AR), and ryanodine (RyR1). RESULTS Some carbanilide compounds, including TCC (1-10 muM), enhanced estradiol (E(2))-dependent or testosterone-dependent activation of ER- and AR-responsive gene expression up to 2.5-fold but exhibited little or no agonistic activity alone. Some carbanilides and TCS exhibited weak agonistic and/or antagonistic activity in the AhR-responsive bioassay. TCS exhibited antagonistic activity in both ER- and AR-responsive bioassays. TCS (0.1-10 muM) significantly enhanced the binding of [(3)H]ryanodine to RyR1 and caused elevation of resting cytosolic [Ca(2+)] in primary skeletal myotubes, but carbanilides had no effect. CONCLUSIONS Carbanilides, including TCC, enhanced hormone-dependent induction of ER- and AR-dependent gene expression but had little agonist activity, suggesting a new mechanism of action of endocrine-disrupting compounds. TCS, structurally similar to noncoplanar ortho-substituted poly-chlorinated biphenyls, exhibited weak AhR activity but interacted with RyR1 and stimulated Ca(2+) mobilization. These observations have potential implications for human and animal health. Further investigations are needed into the biological and toxicologic effects of TCC, its analogs, and TCS.
Collapse
Affiliation(s)
- Ki Chang Ahn
- Department of Entomology and Cancer Research Center
| | - Bin Zhao
- Department of Environmental Toxicology
| | | | - Gennady Cherednichenko
- Department of Molecular Biosciences and Center for Children’s Environmental Health and Disease Prevention
| | | | | | | | - Isaac N. Pessah
- Department of Molecular Biosciences and Center for Children’s Environmental Health and Disease Prevention
| | | | - Daniel P.Y. Chang
- Department of Civil and Environmental Engineering, University of California, Davis, Davis, California, USA
| | | | - Bruce D. Hammock
- Department of Entomology and Cancer Research Center
- Address correspondence to B.D. Hammock, Department of Entomology, University of California, Davis, Davis, CA 95616 USA. Telephone: (530) 752-7519. Fax: (530) 752-1537. E-mail:
| |
Collapse
|
30
|
Wang Y, Li X, Duan H, Fulton TR, Eu JP, Meissner G. Altered stored calcium release in skeletal myotubes deficient of triadin and junctin. Cell Calcium 2008; 45:29-37. [PMID: 18620751 DOI: 10.1016/j.ceca.2008.05.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 05/28/2008] [Accepted: 05/29/2008] [Indexed: 11/27/2022]
Abstract
Triadin and junctin are integral sarcoplasmic reticulum membrane proteins that form a macromolecular complex with the skeletal muscle ryanodine receptor (RyR1) but their roles in skeletal muscle calcium homeostasis remain incompletely understood. Here we report that delivery of siRNAs specific for triadin or junctin into C2C12 skeletal myoblasts reduced the expression of triadin and junctin in 8-day-old myotubes by 80 and 100%, respectively. Knocking down either triadin or junctin in these cells reduced Ca2+ release induced by depolarization (10mM KCl) by 20-25%. Unlike triadin knockdown myotubes, junctin knockdown and junctin/triadin double knockdown myotubes also had reduced Ca2+ release induced by 400 microM 4-chloro-m-cresol, 10mM caffeine, 400 microM UTP, or 1 microM thapsigargin. Thus, knocking down junctin compromised the Ca2+ stores in the sarcoplasmic reticulum of these cells. Our subsequent studies showed that in junctin knockdown myotubes at least two sarcoplasmic reticulum proteins (RyR1 and skeletal muscle calsequestrin) were down-regulated while these proteins' mRNA expression was not affected. The results suggest that triadin has a role in facilitating KCl depolarization-induced Ca2+ release in contrast to junctin which has a role in maintaining sarcoplasmic reticulum Ca2+ store size in C2C12 myotubes.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, United States
| | | | | | | | | | | |
Collapse
|
31
|
Zheng YM, Wang QS, Liu QH, Rathore R, Yadav V, Wang YX. Heterogeneous gene expression and functional activity of ryanodine receptors in resistance and conduit pulmonary as well as mesenteric artery smooth muscle cells. J Vasc Res 2008; 45:469-79. [PMID: 18434746 DOI: 10.1159/000127438] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2007] [Accepted: 12/19/2007] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Hypoxia causes heterogeneous contractile responses in resistance and conduit pulmonary as well as systemic (mesenteric) artery smooth muscle cells (RPASMCs, CPASMCs and MASMCs), but the underlying mechanisms are largely unknown. In this study, we aimed to investigate whether the gene expression and functional activity of ryanodine receptors (RyRs) would be different in these 3 cell types. METHODS RyR mRNA expression, Ca(2+) sparks and [Ca(2+)](i) were measured by real-time quantitative RT-PCR, laser scanning confocal microscopy and wide-field fluorescence microscopy, respectively. RESULTS All 3 RyR subtype (RyR1, RyR2 and RyR3) mRNAs are expressed in RPASMCs, CPASMCs and MASMCs, but their expression levels are different. Spontaneous Ca(2+) sparks (functional events of RyRs) show distinct frequency, amplitude, duration, size and kinetics in these 3 cell types. Similarly, activation of RyRs by caffeine, 4-chloro-m-cresol or high K(+) induces differential Ca(2+) release. Moreover, hypoxia-induced increase in [Ca(2+)](i) is largest in MASMCs relative to CPSAMCs and smallest in RPASMCs. CONCLUSION This study provides comprehensive evidence that RyRs are heterogeneous in gene expression and functional activity in RPASMCs, CPASMCs and MASMCs, which may contribute to the diversity of excitation-contraction coupling and hypoxic Ca(2+) responses in different vascular smooth muscle cells.
Collapse
Affiliation(s)
- Yun-Min Zheng
- Center for Cardiovascular Sciences, Albany Medical College, Albany, NY 12158, USA
| | | | | | | | | | | |
Collapse
|
32
|
Yin CC, D’Cruz LG, Lai FA. Ryanodine receptor arrays: not just a pretty pattern? Trends Cell Biol 2008; 18:149-56. [DOI: 10.1016/j.tcb.2008.02.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2007] [Revised: 02/03/2008] [Accepted: 02/05/2008] [Indexed: 11/28/2022]
|
33
|
Cherednichenko G, Ward CW, Feng W, Cabrales E, Michaelson L, Samso M, López JR, Allen PD, Pessah IN. Enhanced excitation-coupled calcium entry in myotubes expressing malignant hyperthermia mutation R163C is attenuated by dantrolene. Mol Pharmacol 2008; 73:1203-12. [PMID: 18171728 PMCID: PMC2735873 DOI: 10.1124/mol.107.043299] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dantrolene is the drug of choice for the treatment of malignant hyperthermia (MH) and is also useful for treatment of spasticity or muscle spasms associated with several clinical conditions. The current study examines the mechanisms of dantrolene's action on skeletal muscle and shows that one of dantrolene's mechanisms of action is to block excitation-coupled calcium entry (ECCE) in both adult mouse flexor digitorum brevis fibers and primary myotubes. A second important new finding is that myotubes isolated from mice heterozygous and homozygous for the ryanodine receptor type 1 R163C MH susceptibility mutation show significantly enhanced ECCE rates that could be restored to those measured in wild-type cells after exposure to clinical concentrations of dantrolene. We propose that this gain of ECCE function is an important etiological component of MH susceptibility and possibly contributes to the fulminant MH episode. The inhibitory potency of dantrolene on ECCE found in wild-type and MH-susceptible muscle is consistent with the drug's clinical potency for reversing the MH syndrome and is incomplete as predicted by its efficacy as a muscle relaxant.
Collapse
Affiliation(s)
- Gennady Cherednichenko
- Department of Molecular Biosciences, School of Veterinary Medicine, One Shields Avenue, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Legrand C, Giacomello E, Berthier C, Allard B, Sorrentino V, Jacquemond V. Spontaneous and voltage-activated Ca2+ release in adult mouse skeletal muscle fibres expressing the type 3 ryanodine receptor. J Physiol 2008; 586:441-57. [PMID: 18006577 PMCID: PMC2375597 DOI: 10.1113/jphysiol.2007.145862] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/01/2007] [Accepted: 11/09/2007] [Indexed: 11/08/2022] Open
Abstract
The physiological properties and role of the type 3 ryanodine receptor (RyR3), a calcium release channel expressed in a wide variety of cell types, remain mysterious. We forced, in vivo, the expression of RyR3 in adult mouse skeletal muscle fibres using a GFP-RyR3 DNA construct. GFP fluorescence was found within spatially restricted regions of muscle fibres where it exhibited a sarcomere-related banded pattern consistent with a localization within or near the junctional sarcoplasmic reticulum membrane. Immunostaining confirmed the presence of RyR3 together with RyR1 within the GFP-positive areas. In approximately 90% of RyR3-positive fibres microinjected with the calcium indicator fluo-3, we detected repetitive spontaneous transient elevations of intracellular Ca2+ that persisted when fibres were voltage-clamped at -80 mV. These Ca2+ transients remained essentially confined to the RyR3 expression region. They ranged from wide local events to propagating Ca2+ waves and were in some cases associated with local contractile activity. When voltage-clamp depolarizations were applied while fluo-3 or rhod-2 fluorescence was measured within the RyR3-expressing region, no voltage-evoked 'spark-like' elementary Ca2+ release event could be detected. Still global voltage-activated Ca2+ release exhibited a prominent early peak within the RyR3-expressing regions. Measurements were also taken from muscles fibres expressing a GFP-RyR1 construct; positive fibres also yielded a local banded pattern of GFP fluorescence but exhibited no spontaneous Ca2+ release. Results demonstrate that RyR3 is a very potent source of voltage-independent Ca2+ release activity. Conversely we find no evidence that it could contribute to the production of discrete voltage-activated Ca2+ release events in differentiated mammalian skeletal muscle.
Collapse
Affiliation(s)
- Claude Legrand
- Physiologie Intégrative Cellulaire et Moléculaire, Université Lyon 1, UMR CNRS 5123, Villeurbanne, France
| | | | | | | | | | | |
Collapse
|
35
|
Alpha2delta1 dihydropyridine receptor subunit is a critical element for excitation-coupled calcium entry but not for formation of tetrads in skeletal myotubes. Biophys J 2008; 94:3023-34. [PMID: 18192372 DOI: 10.1529/biophysj.107.118893] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It has been shown that small interfering RNA (siRNA) partial knockdown of the alpha(2)delta(1) dihydropyridine receptor subunits cause a significant increase in the rate of activation of the L-type Ca(2+) current in myotubes but have little or no effect on skeletal excitation-contraction coupling. This study used permanent siRNA knockdown of alpha(2)delta(1) to address two important unaddressed questions. First, does the alpha(2)delta(1) subunit contribute to the size and/or spacing of tetradic particles? Second, is the alpha(2)delta(1) subunit important for excitation-coupled calcium entry? We found that the size and spacing of tetradic particles is unaffected by siRNA knockdown of alpha(2)delta(1), indicating that the visible particle represents the alpha(1s) subunit. Strikingly, >97% knockdown of alpha(2)delta(1) leads to a complete loss of excitation-coupled calcium entry during KCl depolarization and a more rapid decay of Ca(2+) transients during bouts of repetitive electrical stimulation like those occurring during normal muscle activation in vivo. Thus, we conclude that the alpha(2)delta(1) dihydropyridine receptor subunit is physiologically necessary for sustaining Ca(2+) transients in response to prolonged depolarization or repeated trains of action potentials.
Collapse
|
36
|
Voss AA, Allen PD, Pessah IN, Perez CF. Allosterically coupled calcium and magnesium binding sites are unmasked by ryanodine receptor chimeras. Biochem Biophys Res Commun 2007; 366:988-93. [PMID: 18096513 DOI: 10.1016/j.bbrc.2007.12.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Accepted: 12/08/2007] [Indexed: 01/05/2023]
Abstract
We studied cation regulation of wild-type ryanodine receptor type 1 ((WT)RyR1), type 3 ((WT)RyR3), and RyR3/RyR1 chimeras (Ch) expressed in 1B5 dyspedic myotubes. Using [(3)H]ryanodine binding to sarcoplasmic reticulum (SR) membranes, Ca(2+) titrations with (WT)RyR3 and three chimeras show biphasic activation that is allosterically coupled to an attenuated inhibition relative to (WT)RyR1. Chimeras show biphasic Mg(2+) inhibition profiles at 3 and 10 microM Ca(2+), no observable inhibition at 20 microM Ca(2+) and monophasic inhibition at 100 microM Ca(2+). Ca(2+) imaging of intact myotubes expressing Ch-4 exhibit caffeine-induced Ca(2+) transients with inhibition kinetics that are significantly slower than those expressing (WT)RyR1 or (WT)RyR3. Four new aspects of RyR regulation are evident: (1) high affinity (H) activation and low affinity (L) inhibition sites are allosterically coupled, (2) Ca(2+) facilitates removal of the inherent Mg(2+) block, (3) (WT)RyR3 exhibits reduced cooperativity between H activation sites when compared to (WT)RyR1, and (4) uncoupling of these sites in Ch-4 results in decreased rates of inactivation of caffeine-induced Ca(2+) transients.
Collapse
Affiliation(s)
- Andrew A Voss
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
37
|
Zhang YA, Tuft RA, Lifshitz LM, Fogarty KE, Singer JJ, Zou H. Caffeine-activated large-conductance plasma membrane cation channels in cardiac myocytes: characteristics and significance. Am J Physiol Heart Circ Physiol 2007; 293:H2448-61. [PMID: 17483243 DOI: 10.1152/ajpheart.00032.2007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Caffeine-activated, large-conductance, nonselective cation channels (LCCs) have been found in the plasma membrane of isolated cardiac myocytes in several species. However, little is known about the effects of opening these channels. To examine such effects and to further understand the caffeine-activation mechanism, we carried out studies using whole-cell patch-clamp techniques with freshly isolated cardiac myocytes from rats and mice. Unlike previous studies, thapsigargin was used so that both the effect of opening LCCs and the action of caffeine were independent of Ca2+ release from intracellular stores. These Ca2+-permeable LCCs were found in a majority of the cells from atria and ventricles, with a conductance of ∼370 pS in rat atria. Caffeine and all its direct metabolic products (theophylline, theobromine, and paraxanthine) activated the channel, while isocaffeine did not. Although they share some similarities with ryanodine receptors (RyRs, the openings of which give rise to Ca2+ sparks), LCCs also showed some different characteristics. With simultaneous Ca2+ imaging and current recording, the localized fluorescence increase due to Ca2+ entry through a single opening of an LCC (SCCaFT) was detected. When membrane potential, instead of current, was recorded, SCCaFT-like fluorescence transients (indicating single LCC openings) were found to accompany membrane depolarizations. To our knowledge, this is the first report directly linking membrane potential changes to a single opening of an ion channel. Moreover, these events in cardiac cells suggest a possible additional mechanism by which caffeine and theophylline contribute to the generation of cardiac arrhythmias.
Collapse
Affiliation(s)
- Yu-An Zhang
- Department of Physiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | | | | | |
Collapse
|
38
|
Goonasekera SA, Beard NA, Groom L, Kimura T, Lyfenko AD, Rosenfeld A, Marty I, Dulhunty AF, Dirksen RT. Triadin binding to the C-terminal luminal loop of the ryanodine receptor is important for skeletal muscle excitation contraction coupling. ACTA ACUST UNITED AC 2007; 130:365-78. [PMID: 17846166 PMCID: PMC2151650 DOI: 10.1085/jgp.200709790] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ca2+ release from intracellular stores is controlled by complex interactions between multiple proteins. Triadin is a transmembrane glycoprotein of the junctional sarcoplasmic reticulum of striated muscle that interacts with both calsequestrin and the type 1 ryanodine receptor (RyR1) to communicate changes in luminal Ca2+ to the release machinery. However, the potential impact of the triadin association with RyR1 in skeletal muscle excitation–contraction coupling remains elusive. Here we show that triadin binding to RyR1 is critically important for rapid Ca2+ release during excitation–contraction coupling. To assess the functional impact of the triadin-RyR1 interaction, we expressed RyR1 mutants in which one or more of three negatively charged residues (D4878, D4907, and E4908) in the terminal RyR1 intraluminal loop were mutated to alanines in RyR1-null (dyspedic) myotubes. Coimmunoprecipitation revealed that triadin, but not junctin, binding to RyR1 was abolished in the triple (D4878A/D4907A/E4908A) mutant and one of the double (D4907A/E4908A) mutants, partially reduced in the D4878A/D4907A double mutant, but not affected by either individual (D4878A, D4907A, E4908A) mutations or the D4878A/E4908A double mutation. Functional studies revealed that the rate of voltage- and ligand-gated SR Ca2+ release were reduced in proportion to the degree of interruption in triadin binding. Ryanodine binding, single channel recording, and calcium release experiments conducted on WT and triple mutant channels in the absence of triadin demonstrated that the luminal loop mutations do not directly alter RyR1 function. These findings demonstrate that junctin and triadin bind to different sites on RyR1 and that triadin plays an important role in ensuring rapid Ca2+ release during excitation–contraction coupling in skeletal muscle.
Collapse
Affiliation(s)
- Sanjeewa A Goonasekera
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Zieminska E, Stafiej A, Pitsinos EN, Couladouros EA, Moutsos V, Kozlowska H, Toczylowska B, Lazarewicz JW. Synthetic bastadins modify the activity of ryanodine receptors in cultured cerebellar granule cells. Neurosignals 2007; 15:283-92. [PMID: 17726341 DOI: 10.1159/000107650] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Accepted: 06/15/2007] [Indexed: 12/18/2022] Open
Abstract
Although the interactions of several natural bastadins with the RyR1 isoform of the ryanodine receptor in sarcoplasmic reticulum has been described, their structure-dependent interference with the RyR2 isoform, mainly expressed in cardiac muscle and brain neurons, has not been studied. In this work, we examined calcium transients induced by natural bastadin 10 and several synthetic bastadins in cultured cerebellar granule cells known to contain RyR2. The fluorescent calcium indicator fluo-3 and confocal microscopy were used to evaluate changes in the intracellular Ca(2+) concentration (Ca(i)), and the involvement of ryanodine receptors was assessed using pharmacological tools. Our results demonstrate that apart from the inactive BAST218F6 (a bisdebromo analogue of bastadin 10), synthetic bastadin 5, and synthetic analogues BAST217B, BAST240 and BAST268 (at concentrations >20 microM) increased Ca(i) in a concentration-dependent, ryanodine- and FK-506-sensitive way, with a potency significantly exceeding that of 20 mM caffeine. Moreover, the same active bastadins at a concentration of 5 muM in the presence of ryanodine prevented a thapsigargin-induced increase in Ca(i). These results indicate that bastadins, acting in a structure-dependent manner, modify the activity of RyR2 in primary neuronal culture and provide new information about structure-related pharmacological properties of bastadins.
Collapse
|
40
|
Suzuki D, Hori T, Saitoh N, Takahashi T. 4-Chloro-m-cresol, an activator of ryanodine receptors, inhibits voltage-gated K(+) channels at the rat calyx of Held. Eur J Neurosci 2007; 26:1530-6. [PMID: 17714495 DOI: 10.1111/j.1460-9568.2007.05762.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
4-Chloro-m-cresol (4-CmC) is thought to be a specific activator of ryanodine receptors (RyRs). Using this compound, we examined whether the RyR-mediated Ca(2+) release is involved in transmitter release at the rat calyx of Held synapse in brainstem slices. Bath application of 4-CmC caused a dramatic increase in the amplitude of excitatory postsynaptic currents (TIFCs) with the half-maximal effective concentration of 0.12 mm. By making direct patch-clamp whole-cell recordings from presynaptic terminals, we investigated the mechanism by which 4-CmC facilitates transmitter release. 4-CmC markedly prolonged the duration of action potentials, with little effect on their rise time kinetics. In voltage-clamp recordings, 4-CmC inhibited voltage-gated presynaptic K(+) currents (I(pK)) by 53% (at +20 mV) but had no effect on voltage-gated presynaptic Ca(2+) currents (I(pCa)). In simultaneous pre- and postsynaptic recordings, 4-CmC had no effect on the TIFC evoked by I(pCa). Although immunocytochemical study of the calyceal terminals showed immunoreactivity to type 3 RyRs, ryanodine (0.02 mm) had no effect on the 4-CmC-induced TIFC potentiation. We conclude that the facilitatory effect of 4-CmC on nerve-evoked transmitter release is mediated by its inhibitory effect on I(pK).
Collapse
Affiliation(s)
- Daisuke Suzuki
- Department of Neurophysiology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | | | | | | |
Collapse
|
41
|
Dabertrand F, Fritz N, Mironneau J, Macrez N, Morel JL. Role of RYR3 splice variants in calcium signaling in mouse nonpregnant and pregnant myometrium. Am J Physiol Cell Physiol 2007; 293:C848-54. [PMID: 17596299 DOI: 10.1152/ajpcell.00069.2007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Alternative splicing of ryanodine receptor subtype 3 (RYR3) may generate a short isoform (RYR3S) without channel function and a functional full-length isoform (RYR3L). The RYR3S isoform has been shown to negatively regulate the native RYR2 subtype in smooth muscle cells as well as the RYR3L isoform when both isoforms were coexpressed in HEK-293 cells. Mouse myometrium expresses only the RYR3 subtype, but the role of RYR3 isoforms obtained by alternative splicing and their activation by cADP-ribose during pregnancy have never been investigated. Here, we show that both RYR3S and RYR3L isoforms are differentially expressed in nonpregnant and pregnant mouse myometrium. The use of antisense oligonucleotides directed against each isoform indicated that only RYR3L was activated by caffeine and cADP-ribose in nonpregnant myometrium. These RYR3L-mediated Ca(2+) releases were negatively regulated by RYR3S expression. At the end of pregnancy, the relative expression of RYR3L versus RYR3S and its ability to respond to cADP-ribose were increased. Therefore, our results suggest that physiological regulation of RYR3 alternative splicing may play an essential role at the end of pregnancy.
Collapse
Affiliation(s)
- Fabrice Dabertrand
- Centre de Neurosciences Intégratives et Cognitives, UMR5228 CNRS, Université Bordeaux 1 and Université Bordeaux 2, Ave. des Facultés, Talence 33405, France.
| | | | | | | | | |
Collapse
|
42
|
Wray S, Shmygol A. Role of the calcium store in uterine contractility. Semin Cell Dev Biol 2007; 18:315-20. [PMID: 17601757 DOI: 10.1016/j.semcdb.2007.05.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Accepted: 05/03/2007] [Indexed: 11/19/2022]
Abstract
This article assesses the nature of the sarcoplasmic reticulum (SR) in uterine smooth muscle. Modern imagining techniques have revealed new information about the location and density of Ca storage and release. Release mechanisms, including IP(3) and Ca itself, via ryanodine receptors (RyR), as well as possible roles for cyclic ADP ribose, and the contribution of the SR to relaxation are detailed. The role of the SR Ca-ATPase in both decay of the Ca transient and maintaining Ca homeostasis is reviewed. Recent data on the role of local Ca signals from the SR in contributing to membrane excitability and contractility are discussed, along with interactions with ion channels in lipid microdomains.
Collapse
Affiliation(s)
- Susan Wray
- University of Liverpool, Department of Physiology, Crown Street, Liverpool L69 3BX, United Kingdom.
| | | |
Collapse
|
43
|
Weisleder N, Ferrante C, Hirata Y, Collet C, Chu Y, Cheng H, Takeshima H, Ma J. Systemic ablation of RyR3 alters Ca2+ spark signaling in adult skeletal muscle. Cell Calcium 2007; 42:548-55. [PMID: 17412417 PMCID: PMC2095780 DOI: 10.1016/j.ceca.2007.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Revised: 01/25/2007] [Accepted: 01/26/2007] [Indexed: 10/23/2022]
Abstract
Ca2+ sparks are localized intracellular Ca2+ release events from the sarcoplasmic reticulum in muscle cells that result from synchronized opening of ryanodine receptors (RyR). In mammalian skeletal muscle, RyR1 is the predominant isoform present in adult skeletal fibers, while some RyR3 is expressed during development. Functional studies have revealed a differential role for RyR1 and RyR3 in the overall Ca2+ signaling in skeletal muscle, but the contribution of these two isoforms to Ca2+ sparks in adult mammalian skeletal muscle has not been fully examined. When enzyme-disassociated, individual adult skeletal muscle fibers are exposed to an osmotic shock, the resting fiber converts from a quiescent to a highly active Ca2+ release state where Ca2+ sparks appear proximal to the sarcolemmal membrane. These osmotic shock-induced Ca2+ sparks occur in ryr3(-/-) muscle with a spatial distribution similar to that seen in wild type muscle. Kinetic analysis reveals that systemic ablation of RyR3 results in significant changes to the initiation, duration and amplitude of individual Ca2+ sparks in muscle fibers. These changes may reflect the adaptation of the muscle Ca2+ signaling or contractile machinery due to the loss of RyR3 expression in distal tissues, as biochemical assays identify significant changes in expression of myosin heavy chain protein in ryr3(-/-) muscle.
Collapse
Affiliation(s)
- Noah Weisleder
- Department of Physiology and Biophysics, UMDNJ-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854
| | - Christopher Ferrante
- Department of Physiology and Biophysics, UMDNJ-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854
| | - Yutaka Hirata
- Department of Physiology and Biophysics, UMDNJ-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854
| | - Claude Collet
- Dept Ecologie des Invertebres, INRA, Avignon, France
| | - Yi Chu
- Department of Physiology and Biophysics, UMDNJ-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854
| | - Heping Cheng
- The Institute of Molecular Medicine, Peking University, Beijing, China
| | - Hiroshi Takeshima
- Department of Biological Chemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Kyoto, Japan
| | - Jianjie Ma
- Department of Physiology and Biophysics, UMDNJ-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854
- * Address correspondence to Dr. Jianjie Ma, Tel. (732) 235-4494, Fax. (732) 235-4483,
| |
Collapse
|
44
|
Pouvreau S, Royer L, Yi J, Brum G, Meissner G, Ríos E, Zhou J. Ca(2+) sparks operated by membrane depolarization require isoform 3 ryanodine receptor channels in skeletal muscle. Proc Natl Acad Sci U S A 2007; 104:5235-40. [PMID: 17360329 PMCID: PMC1829292 DOI: 10.1073/pnas.0700748104] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Stimuli are translated to intracellular calcium signals via opening of inositol trisphosphate receptor and ryanodine receptor (RyR) channels of the sarcoplasmic reticulum or endoplasmic reticulum. In cardiac and skeletal muscle of amphibians the stimulus is depolarization of the transverse tubular membrane, transduced by voltage sensors at tubular-sarcoplasmic reticulum junctions, and the unit signal is the Ca(2+) spark, caused by concerted opening of multiple RyR channels. Mammalian muscles instead lose postnatally the ability to produce sparks, and they also lose RyR3, an isoform abundant in spark-producing skeletal muscles. What does it take for cells to respond to membrane depolarization with Ca(2+) sparks? To answer this question we made skeletal muscles of adult mice expressing exogenous RyR3, demonstrated as immunoreactivity at triad junctions. These muscles showed abundant sparks upon depolarization. Sparks produced thusly were found to amplify the response to depolarization in a manner characteristic of Ca(2+)-induced Ca(2+) release processes. The amplification was particularly effective in responses to brief depolarizations, as in action potentials. We also induced expression of exogenous RyR1 or yellow fluorescent protein-tagged RyR1 in muscles of adult mice. In these, tag fluorescence was present at triad junctions. RyR1-transfected muscle lacked voltage-operated sparks. Therefore, the voltage-operated sparks phenotype is specific to the RyR3 isoform. Because RyR3 does not contact voltage sensors, their opening was probably activated by Ca(2+), secondarily to Ca(2+) release through junctional RyR1. Physiologically voltage-controlled Ca(2+) sparks thus require a voltage sensor, a master junctional RyR1 channel that provides trigger Ca(2+), and a slave parajunctional RyR3 cohort.
Collapse
Affiliation(s)
- Sandrine Pouvreau
- *Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, 1750 West Harrison Street, Suite 1279JS, Chicago, IL 60612
| | - Leandro Royer
- *Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, 1750 West Harrison Street, Suite 1279JS, Chicago, IL 60612
| | - Jianxun Yi
- *Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, 1750 West Harrison Street, Suite 1279JS, Chicago, IL 60612
| | - Gustavo Brum
- Departamento de Biofísica, Facultad de Medicina, Universidad de la República, Avenida General Flores 2125, Montevideo, Uruguay; and
| | - Gerhard Meissner
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260
| | - Eduardo Ríos
- *Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, 1750 West Harrison Street, Suite 1279JS, Chicago, IL 60612
- To whom correspondence may be addressed. E-mail: or
| | - Jingsong Zhou
- *Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, 1750 West Harrison Street, Suite 1279JS, Chicago, IL 60612
- To whom correspondence may be addressed. E-mail: or
| |
Collapse
|
45
|
Kong H, Wang R, Chen W, Zhang L, Chen K, Shimoni Y, Duff HJ, Chen SRW. Skeletal and cardiac ryanodine receptors exhibit different responses to Ca2+ overload and luminal ca2+. Biophys J 2007; 92:2757-70. [PMID: 17259277 PMCID: PMC1831700 DOI: 10.1529/biophysj.106.100545] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Spontaneous Ca(2+) release occurs in cardiac cells during sarcoplasmic reticulum Ca(2+) overload, a process we refer to as store-overload-induced Ca(2+) release (SOICR). Unlike cardiac cells, skeletal muscle cells exhibit little SOICR activity. The molecular basis of this difference is not well defined. In this study, we investigated the SOICR properties of HEK293 cells expressing RyR1 or RyR2. We found that HEK293 cells expressing RyR2 exhibited robust SOICR activity, whereas no SOICR activity was observed in HEK293 cells expressing RyR1. However, in the presence of low concentrations of caffeine, SOICR could be triggered in these RyR1-expressing cells. At the single-channel level, we showed that RyR2 is much more sensitive to luminal Ca(2+) than RyR1. To identify the molecular determinants responsible for these differences, we constructed two chimeras between RyR1 and RyR2, N-RyR1(1-4006)/C-RyR2(3962-4968) and N-RyR2(1-3961)/C-RyR1(4007-5037). We found that replacing the C-terminal region of RyR1 with the corresponding region of RyR2 (N-RyR1/C-RyR2) dramatically enhanced the propensity for SOICR and the response to luminal Ca(2+), whereas replacing the C-terminal region of RyR2 with the corresponding region of RyR1 (N-RyR2/C-RyR1) reduced the propensity for SOICR and the luminal Ca(2+) response. These observations indicate that the C-terminal region of RyR is a critical determinant of both SOICR and the response to luminal Ca(2+). These chimeric studies also reveal that the N-terminal region of RyR plays an important role in regulating SOICR and luminal Ca(2+) response. Taken together, our results demonstrate that RyR1 differs markedly from RyR2 with respect to their responses to Ca(2+) overload and luminal Ca(2+), and suggest that the lack of spontaneous Ca(2+) release in skeletal muscle cells is, in part, attributable to the unique intrinsic properties of RyR1.
Collapse
Affiliation(s)
- Huihui Kong
- Cardiovascular Research Group, Department of Physiology and Biophysics, and Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Sheridan DC, Takekura H, Franzini-Armstrong C, Beam KG, Allen PD, Perez CF. Bidirectional signaling between calcium channels of skeletal muscle requires multiple direct and indirect interactions. Proc Natl Acad Sci U S A 2006; 103:19760-5. [PMID: 17172444 PMCID: PMC1750873 DOI: 10.1073/pnas.0609473103] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have defined regions of the skeletal muscle ryanodine receptor (RyR1) essential for bidirectional signaling with dihydropyridine receptors (DHPRs) and for the organization of DHPR into tetrad arrays by expressing RyR1-RyR3 chimerae in dyspedic myotubes. RyR1-RyR3 constructs bearing RyR1 residues 1-1681 restored wild-type DHPR tetrad arrays and, in part, skeletal-type excitation-contraction (EC) coupling (orthograde signaling) but failed to enhance DHPR Ca(2+) currents (retrograde signaling) to WT RyR1 levels. Within this region, the D2 domain (amino acids 1272-1455), although ineffective on its own, dramatically enhanced the formation of tetrads and EC coupling rescue by constructs that otherwise are only partially effective. These findings suggest that the orthograde signal and DHPR tetrad formation require the contributions of numerous RyR regions. Surprisingly, we found that RyR3, although incapable of supporting EC coupling or tetrad formation, restored a significant level of Ca(2+) current, revealing a functional interaction with the skeletal muscle DHPR. Thus, our data support the hypotheses that (i) the structural/functional link between RyR1 and the skeletal muscle DHPR requires multiple interacting regions, (ii) the D2 domain of RyR1 plays a key role in stabilizing this interaction, and (iii) a form of retrograde signaling from RyR3 to the DHPR occurs in the absence of direct protein-protein interactions.
Collapse
Affiliation(s)
- David C. Sheridan
- *University of Colorado Health and Sciences Center, Aurora, CO 80045
| | - Hiroaki Takekura
- National Institute of Fitness and Sports, Kanoya, Kagoshima 891-2393, Japan
| | - Clara Franzini-Armstrong
- University of Pennsylvania, Philadelphia, PA 19104; and
- To whom correspondence may be addressed. E-mail:
or
| | - Kurt G. Beam
- *University of Colorado Health and Sciences Center, Aurora, CO 80045
| | - Paul D. Allen
- Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115
| | - Claudio F. Perez
- Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
47
|
Lu SG, Zhang X, Gold MS. Intracellular calcium regulation among subpopulations of rat dorsal root ganglion neurons. J Physiol 2006; 577:169-90. [PMID: 16945973 PMCID: PMC2000672 DOI: 10.1113/jphysiol.2006.116418] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Accepted: 08/24/2006] [Indexed: 11/08/2022] Open
Abstract
Primary afferent neurons are functionally heterogeneous. To determine whether this functional heterogeneity reflects, in part, heterogeneity in the regulation of the concentration of intracellular Ca(2+) ([Ca(2+)](i)), the magnitude and decay of evoked Ca(2+) transients were assessed in subpopulations of dorsal root ganglion (DRG) neurons with voltage clamp and fura-2 ratiometric imaging. To determine whether differences in evoked Ca(2+) transients among subpopulations of DRG neurons reflected differences in the contribution of Ca(2+) regulatory mechanisms, pharmacological techniques were employed to assess the contribution of influx, efflux, release and uptake pathways. Subpopulations of DRG neurons were defined by cell body size, binding of the plant lectin IB(4) and responsiveness to the algogenic compound capsaicin (CAP). Ca(2+) transients were evoked with 30 mm K(+) or voltage steps to 0 mV. There were marked differences between subpopulations of neurons with respect to both the magnitude and decay of the Ca(2+) transient, with the largest and most slowly decaying Ca(2+) transients in small-diameter, IB(4)-positive, CAP-responsive neurons. The smallest and most rapidly decaying transients were in large-diameter, IB(4)-negative and CAP-unresponsive DRG neurons. These differences were not due to a differential distribution of voltage-gated Ca(2+) currents. However, these differences did appear to reflect a differential contribution of other influx, efflux, release and uptake mechanisms between subpopulations of neurons. These results suggest that electrical activity in subpopulations of DRG neurons will have a differential influence on Ca(2+)-regulated phenomena such as spike adaptation, transmitter release and gene transcription. Significantly more activity should be required in large-diameter non-nociceptive afferents than in small-diameter nociceptive afferents to have a comparable influence on these processes.
Collapse
Affiliation(s)
- Shao-Gang Lu
- Department of Biomedical Sciences, University of Maryland Dental School, 666 West Baltimore Street, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
48
|
Katina IE, Nasledov GA. Influence of ryanodine receptor agonist and antagonist on development of potassium contracture in phasic (twitch) and tonic fibers of frog skeletal muscle. Biophysics (Nagoya-shi) 2006. [DOI: 10.1134/s0006350906050216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
49
|
Ta TA, Pessah IN. Ryanodine receptor type 1 (RyR1) possessing malignant hyperthermia mutation R615C exhibits heightened sensitivity to dysregulation by non-coplanar 2,2',3,5',6-pentachlorobiphenyl (PCB 95). Neurotoxicology 2006; 28:770-9. [PMID: 17023049 PMCID: PMC2274001 DOI: 10.1016/j.neuro.2006.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 07/29/2006] [Accepted: 08/23/2006] [Indexed: 11/22/2022]
Abstract
Malignant hyperthermia (MH) susceptibility is conferred by inheriting one of >60 missense mutations within the highly regulated microsomal Ca(2+) channel known as ryanodine receptor type 1 (RyR1). Although MH susceptible patients lack overt clinical signs, a potentially lethal MH syndrome can be triggered by exposure to halogenated alkane anesthetics. This study compares how non-coplanar 2,2',3,5',6-pentachlorobiphenyl (PCB 95), a congener identified in environmental and human samples, alters the binding properties of [(3)H]ryanodine to RyR1 in vitro. Junctional sarcoplasmic reticulum (SR) was isolated from skeletal muscle dissected from wild type pigs ((Wt)RyR1) and pigs homozygous for MH mutation R615C ((MH)RyR1), a mutation also found in humans. Although the level of (Wt)RyR1 and (MH)RyR1 expression is the same, (MH)RyR1 shows heightened sensitivity to activation and altered regulation by physiological cations. We report here that (MH)RyR1 shows more pronounced activation by Ca(2+), and is less sensitive to channel inhibition by Ca(2+) and Mg(2+), compared to (Wt)RyR1. In a buffer containing 100nM free Ca(2+), conditions typically found in resting cells, PCB 95 (50-1000nM) enhances the activity of (MH)RyR1 whereas it has no detectable effect on (Wt)RyR1. PCB 95 (2microM) decreases channel inhibition by Mg(2+) to a greater extent in (MH)RyR1 (IC(50) increased nine-fold) compared to (Wt)RyR1 (IC(50) increased by 2.5-fold). PCB95 reduces inhibition by Ca(2+) two-fold more with (MH)RyR1 than (Wt)RyR1. Our data suggest that non-coplanar PCBs are more potent and efficacious toward (MH)RyR1 than (Wt)RyR1, and have more profound effects on its cation regulation. Considering the important roles of Ca(2+) and Mg(2+) in regulating Ca(2+) signals involving RyR channels, these data provide the first mechanistic evidence that a genetic mutation known to confer susceptibility to pharmacological agents also enhances sensitivity to an environmental contaminant.
Collapse
Affiliation(s)
- Tram Anh Ta
- UC Davis, Center for Children's Environmental Health, Davis, CA 95616, USA
| | | |
Collapse
|
50
|
Jacobson AR, Moe ST, Allen PD, Fessenden JD. Structural determinants of 4-chloro-m-cresol required for activation of ryanodine receptor type 1. Mol Pharmacol 2006; 70:259-66. [PMID: 16601083 DOI: 10.1124/mol.106.022491] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
4-Chloro-m-cresol (4-CmC) is a clinically relevant activator of the intracellular Ca2+ release channel, the ryanodine receptor isoform 1 (RyR1). In this study, the chemical moieties on the 4-CmC molecule required for its activation of RyR1 were determined using structure-activity relationship analysis with a set of commercially available 4-CmC analogs. Separate compounds each lacking one of the three functional groups of 4-CmC (1-hydroxyl, 3-methyl, or 4-chloro) were poor activators of RyR1. Substitution of different chemical groups for the 1-hydroxyl of 4-CmC resulted in compounds that were poor activators of RyR1, suggesting that the hydroxyl group is preferred at this position. Substitution of hydrophobic groups at the 3-position enhanced bioactivity of the compound relative to 4-CmC, whereas substitution with hydrophilic groups abolished bioactivity. Likewise, 4-CmC analogs with hydrophobic groups substituted into the 4-position enhanced bioactivity, whereas hydrophilic or charged groups diminished bioactivity. 4-CmC analogs containing a single hydrophobic group at either the 3- or 4-position as well as 3,5-disubstituted or 3,4,5-trisubstituted phenols were also effective activators of RyR1. These results indicate that the 1-hydroxyl group of 4-CmC is required for activation of RyR1 and that hydrophobic groups at the 3,4- and 5-positions are preferred. These findings suggest that the 4-CmC binding site on RyR1 most likely consists of a hydrophilic region to interact with the 1-hydroxyl as well as a hydrophobic region(s) to interact with chemical groups at the 3- and/or 4-positions of 4-CmC.
Collapse
|