1
|
Lin JF, Wang XD, Ao YF, Wang QQ, Wang DX. Spontaneous Transition between Multiple Conductance States and Rectifying Behaviors in an Artificial Single-Molecule Funnel. Angew Chem Int Ed Engl 2024; 63:e202411702. [PMID: 38977404 DOI: 10.1002/anie.202411702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024]
Abstract
It has long been an aspirational goal to create artificial channel structures that replicate the feat achieved by ion channel proteins. Biological ion channels occasionally demonstrate multiple conductance states (known as subconductance), remaining a challenging property to achieve in artificial channel molecules. We report a funnel-shaped single-molecule channel constructed by an electron-deficient macrocycle and two electron-deficient aromatic imide arms. Planar lipid bilayer measurements reveal distinct current recordings, including a closed state, two conducting states, and spontaneous transitions between the three states, resembling the events seen in biological ion channels. The transitions result from conformational changes induced by chloride transport in the channel molecule. Both opening states show a non-linear and rectifying I-V relationship, indicating voltage-dependent transport due to the asymmetrical channel structure. This work could enhance our understanding of ion permeation and channel opening mechanism.
Collapse
Affiliation(s)
- Jia-Fen Lin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xu-Dong Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yu-Fei Ao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi-Qiang Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - De-Xian Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Zhong F, Alden SL, Hughes RP, Pletneva EV. Comparing Properties of Common Bioinorganic Ligands with Switchable Variants of Cytochrome c. Inorg Chem 2021; 61:1207-1227. [PMID: 34699724 DOI: 10.1021/acs.inorgchem.1c02322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ligand substitution at the metal center is common in catalysis and signal transduction of metalloproteins. Understanding the effects of particular ligands, as well as the polypeptide surrounding, is critical for uncovering mechanisms of these biological processes and exploiting them in the design of bioinspired catalysts and molecular devices. A series of switchable K79G/M80X/F82C (X = Met, His, or Lys) variants of cytochrome (cyt) c was employed to directly compare the stability of differently ligated proteins and activation barriers for Met, His, and Lys replacement at the ferric heme iron. Studies of these variants and their nonswitchable counterparts K79G/M80X have revealed stability trends Met < Lys < His and Lys < His < Met for the protein FeIII-X and FeII-X species, respectively. The differences in the hydrogen-bonding interactions in folded proteins and in solvation of unbound X in the unfolded proteins explain these trends. Calculations of free energy of ligand dissociation in small heme model complexes reveal that the ease of the FeIII-X bond breaking increases in the series amine < imidazole < thioether, mirroring trends in hardness of these ligands. Experimental rate constants for X dissociation in differently ligated cyt c variants are consistent with this sequence, but the differences between Met and His dissociation rates are attenuated because the former process is limited by the heme crevice opening. Analyses of activation parameters and comparisons to those for the Lys-to-Met ligand switch in the alkaline transition suggest that ligand dissociation is entropically driven in all the variants and accompanied by Lys protonation at neutral pH. The described thiolate redox-linked switches have offered a wealth of new information about interactions of different protein-derived ligands with the heme iron in cyt c model proteins, and we anticipate that the strategy of employing these switches could benefit studies of other redox metalloproteins and model complexes.
Collapse
Affiliation(s)
- Fangfang Zhong
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Stephanie L Alden
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Russell P Hughes
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Ekaterina V Pletneva
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
3
|
Martínez-López D, Babalhavaeji A, Sampedro D, Woolley GA. Synthesis and characterization of bis(4-amino-2-bromo-6-methoxy)azobenzene derivatives. Beilstein J Org Chem 2019; 15:3000-3008. [PMID: 31976009 PMCID: PMC6964645 DOI: 10.3762/bjoc.15.296] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/04/2019] [Indexed: 01/09/2023] Open
Abstract
Aminoazobenzene derivatives with four ortho substituents with respect to the N–N double bond are a relatively unexplored class of azo compounds that show promise for use as photoswitches in biology. Tetra-ortho-methoxy-substituted aminoazobenzene compounds in particular can form azonium ions under physiological conditions and exhibit red-light photoswitching. Here, we report the synthesis and characterization of two bis(4-amino-2-bromo-6-methoxy)azobenzene derivatives. These compounds form red-light-absorbing azonium ions, but only under very acidic conditions (pH < 1). While the low pKa makes the azonium form unsuitable, the neutral versions of these compounds undergo trans-to-cis photoisomerization with blue-green light and exhibit slow (τ1/2 ≈ 10 min) thermal reversion and so may find applications under physiological conditions.
Collapse
Affiliation(s)
- David Martínez-López
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química (CISQ), Madre de Dios, 53, 26006 Logroño, Spain
| | | | - Diego Sampedro
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química (CISQ), Madre de Dios, 53, 26006 Logroño, Spain
| | - G Andrew Woolley
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, M5S 3H6, Canada
| |
Collapse
|
4
|
Liu L, Pu X, Yin G, Chen X, Yin J, Wu Y. Biomimetic Mineralization of Magnetic Iron Oxide Nanoparticles Mediated by Bi-Functional Copolypeptides. Molecules 2019; 24:E1401. [PMID: 30974744 PMCID: PMC6480056 DOI: 10.3390/molecules24071401] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/07/2019] [Accepted: 04/09/2019] [Indexed: 01/25/2023] Open
Abstract
Magnetite (Fe₃O₄) nanoparticles are widely used in multiple biomedical applications due to their magnetic properties depending on the size, shape and organization of the crystals. However, the crystal growth and morphology of Fe₃O₄ nanoparticles remain difficult to control without using organic solvent or a high temperature. Inspired by the natural biomineralization process, a 14-mer bi-functional copolypeptide, leveraging the affinity of binding Fe₃O₄ together with targeting ovarian cancer cell A2780, was used as a template in the biomimetic mineralization of magnetite. Alongside this, a ginger extract was applied as an antioxidant and a size-conditioning agent of Fe₃O₄ crystals. As a result of the cooperative effects of the peptide and the ginger extract, the size and dispersibility of Fe₃O₄ were controlled based on the interaction of the amino acid and the ginger extract. Our study also demonstrated that the obtained particles with superparamagnetism could selectively be taken up by A2780 cells. In summary, the Fe₃O₄-QY-G nanoparticles may have potential applications in targeting tumor therapy or angiography.
Collapse
Affiliation(s)
- Liu Liu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Ximing Pu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Guangfu Yin
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Xianchun Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Jie Yin
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
- School of Automation and Information Engineering, Sichuan University of Science and Engineering, Zigong 643000, China.
| | - Yuhao Wu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
5
|
Das S, Ben Haj Salah K, Djibo M, Inguimbert N. Peptaibols as a model for the insertions of chemical modifications. Arch Biochem Biophys 2018; 658:16-30. [DOI: 10.1016/j.abb.2018.09.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/05/2018] [Accepted: 09/18/2018] [Indexed: 12/13/2022]
|
6
|
Roy A, Biswas O, Talukdar P. Bis(sulfonamide) transmembrane carriers allow pH-gated inversion of ion selectivity. Chem Commun (Camb) 2017; 53:3122-3125. [DOI: 10.1039/c7cc00165g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bis(sulfonamide) based synthetic carriers are reported for inversion of ion selectivity upon deviation of pH within a narrow window. A liposomal membrane potential is also generated when potassium ions are passively transported by these carriers.
Collapse
Affiliation(s)
- Arundhati Roy
- Department of Chemistry
- Indian Institute of Science Education and Research Pune
- Pune 411008
- India
| | - Oindrila Biswas
- Department of Chemistry
- Indian Institute of Science Education and Research Pune
- Pune 411008
- India
| | - Pinaki Talukdar
- Department of Chemistry
- Indian Institute of Science Education and Research Pune
- Pune 411008
- India
| |
Collapse
|
7
|
Larda ST, Bokoch MP, Evanics F, Prosser RS. Lysine methylation strategies for characterizing protein conformations by NMR. JOURNAL OF BIOMOLECULAR NMR 2012; 54:199-209. [PMID: 22960995 DOI: 10.1007/s10858-012-9664-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 08/17/2012] [Indexed: 05/20/2023]
Abstract
In the presence of formaldehyde and a mild reducing agent, reductive methylation is known to achieve near complete dimethylation of protein amino groups under non-denaturing conditions, in aqueous media. Amino methylation of proteins is employed in mass spectrometric, crystallographic, and NMR studies. Where biosynthetic labeling is prohibitive, amino (13)C-methylation provides an attractive option for monitoring folding, kinetics, protein-protein and protein-DNA interactions by NMR. Here, we demonstrate two improvements over traditional (13)C-reductive methylation schemes: (1) By judicious choice of stoichiometry and pH, ε-aminos can be preferentially monomethylated. Monomethyl tags are less perturbing and generally exhibit improved resolution over dimethyllysines, and (2) By use of deuterated reducing agents and (13)C-formaldehyde, amino groups can be labeled with (13)CH(2)D tags. Use of deutero-(13)C-formaldehyde affords either (13)CHD(2), or (13)CD(3) probes depending on choice of reducing agent. Making use of (13)C-(2)H scalar couplings, we demonstrate a filtering scheme that eliminates natural abundance (13)C signal.
Collapse
Affiliation(s)
- Sacha Thierry Larda
- Department of Chemical and Physical Sciences, University of Toronto, UTM, 3359 Mississauga Rd. North, Mississauga, ON L5L 1C6, Canada.
| | | | | | | |
Collapse
|
8
|
Zinchenko AA, Tanahashi M, Murata S. Photochemical Modulation of DNA Conformation by Organic Dications. Chembiochem 2011; 13:105-11. [DOI: 10.1002/cbic.201100492] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Indexed: 11/12/2022]
|
9
|
Chang JH, Yoo P, Lee T, Klopf W, Takao D. The role of pH in the glucuronidation of raloxifene, mycophenolic acid and ezetimibe. Mol Pharm 2009; 6:1216-27. [PMID: 19449843 DOI: 10.1021/mp900065b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The UDP-glucuronosyltransferase (UGT) active site faces the lumen of the endoplasmic reticulum and is enclosed behind a lipid bilayer. Consequently, observed UGT activity is latent in microsomal preparations, and thus, mechanical and/or chemical disruptions of the vesicle membrane are commonly employed to better expose the active site. The aim of the present investigation was to explore the impact of incubation pH on the glucuronidation of raloxifene, mycophenolic acid (MPA) and ezetimibe, which are basic, acidic and neutral compounds, respectively. Their glucuronidation was examined in human liver microsomal incubations by monitoring for the production of the glucuronide metabolites at pHs ranging between 5.4 and 9.4. Compared to physiological pH, unbound intrinsic clearance (CL(int,u)) was 11- and 12-fold higher at pH 9.4 for raloxifene 4'-glucuronide (R4G) and raloxifene 6-glucuronide (R6G), respectively; whereas a 10-fold increase was observed at pH 5.4 for MPA glucuronide (MPAG). In contrast, ezetimibe glucuronidation did not vary as the pH deviated from 7.4. Kinetic analysis revealed that increases in CL(int,u) were accompanied by less than a 2-fold change in V(max). Instead, K(m,u) decreased 8-, 13- and 5-fold for R4G, R6G and MPAG, respectively. Similar pH dependency on glucuronidation was observed in experiments utilizing recombinant UGT enzymes (recUGT). Particularly, recUGT1A9 was one of the major isoforms involved in the glucuronidation of raloxifene and MPA. While the highest rate of glucuronidation was found at pH 9.4 for raloxifene, the pH for optimal glucuronidation of MPA was between 5.4 and 7.4. In summary, these results suggest that microsomal glucuronidation may be enhanced for acidic and basic compounds by altering the incubation pH, perhaps by improving substrate membrane permeability.
Collapse
Affiliation(s)
- Jae H Chang
- Non-Clinical Safety, Department of Drug Metabolism and Pharmacokinetics, Roche Palo Alto, Palo Alto, California 94304, USA.
| | | | | | | | | |
Collapse
|
10
|
Abstract
In this short review article, the effects of covalent tethering of alamethicin molecules on channel-forming behavior are described. Broadly speaking, these chemical modifications have provided insight into all three aspects of channel behavior: the structure of the conducting state, the ion-selectivity and ion-permeation properties, and the voltage dependence. Each of these aspects are discussed in turn.
Collapse
Affiliation(s)
- G Andrew Woolley
- Department of Chemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
11
|
Pearce OMT, Fisher KD, Humphries J, Seymour LW, Smith A, Davis BG. Glycoviruses: chemical glycosylation retargets adenoviral gene transfer. Angew Chem Int Ed Engl 2007; 44:1057-1061. [PMID: 15688429 DOI: 10.1002/anie.200461832] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Oliver M T Pearce
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK, Fax: (+44) 1865-285-002
| | - Kerry D Fisher
- Department of Clinical Pharmacology, University of Oxford, Radcliffe Infirmary, Woodstock Road, Oxford, OX2 6HE, UK, Fax: (+44) 1865-224-538
| | - Julia Humphries
- Academic Department of Surgery, Cardiovascular Division, St Thomas' Hospital, Kings College London, London, SE1 7EH, UK
| | - Leonard W Seymour
- Department of Clinical Pharmacology, University of Oxford, Radcliffe Infirmary, Woodstock Road, Oxford, OX2 6HE, UK, Fax: (+44) 1865-224-538
| | - Alberto Smith
- Academic Department of Surgery, Cardiovascular Division, St Thomas' Hospital, Kings College London, London, SE1 7EH, UK
| | - Benjamin G Davis
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK, Fax: (+44) 1865-285-002
| |
Collapse
|
12
|
Tanaka H, Bollot G, Mareda J, Litvinchuk S, Tran DH, Sakai N, Matile S. Synthetic pores with sticky π-clamps. Org Biomol Chem 2007; 5:1369-80. [PMID: 17464406 DOI: 10.1039/b702255g] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this report, we describe design, synthesis, evaluation and molecular dynamics simulations of synthetic multifunctional pores with pi-acidic naphthalenediimide clamps. Experimental evidence is provided for the formation of unstable but inert, heterogeneous and acid-insensitive dynamic tetrameric pores that are sensitive to base and ionic strength. Blockage experiments reveal that the introduction of aromatic electron donor-acceptor interactions provides access to the selective recognition of pi-basic intercalators within the pore. This breakthrough is important for the application of synthetic pores as multianalyte sensors.
Collapse
Affiliation(s)
- Hiroyuki Tanaka
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | | | | | | | | | | | | |
Collapse
|
13
|
Luchian T, Mereuta L. Phlorizin- and 6-ketocholestanol-mediated antagonistic modulation of alamethicin activity in phospholipid planar membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2006; 22:8452-7. [PMID: 16981762 DOI: 10.1021/la0613777] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
As a result of the interfacial chemical heterogenity, membrane-penetrating peptides will experience a dramatic variation in environmental polarity manifested via electrical interactions with the surface and dipole potential of membranes prone to modulate the membrane insertion and folding of different peptides and proteins. Herein we present evidence demonstrating that roughly a 30 mV, phlorizin-induced lowering of the magnitude of the dipole potential of a phosphatidyilcholine membrane leads to a 4-fold increase in the electrical activity of embedded alamethicin. The effect is voltage-independent, implying that the dipole potential affects the barrier of alamethicin adsorption to the membrane rather than the translocation of it across the hydrophobic core. Our interpretation points to an enhanced interfacial accumulation of alamethicin monomers on the cis side of the membrane caused by a lower value of the cis dipole potential, which will promote an elevated activity of alamethicin oligomers across the membrane. As expected for a modestly selective ion channel, the enhancing effect of such dipole potential changes on the electrical conductivity is limited (80 +/- 3 pS before and 100 +/- 2 pS after phlorizin addition to the membrane, for the first conductive state of the channel). Our study emphasizes the possibility that, by manipulating at will the sign of change and the magnitude of the interfacial dipole field, it is possible to modulate the extent of the membrane penetration of ion-channel-forming peptides and thereby provide deeper insights into mechanisms of protein-lipid and protein-protein interactions within membranes.
Collapse
Affiliation(s)
- Tudor Luchian
- Department of Biophysics and Medical Physics, Faculty of Physics, Alexandru I. Cuza University, Boulevard Carol I, no 11, Iasi, Romania, R-6600.
| | | |
Collapse
|
14
|
Okazaki T, Nagaoka Y, Asami K. Ion channels of N-terminally linked alamethicin dimers: enhancement of cation-selectivity by substitution of Glu for Gln at position 7. Bioelectrochemistry 2006; 70:380-6. [PMID: 16814617 DOI: 10.1016/j.bioelechem.2006.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 05/08/2006] [Accepted: 05/16/2006] [Indexed: 10/24/2022]
Abstract
Alamethicin forms voltage-gated ion channels that have moderate cation-selectivity. The enhancement of the cation-selectivity by introducing negatively charged residues at positions 7 and 18 has been studied using the tethered homodimers of alamethicin with Q7 and E18 (di-alm-Q7E18) and its analog with E7 and Q18 (di-alm-E7Q18). In the dimeric peptides, monomer peptides are linked at the N-termini by a disulfide bond. Both the peptides formed long lasting ion channels at cis-positive voltages when added to the cis-side membrane. Their long open duration enabled us to obtain current-voltage (I-V(m)) relations and reversal potentials at the single-channel level by applying a voltage ramp during the channel opening. The reversal potentials measured in asymmetric KCl solutions indicated that ionized E7 provided strong cation-selectivity, whereas ionized E18 little influenced the charge selectivity. This was also the case for the macroscopic charge selectivity determined from the reversal potentials obtained by the macroscopic I-V(m) measurements. The results are accounted for by stronger electrostatic interactions between permeant ions and negatively charged residues at the narrowest part of the pore than at the pore mouth.
Collapse
Affiliation(s)
- Takashi Okazaki
- Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
| | | | | |
Collapse
|
15
|
Vrouenraets M, Wierenga J, Meijberg W, Miedema H. Chemical modification of the bacterial porin OmpF: gain of selectivity by volume reduction. Biophys J 2005; 90:1202-11. [PMID: 16299071 PMCID: PMC1367271 DOI: 10.1529/biophysj.105.072298] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
OmpF is an essentially nonselective porin isolated from the outer membrane of Escherichia coli. Here we report on the manipulation of the ion selectivity of OmpF by chemical modification with MTS reagents (MTSET, MTSEA, and MTSES) and the (rather bulky) tripeptide glutathione, all cysteine specific. When recorded in a gradient of 0.1//1 M CaCl2 or 0.1//1 M NaCl, pH 7.4 solutions, measured reversal potentials of the most cation-selective modified mutants were (virtually) identical to the Nernst potential of Ca2+ or Na+. Compared to this full cation selectivity, the anion-selective modified mutants performed somewhat less but nevertheless showed high anion selectivity. We conclude that a low permanent charge in combination with a narrow pore can render the same selectivity as a highly charged but wider pore. These results favor the view that both the electrostatic potential arising form the fixed charge in the pore and the space available at the selectivity filter contribute to the charge selection (i.e., cation versus anion selectivity) of a biological ion channel.
Collapse
Affiliation(s)
- Maarten Vrouenraets
- Biomade Technology Foundation, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | | | | |
Collapse
|
16
|
Ulmschneider MB, Tieleman DP, Sansom MSP. The role of extra-membranous inter-helical loops in helix-helix interactions. Protein Eng Des Sel 2005; 18:563-70. [PMID: 16251222 DOI: 10.1093/protein/gzi059] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The effect of a short loop connecting two transmembrane alpha-helices was studied using molecular dynamics simulations. Helices F and G from bacteriorhodopsin and two corresponding polyalanine helices were embedded in octane and POPC membranes in a transmembrane configuration both with and without the inter-helical loop. The results indicate that the membrane environment and the sequence of the loop are more influential on the dynamics and structure of the motif than the presence of a loop as such, at least for the time-scales investigated. The four residues in the FG loop are stabilized by four hydrogen bonds. These hydrogen bonds are not present in the polyalanine loop, causing it to be more flexible than the FG loop. This effect was observed independently of the protein environment, stressing the importance of the sequence. The structural analysis indicates that the loop has weak stabilizing properties in all environments. The stabilization due to the presence of the loop was strongest in a simulation of the FG fragment in a membrane-mimetic octane slab. In the simulations of the helix-loop-helix motif embedded in an explicit lipid bilayer model, the lipid bilayer interface compensates to a large extent for the absence of the loop.
Collapse
Affiliation(s)
- Martin B Ulmschneider
- Laboratory of Molecular Biophysics, The Rex Richards Building, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | | |
Collapse
|
17
|
Pearce OMT, Fisher KD, Humphries J, Seymour LW, Smith A, Davis BG. Glycoviruses: Chemical Glycosylation Retargets Adenoviral Gene Transfer. Angew Chem Int Ed Engl 2005. [DOI: 10.1002/ange.200461832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Oliver M. T. Pearce
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK, Fax: (+44) 1865‐285‐002
| | - Kerry D. Fisher
- Department of Clinical Pharmacology, University of Oxford, Radcliffe Infirmary, Woodstock Road, Oxford, OX2 6HE, UK, Fax: (+44) 1865‐224‐538
| | - Julia Humphries
- Academic Department of Surgery, Cardiovascular Division, St Thomas' Hospital, Kings College London, London, SE1 7EH, UK
| | - Leonard W. Seymour
- Department of Clinical Pharmacology, University of Oxford, Radcliffe Infirmary, Woodstock Road, Oxford, OX2 6HE, UK, Fax: (+44) 1865‐224‐538
| | - Alberto Smith
- Academic Department of Surgery, Cardiovascular Division, St Thomas' Hospital, Kings College London, London, SE1 7EH, UK
| | - Benjamin G. Davis
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK, Fax: (+44) 1865‐285‐002
| |
Collapse
|
18
|
Futaki S, Zhang Y, Kiwada T, Nakase I, Yagami T, Oiki S, Sugiura Y. Gramicidin-based channel systems for the detection of protein-ligand interaction. Bioorg Med Chem 2004; 12:1343-50. [PMID: 15018906 DOI: 10.1016/j.bmc.2003.06.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2003] [Revised: 06/04/2003] [Accepted: 06/05/2003] [Indexed: 10/26/2022]
Abstract
To detect protein-ligand interaction a gramicidin-based sensor was developed. Biotin was tagged to the C-terminus of gramicidin (Gram-bio 1). The biotin-moiety, which faces the electrolyte, gave little effect on single-channel conductance. Streptavidin added to the electrolyte was detected by Gram-bio 1 through the monitoring channel current using the planar bilayer system. The suppression of macroscopic currents and the acceleration of their decaying time course were observed in a concentration dependent manner. In the single-channel level, however, no significant effect on the single-channel conductance and the open dwell time was observed upon addition of streptavidin. Therefore, streptavidin neither blocked the open channel nor changed the stability of the conducting dimer. Insertion of a linker between gramicidin and biotin did not change the streptavidin-sensitivity of the current reduction. We conclude that the binding of streptavidin to the Gram-bio 1 shifted the distribution of the complex from the membrane to the electrolyte and, thus, reduced the formation of conducting dimer of Gram-bio 1 in the membrane. Interaction of biotin with an anti-biotin antibody was also observed using this system, indicating that this system is applicable for the detection of protein-ligand interaction having a binding constant of approximately 10(8-9) M(-1) or more. Both the adamantane-tagged gramicidin for detection of beta-cyclodextrin and the Strep Tag-II-tagged gramicidin for detection of streptavidin (binding constant: approximately 10(5) M(-1) or less) failed to respond. Thus, high-affinity ligands upon tagging to gramicidin render the gramicidin-based sensor able to execute as a real-time monitoring system for protein-ligand interaction.
Collapse
Affiliation(s)
- Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | | | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Lougheed T, Zhang Z, Andrew Woolley G, Borisenko V. Engineering charge selectivity in model ion channels. Bioorg Med Chem 2004; 12:1337-42. [PMID: 15018905 DOI: 10.1016/j.bmc.2003.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2003] [Revised: 06/03/2003] [Accepted: 06/08/2003] [Indexed: 11/21/2022]
Abstract
Most ion channel proteins exhibit some degree of charge selectivity, that is, an ability to conduct ions of one charge more efficiently than ions of the opposite charge. The structural origins of charge selectivity remain incompletely understood despite recent advances in the determination of cation-selective and anion-selective channel protein structures. Helix bundle channels formed via self-assembly of the peptide alamethicin provide a tractable model system for exploring the structural basis of charge selectivity. We synthesized covalently-linked alamethicin dimers, with amino acid substitutions at position 18 [lysine (Lys), arginine (Arg), glutamine (Gln), 2,3-diaminopropionic acid (Dpr)] in each helix, to assess the role of this position as a charge-selectivity determinant in alamethicin channels. Of the position 18 substitutions investigated, the Lys derivative exhibited the greatest degree of anion selectivity. Arg-containing channels were slightly less anion-selective than Lys. Interestingly, Dpr channels showed cation selectivity nearly equivalent to that exhibited by the neutral Gln derivative. We suggest that this result is due to a wider pore diameter that permits a greater number of counter-ions leading to enhanced charge screening and a lower effective side-chain positive charge.
Collapse
Affiliation(s)
- Tyler Lougheed
- Department of Chemistry, 80 St George St University of Toronto, Toronto, Ontario, Canada M5S 3H6
| | | | | | | |
Collapse
|
21
|
Zemel A, Fattal DR, Ben-Shaul A. Energetics and self-assembly of amphipathic peptide pores in lipid membranes. Biophys J 2003; 84:2242-55. [PMID: 12668433 PMCID: PMC1302791 DOI: 10.1016/s0006-3495(03)75030-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2002] [Accepted: 12/13/2002] [Indexed: 11/25/2022] Open
Abstract
We present a theoretical study of the energetics, equilibrium size, and size distribution of membrane pores composed of electrically charged amphipathic peptides. The peptides are modeled as cylinders (mimicking alpha-helices) carrying different amounts of charge, with the charge being uniformly distributed over a hydrophilic face, defined by the angle subtended by polar amino acid residues. The free energy of a pore of a given radius, R, and a given number of peptides, s, is expressed as a sum of the peptides' electrostatic charging energy (calculated using Poisson-Boltzmann theory), and the lipid-perturbation energy associated with the formation of a membrane rim (which we model as being semitoroidal) in the gap between neighboring peptides. A simple phenomenological model is used to calculate the membrane perturbation energy. The balance between the opposing forces (namely, the radial free energy derivatives) associated with the electrostatic free energy that favors large R, and the membrane perturbation term that favors small R, dictates the equilibrium properties of the pore. Systematic calculations are reported for circular pores composed of various numbers of peptides, carrying different amounts of charge (1-6 elementary, positive charges) and characterized by different polar angles. We find that the optimal R's, for all (except, possibly, very weakly) charged peptides conform to the "toroidal" pore model, whereby a membrane rim larger than approximately 1 nm intervenes between neighboring peptides. Only weakly charged peptides are likely to form "barrel-stave" pores where the peptides essentially touch one another. Treating pore formation as a two-dimensional self-assembly phenomenon, a simple statistical thermodynamic model is formulated and used to calculate pore size distributions. We find that the average pore size and size polydispersity increase with peptide charge and with the amphipathic polar angle. We also argue that the transition of peptides from the adsorbed to the inserted (membrane pore) state is cooperative and thus occurs rather abruptly upon a change in ambient conditions.
Collapse
Affiliation(s)
- Assaf Zemel
- Department of Physical Chemistry and the Fritz Haber Research Center, The Hebrew University, Jerusalem 91904, Israel
| | | | | |
Collapse
|
22
|
Abstract
Proton channels exist in a wide variety of membrane proteins where they transport protons rapidly and efficiently. Usually the proton pathway is formed mainly by water molecules present in the protein, but its function is regulated by titratable groups on critical amino acid residues in the pathway. All proton channels conduct protons by a hydrogen-bonded chain mechanism in which the proton hops from one water or titratable group to the next. Voltage-gated proton channels represent a specific subset of proton channels that have voltage- and time-dependent gating like other ion channels. However, they differ from most ion channels in their extraordinarily high selectivity, tiny conductance, strong temperature and deuterium isotope effects on conductance and gating kinetics, and insensitivity to block by steric occlusion. Gating of H(+) channels is regulated tightly by pH and voltage, ensuring that they open only when the electrochemical gradient is outward. Thus they function to extrude acid from cells. H(+) channels are expressed in many cells. During the respiratory burst in phagocytes, H(+) current compensates for electron extrusion by NADPH oxidase. Most evidence indicates that the H(+) channel is not part of the NADPH oxidase complex, but rather is a distinct and as yet unidentified molecule.
Collapse
Affiliation(s)
- Thomas E Decoursey
- Department of Molecular Biophysics and Physiology, Rush Presbyterian St. Luke's Medical Center, Chicago, Illinois 60612, USA.
| |
Collapse
|
23
|
Tieleman DP, Borisenko V, Sansom MSP, Woolley GA. Understanding pH-dependent selectivity of alamethicin K18 channels by computer simulation. Biophys J 2003; 84:1464-9. [PMID: 12609853 PMCID: PMC1302720 DOI: 10.1016/s0006-3495(03)74959-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Alamethicin K18 is a covalently linked alamethicin dimer in which the glutamine residue at position 18 in each helix has been replaced by a lysine residue. As described in previous work, channels formed by this peptide show pH-dependent selectivity. The maximum anion selectivity of the putative octameric conducting state is obtained at pH 7 or lower. Inasmuch as no change in selectivity is seen between pH 7 and pH 3, and because protons are expected to be in equilibrium with the open state of the channel during a selectivity measurement, the channel is believed to be fully charged (i.e., all eight lysines protonated) at pH 7. In an effort to understand how such a highly charged channel structure is stable in membranes and why it is not more selective for anions, we have performed a number of computer simulations of the system. Molecular dynamics simulations of 10 ns each of the octameric bundle in a lipid bilayer environment are presented, with either zero, four, or eight lysines charged in the absence of salt, and with eight lysines charged in the presence of 0.5 M and 1 M KCl. When no salt is present and all lysines are charged, on average 1.9 Cl(-) ions are inside the channel and the channel significantly deforms. With 0.5 M KCl present, 2.9 Cl(-) ions are inside the channel. With 1 M KCl present, four Cl(-) ions are present and the channel maintains a regular structure. Poisson-Boltzmann calculations on models of the octameric channel also predict an average of 2-4 Cl(-) ions near the lysine residues as a function of ionic strength. These counterions lower the apparent charge of the channel, which may underlie the decrease in selectivity observed experimentally with increasing salt concentrations. We suggest that to increase the selectivity of Alm K18 channels, positive charges could be engineered in a narrower part of the channel.
Collapse
Affiliation(s)
- D Peter Tieleman
- Department of Biological Sciences, University of Calgary, Alberta T2N 1N4, Canada.
| | | | | | | |
Collapse
|
24
|
Eggers PK, Fyles TM, Mitchell KDD, Sutherland T. Ion channels from linear and branched bola-amphiphiles. J Org Chem 2003; 68:1050-8. [PMID: 12558434 DOI: 10.1021/jo026415f] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthesis and characterization of the ion channel activity of three new bola-amphiphiles is described. These compounds are conceptually derived from a previously reported bis-cyclophane bola-amphiphile through opening of the cyclophanes to acyclic structures and were found to readily form ion channels in planar bilayer membranes as assessed by bilayer clamp single-channel analysis. All three compounds behaved very similarly: the dominant channels formed by all three are Ohmic with specific conductance of 10 +/- 1 pS (NaCl electrolyte) and 39 +/- 1 pS (CsCl electrolyte). Single-ion permeability ratios, determined from dissymmetric electrolyte experiments, showed the selectivity P(Cs(+)) > P(Na(+)) > P(Cl(-)). Less frequently, lower conductance channels were also observed to act independently of the dominant channels. The lifetimes of the dominant channels range from 70 to 280 ms for the three compounds with some very long-lived openings (20-40 s) observed for two of the three. The lower conductance states have shorter lifetimes. This study demonstrates that bis-macrocyclic compounds are not essential for channel formation by bola-amphiphiles, and opens a new class of channel-forming compounds for structure-activity optimization.
Collapse
Affiliation(s)
- P K Eggers
- Department of Chemistry, University of Victoria, Victoria, British Columbia, V8W 3P6, Canada
| | | | | | | |
Collapse
|
25
|
Tieleman DP, Hess B, Sansom MSP. Analysis and evaluation of channel models: simulations of alamethicin. Biophys J 2002; 83:2393-407. [PMID: 12414676 PMCID: PMC1302328 DOI: 10.1016/s0006-3495(02)75253-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Alamethicin is an antimicrobial peptide that forms stable channels with well-defined conductance levels. We have used extended molecular dynamics simulations of alamethicin bundles consisting of 4, 5, 6, 7, and 8 helices in a palmitoyl-oleolyl-phosphatidylcholine bilayer to evaluate and analyze channel models and to link the models to the experimentally measured conductance levels. Our results suggest that four helices do not form a stable water-filled channel and might not even form a stable intermediate. The lowest measurable conductance level is likely to correspond to the pentamer. At higher aggregation numbers the bundles become less symmetrical. Water properties inside the different-sized bundles are similar. The hexamer is the most stable model with a stability comparable with simulations based on crystal structures. The simulation was extended from 4 to 20 ns or several times the mean passage time of an ion. Essential dynamics analyses were used to test the hypothesis that correlated motions of the helical bundles account for high-frequency noise observed in open channel measurements. In a 20-ns simulation of a hexameric alamethicin bundle, the main motions are those of individual helices, not of the bundle as a whole. A detailed comparison of simulations using different methods to treat long-range electrostatic interactions (a twin range cutoff, Particle Mesh Ewald, and a twin range cutoff combined with a reaction field correction) shows that water orientation inside the alamethicin channels is sensitive to the algorithms used. In all cases, water ordering due to the protein structure is strong, although the exact profile changes somewhat. Adding an extra 4-nm layer of water only changes the water ordering slightly in the case of particle mesh Ewald, suggesting that periodicity artifacts for this system are not serious.
Collapse
Affiliation(s)
- D Peter Tieleman
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada.
| | | | | |
Collapse
|
26
|
Zhang Y, Futaki S, Kiwada T, Sugiura Y. Detection of protein-ligand interaction on the membranes using C-terminus biotin-tagged alamethicin. Bioorg Med Chem 2002; 10:2635-9. [PMID: 12057652 DOI: 10.1016/s0968-0896(02)00105-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
C-terminal biotin-tagged alamethicin, which has several alpha-aminoisobutyric acid (Aib) residues in its sequence, was synthesized by the preparation of the protected peptide segment using the 2-chlorotrityl resin, followed by conjugation with biotin hydrazide. Suppression of the channel current of the biotin-tagged alamethicin by the addition of streptavidin to the electrolyte was monitorable in real time using the planar lipid-bilayer method. The system was also applicable to the detection of interaction of the biotin-tagged alamethicin with the anti-biotin antibody.
Collapse
Affiliation(s)
- Y Zhang
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | |
Collapse
|
27
|
Asami K, Okazaki T, Nagai Y, Nagaoka Y. Modifications of alamethicin ion channels by substitution of Glu-7 for Gln-7. Biophys J 2002; 83:219-28. [PMID: 12080114 PMCID: PMC1302141 DOI: 10.1016/s0006-3495(02)75163-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
To evaluate the role of charged residues facing a pore lumen in stability of channel structure and ion permeation, we studied electrical properties of ion channels formed by synthesized native alamethicins (Rf50 (alm-Q7Q18) and Rf30 (alm-Q7E18)) and their analogs with Glu-7 (alm-E7Q18 and alm-E7E18). The single-channel currents were measured over a pH range of 3.5 to 8.7 using planar bilayers of diphytanoyl PC. The peptides all showed multi-level current fluctuations in this pH range. At pH 3.5 the channels formed by the four peptides were similar to each other irrespective of the side chain differences at positions 7 and 18. The ionization of Glu-7 (E7) and Glu-18 (E18) above neutral pH reduced the relative probabilities of low-conductance states (levels 1 and 2) and increased those of high-conductance states (levels 4-6). The channel conductance of the peptides with E7 and/or E18, which was distinct from that of alm-Q7Q18, showed a marked pH-dependence, especially for low-conductance states. The ionization of E7 further reduced the stability of channel structure, altered the current-voltage curve from a superlinear relation to a sublinear one, and enhanced cation selectivity. These results indicate that ionized E7 strongly influences the channel structure and the ion permeation, in contrast to ionized E18.
Collapse
Affiliation(s)
- Koji Asami
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | | | | | | |
Collapse
|
28
|
Cordes FS, Tustian AD, Sansom MSP, Watts A, Fischer WB. Bundles consisting of extended transmembrane segments of Vpu from HIV-1: computer simulations and conductance measurements. Biochemistry 2002; 41:7359-65. [PMID: 12044168 DOI: 10.1021/bi025518p] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Part of the genome of the human immunodeficiency virus type 1 (HIV-1) encodes for a short membrane protein Vpu, which has a length of 81 amino acids. It has two functional roles: (i) to downregulate CD4 and (ii) to support particle release. These roles are attributed to two distinct domains of the peptide, the cytoplasmic and transmembrane (TM) domains, respectively. It has been suggested that the enhanced particle release function is linked to the ion channel activity of Vpu, with a slight preference for cations over anions. To allow ion flux across the membrane Vpu would be required to assemble in homooligomers to form functional water-filled pores. In this study molecular dynamics simulations are used to address the role of particular amino acids in 4, 5, and 6 TM helix bundle structures. The helices (Vpu(6-33)) are extended to include hydrophilic residues such as Glu, Tyr, and Arg (EYR motif). Our simulations indicate that this motif destabilizes the bundles at their C-terminal ends. The arginines point into the pore to form a positive charged ring that could act as a putative selectivity filter. The helices of the bundles adopt slightly higher average tilt angles with decreasing number of helices. We also suggest that the helices are kinked. Conductance measurements on a peptide (Vpu(1-32)) reconstituted into lipid membranes show that the peptide forms ion channels with several conductance levels.
Collapse
Affiliation(s)
- F S Cordes
- Biomembrane Structure Unit, Laboratory of Molecular Biophysics, Department of Biochemistry, Oxford University, South Parks Road, Oxford OX1 3QU, U.K
| | | | | | | | | |
Collapse
|
29
|
Comai M, Dalla Serra M, Coraiola M, Werner S, Colin DA, Monteil H, Prévost G, Menestrina G. Protein engineering modulates the transport properties and ion selectivity of the pores formed by staphylococcal gamma-haemolysins in lipid membranes. Mol Microbiol 2002; 44:1251-67. [PMID: 12068809 DOI: 10.1046/j.1365-2958.2002.02943.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Staphylococcal gamma-haemolysins are bicomponent toxins in a family including other leucocidins and alpha-toxin. Two active toxins are formed combining HlgA or HlgC with HlgB. Both open pores in lipid membranes with conductance, current voltage characteristics and stability similar to alpha-toxin, but different selectivity (cation instead of anion). Structural analogies between gamma-haemolysins and alpha-toxin indicate the presence, at the pore entry, of a conserved region containing four positive charges in alpha-toxin, but either positive or negative in gamma-haemolysins. Four mutants were produced (HlgA D44K, HlgB D47K, HlgB D49K and HlgB D47K/D49K) converting those negative charges to positive in HlgA and HlgB. When all charges were positive, the pores had the same selectivity and conductance as alpha-toxin, suggesting that the cluster may form an entrance electrostatic filter. As mutated HlgC-HlgB pores were less affected, additional charges in the lumen of the pore were changed (HlgB E107Q, HlgB D121N, HlgB T136D and HlgA K108T). Removing a negative charge from the lumen made the selectivity of both HlgA-HlgB D121N and HlgC-HlgB D121N more anionic. Residue D121 of HlgB is compensated by a positive residue (HlgA K108) in the HlgA-HlgB pore, but isolated in the more cation-selective HlgC-HlgB pore. Interestingly, the pore formed by HlgA K108T-HlgB, in which the positive charge of HlgA was removed, was as cation selective as HlgC-HlgB. Meanwhile, the pore formed by HlgA K108T-HlgB D121N, in which the two charge changes compensated, retrieved the properties of wild-type HlgA-HlgB. We conclude that the conductance and selectivity of the gamma-haemolysin pores depend substantially on the presence and location of charged residues in the channel.
Collapse
Affiliation(s)
- Massimiliano Comai
- CNR-ITC Centro di Fisica degli Stati Aggregati, Istituto di Biofisica del CNR, Via Sommarive 18, I-38050 Povo (Trento), Italy
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Computational studies can make meaningful contributions to our understanding of biological ion channels. A wide variety of methods, at different levels of approximation, can be used. Over the past few years, progress in the experimental determination of three-dimensional structures has given a fresh impetus to the theorists. Noteworthy progress has been made in carefully constructing realistic models of a number of complex biological channels to address important questions about their function.
Collapse
Affiliation(s)
- Benoît Roux
- Department of Biochemistry and Structural Biology, Weill Medical College of Cornell University, 1300 York Avenue, New York, New York 10021, USA.
| |
Collapse
|
31
|
Borisenko V, Zhang Z, Woolley GA. Gramicidin derivatives as membrane-based pH sensors. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1558:26-33. [PMID: 11750261 DOI: 10.1016/s0005-2736(01)00415-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ion channels provide a means for sensitive pH measurement at membrane interfaces. Detailed knowledge of the structure and function of gramicidin channels permits the engineering of pH-sensitive derivatives. Two derivatives, gramicidin-ethylenediamine and gramicidin-histamine, are shown to exhibit pH-dependent single-channel behaviour over the pH ranges 9-11 and 6.5-8.5, respectively. Thermal isomerization of a carbamate group at the entrance of the channels leads to a pattern of steps in single-channel recordings. The size of the steps depends on the time-averaged degree of protonation of the appended group (ethylenediamine or histamine). Measurement of the size of the steps thus permits single-molecule pH sensing under symmetrical pH conditions or in the presence of a pH gradient.
Collapse
Affiliation(s)
- Vitali Borisenko
- Department of Chemistry, 80 St George Street, University of Toronto, M5S 3H6, Toronto, ON, Canada
| | | | | |
Collapse
|
32
|
Abstract
Ion channels catalyze the transport of ions across biological membranes. A proper understanding of ion-channel functioning is essential to our knowledge of cell physiology, and, in this context, ion-channel selectivity is a key concept. The extent to which a channel permeates two ion species, a and b, is expressed by the permeability ratio, P(a)/P(b). This paper addresses a complication in the calculation of P(a)/P(b) that is related to the existence of surface potentials (psi) and that so far has not been fully appreciated. This paper shows the rather surprising effect of psi on the calculated P(a)/P(b) of a channel that is permeable to two ion species of different valence. If we ignore psi, we conclude, for instance, P(a) > P(b). If we implement psi in the calculation of P(a)/P(b), we may, however, conclude exactly the reverse, i.e., P(a) < P(b). Because electrostatic potentials arise at the surface of essentially all biological membranes, this paper argues for a more critical evaluation of ion channel selectivity measurements.
Collapse
Affiliation(s)
- Henk Miedema
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom.
| |
Collapse
|
33
|
Roux B, Bernèche S, Im W. Ion channels, permeation, and electrostatics: insight into the function of KcsA. Biochemistry 2000; 39:13295-306. [PMID: 11063565 DOI: 10.1021/bi001567v] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- B Roux
- Department of Biochemistry, Weill Medical College of Cornell University, 1300 York Avenue, New York, New York 10021, USA.
| | | | | |
Collapse
|