1
|
Larson NR, Bou-Assaf GM, Laue TM, Berkowitz SA. Using absorbance detection for hs-SV-AUC characterization of adeno-associated virus. Anal Biochem 2024; 694:115617. [PMID: 39019206 DOI: 10.1016/j.ab.2024.115617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
Data are presented demonstrating that absorbance detection can be used during high-speed sedimentation velocity analytical ultracentrifugation (hs-SV-AUC) experiments to characterize the size distribution of adeno-associated virus (AAV) drug products accurately. Advantages and limitations of being able to use this detector in this specific type of SV-AUC experiment are discussed.
Collapse
Affiliation(s)
- Nicholas R Larson
- Analytical Development, Biogen, 225 Binney St, Cambridge, MA, 02142, USA
| | - George M Bou-Assaf
- Analytical Development, Biogen, 225 Binney St, Cambridge, MA, 02142, USA
| | - Thomas M Laue
- Carpenter Professor Emeritus, University of New Hampshire, 10 Kelsey Road, Lee, NH, 03861, USA
| | | |
Collapse
|
2
|
Nash BW, Fernandes TM, Burton JAJ, Morgado L, van Wonderen JH, Svistunenko DA, Edwards MJ, Salgueiro CA, Butt JN, Clarke TA. Tethered heme domains in a triheme cytochrome allow for increased electron transport distances. Protein Sci 2024; 33:e5200. [PMID: 39470321 PMCID: PMC11520253 DOI: 10.1002/pro.5200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/08/2024] [Accepted: 10/12/2024] [Indexed: 10/30/2024]
Abstract
Decades of research describe myriad redox enzymes that contain cofactors arranged in tightly packed chains facilitating rapid and controlled intra-protein electron transfer. Many such enzymes participate in extracellular electron transfer (EET), a process which allows microorganisms to conserve energy in anoxic environments by exploiting mineral oxides and other extracellular substrates as terminal electron acceptors. In this work, we describe the properties of the triheme cytochrome PgcA from Geobacter sulfurreducens. PgcA has been shown to play an important role in EET but is unusual in containing three CXXCH heme binding motifs that are separated by repeated (PT)x motifs, suggested to enhance binding to mineral surfaces. Using a combination of structural, electrochemical, and biophysical techniques, we experimentally demonstrate that PgcA adopts numerous conformations stretching as far as 180 Å between the ends of domains I and III, without a tightly packed cofactor chain. Furthermore, we demonstrate a distinct role for its domain III as a mineral reductase that is recharged by domains I and II. These findings show PgcA to be the first of a new class of electron transfer proteins, with redox centers separated by some nanometers but tethered together by flexible linkers, facilitating electron transfer through a tethered diffusion mechanism rather than a fixed, closely packed electron transfer chain.
Collapse
Affiliation(s)
- Benjamin W. Nash
- Centre for Molecular and Structural BiochemistrySchool of Biological Sciences and School of Chemistry, University of East AngliaNorwichUK
| | - Tomás M. Fernandes
- Associate Laboratory i4HB – Institute for Health and BioeconomyNOVA School of Science and Technology, Universidade NOVA de LisboaCaparicaPortugal
- UCIBIO – Applied Molecular Biosciences Unit, Chemistry DepartmentNOVA School of Science and Technology, Universidade NOVA de LisboaCaparicaPortugal
| | - Joshua A. J. Burton
- Centre for Molecular and Structural BiochemistrySchool of Biological Sciences and School of Chemistry, University of East AngliaNorwichUK
| | - Leonor Morgado
- Associate Laboratory i4HB – Institute for Health and BioeconomyNOVA School of Science and Technology, Universidade NOVA de LisboaCaparicaPortugal
- UCIBIO – Applied Molecular Biosciences Unit, Chemistry DepartmentNOVA School of Science and Technology, Universidade NOVA de LisboaCaparicaPortugal
| | - Jessica H. van Wonderen
- Centre for Molecular and Structural BiochemistrySchool of Biological Sciences and School of Chemistry, University of East AngliaNorwichUK
| | | | | | - Carlos A. Salgueiro
- Associate Laboratory i4HB – Institute for Health and BioeconomyNOVA School of Science and Technology, Universidade NOVA de LisboaCaparicaPortugal
- UCIBIO – Applied Molecular Biosciences Unit, Chemistry DepartmentNOVA School of Science and Technology, Universidade NOVA de LisboaCaparicaPortugal
| | - Julea N. Butt
- Centre for Molecular and Structural BiochemistrySchool of Biological Sciences and School of Chemistry, University of East AngliaNorwichUK
| | - Thomas A. Clarke
- Centre for Molecular and Structural BiochemistrySchool of Biological Sciences and School of Chemistry, University of East AngliaNorwichUK
| |
Collapse
|
3
|
Yarawsky AE, Ciatto C, Slade P, Figueroa N, Burgner JW, DeLion M, Paul LN. Quantitation of AAV in a dual-vector system using SV-AUC. J Pharm Sci 2024:S0022-3549(24)00499-4. [PMID: 39471891 DOI: 10.1016/j.xphs.2024.10.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/01/2024]
Abstract
Sedimentation velocity analytical ultracentrifugation (SV-AUC) has become the "gold standard" for characterization of the empty, partial, and full capsids of gene therapy products (e.g., AAV and Adenovirus vectors). Other techniques, such SEC-MALS, TEM, and mass photometry, are commonly used for capsid quantitation, however, the resolving power of these techniques is lacking. In this body of work, SV-AUC was implemented in the characterization of a dual-vector AAV system where the difference in packaged genomes was ∼400 nucleotides. SV-AUC instrument parameters and analysis were optimized to accurately quantitate both AAV vectors with less than 8% error and highly correlated linearity (R2 > 0.99) as compared to ddPCR. The results of this work highlight the resolution and accuracy of dual-vector capsid quantitation by SV-AUC and demonstrate the use of the powerful Bayesian analysis implemented in the SEDFIT analysis software.
Collapse
Affiliation(s)
| | - Carlo Ciatto
- Decibel Therapeutics, Inc. 1325 Boylston Street Suite 500 Boston, MA, 02215, USA
| | - Peter Slade
- Decibel Therapeutics, Inc. 1325 Boylston Street Suite 500 Boston, MA, 02215, USA
| | - Natalya Figueroa
- BioAnalysis, LLC, 3401 I Street Suite 206, Philadelphia, PA 19134, USA
| | - John W Burgner
- BioAnalysis, LLC, 3401 I Street Suite 206, Philadelphia, PA 19134, USA
| | - Michael DeLion
- BioAnalysis, LLC, 3401 I Street Suite 206, Philadelphia, PA 19134, USA
| | - Lake N Paul
- BioAnalysis, LLC, 3401 I Street Suite 206, Philadelphia, PA 19134, USA.
| |
Collapse
|
4
|
Kovalevsky A, Aniana A, Ghirlando R, Coates L, Drago VN, Wear L, Gerlits O, Nashed NT, Louis JM. Effects of SARS-CoV-2 Main Protease Mutations at Positions L50, E166, and L167 Rendering Resistance to Covalent and Noncovalent Inhibitors. J Med Chem 2024; 67:18478-18490. [PMID: 39370853 DOI: 10.1021/acs.jmedchem.4c01781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
SARS-CoV-2 propagation under nirmatrelvir and ensitrelvir pressure selects for main protease (MPro) drug-resistant mutations E166V (DRM2), L50F/E166V (DRM3), E166A/L167F (DRM4), and L50F/E166A/L167F (DRM5). DRM2-DRM5 undergoes N-terminal autoprocessing to produce mature MPro with dimer dissociation constants (Kdimer) 2-3 times larger than that of the wildtype. Co-selection of L50F restores catalytic activity of DRM2 and DRM4 from ∼10 to 30%, relative to that of the wild-type enzyme, without altering Kdimer. Binding affinities and thermodynamic profiles that parallel the drug selection pressure, exhibiting significant decreases in affinity through entropy/enthalpy compensation, were compared with GC373. Reorganization of the active sites due to mutations observed in the inhibitor-free DRM3 and DRM4 structures as compared to MProWT may account for the reduced binding affinities, although DRM2 and DRM3 complexes with ensitrelvir are almost identical to MProWT-ensitrelvir. Chemical reactivity changes of the mutant active sites due to differences in electrostatic and protein dynamics effects likely contribute to losses in binding affinities.
Collapse
Affiliation(s)
- Andrey Kovalevsky
- Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - Annie Aniana
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, Maryland 20892-0520, United States
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, Maryland 20892-0540, United States
| | - Leighton Coates
- Second Target Station, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - Victoria N Drago
- Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - Lauren Wear
- Department of Natural Sciences, Tennessee Wesleyan University, Athens, Tennessee 37303, United States
| | - Oksana Gerlits
- Department of Natural Sciences, Tennessee Wesleyan University, Athens, Tennessee 37303, United States
| | - Nashaat T Nashed
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, Maryland 20892-0520, United States
| | - John M Louis
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, Maryland 20892-0520, United States
| |
Collapse
|
5
|
Balandin D, Szulc N, Bystranowska D, Gąsior-Głogowska M, Kruszakin R, Szefczyk M. Boosting stability: a hierarchical approach for self-assembling peptide structures. J Mater Chem B 2024; 12:10682-10691. [PMID: 39314115 DOI: 10.1039/d4tb01545b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The primary objective of this study was to implement a hierarchical approach to enhance the conformational stability of a selected group of peptides by incorporating trans-(1S,2S)-2-aminocyclopentanecarboxylic acid (trans-ACPC). The influence of residue mutation on the peptide structures was investigated using circular dichroism, analytical ultracentrifugation, and vibrational spectroscopy. The resulting nanostructures were examined via transmission electron microscopy. The incorporation of trans-ACPC led to increased conformational stability and self-assembling propensity in peptides containing constrained β-amino acid residues.
Collapse
Affiliation(s)
- Denys Balandin
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wrocław 50-370, Poland.
- Department of Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010, Graz, Austria
| | - Natalia Szulc
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, Norwida 25, Wrocław 50-375, Poland
| | - Dominika Bystranowska
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wrocław 50-370, Poland
| | - Marlena Gąsior-Głogowska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wrocław 50-370, Poland
| | - Roksana Kruszakin
- Laboratory of Instrumental Analysis and Preparation, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, Wrocław 53-114, Poland
| | - Monika Szefczyk
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wrocław 50-370, Poland.
| |
Collapse
|
6
|
He QY, Zhao HF, Meng L, Geng Z, Gao ZQ, Qi XY, Dong YH, Zhang H. A cardioviral 2C-ATP complex structure reveals the essential role of a conserved arginine in regulation of cardioviral 2C activity. J Virol 2024; 98:e0091124. [PMID: 39240112 PMCID: PMC11495053 DOI: 10.1128/jvi.00911-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/02/2024] [Indexed: 09/07/2024] Open
Abstract
2C is a highly conserved picornaviral non-structural protein with ATPase activity and plays a multifunctional role in the viral life cycle as a promising target for anti-picornavirus drug development. While the structure-function of enteroviral 2Cs have been well studied, cardioviral 2Cs remain largely uncharacterized. Here, an endogenous ATP molecule was identified in the crystal structure of 2C from encephalomyocarditis virus (EMCV, Cardiovirus A). The ATP is bound into the ATPase active site with a unique compact conformation. Notably, the γ-phosphate of ATP directly interacts with Arg311 (conserved in cardioviral 2Cs), and its mutation significantly inhibits the ATPase activity. Unexpectedly, this mutation remarkably promotes 2C self-oligomerization and viral replication efficiency. Molecular dynamic simulations showed that the Arg311 side chain is highly dynamic, indicating it may function as a switch between the activation state and the inhibition state of ATPase activity. A hexameric ring model of EMCV 2C full length indicated that the C-terminal helix may get close to the N-terminal amphipathic helices to form a continuous positive region for RNA binding. The RNA-binding studies of EMCV 2C revealed that the RNA length is closely associated with the RNA-binding affinities and indicated that the substrate may wrap around the outer surface of the hexamer. Our studies provide a biochemical framework to guide the characterization of EMCV 2C and the essential role of arginine in cardioviral 2C functions. IMPORTANCE Encephalomyocarditis virus (Cardiovirus A) is the causative agent of the homonymous disease, which may induce myocarditis, encephalitis, and reproductive disorders in various mammals. 2C protein is functionally indispensable and a promising target for drug development involving broad-spectrum picornaviral inhibitors. Here, an endogenous ATP molecule with a unique conformation was discovered by a combination of protein crystallography and high-performance liquid chromatography in the encephalomyocarditis virus (EMCV) 2C structure. Biochemical and structural characterization analysis of EMCV 2C revealed the critical role of conserved Arg311 in ATPase activity and self-oligomerization of EMCV 2C. The viral replication kinetics and infectivity study suggested that the residue negatively regulated the infectivity titer and virus encapsulation efficiency of EMCV and is, therefore, crucial for 2C protein to promote viral replication. Our systemic structure-function analysis provides unique insights into the function and regulation mechanism of cardioviral 2C protein.
Collapse
Affiliation(s)
- Qing-Yi He
- School of Life Sciences, University of Science and Technology of China, Hefei, China
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Hai-Fan Zhao
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Liang Meng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhi Geng
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Zeng-Qiang Gao
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Xin-Yu Qi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yu-Hui Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Heng Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
He X, Yun MK, Li Z, Waddell MB, Nourse A, Churion KA, Kreuzer KN, Byrd AK, White SW. Structural and functional insights into the interaction between the bacteriophage T4 DNA processing proteins gp32 and Dda. Nucleic Acids Res 2024:gkae910. [PMID: 39417586 DOI: 10.1093/nar/gkae910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 09/28/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Bacteriophage T4 is a classic model system for studying the mechanisms of DNA processing. A key protein in T4 DNA processing is the gp32 single-stranded DNA-binding protein. gp32 has two key functions: it binds cooperatively to single-stranded DNA (ssDNA) to protect it from nucleases and remove regions of secondary structure, and it recruits proteins to initiate DNA processes including replication and repair. Dda is a T4 helicase recruited by gp32, and we purified and crystallized a gp32-Dda-ssDNA complex. The low-resolution structure revealed how the C-terminus of gp32 engages Dda. Analytical ultracentrifugation analyses were consistent with the crystal structure. An optimal Dda binding peptide from the gp32 C-terminus was identified using surface plasmon resonance. The crystal structure of the Dda-peptide complex was consistent with the corresponding interaction in the gp32-Dda-ssDNA structure. A Dda-dependent DNA unwinding assay supported the structural conclusions and confirmed that the bound gp32 sequesters the ssDNA generated by Dda. The structure of the gp32-Dda-ssDNA complex, together with the known structure of the gp32 body, reveals the entire ssDNA binding surface of gp32. gp32-Dda-ssDNA complexes in the crystal are connected by the N-terminal region of one gp32 binding to an adjacent gp32, and this provides key insights into this interaction.
Collapse
Affiliation(s)
- Xiaoping He
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place MS311, Memphis, TN 38105, USA
| | - Mi-Kyung Yun
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, 262 Danny Thomas Place MS221, Memphis, TN 38105, USA
| | - Zhenmei Li
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place MS311, Memphis, TN 38105, USA
| | - M Brett Waddell
- Hartwell Center for Biotechnology, St. Jude Children's Research Hospital, 262 Danny Thomas Place MS1300, Memphis, TN 38105, USA
| | - Amanda Nourse
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place MS311, Memphis, TN 38105, USA
| | - Kelly A Churion
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place MS311, Memphis, TN 38105, USA
| | - Kenneth N Kreuzer
- Department of Biochemistry, Duke University Medical Center, Nanaline H. Duke Box 3711, Durham, NC 27710, USA
| | - Alicia K Byrd
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 W. Markham Street Slot 516, Little Rock, AR 72205, USA
| | - Stephen W White
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place MS311, Memphis, TN 38105, USA
| |
Collapse
|
8
|
Ehtiati K, Anufriev I, Friebe C, Volodin IA, Stolze C, Muench S, Festag G, Nischang I, Hager MD, Schubert US. Hyperbranched TEMPO-based polymers as catholytes for redox flow battery applications. RSC Adv 2024; 14:32893-32910. [PMID: 39429941 PMCID: PMC11487510 DOI: 10.1039/d4ra03925d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/27/2024] [Indexed: 10/22/2024] Open
Abstract
Application of redox-active polymers (RAPs) in redox flow batteries (RFBs) can potentially reduce the stack cost through substitution of costly ion-exchange membranes by cheap size-exclusion membranes. However, intermolecular interactions of polymer molecules, i.e., entanglements, particularly in concentrated solutions, result in relatively high electrolyte viscosities. Furthermore, the large size and limited mobility of polymers lead to slow diffusion and more sluggish heterogeneous electron transfer rates compared to quickly diffusing small molecules. Although a number of RAPs with varying electrolyte viscosities have been reported in the literature, the relation between the RAP structure and the hydrodynamic properties has not been thoroughly investigated. Herein, hyperbranched 2,2,6,6-tetramethylpiperidinyloxyl (TEMPO)-based polymers intended for application as low-viscosity catholytes for RFBs are presented and the influence of the structure and the molar mass distribution on the hydrodynamic properties is investigated. A new synthesis approach for TEMPO-based polymers is established based on step-growth polymerization of a TEMPO-containing monomer using an aza-Michael addition followed by a postpolymerization modification to improve solubility in aqueous solutions. The compact structure of hyperbranched polymers was demonstrated using size-exclusion chromatography (SEC) with viscometric detection and the optimum molar mass was found based on the results of viscometric and crossover investigations. The resulting RAP revealed a viscosity of around 21 mPas at a concentration corresponding to around 1 M TEMPO-containing units, according to the calculated mass of the repeating unit, showing potential for high capacity polymer-based catholytes for RFBs. Nevertheless, possible partial deactivation of TEMPO units lowered the active TEMPO concentration of the hyperbranched RAPs. A faster diffusion and higher charge transfer rate were observed for the hyperbranched polymer compared to the previously reported linear polymers. However, in RFB tests, a poor performance was observed, which is attributed to the side reactions of the oxidized TEMPO moieties. Finally, pathways for overcoming the main remaining challenges, i.e., high loss of material during dialysis as an indication of being prone to crossover, the partial deactivation of TEMPO moieties, and the subsequent side reactions under battery conditions, are suggested.
Collapse
Affiliation(s)
- Koosha Ehtiati
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena Humboldtstrasse 10 Jena 07743 Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena Philosophenweg 7a Jena 07743 Germany
| | - Ilya Anufriev
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena Humboldtstrasse 10 Jena 07743 Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena Philosophenweg 7 Jena 07743 Germany
| | - Christian Friebe
- Helmholtz Institute for Polymers in Energy Applications Jena (HIPOLE Jena) Lessingstr. 12 - 14 07743 Jena Germany
| | - Ivan A Volodin
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena Humboldtstrasse 10 Jena 07743 Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena Philosophenweg 7a Jena 07743 Germany
| | - Christian Stolze
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena Humboldtstrasse 10 Jena 07743 Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena Philosophenweg 7a Jena 07743 Germany
| | - Simon Muench
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena Humboldtstrasse 10 Jena 07743 Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena Philosophenweg 7a Jena 07743 Germany
| | - Grit Festag
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena Humboldtstrasse 10 Jena 07743 Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena Philosophenweg 7 Jena 07743 Germany
| | - Ivo Nischang
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena Humboldtstrasse 10 Jena 07743 Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena Philosophenweg 7a Jena 07743 Germany
- Helmholtz Institute for Polymers in Energy Applications Jena (HIPOLE Jena) Lessingstr. 12 - 14 07743 Jena Germany
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB) Hahn-Meitner-Platz 1 14109 Berlin Germany
| | - Martin D Hager
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena Humboldtstrasse 10 Jena 07743 Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena Philosophenweg 7a Jena 07743 Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena Philosophenweg 7 Jena 07743 Germany
- Helmholtz Institute for Polymers in Energy Applications Jena (HIPOLE Jena) Lessingstr. 12 - 14 07743 Jena Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena Humboldtstrasse 10 Jena 07743 Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena Philosophenweg 7a Jena 07743 Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena Philosophenweg 7 Jena 07743 Germany
- Helmholtz Institute for Polymers in Energy Applications Jena (HIPOLE Jena) Lessingstr. 12 - 14 07743 Jena Germany
| |
Collapse
|
9
|
Kim HU, Park YH, An MY, Kim YK, Song C, Jung HS. Structural insights into calcium-induced conformational changes in human gelsolin. Biochem Biophys Res Commun 2024; 735:150826. [PMID: 39426132 DOI: 10.1016/j.bbrc.2024.150826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Gelsolin is known as one of the actin-binding proteins capable of severing and capping filamentous actin, and of undergoing structural changes in the presence of calcium ions to interact with actin filaments. In this study, single-particle 3D reconstruction using electron microscopy (EM) revealed that, in the presence of calcium, the structure of gelsolin undergoes structural changes before interacting with actin. These differences are subtle with similarities, as confirmed by the EM map. According to the results of the molecular dynamics simulations, these nuanced structural differences primarily manifest at the domain level when calcium is present. These results provide structural evidence that, in the presence of calcium, gelsolin enters a phase of conformational preparation to transition into the active state. This process enables gelsolin to bind to actin, whereupon gelsolin undergoes more drastic structural changes upon interaction with actin filaments, which allows it to participate in binding and severing to regulate the cytoskeleton. This is the first visualization of full-length gelsolin, and helps to clarify crucial aspects of the as of yet incompletely understood interaction between gelsolin and actin.
Collapse
Affiliation(s)
- Han-Ul Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea; Kangwon Center for Systems Imaging, Chuncheon, 24341, Republic of Korea
| | - Yoon Ho Park
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Mi Young An
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Young Kwan Kim
- Kangwon Center for Systems Imaging, Chuncheon, 24341, Republic of Korea
| | - Chihong Song
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan, 50612, Republic of Korea.
| | - Hyun Suk Jung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea; Kangwon Center for Systems Imaging, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
10
|
He S, Taher NM, Simard AR, Hvorecny KL, Ragusa MJ, Bahl CD, Hickman AB, Dyda F, Madden DR. Molecular basis for the transcriptional regulation of an epoxide-based virulence circuit in Pseudomonas aeruginosa. Nucleic Acids Res 2024:gkae889. [PMID: 39413156 DOI: 10.1093/nar/gkae889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 08/30/2024] [Accepted: 10/03/2024] [Indexed: 10/18/2024] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa infects the airways of people with cystic fibrosis (CF) and produces a virulence factor Cif that is associated with worse outcomes. Cif is an epoxide hydrolase that reduces cell-surface abundance of the cystic fibrosis transmembrane conductance regulator (CFTR) and sabotages pro-resolving signals. Its expression is regulated by a divergently transcribed TetR family transcriptional repressor. CifR represents the first reported epoxide-sensing bacterial transcriptional regulator, but neither its interaction with cognate operator sequences nor the mechanism of activation has been investigated. Using biochemical and structural approaches, we uncovered the molecular mechanisms controlling this complex virulence operon. We present here the first molecular structures of CifR alone and in complex with operator DNA, resolved in a single crystal lattice. Significant conformational changes between these two structures suggest how CifR regulates the expression of the virulence gene cif. Interactions between the N-terminal extension of CifR with the DNA minor groove of the operator play a significant role in the operator recognition of CifR. We also determined that cysteine residue Cys107 is critical for epoxide sensing and DNA release. These results offer new insights into the stereochemical regulation of an epoxide-based virulence circuit in a critically important clinical pathogen.
Collapse
Affiliation(s)
- Susu He
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Noor M Taher
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Adam R Simard
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Kelli L Hvorecny
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Michael J Ragusa
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
- Department of Chemistry, Dartmouth, Hanover, NH 03755, USA
| | - Christopher D Bahl
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Alison B Hickman
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Fred Dyda
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dean R Madden
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
- Department of Chemistry, Dartmouth, Hanover, NH 03755, USA
| |
Collapse
|
11
|
Wang Y, Guo H, Lu Y, Yang W, Li T, Ji X. Crystal structure and nucleic acid binding mode of CPV NSP9: implications for viroplasm in Reovirales. Nucleic Acids Res 2024; 52:11115-11127. [PMID: 39287123 PMCID: PMC11472163 DOI: 10.1093/nar/gkae803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
Cytoplasmic polyhedrosis viruses (CPVs), like other members of the order Reovirales, produce viroplasms, hubs of viral assembly that shield them from host immunity. Our study investigates the potential role of NSP9, a nucleic acid-binding non-structural protein encoded by CPVs, in viroplasm biogenesis. We determined the crystal structure of the NSP9 core (NSP9ΔC), which shows a dimeric organization topologically similar to the P9-1 homodimers of plant reoviruses. The disordered C-terminal region of NSP9 facilitates oligomerization but is dispensable for nucleic acid binding. NSP9 robustly binds to single- and double-stranded nucleic acids, regardless of RNA or DNA origin. Mutagenesis studies further confirmed that the dimeric form of NSP9 is critical for nucleic acid binding due to positively charged residues that form a tunnel during homodimerization. Gel migration assays reveal a unique nucleic acid binding pattern, with the sequential appearance of two distinct complexes dependent on protein concentration. The similar gel migration pattern shared by NSP9 and rotavirus NSP3, coupled with its structural resemblance to P9-1, hints at a potential role in translational regulation or viral genome packaging, which may be linked to viroplasm. This study advances our understanding of viroplasm biogenesis and Reovirales replication, providing insights into potential antiviral drug targets.
Collapse
Affiliation(s)
- Yeda Wang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Viruses and Infectious Diseases, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China
| | - Hangtian Guo
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Viruses and Infectious Diseases, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China
| | - Yuhao Lu
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Viruses and Infectious Diseases, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China
| | - Wanbin Yang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Viruses and Infectious Diseases, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China
| | - Tinghan Li
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Viruses and Infectious Diseases, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China
| | - Xiaoyun Ji
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Viruses and Infectious Diseases, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China
- Engineering Research Center of Protein and Peptide Medicine, Ministry of Education, China
| |
Collapse
|
12
|
Lou J, Deng Q, Zhang X, Bell C, Das A, Bediaga N, Zlatic C, Johanson T, Allan R, Griffin MW, Paradkar P, Harvey K, Dawson M, Hinde E. Heterochromatin protein 1 alpha (HP1α) undergoes a monomer to dimer transition that opens and compacts live cell genome architecture. Nucleic Acids Res 2024; 52:10918-10933. [PMID: 39193905 PMCID: PMC11472067 DOI: 10.1093/nar/gkae720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 07/29/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
Our understanding of heterochromatin nanostructure and its capacity to mediate gene silencing in a living cell has been prevented by the diffraction limit of optical microscopy. Thus, here to overcome this technical hurdle, and directly measure the nucleosome arrangement that underpins this dense chromatin state, we coupled fluorescence lifetime imaging microscopy (FLIM) of Förster resonance energy transfer (FRET) between histones core to the nucleosome, with molecular editing of heterochromatin protein 1 alpha (HP1α). Intriguingly, this super-resolved readout of nanoscale chromatin structure, alongside fluorescence fluctuation spectroscopy (FFS) and FLIM-FRET analysis of HP1α protein-protein interaction, revealed nucleosome arrangement to be differentially regulated by HP1α oligomeric state. Specifically, we found HP1α monomers to impart a previously undescribed global nucleosome spacing throughout genome architecture that is mediated by trimethylation on lysine 9 of histone H3 (H3K9me3) and locally reduced upon HP1α dimerisation. Collectively, these results demonstrate HP1α to impart a dual action on chromatin that increases the dynamic range of nucleosome proximity. We anticipate that this finding will have important implications for our understanding of how live cell heterochromatin structure regulates genome function.
Collapse
Affiliation(s)
- Jieqiong Lou
- School of Physics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Qiji Deng
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
| | - Xiaomeng Zhang
- School of Physics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Charles C Bell
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
| | - Andrew B Das
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Naiara G Bediaga
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
| | - Courtney O Zlatic
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Timothy M Johanson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Rhys S Allan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Michael D W Griffin
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC 3010, Australia
| | - PrasadN Paradkar
- CSIRO Health & Biosecurity, Australian Centre for Disease Preparedness, 5 Portarlington Road, Geelong3220, Australia
| | - Kieran F Harvey
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Anatomy and Developmental Biology and Biomedicine Discovery Institute, Monash University, Clayton, VIC 3168, Australia
| | - Mark A Dawson
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
- Centre for Cancer Research, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Elizabeth Hinde
- School of Physics, University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
13
|
Liao F, Yu G, Zhang C, Liu Z, Li X, He Q, Yin H, Liu X, Li Z, Zhang H. Structural basis for the concerted antiphage activity in the SIR2-HerA system. Nucleic Acids Res 2024; 52:11336-11348. [PMID: 39217465 PMCID: PMC11472057 DOI: 10.1093/nar/gkae750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Recently, a novel two-gene bacterial defense system against phages, encoding a SIR2 NADase and a HerA ATPase/helicase, has been identified. However, the molecular mechanism of the bacterial SIR2-HerA immune system remains unclear. Here, we determine the cryo-EM structures of SIR2, HerA and their complex from Paenibacillus sp. 453MF in different functional states. The SIR2 proteins oligomerize into a dodecameric ring-shaped structure consisting of two layers of interlocked hexamers, in which each subunit exhibits an auto-inhibited conformation. Distinct from the canonical AAA+ proteins, HerA hexamer alone in this antiphage system adopts a split spiral arrangement, which is stabilized by a unique C-terminal extension. SIR2 and HerA proteins assemble into a ∼1.1 MDa torch-shaped complex to fight against phage infection. Importantly, disruption of the interactions between SIR2 and HerA largely abolishes the antiphage activity. Interestingly, binding alters the oligomer state of SIR2, switching from a dodecamer to a tetradecamer state. The formation of the SIR2-HerA binary complex activates NADase and nuclease activities in SIR2 and ATPase and helicase activities in HerA. Together, our study not only provides a structural basis for the functional communications between SIR2 and HerA proteins, but also unravels a novel concerted antiviral mechanism through NAD+ degradation, ATP hydrolysis, and DNA cleavage.
Collapse
Affiliation(s)
- Fumeng Liao
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Guimei Yu
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Chendi Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Zhikun Liu
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xuzichao Li
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Qiuqiu He
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Hang Yin
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xiang Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhuang Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Heng Zhang
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
14
|
Almeida CF, Gully BS, Jones CM, Kedzierski L, Gunasinghe SD, Rice MT, Berry R, Gherardin NA, Nguyen TT, Mok YF, Reijneveld JF, Moody DB, Van Rhijn I, La Gruta NL, Uldrich AP, Rossjohn J, Godfrey DI. Direct recognition of an intact foreign protein by an αβ T cell receptor. Nat Commun 2024; 15:8816. [PMID: 39394178 PMCID: PMC11470135 DOI: 10.1038/s41467-024-51897-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 08/21/2024] [Indexed: 10/13/2024] Open
Abstract
αβ T cell receptors (αβTCRs) co-recognise antigens when bound to Major Histocompatibility Complex (MHC) or MHC class I-like molecules. Additionally, some αβTCRs can bind non-MHC molecules, but how much intact antigen reactivities are achieved remains unknown. Here, we identify an αβ T cell clone that directly recognises the intact foreign protein, R-phycoerythrin (PE), a multimeric (αβ)6γ protein complex. This direct αβTCR-PE interaction occurs in an MHC-independent manner, yet triggers T cell activation and bound PE with an affinity comparable to αβTCR-peptide-MHC interactions. The crystal structure reveals how six αβTCR molecules simultaneously engage the PE hexamer, mediated by the complementarity-determining regions (CDRs) of the αβTCR. Here, the αβTCR mainly binds to two α-helices of the globin fold in the PE α-subunit, which is analogous to the antigen-binding platform of the MHC molecule. Using retrogenic mice expressing this TCR, we show that it supports intrathymic T cell development, maturation, and exit into the periphery as mature CD4/CD8 double negative (DN) T cells with TCR-mediated functional capacity. Accordingly, we show how an αβTCR can recognise an intact foreign protein in an antibody-like manner.
Collapse
MESH Headings
- Animals
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Mice
- Phycoerythrin/metabolism
- Phycoerythrin/chemistry
- Lymphocyte Activation/immunology
- Protein Binding
- Crystallography, X-Ray
- Mice, Inbred C57BL
- Humans
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Complementarity Determining Regions/chemistry
- Complementarity Determining Regions/genetics
- Complementarity Determining Regions/metabolism
- Models, Molecular
Collapse
Affiliation(s)
- Catarina F Almeida
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Benjamin S Gully
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Claerwen M Jones
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Lukasz Kedzierski
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Department of Microbiology and Immunology, at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Sachith D Gunasinghe
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- European Molecular Biology Laboratory (EMBL) Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, New South Wales, Australia
| | - Michael T Rice
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Richard Berry
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Nicholas A Gherardin
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Trang T Nguyen
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Yee-Foong Mok
- Melbourne Protein Characterisation Platform, Bio21 Molecular Science and Biotechnology Institute, Melbourne, VIC, Australia
| | - Josephine F Reijneveld
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands
| | - D Branch Moody
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ildiko Van Rhijn
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Nicole L La Gruta
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Adam P Uldrich
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK.
| | - Dale I Godfrey
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
15
|
Barros-Medina I, Robles-Ramos MÁ, Sobrinos-Sanguino M, Luque-Ortega JR, Alfonso C, Margolin W, Rivas G, Monterroso B, Zorrilla S. Evidence for biomolecular condensates of MatP in spatiotemporal regulation of the bacterial cell division cycle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.23.604758. [PMID: 39211257 PMCID: PMC11361077 DOI: 10.1101/2024.07.23.604758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
An increasing number of proteins involved in bacterial cell cycle events have been recently shown to undergo phase separation. The resulting biomolecular condensates play an important role in cell cycle protein function and may be involved in development of persister cells tolerant to antibiotics. Here we report that the E. coli chromosomal Ter macrodomain organizer MatP, a division site selection protein implicated in the coordination of chromosome segregation with cell division, forms biomolecular condensates in cytomimetic systems. These condensates are favored by crowding and preferentially localize at the membrane of microfluidics droplets, a behavior probably mediated by MatP-lipid binding. Condensates are negatively regulated and partially dislodged from the membrane by DNA sequences recognized by MatP ( matS ), which partition into them. Unexpectedly, MatP condensation is enhanced by FtsZ, a core component of the division machinery previously described to undergo phase separation. Our biophysical analyses uncover a direct interaction between the two proteins, disrupted by matS sequences. This binding might have implications for FtsZ ring positioning at mid-cell by the Ter linkage, which comprises MatP and two other proteins that bridge the canonical MatP/FtsZ interaction. FtsZ/MatP condensates interconvert with bundles in response to GTP addition, providing additional levels of regulation. Consistent with discrete foci reported in cells, MatP biomolecular condensates may facilitate MatP's role in chromosome organization and spatiotemporal regulation of cytokinesis and DNA segregation. Moreover, sequestration of MatP in these membraneless compartments, with or without FtsZ, could promote cell entry into dormant states that are able to survive antibiotic treatments.
Collapse
|
16
|
Zhang J, Liu L, Li M, Liu H, Gong X, Tang Y, Zhang Y, Zhou X, Lin Z, Guo H, Pan L. Molecular Basis of the Recognition of the Active Rab8a by Optineurin. J Mol Biol 2024; 436:168811. [PMID: 39374890 DOI: 10.1016/j.jmb.2024.168811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024]
Abstract
Optineurin (OPTN), a multifunctional adaptor protein in mammals, plays critical roles in many cellular processes, such as vesicular trafficking and autophagy. Notably, mutations in optineurin are directly associated with many human diseases, such as amyotrophic lateral sclerosis (ALS). OPTN can specifically recognize Rab8a and the GTPase-activating protein TBC1D17, and facilitate the inactivation of Rab8a mediated by TBC1D17, but with poorly understood mechanism. Here, using biochemical and structural approaches, we systematically characterize the interaction between OPTN and Rab8a, revealing that OPTN selectively recognizes the GTP-bound active Rab8a through its leucine-zipper domain (LZD). The determined crystal structure of OPTN LZD in complex with the active Rab8a not only elucidates the detailed binding mechanism of OPTN with Rab8a but also uncovers a unique binding mode of Rab8a with its effectors. Furthermore, we demonstrate that the central coiled-coil domain of OPTN and the active Rab8a can simultaneously interact with the TBC domain of TBC1D17 to form a ternary complex. Finally, based on the OPTN LZD/Rab8a complex structure and relevant biochemical analyses, we also evaluate several known ALS-associated mutations found in the LZD of OPTN. Collectively, our findings provide mechanistic insights into the interaction of OPTN with Rab8a, expanding our understanding of the binding modes of Rab8a with its effectors and the potential etiology of diseases caused by OPTN mutations.
Collapse
Affiliation(s)
- Jing Zhang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610068, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Lei Liu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610068, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Miao Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China; School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| | - Haobo Liu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xinyu Gong
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yubin Tang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yuchao Zhang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xindi Zhou
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhiqiao Lin
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hanbo Guo
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Lifeng Pan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610068, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China; School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China.
| |
Collapse
|
17
|
Mok CY, Chu HY, Lam WWL, Au SWN. Structural insights into the assembly pathway of the Helicobacter pylori CagT4SS outer membrane core complex. Structure 2024; 32:1725-1736.e4. [PMID: 39032488 DOI: 10.1016/j.str.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/16/2024] [Accepted: 06/25/2024] [Indexed: 07/23/2024]
Abstract
Cag type IV secretion system (CagT4SS) translocates oncoprotein cytotoxin-associated gene A (CagA) into host cells and plays a key role in the pathogenesis of Helicobacter pylori. The structure of the outer membrane core complex (OMCC) in CagT4SS consists of CagX, CagY, CagM, CagT, and Cag3 in a stoichiometric ratio of 1:1:2:2:5 with 14-fold symmetry. However, the assembly pathway of OMCC remains elusive. Here, we report the crystal structures of CagT and Cag3-CagT complex, and the structural dynamics of Cag3 and CagT using hydrogen deuterium exchange-mass spectrometry (HDX-MS). The interwoven interaction of Cag3 and CagT involves conformational changes of CagT and β strand swapping. In conjunction with biochemical and biophysical assays, we further demonstrate the different oligomerization states of Cag3 and Cag3-CagT complex. Additionally, the association with CagM requires the pre-formation of Cag3-CagT complex. These results demonstrate the generation of different intermediate sub-assemblies and their structural flexibility, potentially representing different building blocks for OMCC assembly.
Collapse
Affiliation(s)
- Chin Yu Mok
- Center for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hoi Yee Chu
- Center for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Wendy Wai Ling Lam
- Center for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Shannon Wing Ngor Au
- Center for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
18
|
Fan S, Liu J, Chofflet N, Bailey AO, Russell WK, Zhang Z, Takahashi H, Ren G, Rudenko G. Molecular mechanism of contactin 2 homophilic interaction. Structure 2024; 32:1652-1666.e8. [PMID: 38968938 PMCID: PMC11455609 DOI: 10.1016/j.str.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/23/2024] [Accepted: 06/10/2024] [Indexed: 07/07/2024]
Abstract
Contactin 2 (CNTN2) is a cell adhesion molecule involved in axon guidance, neuronal migration, and fasciculation. The ectodomains of CNTN1-CNTN6 are composed of six Ig domains (Ig1-Ig6) and four FN domains. Here, we show that CNTN2 forms transient homophilic interactions (KD ∼200 nM). Cryo-EM structures of full-length CNTN2 and CNTN2_Ig1-Ig6 reveal a T-shaped homodimer formed by intertwined, parallel monomers. Unexpectedly, the horseshoe-shaped Ig1-Ig4 headpieces extend their Ig2-Ig3 tips outwards on either side of the homodimer, while Ig4, Ig5, Ig6, and the FN domains form a central stalk. Cross-linking mass spectrometry and cell-based binding assays confirm the 3D assembly of the CNTN2 homodimer. The interface mediating homodimer formation differs between CNTNs, as do the homophilic versus heterophilic interaction mechanisms. The CNTN family thus encodes a versatile molecular platform that supports a very diverse portfolio of protein interactions and that can be leveraged to strategically guide neural circuit development.
Collapse
Affiliation(s)
- Shanghua Fan
- Department of Pharmacology and Toxicology; University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jianfang Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Nicolas Chofflet
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, QC H2W 1R7, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B2, Canada
| | - Aaron O Bailey
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - William K Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ziqi Zhang
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, QC H2W 1R7, Canada
| | - Hideto Takahashi
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, QC H2W 1R7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada; Division of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada.
| | - Gang Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Gabby Rudenko
- Department of Pharmacology and Toxicology; University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
19
|
Sokolova V, Miratsky J, Svetlov V, Brenowitz M, Vant J, Lewis TS, Dryden K, Lee G, Sarkar S, Nudler E, Singharoy A, Tan D. Structural mechanism of HP1⍺-dependent transcriptional repression and chromatin compaction. Structure 2024:S0969-2126(24)00382-4. [PMID: 39383876 DOI: 10.1016/j.str.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 08/12/2024] [Accepted: 09/12/2024] [Indexed: 10/11/2024]
Abstract
Heterochromatin protein 1 (HP1) plays a central role in establishing and maintaining constitutive heterochromatin. However, the mechanisms underlying HP1-nucleosome interactions and their contributions to heterochromatin functions remain elusive. Here, we present the cryoelectron microscopy (cryo-EM) structure of an HP1α dimer bound to an H2A.Z-nucleosome, revealing two distinct HP1α-nucleosome interfaces. The primary HP1α binding site is located at the N terminus of histone H3, specifically at the trimethylated lysine 9 (K9me3) region, while a secondary binding site is situated near histone H2B, close to nucleosome superhelical location 4 (SHL4). Our biochemical data further demonstrates that HP1α binding influences the dynamics of DNA on the nucleosome. It promotes DNA unwrapping near the nucleosome entry and exit sites while concurrently restricting DNA accessibility in the vicinity of SHL4. Our study offers a model for HP1α-mediated heterochromatin maintenance and gene silencing. It also sheds light on the H3K9me-independent role of HP1 in responding to DNA damage.
Collapse
Affiliation(s)
- Vladyslava Sokolova
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Jacob Miratsky
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | - Vladimir Svetlov
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Michael Brenowitz
- Departments of Biochemistry and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - John Vant
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | - Tyler S Lewis
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Kelly Dryden
- Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, USA
| | - Gahyun Lee
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Shayan Sarkar
- Department of Pathology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | | | - Dongyan Tan
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
20
|
Medrano FJ, Hernando-Amado S, Martínez JL, Romero A. A new type of Class C β-lactamases defined by PIB-1. A metal-dependent carbapenem-hydrolyzing β-lactamase, from Pseudomonas aeruginosa: Structural and functional analysis. Int J Biol Macromol 2024; 277:134298. [PMID: 39097051 DOI: 10.1016/j.ijbiomac.2024.134298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/18/2024] [Accepted: 07/28/2024] [Indexed: 08/05/2024]
Abstract
Antibiotic resistance is one of most important health concerns nowadays, and β-lactamases are the most important resistance determinants. These enzymes, based on their structural and functional characteristics, are grouped in four categories (A, B, C and D). We have solved the structure of PIB-1, a Pseudomonas aeruginosa chromosomally-encoded β-lactamase, in its apo form and in complex with meropenem and zinc. These crystal structures show that it belongs to the Class C β-lactamase group, although it shows notable differences, especially in the Ω- and P2-loops, which are important for the enzymatic activity. Functional analysis showed that PIB-1 is able to degrade carbapenems but not cephalosporins, the typical substrate of Class C β-lactamases, and that its catalytic activity increases in the presence of metal ions, especially zinc. They do not bind to the active-site but they induce the formation of trimers that show an increased capacity for the degradation of the antibiotics, suggesting that this oligomer is more active than the other oligomeric species. While PIB-1 is structurally a Class C β-lactamase, the low sequence conservation, substrate profile and its metal-dependence, prompts us to position this enzyme as the founder of a new group inside the Class C β-lactamases. Consequently, its diversity might be wider than expected.
Collapse
Affiliation(s)
- Francisco Javier Medrano
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain.
| | - Sara Hernando-Amado
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Darwin 3, 28043 Madrid, Spain
| | - José Luis Martínez
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Darwin 3, 28043 Madrid, Spain
| | - Antonio Romero
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain.
| |
Collapse
|
21
|
Cho C, Fei C, Jiang B, Yang W, Yuan HS. Molecular mechanisms for DNA methylation defects induced by ICF syndrome-linked mutations in DNMT3B. Protein Sci 2024; 33:e5131. [PMID: 39290110 PMCID: PMC11408749 DOI: 10.1002/pro.5131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/19/2024] [Accepted: 07/14/2024] [Indexed: 09/19/2024]
Abstract
DNA methyltransferase 3B (DNMT3B) plays a crucial role in DNA methylation during mammalian development. Mutations in DNMT3B are associated with human genetic diseases, particularly immunodeficiency, centromere instability, facial anomalies (ICF) syndrome. Although ICF syndrome-related missense mutations in the DNMT3B have been identified, their precise impact on protein structure and function remains inadequately explored. Here, we delve into the impact of four ICF syndrome-linked mutations situated in the DNMT3B dimeric interface (H814R, D817G, V818M, and R823G), revealing that each of these mutations compromises DNA-binding and methyltransferase activities to varying degrees. We further show that H814R, D817G, and V818M mutations severely disrupt the proper assembly of DNMT3B homodimer, whereas R823G does not. We also determined the first crystal structure of the methyltransferase domain of DNMT3B-DNMT3L tetrameric complex hosting the R823G mutation showing that the R823G mutant displays diminished hydrogen bonding interactions around T775, K777, G823, and Q827 in the protein-DNA interface, resulting in reduced DNA-binding affinity and a shift in sequence preference of +1 to +3 flanking positions. Altogether, our study uncovers a wide array of fundamental defects triggered by DNMT3B mutations, including the disassembly of DNMT3B dimers, reduced DNA-binding capacity, and alterations in flanking sequence preferences, leading to aberrant DNA hypomethylation and ICF syndrome.
Collapse
Affiliation(s)
- Chao‐Cheng Cho
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan, ROC
| | - Cheng‐Yin Fei
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan, ROC
| | - Bo‐Chen Jiang
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan, ROC
| | - Wei‐Zen Yang
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan, ROC
| | - Hanna S. Yuan
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan, ROC
- Graduate Institute of Biochemistry and Molecular BiologyNational Taiwan UniversityTaipeiTaiwan, ROC
| |
Collapse
|
22
|
Ramprasad S, Nyarko A. Ensembles of interconverting protein complexes with multiple interaction domains. Curr Opin Struct Biol 2024; 88:102874. [PMID: 38981144 DOI: 10.1016/j.sbi.2024.102874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/22/2024] [Accepted: 06/11/2024] [Indexed: 07/11/2024]
Abstract
Many critical biological processes depend on protein complexes that exist as ensembles of subcomplexes rather than a discrete complex. The subcomplexes dynamically interconvert with one another, and the ability to accurately resolve the composition of the diverse molecular species in the ensemble is crucial for understanding the contribution of each subcomplex to the overall function of the protein complex. Advances in computational programs have made it possible to predict the various molecular species in these ensembles, but experimental approaches to identify the pool of subcomplexes and associated stoichiometries are often challenging. This review highlights some experimental approaches that can be used to resolve the diverse molecular species in protein complexes that exist as ensembles of sub complexes.
Collapse
Affiliation(s)
- Sanjay Ramprasad
- Department of Biochemistry & Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Afua Nyarko
- Department of Biochemistry & Biophysics, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
23
|
Michael Sabo T, Trent JO, Chaires JB, Monsen RC. Strategy for modeling higher-order G-quadruplex structures recalcitrant to NMR determination. Methods 2024; 230:9-20. [PMID: 39032720 DOI: 10.1016/j.ymeth.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/22/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024] Open
Abstract
Guanine-rich nucleic acids can form intramolecularly folded four-stranded structures known as G-quadruplexes (G4s). Traditionally, G4 research has focused on short, highly modified DNA or RNA sequences that form well-defined homogeneous compact structures. However, the existence of longer sequences with multiple G4 repeats, from proto-oncogene promoters to telomeres, suggests the potential for more complex higher-order structures with multiple G4 units that might offer selective drug-targeting sites for therapeutic development. These larger structures present significant challenges for structural characterization by traditional high-resolution methods like multi-dimensional NMR and X-ray crystallography due to their molecular complexity. To address this current challenge, we have developed an integrated structural biology (ISB) platform, combining experimental and computational methods to determine self-consistent molecular models of higher-order G4s (xG4s). Here we outline our ISB method using two recent examples from our lab, an extended c-Myc promoter and long human telomere G4 repeats, that highlights the utility and generality of our approach to characterizing biologically relevant xG4s.
Collapse
Affiliation(s)
- T Michael Sabo
- UofL Health Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - John O Trent
- UofL Health Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - Jonathan B Chaires
- UofL Health Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - Robert C Monsen
- UofL Health Brown Cancer Center, University of Louisville, Louisville, KY, United States.
| |
Collapse
|
24
|
Vitoria Gomes M, Landwerlin P, Diebold-Durand ML, Shaik TB, Durand A, Troesch E, Weber C, Brillet K, Lemée MV, Decroos C, Dulac L, Antony P, Watrin E, Ennifar E, Golzio C, Romier C. The cohesin ATPase cycle is mediated by specific conformational dynamics and interface plasticity of SMC1A and SMC3 ATPase domains. Cell Rep 2024; 43:114656. [PMID: 39240714 DOI: 10.1016/j.celrep.2024.114656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/17/2024] [Accepted: 08/02/2024] [Indexed: 09/08/2024] Open
Abstract
Cohesin is key to eukaryotic genome organization and acts throughout the cell cycle in an ATP-dependent manner. The mechanisms underlying cohesin ATPase activity are poorly understood. Here, we characterize distinct steps of the human cohesin ATPase cycle and show that the SMC1A and SMC3 ATPase domains undergo specific but concerted structural rearrangements along this cycle. Specifically, whereas the proximal coiled coil of the SMC1A ATPase domain remains conformationally stable, that of the SMC3 displays an intrinsic flexibility. The ATP-dependent formation of the heterodimeric SMC1A/SMC3 ATPase module (engaged state) favors this flexibility, which is counteracted by NIPBL and DNA binding (clamped state). Opening of the SMC3/RAD21 interface (open-engaged state) stiffens the SMC3 proximal coiled coil, thus constricting together with that of SMC1A the ATPase module DNA-binding chamber. The plasticity of the ATP-dependent interface between the SMC1A and SMC3 ATPase domains enables these structural rearrangements while keeping the ATP gate shut. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Marina Vitoria Gomes
- Université de Strasbourg, IGBMC UMR 7104 - UMR-S 1258, 67400 Illkirch, France; CNRS, UMR 7104, 67400 Illkirch, France; INSERM, UMR-S 1258, 67400 Illkirch, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Integrated Structural Biology, 67400 Illkirch, France
| | - Pauline Landwerlin
- Université de Strasbourg, IGBMC UMR 7104 - UMR-S 1258, 67400 Illkirch, France; CNRS, UMR 7104, 67400 Illkirch, France; INSERM, UMR-S 1258, 67400 Illkirch, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Integrated Structural Biology, 67400 Illkirch, France
| | - Marie-Laure Diebold-Durand
- Université de Strasbourg, IGBMC UMR 7104 - UMR-S 1258, 67400 Illkirch, France; CNRS, UMR 7104, 67400 Illkirch, France; INSERM, UMR-S 1258, 67400 Illkirch, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Integrated Structural Biology, 67400 Illkirch, France
| | - Tajith B Shaik
- Université de Strasbourg, IGBMC UMR 7104 - UMR-S 1258, 67400 Illkirch, France; CNRS, UMR 7104, 67400 Illkirch, France; INSERM, UMR-S 1258, 67400 Illkirch, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Integrated Structural Biology, 67400 Illkirch, France
| | - Alexandre Durand
- Université de Strasbourg, IGBMC UMR 7104 - UMR-S 1258, 67400 Illkirch, France; CNRS, UMR 7104, 67400 Illkirch, France; INSERM, UMR-S 1258, 67400 Illkirch, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Integrated Structural Biology, 67400 Illkirch, France
| | - Edouard Troesch
- Université de Strasbourg, IGBMC UMR 7104 - UMR-S 1258, 67400 Illkirch, France; CNRS, UMR 7104, 67400 Illkirch, France; INSERM, UMR-S 1258, 67400 Illkirch, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Integrated Structural Biology, 67400 Illkirch, France
| | - Chantal Weber
- Université de Strasbourg, IGBMC UMR 7104 - UMR-S 1258, 67400 Illkirch, France; CNRS, UMR 7104, 67400 Illkirch, France; INSERM, UMR-S 1258, 67400 Illkirch, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Translational Medicine and Neurogenetics, 67400 Illkirch, France
| | - Karl Brillet
- Architecture et Réactivité de l'ARN, IBMC CNRS UPR 9002, Université de Strasbourg, 67084 Strasbourg Cedex, France
| | - Marianne Victoria Lemée
- Université de Strasbourg, IGBMC UMR 7104 - UMR-S 1258, 67400 Illkirch, France; CNRS, UMR 7104, 67400 Illkirch, France; INSERM, UMR-S 1258, 67400 Illkirch, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Translational Medicine and Neurogenetics, 67400 Illkirch, France
| | - Christophe Decroos
- Université de Strasbourg, IGBMC UMR 7104 - UMR-S 1258, 67400 Illkirch, France; CNRS, UMR 7104, 67400 Illkirch, France; INSERM, UMR-S 1258, 67400 Illkirch, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Integrated Structural Biology, 67400 Illkirch, France
| | - Ludivine Dulac
- Université de Strasbourg, IGBMC UMR 7104 - UMR-S 1258, 67400 Illkirch, France; CNRS, UMR 7104, 67400 Illkirch, France; INSERM, UMR-S 1258, 67400 Illkirch, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Integrated Structural Biology, 67400 Illkirch, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Translational Medicine and Neurogenetics, 67400 Illkirch, France
| | - Pierre Antony
- Université de Strasbourg, IGBMC UMR 7104 - UMR-S 1258, 67400 Illkirch, France; CNRS, UMR 7104, 67400 Illkirch, France; INSERM, UMR-S 1258, 67400 Illkirch, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Integrated Structural Biology, 67400 Illkirch, France
| | - Erwan Watrin
- CNRS, Université de Rennes, IGDR UMR 6290, 35000 Rennes, France
| | - Eric Ennifar
- Architecture et Réactivité de l'ARN, IBMC CNRS UPR 9002, Université de Strasbourg, 67084 Strasbourg Cedex, France
| | - Christelle Golzio
- Université de Strasbourg, IGBMC UMR 7104 - UMR-S 1258, 67400 Illkirch, France; CNRS, UMR 7104, 67400 Illkirch, France; INSERM, UMR-S 1258, 67400 Illkirch, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Translational Medicine and Neurogenetics, 67400 Illkirch, France
| | - Christophe Romier
- Université de Strasbourg, IGBMC UMR 7104 - UMR-S 1258, 67400 Illkirch, France; CNRS, UMR 7104, 67400 Illkirch, France; INSERM, UMR-S 1258, 67400 Illkirch, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Integrated Structural Biology, 67400 Illkirch, France.
| |
Collapse
|
25
|
Vernuccio R, León AM, Poojari CS, Buchrieser J, Selverian C, Jaleta Y, Meola A, Guivel-Benhassine F, Porrot F, Haouz A, Chevreuil M, Raynal B, Mercer J, Simon-Loriere E, Chandran K, Schwartz O, Hub JS, Guardado-Calvo P. MECHANISMS OF TECOVIRIMAT ANTIVIRAL ACTIVITY AND POXVIRUS RESISTANCE. RESEARCH SQUARE 2024:rs.3.rs-5002222. [PMID: 39399667 PMCID: PMC11469519 DOI: 10.21203/rs.3.rs-5002222/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Mpox is a zoonotic disease endemic in central and west Africa. However, since 2022, human-adapted mpox virus (MPXV) strains are causing large outbreaks spreading outside these regions, leading the World Health Organization to declare public health emergency twice. Tecovirimat, the most widely used drug to treat these infections, blocks viral egress through a poorly understood mechanism. Tecovirimat-resistant strains, all with mutations in the viral phospholipase F13, pose public health concerns. Herein, we report the structure of an F13 homodimer, both alone and in complex with tecovirimat. We demonstrate that tecovirimat acts as a molecular glue, inducing the dimerization of the phospholipase. F13 escape mutations in MPXV clinical isolates are at the dimer interface and prevent drug-induced dimerization in solution and cells. These findings, which decipher tecovirimat's mode of action, will allow better monitoring of poxvirus outbreaks and pave the way for developing more potent and resilient therapeutics.
Collapse
Affiliation(s)
- Riccardo Vernuccio
- G5 Structural Biology of Infectious Diseases, Institut Pasteur, Université Paris Cité, Paris, France
| | - Alejandro Martínez León
- Theoretical Physics and Center for Biophysics, Saarland University, 66123, Saarbrücken, Germany
| | - Chetan S. Poojari
- Theoretical Physics and Center for Biophysics, Saarland University, 66123, Saarbrücken, Germany
| | - Julian Buchrieser
- Virus & Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS, UMR 3569, Paris, France
| | - Christopher Selverian
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yakin Jaleta
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Annalisa Meola
- G5 Structural Biology of Infectious Diseases, Institut Pasteur, Université Paris Cité, Paris, France
| | | | - Françoise Porrot
- Theoretical Physics and Center for Biophysics, Saarland University, 66123, Saarbrücken, Germany
| | - Ahmed Haouz
- Cristallography Platform-C2RT, UMR3528, Institut Pasteur, CNRS, Université de Paris, Paris, France
| | - Maelenn Chevreuil
- Plate-forme de Biophysique Moleculaire-C2RT, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Paris, France
| | - Bertrand Raynal
- Plate-forme de Biophysique Moleculaire-C2RT, Institut Pasteur, CNRS UMR 3528, Université Paris Cité, Paris, France
| | - Jason Mercer
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - Etienne Simon-Loriere
- G5 Evolutionary Genomics of RNA Viruses, Institut Pasteur, Université Paris Cité, Paris, France
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Olivier Schwartz
- Virus & Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS, UMR 3569, Paris, France
| | - Jochen S. Hub
- Theoretical Physics and Center for Biophysics, Saarland University, 66123, Saarbrücken, Germany
| | - Pablo Guardado-Calvo
- G5 Structural Biology of Infectious Diseases, Institut Pasteur, Université Paris Cité, Paris, France
| |
Collapse
|
26
|
Shafiuddin M, Prather GW, Huang WC, Anton JR, Martin AL, Sillart SB, Tang JZ, Vittori MR, Prinsen MJ, Ninneman JJ, Manithody C, Henderson JP, Aleem AW, Ilagan MXG, McCoy WH. Cutibacterium adaptation to life on humans provides a novel biomarker of C. acnes infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613542. [PMID: 39345635 PMCID: PMC11429735 DOI: 10.1101/2024.09.18.613542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The domestication of cattle provided Propionibacteriaceae the opportunity to adapt to human skin. These bacteria constitute a distinct genus ( Cutibacterium ), and a single species within that genus ( C. acnes ) dominates 25% of human skin. C. acnes protects humans from pathogen colonization, but it can also infect indwelling medical devices inserted through human skin. Proteins that help Cutibacteria live on our skin may also act as virulence factors during an opportunistic infection, like a shoulder periprosthetic joint infection (PJI). To better understand the evolution of this commensal and opportunistic pathogen, we sought to extensively characterize one of these proteins, RoxP. This secreted protein is only found in the Cutibacterium genus, helps C. acnes grow in oxic environments, and is required for C. acnes to colonize human skin. Structure-based sequence analysis of twenty-one RoxP orthologs (71-100% identity to C. acnes strain KPA171202 RoxP_1) revealed a high-degree of molecular surface conservation and helped identify a potential heme-binding interface. Biophysical evaluation of a subset of seven RoxP orthologs (71-100% identity) demonstrated that heme-binding is conserved. Computational modeling of these orthologs suggests that RoxP heme-binding is mediated by an invariant molecular surface composed of a surface-exposed tryptophan (W66), adjacent cationic pocket, and nearby potential heme axial ligands. Further, these orthologs were found to undergo heme-dependent oligomerization. To further probe the role of this protein in C. acnes biology, we developed four monoclonal anti-RoxP antibodies, assessed the binding of those antibodies to a subset of ten RoxP orthologs (71-100% identity), developed an anti-RoxP sandwich ELISA (sELISA) with sub-nanogram sensitivity, and adapted that sELISA to quantitate RoxP in human biofluids that can be infected by C. acnes (serum, synovial fluid, cerebrospinal fluid). This study expands our understanding of how an environmental bacterium evolved to live on humans, and the assays developed in this work can now be used to identify this organism when it gains access to sterile sites to cause opportunistic infections. Author Summary The longer humans live, the more they require internal "replacement parts," like prosthetic joints. Increased placement of these and other medical devices has increased their complications, which frequently are infections caused by microbes that live on humans. One of these microbes is Cutibacterium acnes , which dominates 25% of human skin. It appears that when humans domesticated cattle, a C. acnes ancestor adapted from living in cows to living on people. One of these adaptations was RoxP, a protein only found in Cutibacterium and carried by all C. acnes . Here, we describe our extensive characterization of RoxP. We found that distantly related RoxP conserve high stability at the low pH found on human skin. They also conserve the ability to bind heme, a source of iron used by microbes when they infect humans. As a part of this work, we developed tests that measure RoxP to identify C. acnes growth. In a clinic or hospital, these tests could allow a doctor to rapidly identify C. acnes infections, which would improve patient outcomes and lower healthcare costs. This work has helped us better understand how C. acnes adapted to live on humans and to identify C. acnes infections of medical devices.
Collapse
|
27
|
Mano K, Noi K, Oe K, Mochizuki T, Morishima K, Inoue R, Sugiyama M, Noguchi K, Shinohara K, Yohda M, Yamada A. Molecular Characterization of the MoxR AAA+ ATPase of Synechococcus sp. Strain NKBG15041c. Int J Mol Sci 2024; 25:9955. [PMID: 39337443 PMCID: PMC11432383 DOI: 10.3390/ijms25189955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
We isolated a stress-tolerance-related gene from a genome library of Synechococcus sp. NKBG15041c. The expression of the gene in E. coli confers resistance against various stresses. The gene encodes a MoxR AAA+ ATPase, which was designated SyMRP since it belongs to the MRP subfamily. The recombinant SyMRP showed weak ATPase activity and protected citrate synthase from thermal aggregation. Interestingly, the chaperone activity of SyMRP is ATP-dependent. SyMRP exists as a stable hexamer, and ATP-dependent conformation changes were not detected via analytical ultracentrifugation (AUC) or small-angle X-ray scattering (SAXS). Although the hexameric structure predicted by AlphaFold 3 was the canonical flat-ring structure, the structures observed by atomic force microscopy (AFM) and transmission electron microscopy (TEM) were not the canonical ring structure. In addition, the experimental SAXS profiles did not show a peak that should exist in the symmetric-ring structure. Therefore, SyMRP seems to form a hexameric structure different from the canonical hexameric structure of AAA+ ATPase.
Collapse
Affiliation(s)
- Kota Mano
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan; (K.M.); (K.N.); (K.O.); (T.M.); (K.S.)
| | - Kentaro Noi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan; (K.M.); (K.N.); (K.O.); (T.M.); (K.S.)
| | - Kumiko Oe
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan; (K.M.); (K.N.); (K.O.); (T.M.); (K.S.)
| | - Takahiro Mochizuki
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan; (K.M.); (K.N.); (K.O.); (T.M.); (K.S.)
| | - Ken Morishima
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka 590-0494, Japan; (K.M.); (R.I.); (M.S.)
| | - Rintaro Inoue
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka 590-0494, Japan; (K.M.); (R.I.); (M.S.)
| | - Masaaki Sugiyama
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka 590-0494, Japan; (K.M.); (R.I.); (M.S.)
| | - Keiichi Noguchi
- Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan;
| | - Kyosuke Shinohara
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan; (K.M.); (K.N.); (K.O.); (T.M.); (K.S.)
| | - Masafumi Yohda
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan; (K.M.); (K.N.); (K.O.); (T.M.); (K.S.)
| | - Akiyo Yamada
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan; (K.M.); (K.N.); (K.O.); (T.M.); (K.S.)
| |
Collapse
|
28
|
Monsen RC, Sabo TM, Gray R, Hopkins JB, Chaires JB. Early Events in G-quadruplex Folding Captured by Time-Resolved Small-Angle X-Ray Scattering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611539. [PMID: 39282441 PMCID: PMC11398465 DOI: 10.1101/2024.09.05.611539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Time-resolved small-angle X-ray experiments (TR-SAXS) are reported here that capture and quantify a previously unknown rapid collapse of the unfolded oligonucleotide as an early step in G4 folding of hybrid 1 and hybrid 2 telomeric G-quadruplex structures. The rapid collapse, initiated by a pH jump, is characterized by an exponential decrease in the radius of gyration from 20.6 to 12.6 Å. The collapse is monophasic and is complete in less than 600 ms. Additional hand-mixing pH-jump kinetic studies show that slower kinetic steps follow the collapse. The folded and unfolded states at equilibrium were further characterized by SAXS studies and other biophysical tools, to show that G4 unfolding was complete at alkaline pH, but not in LiCl solution as is often claimed. The SAXS Ensemble Optimization Method (EOM) analysis reveals models of the unfolded state as a dynamic ensemble of flexible oligonucleotide chains with a variety of transient hairpin structures. These results suggest a G4 folding pathway in which a rapid collapse, analogous to molten globule formation seen in proteins, is followed by a confined conformational search within the collapsed particle to form the native contacts ultimately found in the stable folded form.
Collapse
Affiliation(s)
- Robert C Monsen
- Department of Medicine, UofL Health Brown Cancer Center, University of Louisville, Louisville KY, 505 S Hancock St, Louisville, KY 40202
| | - T Michael Sabo
- Department of Medicine, UofL Health Brown Cancer Center, University of Louisville, Louisville KY, 505 S Hancock St, Louisville, KY 40202
| | - Robert Gray
- Department of Medicine, UofL Health Brown Cancer Center, University of Louisville, Louisville KY, 505 S Hancock St, Louisville, KY 40202
| | - Jesse B Hopkins
- The Biophysics Collaborative Access Team (BioCAT) Department of Physics, Illinois Institute of Technology, Chicago, IL 60616
| | - Jonathan B Chaires
- Department of Medicine, UofL Health Brown Cancer Center, University of Louisville, Louisville KY, 505 S Hancock St, Louisville, KY 40202
| |
Collapse
|
29
|
Aniana A, Nashed NT, Ghirlando R, Drago VN, Kovalevsky A, Louis JM. Characterization of alternate encounter assemblies of SARS-CoV-2 main protease. J Biol Chem 2024; 300:107675. [PMID: 39128719 PMCID: PMC11416275 DOI: 10.1016/j.jbc.2024.107675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024] Open
Abstract
The assembly of two monomeric constructs spanning segments 1-199 (MPro1-199) and 10-306 (MPro10-306) of SARS-CoV-2 main protease (MPro) was examined to assess the existence of a transient heterodimer intermediate in the N-terminal autoprocessing pathway of MPro model precursor. Together, they form a heterodimer population accompanied by a 13-fold increase in catalytic activity. Addition of inhibitor GC373 to the proteins increases the activity further by ∼7-fold with a 1:1 complex and higher order assemblies approaching 1:2 and 2:2 molecules of MPro1-199 and MPro10-306 detectable by analytical ultracentrifugation and native mass estimation by light scattering. Assemblies larger than a heterodimer (1:1) are discussed in terms of alternate pathways of domain III association, either through switching the location of helix 201 to 214 onto a second helical domain of MPro10-306 and vice versa or direct interdomain III contacts like that of the native dimer, based on known structures and AlphaFold 3 prediction, respectively. At a constant concentration of MPro1-199 with molar excess of GC373, the rate of substrate hydrolysis displays first order dependency on the MPro10-306 concentration and vice versa. An equimolar composition of the two proteins with excess GC373 exhibits half-maximal activity at ∼6 μM MPro1-199. Catalytic activity arises primarily from MPro1-199 and is dependent on the interface interactions involving the N-finger residues 1 to 9 of MPro1-199 and E290 of MPro10-306. Importantly, our results confirm that a single N-finger region with its associated intersubunit contacts is sufficient to form a heterodimeric MPro intermediate with enhanced catalytic activity.
Collapse
Affiliation(s)
- Annie Aniana
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, Maryland, USA
| | - Nashaat T Nashed
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, Maryland, USA
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, Maryland, USA
| | - Victoria N Drago
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Andrey Kovalevsky
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - John M Louis
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, Maryland, USA.
| |
Collapse
|
30
|
Lee YJ, Jung YJ, Lim YB. Adaptable Self-Assembly of a PEG Dendrimer-Coiled Coil Conjugate. Chempluschem 2024; 89:e202400114. [PMID: 38797707 DOI: 10.1002/cplu.202400114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/21/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Self-assembly of designed molecules has enabled the construction of a variety of functional nanostructures. Specifically, adaptable self-assembly has demonstrated several advantageous features for smart materials. Here, we demonstrate that an α-helical coiled coil conjugated with a dendrimer can adapt to spatial restriction due to the strong steric repulsion between dendrimer chains. The adaptable transformation of a tetrameric coiled coil to a trimeric coiled coil can be confirmed using analytical ultracentrifugation upon conjugation of the dendrimer to the coiled coil-forming building block. Interestingly, circular dichroism spectroscopy analysis of the dendrimer conjugate revealed an unconventional trend: the multimerization of the coiled coil is inversely dependent on concentration. This result implies that the spatial crowding between the bulky dendritic chains is significantly stronger than that between linear chains, thereby affecting the overall assembly process. We further illustrated the application potential by decorating the surface of gold nanorods (AuNRs) with the adaptable coiled coil. The dendrimer-coiled coil peptide conjugate can be utilized to fabricate organic-inorganic nanohybrids with enhanced colloidal and thermal stabilities. This study demonstrates that the coiled coil can engage in the adaptable mode of self-assembly with the potential to form dynamic peptide-based materials.
Collapse
Affiliation(s)
- Young-Joo Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
| | - You-Jin Jung
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Yong-Beom Lim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
| |
Collapse
|
31
|
Gao X, Iqbal H, Yu DQ, Gor J, Coker AR, Perkins SJ. The SCR-17 and SCR-18 glycans in human complement factor H enhance its regulatory function. J Biol Chem 2024; 300:107624. [PMID: 39098532 PMCID: PMC11417181 DOI: 10.1016/j.jbc.2024.107624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/10/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024] Open
Abstract
Human complement factor H (CFH) plays a central role in regulating activated C3b to protect host cells. CFH contain 20 short complement regulator (SCR) domains and eight N-glycosylation sites. The N-terminal SCR domains mediate C3b degradation while the C-terminal CFH domains bind to host cell surfaces to protect these. Our earlier study of Pichia-generated CFH fragments indicated a self-association site at SCR-17/18 that comprises a dimerization site for human factor H. Two N-linked glycans are located on SCR-17 and SCR-18. Here, when we expressed SCR-17/18 without glycans in an Escherichia coli system, analytical ultracentrifugation showed that no dimers were now formed. To investigate this novel finding, full-length CFH and its C-terminal fragments were purified from human plasma and Pichia pastoris respectively, and their glycans were enzymatically removed using PNGase F. Using size-exclusion chromatography, mass spectrometry, and analytical ultracentrifugation, SCR-17/18 from Pichia showed notably less dimer formation without its glycans, confirming that the glycans are necessary for the formation of SCR-17/18 dimers. By surface plasmon resonance, affinity analyses interaction showed decreased binding of deglycosylated full-length CFH to immobilized C3b, showing that CFH glycosylation enhances the key CFH regulation of C3b. We conclude that our study revealed a significant new aspect of CFH regulation based on its glycosylation and its resulting dimerization.
Collapse
Affiliation(s)
- Xin Gao
- Division of Biosciences, Department of Structural and Molecular Biology, University College London, London, UK; Division of Medicine, University College London, London, UK
| | - Hina Iqbal
- Division of Biosciences, Department of Structural and Molecular Biology, University College London, London, UK
| | - Ding-Quan Yu
- Division of Biosciences, Department of Structural and Molecular Biology, University College London, London, UK
| | - Jayesh Gor
- Division of Biosciences, Department of Structural and Molecular Biology, University College London, London, UK
| | - Alun R Coker
- Division of Medicine, University College London, London, UK
| | - Stephen J Perkins
- Division of Biosciences, Department of Structural and Molecular Biology, University College London, London, UK.
| |
Collapse
|
32
|
Vogt A, Szurgot M, Gardner L, Schultz DC, Marmorstein R. HIRA complex deposition of histone H3.3 is driven by histone tetramerization and histone-DNA binding. J Biol Chem 2024; 300:107604. [PMID: 39059488 PMCID: PMC11388340 DOI: 10.1016/j.jbc.2024.107604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The HIRA histone chaperone complex is comprised of four protein subunits: HIRA, UBN1, CABIN1, and transiently associated ASF1a. All four subunits have been demonstrated to play a role in the deposition of the histone variant H3.3 onto areas of actively transcribed euchromatin in cells. The mechanism by which these subunits function together to drive histone deposition has remained poorly understood. Here we present biochemical and biophysical data supporting a model whereby ASF1a delivers histone H3.3/H4 dimers to the HIRA complex, H3.3/H4 tetramerization drives the association of two HIRA/UBN1 complexes, and the affinity of the histones for DNA drives release of ASF1a and subsequent histone deposition. These findings have implications for understanding how other histone chaperone complexes may mediate histone deposition.
Collapse
Affiliation(s)
- Austin Vogt
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA; Abramson Family Cancer Research Center, Perelman School of Medicine at the University of Pennsylvania, Pennsylvania, USA
| | - Mary Szurgot
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA; Abramson Family Cancer Research Center, Perelman School of Medicine at the University of Pennsylvania, Pennsylvania, USA; Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine at the University of Pennsylvania, Pennsylvania, USA
| | - Lauren Gardner
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA; Abramson Family Cancer Research Center, Perelman School of Medicine at the University of Pennsylvania, Pennsylvania, USA
| | - David C Schultz
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ronen Marmorstein
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA; Abramson Family Cancer Research Center, Perelman School of Medicine at the University of Pennsylvania, Pennsylvania, USA.
| |
Collapse
|
33
|
Kuan Y, Chu HF, Hsu PH, Hsu KC, Lin TH, Huang CH, Chen WY. Disulfiram inhibits coronaviral main protease by conjugating to its substrate entry site. Int J Biol Macromol 2024; 276:133955. [PMID: 39025177 DOI: 10.1016/j.ijbiomac.2024.133955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/20/2024]
Abstract
Coronaviruses (CoV) are highly pathogenic single-strand RNA viruses. CoV infections cause fatal respiratory symptoms and lung injuries in humans and significant economic losses in livestock. Since the SARS-2 outbreak in 2019, the highly conserved main protease (Mpro), also termed 3-chymotrypsin-like protease (3CLpro), has been considered an attractive drug target for treating CoV infections. Mpro mediates the proteolytic cleavage of eleven sites in viral polypeptides necessary for virus replication. Here, we report that disulfiram, an FDA-approved drug for alcoholic treatment, exhibits a broad-spectrum inhibitory effect on CoV Mpros. Analytical ultracentrifugation and circular dichroism analyses indicated that disulfiram treatment blocks the dimeric formation of SARS and PEDV Mpros and decreases the thermostability of SARS, SARS-2, and PEDV Mpros, whereas it facilitates the dimerization and stability of MERS Mpro. Furthermore, mass spectrometry and structural alignment revealed that disulfiram targets the Cys44 residue of Mpros, which is located at the substrate entrance and close to the catalytic His41. In addition, molecular docking analysis suggests that disulfiram conjugation interferes with substrate entry to the catalytic center. In agreement, mutation of Cys44 modulates the disulfiram sensitivity of CoV Mpros. Our study suggests a broad-spectrum inhibitory function of disulfiram against CoV Mpros.
Collapse
Affiliation(s)
- Ying Kuan
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Hsu-Feng Chu
- Biomedical Industry Ph.D. Program, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Pang-Hung Hsu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Kai-Cheng Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Ta-Hsien Lin
- Division of Basic Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan; Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chun-Hsiang Huang
- National Synchrotron Radiation Research Center, Hsinchu City 30076, Taiwan.
| | - Wei-Yi Chen
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan; Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
34
|
Vizjak P, Kamp D, Hepp N, Scacchetti A, Gonzalez Pisfil M, Bartho J, Halic M, Becker PB, Smolle M, Stigler J, Mueller-Planitz F. ISWI catalyzes nucleosome sliding in condensed nucleosome arrays. Nat Struct Mol Biol 2024; 31:1331-1340. [PMID: 38664566 DOI: 10.1038/s41594-024-01290-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/25/2024] [Indexed: 05/07/2024]
Abstract
How chromatin enzymes work in condensed chromatin and how they maintain diffusional mobility inside remains unexplored. Here we investigated these challenges using the Drosophila ISWI remodeling ATPase, which slides nucleosomes along DNA. Folding of chromatin fibers did not affect sliding in vitro. Catalytic rates were also comparable in- and outside of chromatin condensates. ISWI cross-links and thereby stiffens condensates, except when ATP hydrolysis is possible. Active hydrolysis is also required for ISWI's mobility in condensates. Energy from ATP hydrolysis therefore fuels ISWI's diffusion through chromatin and prevents ISWI from cross-linking chromatin. Molecular dynamics simulations of a 'monkey-bar' model in which ISWI grabs onto neighboring nucleosomes, then withdraws from one before rebinding another in an ATP hydrolysis-dependent manner, qualitatively agree with our data. We speculate that monkey-bar mechanisms could be shared with other chromatin factors and that changes in chromatin dynamics caused by mutations in remodelers could contribute to pathologies.
Collapse
Affiliation(s)
- Petra Vizjak
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Department of Molecular Biology, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Early Stage Bioprocess Development, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Dieter Kamp
- Gene Center, Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Nicola Hepp
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Department of Molecular Biology, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Alessandro Scacchetti
- Department of Molecular Biology, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Epigenetics Institute and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mariano Gonzalez Pisfil
- Core Facility Bioimaging and Walter-Brendel-Centre of Experimental Medicine, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Joseph Bartho
- Gene Center, Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Mario Halic
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Peter B Becker
- Department of Molecular Biology, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Michaela Smolle
- Department of Physiological Chemistry, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- BioPhysics Core Facility, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- ViraTherapeutics GmbH, Rum, Austria
| | - Johannes Stigler
- Gene Center, Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany.
| | - Felix Mueller-Planitz
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
35
|
Shapturenka P, Barnes BK, Mansfield E, Noor MM, Fagan JA. Universalized and robust length separation of carbon and boron nitride nanotubes with improved polymer depletion-based fractionation. RSC Adv 2024; 14:25490-25506. [PMID: 39206342 PMCID: PMC11353058 DOI: 10.1039/d4ra01883d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Partitioning nanoparticles by shape and dimension is paramount for advancing nanomaterial standardization, fundamental colloidal investigations, and technologies such as biosensing and digital electronics. Length-separation methods for single-walled carbon nanotubes (SWCNTs) have historically incurred trade-offs in precision and mass throughput, and boron nitride nanotubes (BNNTs) are a rapidly emerging material analogue. We extend and detail a polymer precipitation-based method to fractionate populations of either nanotube type at significant mass scale for four distinct nanotube sources of increasing average diameter (0.7 nm to >2 nm). Such separations result in a supernant phase containing shorter nanotubes and a pellet phase containing the longer nanotubes, with the threshold length for depletion decreasing with increasing polymer concentration. Cross-comparison through analytical ultracentrifugation, spectroscopy, and microscopy versus applied polymer concentration show tailorable and precise length fractionation for 100 nm through >1 μm rod lengths, with fractionation also designable to remove non-nanotube impurities. The threshold length of depletion is further found to increase for decreasing nanotube diameter at fixed polymer concentration, a finding consistent with scaling attributable to nanotube radial excluded volume. The capabilities demonstrated herein promise to significantly advance nanotube implementation within the scientific community.
Collapse
Affiliation(s)
- Pavel Shapturenka
- Materials Science and Engineering Division, National Institute of Standards and Technology Gaithersburg MD 20899 USA
| | - Benjamin K Barnes
- Materials Science and Engineering Division, National Institute of Standards and Technology Gaithersburg MD 20899 USA
| | - Elisabeth Mansfield
- Applied Chemicals and Materials Division, National Institute of Standards and Technology Boulder CO 80305 USA
| | - Matthew M Noor
- Materials Science and Engineering Division, National Institute of Standards and Technology Gaithersburg MD 20899 USA
- Department of Mechanical Engineering and Energy Processes, Southern Illinois University Carbondale IL 62901 USA
| | - Jeffrey A Fagan
- Materials Science and Engineering Division, National Institute of Standards and Technology Gaithersburg MD 20899 USA
| |
Collapse
|
36
|
Dick A, Mikirtumov V, Fuchs J, Krupp F, Olal D, Bendl E, Sprink T, Diebolder C, Kudryashev M, Kochs G, Roske Y, Daumke O. Structural characterization of Thogoto Virus nucleoprotein provides insights into viral RNA encapsidation and RNP assembly. Structure 2024; 32:1068-1078.e5. [PMID: 38749445 DOI: 10.1016/j.str.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/11/2024] [Accepted: 04/18/2024] [Indexed: 08/11/2024]
Abstract
Orthomyxoviruses, such as influenza and thogotoviruses, are important human and animal pathogens. Their segmented viral RNA genomes are wrapped by viral nucleoproteins (NPs) into helical ribonucleoprotein complexes (RNPs). NP structures of several influenza viruses have been reported. However, there are still contradictory models of how orthomyxovirus RNPs are assembled. Here, we characterize the crystal structure of Thogoto virus (THOV) NP and found striking similarities to structures of influenza viral NPs, including a two-lobed domain architecture, a positively charged RNA-binding cleft, and a tail loop important for trimerization and viral transcription. A low-resolution cryo-electron tomography reconstruction of THOV RNPs elucidates a left-handed double helical assembly. By providing a model for RNP assembly of THOV, our study suggests conserved NP assembly and RNA encapsidation modes for thogoto- and influenza viruses.
Collapse
Affiliation(s)
- Alexej Dick
- From Structural Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125 Berlin, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Vasilii Mikirtumov
- From Structural Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125 Berlin, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Jonas Fuchs
- Institute of Virology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hermann-Herder-Straße 11, 79104 Freiburg, Germany
| | - Ferdinand Krupp
- From Structural Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Daniel Olal
- From Structural Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Elias Bendl
- Institute of Virology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hermann-Herder-Straße 11, 79104 Freiburg, Germany
| | - Thiemo Sprink
- From Structural Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125 Berlin, Germany; Core facility for Cryo-Electron Microscopy, Charité, Berlin, Germany
| | | | - Mikhail Kudryashev
- From Structural Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125 Berlin, Germany; Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Georg Kochs
- Institute of Virology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hermann-Herder-Straße 11, 79104 Freiburg, Germany.
| | - Yvette Roske
- From Structural Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125 Berlin, Germany.
| | - Oliver Daumke
- From Structural Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125 Berlin, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany.
| |
Collapse
|
37
|
Sundaram R, Gandhi S, Jonak C, Vasudevan D. Characterization of the Arabidopsis thaliana chromatin remodeler DEK3 for its interaction with histones and DNA. Biochimie 2024:S0300-9084(24)00177-9. [PMID: 39097158 DOI: 10.1016/j.biochi.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/04/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Chromatin structure and dynamics regulate all DNA-templated processes, such as transcription, replication, and repair. Chromatin binding factors, chromatin architectural proteins, and nucleosome remodelers modulate chromatin structure and dynamics and, thereby, the various DNA-dependent processes. Arabidopsis thaliana DEK3, a member of the evolutionarily conserved DEK domain-containing chromatin architectural proteins, is an important factor for chromatin structure and function, involved in transcriptional programming to regulate flowering time and abiotic stress tolerance. AtDEK3 contains an uncharacterized N-terminal domain, a middle SAF domain (winged helix-like domain), and a C-terminal DEK domain, but their role in the interaction of AtDEK3 with histones and DNA remained poorly understood. Using biochemical and biophysical analyses, we provide a comprehensive in vitro characterization of the different AtDEK3 domains for their interaction with histone H3/H4 and DNA. AtDEK3 directly interacts with histone H3/H4 tetramers through its N-terminal domain and the C-terminal DEK domain in a 1:1 stoichiometry. Upon interaction with H3/H4, the unstructured N-terminal domain of AtDEK3 undergoes a conformational change and adopts an alpha-helical conformation. In addition, the in-solution envelope structures of the AtDEK3 domains and their complex with H3/H4 have been characterized. The SAF and DEK domains associate with double-stranded and four-way junction DNA. As DEK3 possesses a histone-interacting domain at the N- and the C-terminus and a DNA-binding domain in the middle and at the C-terminus, the protein might play a complex role as a chromatin remodeler.
Collapse
Affiliation(s)
- Rajivgandhi Sundaram
- Institute of Life Sciences, Bhubaneswar, 751023, India; Manipal Academy of Higher Education, Manipal, 576104, India
| | - Surajit Gandhi
- Institute of Life Sciences, Bhubaneswar, 751023, India; Regional Centre for Biotechnology, Faridabad, 121001, India
| | - Claudia Jonak
- AIT Austrian Institute of Technology, Center for Health and Bioresources, Bioresources Unit, Konrad-Lorenz-Strasse 24, 3430 Tulln, Austria
| | - Dileep Vasudevan
- Institute of Life Sciences, Bhubaneswar, 751023, India; Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, 695014, India.
| |
Collapse
|
38
|
Albanese KI, Petrenas R, Pirro F, Naudin EA, Borucu U, Dawson WM, Scott DA, Leggett GJ, Weiner OD, Oliver TAA, Woolfson DN. Rationally seeded computational protein design of ɑ-helical barrels. Nat Chem Biol 2024; 20:991-999. [PMID: 38902458 PMCID: PMC11288890 DOI: 10.1038/s41589-024-01642-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 05/09/2024] [Indexed: 06/22/2024]
Abstract
Computational protein design is advancing rapidly. Here we describe efficient routes starting from validated parallel and antiparallel peptide assemblies to design two families of α-helical barrel proteins with central channels that bind small molecules. Computational designs are seeded by the sequences and structures of defined de novo oligomeric barrel-forming peptides, and adjacent helices are connected by loop building. For targets with antiparallel helices, short loops are sufficient. However, targets with parallel helices require longer connectors; namely, an outer layer of helix-turn-helix-turn-helix motifs that are packed onto the barrels. Throughout these computational pipelines, residues that define open states of the barrels are maintained. This minimizes sequence sampling, accelerating the design process. For each of six targets, just two to six synthetic genes are made for expression in Escherichia coli. On average, 70% of these genes express to give soluble monomeric proteins that are fully characterized, including high-resolution structures for most targets that match the design models with high accuracy.
Collapse
Affiliation(s)
- Katherine I Albanese
- School of Chemistry, University of Bristol, Bristol, UK
- Max Planck-Bristol Centre for Minimal Biology, University of Bristol, Bristol, UK
| | | | - Fabio Pirro
- School of Chemistry, University of Bristol, Bristol, UK
| | | | - Ufuk Borucu
- School of Biochemistry, University of Bristol, Medical Sciences Building, Bristol, UK
| | | | - D Arne Scott
- Rosa Biotech, Science Creates St Philips, Bristol, UK
| | | | - Orion D Weiner
- Cardiovascular Research Institute, Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | | | - Derek N Woolfson
- School of Chemistry, University of Bristol, Bristol, UK.
- Max Planck-Bristol Centre for Minimal Biology, University of Bristol, Bristol, UK.
- School of Biochemistry, University of Bristol, Medical Sciences Building, Bristol, UK.
- Bristol BioDesign Institute, University of Bristol, Bristol, UK.
| |
Collapse
|
39
|
Stackhouse CI, Pierson KN, Labrecque CL, Mawson C, Berg J, Fuglestad B, Nucci NV. Characterization of 10MAG/LDAO reverse micelles: Understanding versatility for protein encapsulation. Biophys Chem 2024; 311:107269. [PMID: 38815545 PMCID: PMC11225088 DOI: 10.1016/j.bpc.2024.107269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024]
Abstract
Reverse micelles (RMs) are spontaneously organizing nanobubbles composed of an organic solvent, surfactants, and an aqueous phase that can encapsulate biological macromolecules for various biophysical studies. Unlike other RM systems, the 1-decanoyl-rac-glycerol (10MAG) and lauryldimethylamine-N-oxide (LDAO) surfactant system has proven to house proteins with higher stability than other RM mixtures with little sensitivity to the water loading (W0, defined by the ratio of water to surfactant). We investigated this unique property by encapsulating three model proteins - cytochrome c, myoglobin, and flavodoxin - in 10MAG/LDAO RMs and applying a variety of experimental methods to characterize this system's behavior. We found that this surfactant system differs greatly from the traditional, spherical, monodisperse RM population model. 10MAG/LDAO RMs were discovered to be oblate ellipsoids at all conditions, and as W0 was increased, surfactants redistributed to form a greater number of increasingly spherical ellipsoidal particles with pools of more bulk-like water. Proteins distinctively influence the thermodynamics of the mixture, encapsulating at their optimal RM size and driving protein-free RM sizes to scale accordingly. These findings inform the future development of similarly malleable encapsulation systems and build a foundation for application of 10MAG/LDAO RMs to analyze biological and chemical processes under nanoscale confinement.
Collapse
Affiliation(s)
- Crystal I Stackhouse
- Department of Physics and Astronomy, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, United States; Department of Biomedical and Biological Sciences, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, United States.
| | - Kali N Pierson
- Department of Physics and Astronomy, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, United States; Department of Biomedical and Biological Sciences, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, United States.
| | - Courtney L Labrecque
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States.
| | - Cara Mawson
- Department of Physics and Astronomy, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, United States; Department of Biomedical and Biological Sciences, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, United States.
| | - Joshua Berg
- Department of Physics and Astronomy, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, United States; Department of Biomedical and Biological Sciences, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, United States
| | - Brian Fuglestad
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States; Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States.
| | - Nathaniel V Nucci
- Department of Physics and Astronomy, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, United States; Department of Biomedical and Biological Sciences, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, United States.
| |
Collapse
|
40
|
Prabaharan C, Figiel M, Szczepanowski RH, Skowronek K, Zajko W, Thangaraj V, Chamera S, Nowak E, Nowotny M. Structural and biochemical characterization of cauliflower mosaic virus reverse transcriptase. J Biol Chem 2024; 300:107555. [PMID: 39002684 PMCID: PMC11363490 DOI: 10.1016/j.jbc.2024.107555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 06/19/2024] [Accepted: 06/30/2024] [Indexed: 07/15/2024] Open
Abstract
Reverse transcriptases (RTs) are enzymes with DNA polymerase and RNase H activities. They convert ssRNA into dsDNA and are key enzymes for the replication of retroviruses and retroelements. Caulimoviridae is a major family of plant-infecting viruses. Caulimoviruses have a circular dsDNA genome that is replicated by reverse transcription, but in contrast to retroviruses, they lack integrase. Caulimoviruses are related to Ty3 retroelements. Ty3 RT has been extensively studied structurally and biochemically, but corresponding information for caulimoviral RTs is unavailable. In the present study, we report the first crystal structure of cauliflower mosaic virus (CaMV) RT in complex with a duplex made of RNA and DNA strands (RNA/DNA hybrid). CaMV RT forms a monomeric complex with the hybrid, unlike Ty3 RT, which does so as a dimer. Results of the RNA-dependent DNA polymerase and DNA-dependent DNA polymerase activity assays showed that individual CaMV RT molecules are able to perform full polymerase functions. However, our analyses showed that an additional CaMV RT molecule needs to transiently associate with a polymerase-competent RT molecule to execute RNase H cuts of the RNA strand. Collectively, our results provide details into the structure and function of CaMV RT and describe how the enzyme compares to other related RTs.
Collapse
Affiliation(s)
- Chandrasekaran Prabaharan
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Małgorzata Figiel
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Roman H Szczepanowski
- Biophysics and Bioanalytics Facility, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Krzysztof Skowronek
- Biophysics and Bioanalytics Facility, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Weronika Zajko
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Vinuchakkaravarthy Thangaraj
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Sebastian Chamera
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Elżbieta Nowak
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.
| | - Marcin Nowotny
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.
| |
Collapse
|
41
|
Rossi V, Nielson SE, Ortolano A, Lonardo I, Haroldsen E, Comer D, Price OM, Wallace N, Hevel JM. Oligomerization of protein arginine methyltransferase 1 and its effect on methyltransferase activity and substrate specificity. Protein Sci 2024; 33:e5118. [PMID: 39022984 PMCID: PMC11255602 DOI: 10.1002/pro.5118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024]
Abstract
Proper protein arginine methylation by protein arginine methyltransferase 1 (PRMT1) is critical for maintaining cellular health, while dysregulation is often associated with disease. How the activity of PRMT1 is regulated is therefore paramount, but is not clearly understood. Several studies have observed higher order oligomeric species of PRMT1, but it is unclear if these exist at physiological concentrations and there is confusion in the literature about how oligomerization affects activity. We therefore sought to determine which oligomeric species of PRMT1 are physiologically relevant, and quantitatively correlate activity with specific oligomer forms. Through quantitative western blotting, we determined that concentrations of PRMT1 available in a variety of human cell lines are in the sub-micromolar to low micromolar range. Isothermal spectral shift binding data were modeled to a monomer/dimer/tetramer equilibrium with an EC50 for tetramer dissociation of ~20 nM. A combination of sedimentation velocity and Native polyacrylamide gel electrophoresis experiments directly confirmed that the major oligomeric species of PRMT1 at physiological concentrations would be dimers and tetramers. Surprisingly, the methyltransferase activity of a dimeric PRMT1 variant is similar to wild type, tetrameric PRMT1 with some purified substrates, but dimer and tetramer forms of PRMT1 show differences in catalytic efficiencies and substrate specificity for other substrates. Our results define an oligomerization paradigm for PRMT1, show that the biophysical characteristics of PRMT1 are poised to support a monomer/dimer/tetramer equilibrium in vivo, and suggest that the oligomeric state of PRMT1 could be used to regulate substrate specificity.
Collapse
Affiliation(s)
- Vincent Rossi
- Department of Chemistry and BiochemistryUtah State UniversityLoganUtahUSA
| | - Sarah E. Nielson
- Department of Chemistry and BiochemistryUtah State UniversityLoganUtahUSA
| | - Ariana Ortolano
- Department of Chemistry and BiochemistryUtah State UniversityLoganUtahUSA
| | - Isabella Lonardo
- Department of Chemistry and BiochemistryUtah State UniversityLoganUtahUSA
| | - Emeline Haroldsen
- Department of Chemistry and BiochemistryUtah State UniversityLoganUtahUSA
| | - Drake Comer
- Department of Chemistry and BiochemistryUtah State UniversityLoganUtahUSA
| | - Owen M Price
- Department of Chemistry and BiochemistryUtah State UniversityLoganUtahUSA
| | | | - Joan M. Hevel
- Department of Chemistry and BiochemistryUtah State UniversityLoganUtahUSA
| |
Collapse
|
42
|
Janc M, Zevnik K, Dolinar A, Jakomin T, Štalekar M, Bačnik K, Kutnjak D, Žnidarič MT, Zentilin L, Fedorov D, Dobnik D. In-Depth Comparison of Adeno-Associated Virus Containing Fractions after CsCl Ultracentrifugation Gradient Separation. Viruses 2024; 16:1235. [PMID: 39205208 PMCID: PMC11360810 DOI: 10.3390/v16081235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
Recombinant adeno-associated viruses (rAAVs) play a pivotal role in the treatment of genetic diseases. However, current production and purification processes yield AAV-based preparations that often contain unwanted empty, partially filled or damaged viral particles and impurities, including residual host cell DNA and proteins, plasmid DNA, and viral aggregates. To precisely understand the composition of AAV preparations, we systematically compared four different single-stranded AAV (ssAAV) and self-complementary (scAAV) fractions extracted from the CsCl ultracentrifugation gradient using established methods (transduction efficiency, analytical ultracentrifugation (AUC), quantitative and digital droplet PCR (qPCR and ddPCR), transmission electron microscopy (TEM) and enzyme-linked immunosorbent assay (ELISA)) alongside newer techniques (multiplex ddPCR, multi-angle light-scattering coupled to size-exclusion chromatography (SEC-MALS), multi-angle dynamic light scattering (MADLS), and high-throughput sequencing (HTS)). Suboptimal particle separation within the fractions resulted in unexpectedly similar infectivity levels. No single technique could simultaneously provide comprehensive insights in the presence of both bioactive particles and contaminants. Notably, multiplex ddPCR revealed distinct vector genome fragmentation patterns, differing between ssAAV and scAAV. This highlights the urgent need for innovative analytical and production approaches to optimize AAV vector production and enhance therapeutic outcomes.
Collapse
Affiliation(s)
- Mojca Janc
- National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia (D.D.)
- Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Kaja Zevnik
- National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia (D.D.)
| | - Ana Dolinar
- National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia (D.D.)
| | - Tjaša Jakomin
- National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia (D.D.)
| | - Maja Štalekar
- National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia (D.D.)
| | - Katarina Bačnik
- National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia (D.D.)
| | - Denis Kutnjak
- National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia (D.D.)
| | | | - Lorena Zentilin
- International Center for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, 34149 Trieste, Italy
| | - Dmitrii Fedorov
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
- Center of Excellence in Life-Inspired Hybrid Materials (LIBER) Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| | - David Dobnik
- National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia (D.D.)
- Niba Labs d.o.o., Litostrojska cesta 52, 1000 Ljubljana, Slovenia
| |
Collapse
|
43
|
Umuhire Juru A, Ghirlando R, Zhang J. Structural basis of tRNA recognition by the widespread OB fold. Nat Commun 2024; 15:6385. [PMID: 39075051 PMCID: PMC11286949 DOI: 10.1038/s41467-024-50730-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/18/2024] [Indexed: 07/31/2024] Open
Abstract
The widespread oligonucleotide/oligosaccharide-binding (OB)-fold recognizes diverse substrates from sugars to nucleic acids and proteins, and plays key roles in genome maintenance, transcription, translation, and tRNA metabolism. OB-containing bacterial Trbp and yeast Arc1p proteins are thought to recognize the tRNA elbow or anticodon regions. Here we report a 2.6 Å co-crystal structure of Aquifex aeolicus Trbp111 bound to tRNAIle, which reveals that Trbp recognizes tRNAs solely by capturing their 3' ends. Structural, mutational, and biophysical analyses show that the Trbp/EMAPII-like OB fold precisely recognizes the single-stranded structure, 3' terminal location, and specific sequence of the 3' CA dinucleotide - a universal feature of mature tRNAs. Arc1p supplements its OB - tRNA 3' end interaction with additional contacts that involve an adjacent basic region and the tRNA body. This study uncovers a previously unrecognized mode of tRNA recognition by an ancient protein fold, and provides insights into protein-mediated tRNA aminoacylation, folding, localization, trafficking, and piracy.
Collapse
Affiliation(s)
- Aline Umuhire Juru
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA.
| |
Collapse
|
44
|
Wang R, Xu Q, Wu Z, Li J, Guo H, Liao T, Shi Y, Yuan L, Gao H, Yang R, Shi Z, Li F. The structural basis of the activation and inhibition of DSR2 NADase by phage proteins. Nat Commun 2024; 15:6185. [PMID: 39039073 PMCID: PMC11263360 DOI: 10.1038/s41467-024-50410-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024] Open
Abstract
DSR2, a Sir2 domain-containing protein, protects bacteria from phage infection by hydrolyzing NAD+. The enzymatic activity of DSR2 is triggered by the SPR phage tail tube protein (TTP), while suppressed by the SPbeta phage-encoded DSAD1 protein, enabling phages to evade the host defense. However, the molecular mechanisms of activation and inhibition of DSR2 remain elusive. Here, we report the cryo-EM structures of apo DSR2, DSR2-TTP-NAD+ and DSR2-DSAD1 complexes. DSR2 assembles into a head-to-head tetramer mediated by its Sir2 domain. The C-terminal helical regions of DSR2 constitute four partner-binding cavities with opened and closed conformation. Two TTP molecules bind to two of the four C-terminal cavities, inducing conformational change of Sir2 domain to activate DSR2. Furthermore, DSAD1 competes with the activator for binding to the C-terminal cavity of DSR2, effectively suppressing its enzymatic activity. Our results provide the mechanistic insights into the DSR2-mediated anti-phage defense system and DSAD1-dependent phage immune evasion.
Collapse
Affiliation(s)
- Ruiwen Wang
- MOE Key Laboratory of Rare Pediatric Diseases, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Qi Xu
- Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Zhuoxi Wu
- MOE Key Laboratory of Rare Pediatric Diseases, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Jialu Li
- Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Hao Guo
- MOE Key Laboratory of Rare Pediatric Diseases, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Tianzhui Liao
- MOE Key Laboratory of Rare Pediatric Diseases, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yuan Shi
- Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Ling Yuan
- MOE Key Laboratory of Rare Pediatric Diseases, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Haishan Gao
- Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Rong Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China.
| | - Zhubing Shi
- Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
| | - Faxiang Li
- MOE Key Laboratory of Rare Pediatric Diseases, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.
| |
Collapse
|
45
|
Webb JA, Farrow E, Cain B, Yuan Z, Yarawsky A, Schoch E, Gagliani E, Herr A, Gebelein B, Kovall R. Cooperative Gsx2-DNA binding requires DNA bending and a novel Gsx2 homeodomain interface. Nucleic Acids Res 2024; 52:7987-8002. [PMID: 38874471 PMCID: PMC11260452 DOI: 10.1093/nar/gkae522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024] Open
Abstract
The conserved Gsx homeodomain (HD) transcription factors specify neural cell fates in animals from flies to mammals. Like many HD proteins, Gsx factors bind A/T-rich DNA sequences prompting the following question: How do HD factors that bind similar DNA sequences in vitro regulate specific target genes in vivo? Prior studies revealed that Gsx factors bind DNA both as a monomer on individual A/T-rich sites and as a cooperative homodimer to two sites spaced precisely 7 bp apart. However, the mechanistic basis for Gsx-DNA binding and cooperativity is poorly understood. Here, we used biochemical, biophysical, structural and modeling approaches to (i) show that Gsx factors are monomers in solution and require DNA for cooperative complex formation, (ii) define the affinity and thermodynamic binding parameters of Gsx2/DNA interactions, (iii) solve a high-resolution monomer/DNA structure that reveals that Gsx2 induces a 20° bend in DNA, (iv) identify a Gsx2 protein-protein interface required for cooperative DNA binding and (v) determine that flexible spacer DNA sequences enhance Gsx2 cooperativity on dimer sites. Altogether, our results provide a mechanistic basis for understanding the protein and DNA structural determinants that underlie cooperative DNA binding by Gsx factors.
Collapse
Affiliation(s)
- Jordan A Webb
- Department of Molecular and Cellular Biosciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Edward Farrow
- Graduate Program in Molecular and Developmental Biology, Cincinnati Children’s Hospital Research Foundation, Cincinnati, OH 45229, USA
- Medical-Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Brittany Cain
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, MLC 7007, Cincinnati, OH 45229, USA
| | - Zhenyu Yuan
- Department of Molecular and Cellular Biosciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Alexander E Yarawsky
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Emma Schoch
- Department of Medical Education, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Ellen K Gagliani
- Department of Chemistry, Xavier University, Cincinnati, OH 45207, USA
| | - Andrew B Herr
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Brian Gebelein
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, MLC 7007, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Rhett A Kovall
- Department of Molecular and Cellular Biosciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
46
|
Zdanowicz R, Afanasyev P, Pruška A, Harrison JA, Giese C, Boehringer D, Leitner A, Zenobi R, Glockshuber R. Stoichiometry and architecture of the human pyruvate dehydrogenase complex. SCIENCE ADVANCES 2024; 10:eadn4582. [PMID: 39018392 PMCID: PMC466950 DOI: 10.1126/sciadv.adn4582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/05/2024] [Indexed: 07/19/2024]
Abstract
The pyruvate dehydrogenase complex (PDHc) is a key megaenzyme linking glycolysis with the citric acid cycle. In mammalian PDHc, dihydrolipoamide acetyltransferase (E2) and the dihydrolipoamide dehydrogenase-binding protein (E3BP) form a 60-subunit core that associates with the peripheral subunits pyruvate dehydrogenase (E1) and dihydrolipoamide dehydrogenase (E3). The structure and stoichiometry of the fully assembled, mammalian PDHc or its core remained elusive. Here, we demonstrate that the human PDHc core is formed by 48 E2 copies that bind 48 E1 heterotetramers and 12 E3BP copies that bind 12 E3 homodimers. Cryo-electron microscopy, together with native and cross-linking mass spectrometry, confirmed a core model in which 8 E2 homotrimers and 12 E2-E2-E3BP heterotrimers assemble into a pseudoicosahedral particle such that the 12 E3BP molecules form six E3BP-E3BP intertrimer interfaces distributed tetrahedrally within the 60-subunit core. The even distribution of E3 subunits in the peripheral shell of PDHc guarantees maximum enzymatic activity of the megaenzyme.
Collapse
Affiliation(s)
- Rafal Zdanowicz
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| | - Pavel Afanasyev
- Cryo-EM Knowledge Hub, ETH Zurich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Adam Pruška
- Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Julian A. Harrison
- Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Christoph Giese
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| | - Daniel Boehringer
- Cryo-EM Knowledge Hub, ETH Zurich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Rudi Glockshuber
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| |
Collapse
|
47
|
Shweta H, Gupta K, Zhou Y, Cui X, Li S, Lu Z, Goldman YE, Dantzig JA. Characterization and structural basis for the brightness of mCLIFY: a novel monomeric and circularly permuted bright yellow fluorescent protein. RESEARCH SQUARE 2024:rs.3.rs-4638282. [PMID: 39070629 PMCID: PMC11276004 DOI: 10.21203/rs.3.rs-4638282/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
We present mCLIFY: a monomeric, bright, yellow, and long-lived fluorescent protein (FP) created by circular permutation of YPet, the brightest yellow FP from Aequorea Victoria for use in cellular and in vitro single molecule studies. mCLIFY retains the enhanced photophysical properties of YPET as a monomer at concentrations ≤ 40 μM. In contrast, we determined that YPet has a dimerization dissociation constant (K D 1-2) of 3.4 μM. Dimerization of YPet can cause homo-FRET, which underlies quantitative errors due to dimerization and homo-FRET. We determined the atomic structure of mCLIFY at 1.57 Å resolution and used its similarity with Venus for guided chromophore-targeted substitution studies to provide insights into its enhanced photophysical properties. The mutation V58L within the chromophore pocket improved quantum yield and extinction coefficient, making mCLIFY ~30% brighter than Venus. The extensive characterization of the photophysical and structural properties of YPet and mCLIFY presented here allowed us to reveal the basis of their long lifetimes and enhanced brightness and the basis of YPet's dimerization.
Collapse
Affiliation(s)
- Him Shweta
- Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, PA-19104, United States of America
- Center for Engineering Mechanobiology (CEMB), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA-19104, United States of America
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA-19104, United States of America
- Present address: Departments of Pharmacology and Cellular and Molecular Biology, University of California, Davis, CA-95616
| | - Kushol Gupta
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA-19104, United States of America
| | - Yufeng Zhou
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA-19104, United States of America
| | - Xiaonan Cui
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA-19104, United States of America
| | - Selene Li
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA-19104, United States of America
| | - Zhe Lu
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA-19104, United States of America
| | - Yale E. Goldman
- Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, PA-19104, United States of America
- Center for Engineering Mechanobiology (CEMB), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA-19104, United States of America
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA-19104, United States of America
- Present address: Departments of Pharmacology and Cellular and Molecular Biology, University of California, Davis, CA-95616
| | - Jody A. Dantzig
- Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, PA-19104, United States of America
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA-19104, United States of America
| |
Collapse
|
48
|
Zhao H, Sousa AA, Schuck P. Flotation Coefficient Distributions of Lipid Nanoparticles by Sedimentation Velocity Analytical Ultracentrifugation. ACS NANO 2024; 18:18663-18672. [PMID: 38967176 PMCID: PMC11256894 DOI: 10.1021/acsnano.4c05322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024]
Abstract
The robust characterization of lipid nanoparticles (LNPs) encapsulating therapeutics or vaccines is an important and multifaceted translational problem. Sedimentation velocity analytical ultracentrifugation (SV-AUC) has proven to be a powerful approach in the characterization of size-distribution, interactions, and composition of various types of nanoparticles across a large size range, including metal nanoparticles (NPs), polymeric NPs, and also nucleic acid loaded viral capsids. Similar potential of SV-AUC can be expected for the characterization of LNPs, but is hindered by the flotation of LNPs being incompatible with common sedimentation analysis models. To address this gap, we developed a high-resolution, diffusion-deconvoluted sedimentation/flotation distribution analysis approach analogous to the most widely used sedimentation analysis model c(s). The approach takes advantage of independent measurements of the average particle size or diffusion coefficient, which can be conveniently determined, for example, by dynamic light scattering (DLS). We demonstrate the application to an experimental model of extruded liposomes as well as a commercial LNP product and discuss experimental potential and limitations of SV-AUC. The method is implemented analogously to the sedimentation models in the free, widely used SEDFIT software.
Collapse
Affiliation(s)
- Huaying Zhao
- Laboratory
of Dynamics of Macromolecular Assembly, National Institute of Biomedical
Imaging and Bioengineering, National Institutes
of Health, Bethesda, Maryland 20892, United States
| | - Alioscka A. Sousa
- Department
of Biochemistry, Federal University of São
Paulo, São Paulo, SP 04044, Brazil
| | - Peter Schuck
- Laboratory
of Dynamics of Macromolecular Assembly, National Institute of Biomedical
Imaging and Bioengineering, National Institutes
of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
49
|
Beaufort N, Ingendahl L, Merdanovic M, Schmidt A, Podlesainski D, Richter T, Neumann T, Kuszner M, Vetter IR, Stege P, Burston SG, Filipovic A, Ruiz-Blanco YB, Bravo-Rodriguez K, Mieres-Perez J, Beuck C, Uebel S, Zobawa M, Schillinger J, Malik R, Todorov-Völgyi K, Rey J, Roberti A, Hagemeier B, Wefers B, Müller SA, Wurst W, Sanchez-Garcia E, Zimmermann A, Hu XY, Clausen T, Huber R, Lichtenthaler SF, Schmuck C, Giese M, Kaiser M, Ehrmann M, Dichgans M. Rational correction of pathogenic conformational defects in HTRA1. Nat Commun 2024; 15:5944. [PMID: 39013852 PMCID: PMC11252331 DOI: 10.1038/s41467-024-49982-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/24/2024] [Indexed: 07/18/2024] Open
Abstract
Loss-of-function mutations in the homotrimeric serine protease HTRA1 cause cerebral vasculopathy. Here, we establish independent approaches to achieve the functional correction of trimer assembly defects. Focusing on the prototypical R274Q mutation, we identify an HTRA1 variant that promotes trimer formation thus restoring enzymatic activity in vitro. Genetic experiments in Htra1R274Q mice further demonstrate that expression of this protein-based corrector in trans is sufficient to stabilize HtrA1-R274Q and restore the proteomic signature of the brain vasculature. An alternative approach employs supramolecular chemical ligands that shift the monomer-trimer equilibrium towards proteolytically active trimers. Moreover, we identify a peptidic ligand that activates HTRA1 monomers. Our findings open perspectives for tailored protein repair strategies.
Collapse
Affiliation(s)
- Nathalie Beaufort
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Linda Ingendahl
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Melisa Merdanovic
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Andree Schmidt
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Graduate School of Systemic Neurosciences (GSN), LMU Munich, Munich, Germany
| | - David Podlesainski
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Tim Richter
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Thorben Neumann
- Organic Chemistry, Faculty of Chemistry, University Duisburg-Essen, Essen, Germany
| | - Michael Kuszner
- Center of Medical Biotechnology, Faculty of Chemistry, University Duisburg-Essen, Essen, Germany
| | - Ingrid R Vetter
- Max-Planck-Institute of Molecular Physiology, Dortmund, Germany
| | - Patricia Stege
- Max-Planck-Institute of Molecular Physiology, Dortmund, Germany
| | - Steven G Burston
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, Bristol, UK
| | - Anto Filipovic
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Yasser B Ruiz-Blanco
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Kenny Bravo-Rodriguez
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
- Max-Planck-Institute of Molecular Physiology, Dortmund, Germany
| | - Joel Mieres-Perez
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
- Department of Biochemical and Chemical Engineering, Technical University Dortmund, Dortmund, Germany
| | - Christine Beuck
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Stephan Uebel
- Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Monika Zobawa
- Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Jasmin Schillinger
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Rainer Malik
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Katalin Todorov-Völgyi
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Juliana Rey
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Annabell Roberti
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Birte Hagemeier
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Benedikt Wefers
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Institute of Developmental Genetics (IDG), Helmholtz Zentrum München, Neuherberg, Germany
| | - Stephan A Müller
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Wolfgang Wurst
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Institute of Developmental Genetics (IDG), Helmholtz Zentrum München, Neuherberg, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Technische Universität München-Weihenstephan, Freising, Germany
| | - Elsa Sanchez-Garcia
- Department of Biochemical and Chemical Engineering, Technical University Dortmund, Dortmund, Germany
| | - Alexander Zimmermann
- Center of Medical Biotechnology, Faculty of Chemistry, University Duisburg-Essen, Essen, Germany
| | - Xiao-Yu Hu
- College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Tim Clausen
- Research Institute of Molecular Pathology (IMP), Vienna, Austria
| | - Robert Huber
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
- Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Carsten Schmuck
- Center of Medical Biotechnology, Faculty of Chemistry, University Duisburg-Essen, Essen, Germany
| | - Michael Giese
- Organic Chemistry, Faculty of Chemistry, University Duisburg-Essen, Essen, Germany
| | - Markus Kaiser
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Michael Ehrmann
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany.
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig Maximilian University of Munich, Munich, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
50
|
Fu J, Li S, Guan H, Li C, Zhao YB, Chen TT, Xian W, Zhang Z, Liu Y, Guan Q, Wang J, Lu Q, Kang L, Zheng SR, Li J, Cao S, Das C, Liu X, Song L, Ouyang S, Luo ZQ. Legionella maintains host cell ubiquitin homeostasis by effectors with unique catalytic mechanisms. Nat Commun 2024; 15:5953. [PMID: 39009586 PMCID: PMC11251166 DOI: 10.1038/s41467-024-50311-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/05/2024] [Indexed: 07/17/2024] Open
Abstract
The intracellular bacterial pathogen Legionella pneumophila modulates host cell functions by secreting multiple effectors with diverse biochemical activities. In particular, effectors of the SidE family interfere with host protein ubiquitination in a process that involves production of phosphoribosyl ubiquitin (PR-Ub). Here, we show that effector LnaB converts PR-Ub into ADP-ribosylated ubiquitin, which is further processed to ADP-ribose and functional ubiquitin by the (ADP-ribosyl)hydrolase MavL, thus maintaining ubiquitin homeostasis in infected cells. Upon being activated by actin, LnaB also undergoes self-AMPylation on tyrosine residues. The activity of LnaB requires a motif consisting of Ser, His and Glu (SHxxxE) present in a large family of toxins from diverse bacterial pathogens. Thus, our study sheds light on the mechanisms by which a pathogen maintains ubiquitin homeostasis and identifies a family of enzymes capable of protein AMPylation.
Collapse
Affiliation(s)
- Jiaqi Fu
- Department of Respiratory Medicine, Center for Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Siying Li
- Department of Respiratory Medicine, Center for Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Hongxin Guan
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Chuang Li
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Yan-Bo Zhao
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Tao-Tao Chen
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Wei Xian
- Department of Microbiology, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Zhengrui Zhang
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Yao Liu
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Qingtian Guan
- Department of Respiratory Medicine, Center for Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Jingting Wang
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Qiuhua Lu
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Lina Kang
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Si-Ru Zheng
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Jinyu Li
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, China
| | - Shoujing Cao
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, China
| | - Chittaranjan Das
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Xiaoyun Liu
- Department of Microbiology, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.
| | - Lei Song
- Department of Respiratory Medicine, Center for Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, The First Hospital of Jilin University, Changchun, China.
| | - Songying Ouyang
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China.
| | - Zhao-Qing Luo
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|