1
|
Fernandes E, Lopes CM, Lúcio M. Lipid Biomimetic Models as Simple Yet Complex Tools to Predict Skin Permeation and Drug-Membrane Biophysical Interactions. Pharmaceutics 2024; 16:807. [PMID: 38931927 PMCID: PMC11207520 DOI: 10.3390/pharmaceutics16060807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
The barrier function of the skin is primarily determined by its outermost layer, the Stratum Corneum (SC). The SC consists of corneocytes embedded in a lipid matrix composed mainly of ceramides, cholesterol, and free fatty acids in equimolar proportions and is organised in a complex lamellar structure with different periodicities and lateral packings. This matrix provides a diffusion pathway across the SC for bioactive compounds that are administered to the skin. In this regard, and as the skin administration route has grown in popularity, there has been an increase in the use of lipid mixtures that closely resemble the SC lipid matrix, either for a deeper biophysical understanding or for pharmaceutical and cosmetic purposes. This review focuses on a systematic analysis of the main outcomes of using lipid mixtures as SC lipid matrix models for pharmaceutical and cosmetic purposes. Thus, a methodical evaluation of the main outcomes based on the SC structure is performed, as well as the main recent developments in finding suitable new in vitro tools for permeation testing based on lipid models.
Collapse
Affiliation(s)
- Eduarda Fernandes
- CF-UM-UP—Centro de Física das Universidades do Minho e Porto, Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal
| | - Carla M. Lopes
- FFP-I3ID—Instituto de Investigação, Inovação e Desenvolvimento, FP-BHS—Biomedical and Health Sciences Research Unit, Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, 4200–150 Porto, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, MedTech–Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Marlene Lúcio
- CF-UM-UP—Centro de Física das Universidades do Minho e Porto, Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal
- CBMA—Centro de Biologia Molecular e Ambiental, Departamento de Biologia, Universidade do Minho, 4710-057 Braga, Portugal
| |
Collapse
|
2
|
Bouwstra JA, Nădăban A, Bras W, McCabe C, Bunge A, Gooris GS. The skin barrier: An extraordinary interface with an exceptional lipid organization. Prog Lipid Res 2023; 92:101252. [PMID: 37666282 PMCID: PMC10841493 DOI: 10.1016/j.plipres.2023.101252] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
The barrier function of the skin is primarily located in the stratum corneum (SC), the outermost layer of the skin. The SC is composed of dead cells with highly organized lipid lamellae in the intercellular space. As the lipid matrix forms the only continuous pathway, the lipids play an important role in the permeation of compounds through the SC. The main lipid classes are ceramides (CERs), cholesterol (CHOL) and free fatty acids (FFAs). Analysis of the SC lipid matrix is of crucial importance in understanding the skin barrier function, not only in healthy skin, but also in inflammatory skin diseases with an impaired skin barrier. In this review we provide i) a historical overview of the steps undertaken to obtain information on the lipid composition and organization in SC of healthy skin and inflammatory skin diseases, ii) information on the role CERs, CHOL and FFAs play in the lipid phase behavior of very complex lipid model systems and how this knowledge can be used to understand the deviation in lipid phase behavior in inflammatory skin diseases, iii) knowledge on the role of both, CER subclasses and chain length distribution, on lipid organization and lipid membrane permeability in complex and simple model systems with synthetic CERs, CHOL and FFAs, iv) similarity in lipid phase behavior in SC of different species and complex model systems, and vi) future directions in modulating lipid composition that is expected to improve the skin barrier in inflammatory skin diseases.
Collapse
Affiliation(s)
- Joke A Bouwstra
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
| | - Andreea Nădăban
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Wim Bras
- Chemical Sciences Division, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831, United States of America
| | - Clare McCabe
- School of Engineering & Physical Science, Heriot-Watt University, Edinburgh, Scotland, UK
| | - Annette Bunge
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, United States of America
| | - Gerrit S Gooris
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
3
|
Darvin ME, Schleusener J, Lademann J, Choe CS. Current views on non-invasive in vivo determination of physiological parameters of the stratum corneum using confocal Raman microspectroscopy. Skin Pharmacol Physiol 2022; 35:125-136. [PMID: 35008092 DOI: 10.1159/000521416] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/08/2021] [Indexed: 11/19/2022]
Abstract
Confocal Raman microspectroscopy is widely used in dermatology and cosmetology for analysis of the concentration of skin components (lipids, natural moisturizing factor molecules, water) and the penetration depth of cosmetic/medical formulations in the human stratum corneum (SC) in vivo. In recent years, it was shown that confocal Raman microspectroscopy can also be used for non-invasive in vivo depth-dependent determination of the physiological parameters of the SC, such as lamellar and lateral organization of intercellular lipids, folding properties of keratin, water mobility and hydrogen bonding states. The results showed that the strongest skin barrier function, which is primarily manifested by the orthorhombic organization of intercellular lipids, is provided at ≈20-40% SC depth, which is related to the maximal bonding state of water with surrounding components in the SC. The secondary and tertiary structures of keratin determine water binding in the SC, which is depth-dependent. This paper shows the technical possibility and advantage of confocal Raman microspectroscopy in non-invasive investigation of the skin and summarizes recent results on in vivo investigation of the human SC.
Collapse
Affiliation(s)
- Maxim E Darvin
- Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology (CCP), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Johannes Schleusener
- Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology (CCP), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jürgen Lademann
- Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology (CCP), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Chun-Sik Choe
- Kim Il Sung University, Pyongyang, Democratic People's Republic of Korea
| |
Collapse
|
4
|
Ramos AP, Bouwstra JA, Lafleur M. Very Long Chain Lipids Favor the Formation of a Homogeneous Phase in Stratum Corneum Model Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13899-13907. [PMID: 33170015 DOI: 10.1021/acs.langmuir.0c02305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The stratum corneum (SC), the outermost layer of mammal epidermis, acts as a barrier dictating the rate of absorption of exogenous molecules through the skin, as well as to prevent excessive water loss from the body. The SC consists of protein-rich corneocytes embedded into a complex lipid mixture. The lipid fraction is mainly constituted of an equimolar mixture of ceramides (Cer), free fatty acids (FFA), and cholesterol (Chol), forming a solid phase in the intracellular space; this lipid phase is supposed to play a fundamental role in the SC barrier function. An unusual characteristic of this biological membrane is that its lipids generally bear very long acyl chains, with the 24-carbon long ones being the most abundant. In this work, we used Raman microspectroscopy and infrared spectroscopy to study the influence of the acyl chain length on the lipid mixing properties in SC model membranes. Our results revealed that the combination of ceramides and FFA bearing a very long chain is required for the formation of homogeneous lipid mixtures, while lipids with shorter chains (16-carbon and 20-carbon atom long) lead to domains with micrometer dimensions. It is proposed that the biological machinery necessary for acyl chain elongation occurring at the mammalian skin level is required to inhibit lipid phase separation, a critical feature in the proper barrier functioning.
Collapse
Affiliation(s)
- Adrian Paz Ramos
- Department of Chemistry, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal QC H3C 3J7, Canada
| | - Joke A Bouwstra
- Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden 2333 CC, The Netherlands
| | - Michel Lafleur
- Department of Chemistry, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal QC H3C 3J7, Canada
| |
Collapse
|
5
|
What is the fate of multi-lamellar liposomes of controlled size, charge and elasticity in artificial and animal skin? Eur J Pharm Biopharm 2020; 151:18-31. [DOI: 10.1016/j.ejpb.2020.03.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/17/2020] [Accepted: 03/22/2020] [Indexed: 11/21/2022]
|
6
|
Tosato MG, Maya Girón JV, Martin AA, Krishna Tippavajhala V, Fernández Lorenzo de Mele M, Dicelio L. Comparative study of transdermal drug delivery systems of resveratrol: High efficiency of deformable liposomes. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 90:356-364. [DOI: 10.1016/j.msec.2018.04.073] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 04/12/2018] [Accepted: 04/25/2018] [Indexed: 11/25/2022]
|
7
|
Age related depth profiles of human Stratum Corneum barrier-related molecular parameters by confocal Raman microscopy in vivo. Mech Ageing Dev 2018; 172:6-12. [DOI: 10.1016/j.mad.2017.08.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 08/19/2017] [Indexed: 12/20/2022]
|
8
|
Choe C, Schleusener J, Lademann J, Darvin ME. Human skin in vivo has a higher skin barrier function than porcine skin ex vivo-comprehensive Raman microscopic study of the stratum corneum. JOURNAL OF BIOPHOTONICS 2018; 11:e201700355. [PMID: 29460347 DOI: 10.1002/jbio.201700355] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/18/2018] [Indexed: 06/08/2023]
Abstract
Porcine skin is widely used as a human skin model in dermatology. For both, porcine stratum corneum (SC) ex vivo and human SC in vivo, the hydrogen bonding states of water, the secondary and tertiary structures of keratin, the natural moisturizing factor (NMF) concentrations and the intercellular lipids' (ICL) lateral organization are investigated depth-dependently using confocal Raman microscopy. The SC depth profiles show that porcine SC ex vivo is characterized by lower hydrogen bonding states of water (10%-30% SC depth), lower NMF concentration in the whole SC, more β-sheet form of keratin (10%-90% SC depth), more folded tertiary keratin structures (30%-70% SC depth) and higher hexagonal lateral packing order of ICL (10%-50% SC depth) compared to human SC in vivo. The results clearly show a higher value of skin barrier function of human SC in vivo than of porcine SC ex vivo. Thus, the human SC in vivo is less permeable for lipophilic and hydrophilic substances than porcine SC ex vivo. Considering the porcine SC as an ex vivo model of human SC in vivo, these findings should be taken into consideration.
Collapse
Affiliation(s)
- ChunSik Choe
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charitéplatz 1, 10117 Berlin, Germany
- Kim Il Sung University, Ryongnam-Dong, Taesong District, Pyongyang, DPR Korea
| | - Johannes Schleusener
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Jürgen Lademann
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Maxim E Darvin
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
9
|
Del Regno A, Notman R. Permeation pathways through lateral domains in model membranes of skin lipids. Phys Chem Chem Phys 2018; 20:2162-2174. [DOI: 10.1039/c7cp03258g] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Lateral organisation of skin lipids in membranes produces regions with different permeability; water permeation is favoured through cholesterol-rich regions.
Collapse
Affiliation(s)
| | - Rebecca Notman
- Department of Chemistry, University of Warwick
- Coventry
- UK
| |
Collapse
|
10
|
|
11
|
Choe C, Lademann J, Darvin ME. A depth-dependent profile of the lipid conformation and lateral packing order of the stratum corneum in vivo measured using Raman microscopy. Analyst 2017; 141:1981-7. [PMID: 26855232 DOI: 10.1039/c5an02373d] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The intercellular lipid structure of the stratum corneum (SC) plays a key role in skin barrier function. A depth profile of the intercellular lipid conformation and the lipid lateral packing order were measured in vivo in the human SC using confocal Raman microscopy. The depth profiles of the 2880 cm(-1)/2850 cm(-1) peak ratio intensity, which represent the C-H stretching and lateral packing order of lipids, and the 1080 cm(-1)/(1130 cm(-1) + 1060 cm(-1)) peak ratio, which represents the C-C skeleton vibration and trans-gauche conformation order of lipids, were investigated. The influence of keratin on the lipid peaks at 2850 cm(-1) and 2880 cm(-1) was excluded by the developed mathematical algorithm. The results show that the trans-conformation and lateral packing order of the intercellular lipids reach their maximum value in the SC at 20-40% of its depth and then decrease towards the stratum granulosum. These results show that at a depth of 20-40% (normally corresponding to a depth of 4-8 μm) the SC exhibits the most ordered lipids and therefore the highest skin barrier function. The lateral packing of lipids is more disordered on the surface and in the deeper parts of the SC, which may be associated with a reduced skin barrier function.
Collapse
Affiliation(s)
- ChunSik Choe
- Charité - Universitätsmedizin Berlin, Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charitéplatz 1, 10117 Berlin, Germany. and Kim Il Sung University, Ryongnam-Dong, Taesong District, Pyongyang, DPR Korea
| | - Jürgen Lademann
- Charité - Universitätsmedizin Berlin, Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charitéplatz 1, 10117 Berlin, Germany.
| | - Maxim E Darvin
- Charité - Universitätsmedizin Berlin, Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
12
|
Klossek A, Thierbach S, Rancan F, Vogt A, Blume-Peytavi U, Rühl E. Studies for improved understanding of lipid distributions in human skin by combining stimulated and spontaneous Raman microscopy. Eur J Pharm Biopharm 2016; 116:76-84. [PMID: 27864053 DOI: 10.1016/j.ejpb.2016.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 10/07/2016] [Accepted: 11/07/2016] [Indexed: 11/17/2022]
Abstract
Advanced Raman techniques, such as stimulated Raman spectroscopy (SRS), have become a valuable tool for investigations of distributions of substances in biological samples. However, these techniques lack spectral information and are therefore highly affected by cross-sensitivities, which are due to blended Raman bands. One typical example is the symmetric CH2 stretching vibration of lipids, which is blended with the more intense Raman band of proteins. We report in this work an approach to reduce such cross-sensitivities by a factor of 8 in human skin samples. This is accomplished by careful spectral deconvolutions revealing the neat spectra of skin lipids. Extensive Raman studies combining the complementary advantages of fast mapping and scanning, i.e. SRS, as well as spectral information provided by spontaneous Raman spectroscopy, were performed on the same skin regions. In addition, an approach for correcting artifacts is reported, which are due to transmission and reflection geometries in Raman microscopy as well as scattering of radiation from rough and highly structured skin samples. As a result, these developments offer improved results obtained from label-free spectromicroscopy provided by Raman techniques. These yield substance specific information from spectral regimes in which blended bands dominate. This improvement is illustrated by studies on the asymmetric CH2 stretching vibration of lipids, which was previously difficult to identify due to the strong background signal from proteins. The advantage of the correction procedures is demonstrated by higher spatial resolution permitting to perform more detailed investigations on lipids and their composition in skin.
Collapse
Affiliation(s)
- A Klossek
- Physikalische Chemie, Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - S Thierbach
- Physikalische Chemie, Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - F Rancan
- Klinisches Forschungszentrum für Haut-und Haarforschung, Charité Universitätsmedizin, 10117 Berlin, Germany
| | - A Vogt
- Klinisches Forschungszentrum für Haut-und Haarforschung, Charité Universitätsmedizin, 10117 Berlin, Germany
| | - U Blume-Peytavi
- Klinisches Forschungszentrum für Haut-und Haarforschung, Charité Universitätsmedizin, 10117 Berlin, Germany
| | - E Rühl
- Physikalische Chemie, Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany.
| |
Collapse
|
13
|
Choe C, Lademann J, Darvin ME. Depth profiles of hydrogen bound water molecule types and their relation to lipid and protein interaction in the human stratum corneum in vivo. Analyst 2016; 141:6329-6337. [PMID: 27774531 DOI: 10.1039/c6an01717g] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Confocal Raman microscopy has been used to measure depth-dependent profiles of human SC in vivo in the high wavenumber (HWN) region. In order to keep the linearity of HWN region boundaries and to not remove an informative signal from Raman spectra, a new baseline subtraction procedure has been introduced. After baseline subtraction, the HWN spectrum was deconvoluted using 10 Gaussian functions with individual chemical meanings. The results show that the hydrogen bound water molecule types contributed differently to the water diffusion process in the SC. The most concentrated double donor-double acceptor (DDAA) and single donor-single acceptor (DA) water molecule types in the SC represent more than 90% of the SC's water and mostly contribute to the water flux in the skin. Single donor-double acceptor (DAA) and weakly-bound water molecule types represent less than 10% of the SC's water content. The most tightly hydrogen bound water molecule type, DAA, reaches its maximum concentration near the skin surface and does not take part in the water diffusion process via the SC. The results show that the hydrogen bonding state of water (DA/DDAA water molecule type ratio) reaches its maximum at the depth of approx. 30% of the SC thickness, which correlates well with the maximum lateral packing order of intercellular lipids (ICL) and the natural moisturizing factor (NMF), and does not coincide with the folding/unfolding state of keratin. The NMF's contribution to the bonding of water in the SC is supposed to dominate over that of ICL.
Collapse
Affiliation(s)
- ChunSik Choe
- Charité- Universitätsmedizin Berlin, Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charitéplatz 1, 10117 Berlin, Germany.
| | | | | |
Collapse
|
14
|
Mueller J, Schroeter A, Steitz R, Trapp M, Neubert RHH. Preparation of a New Oligolamellar Stratum Corneum Lipid Model. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:4673-4680. [PMID: 27058649 DOI: 10.1021/acs.langmuir.6b00655] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this study, we present a preparation method for a new stratum corneum (SC) model system, which is closer to natural SC than the commonly used multilayer models. The complex setup of the native SC lipid matrix was mimicked by a ternary lipid mixture of ceramide [AP], cholesterol, and stearic acid. A spin coating procedure was applied to realize oligo-layered samples. The influence of lipid concentration, rotation speed, polyethylenimine, methanol content, cholesterol fraction, and annealing on the molecular arrangement of the new SC model was investigated by X-ray reflectivity measurements. The new oligo-SC model is closer to native SC in the total number of lipid membranes found between corneocytes. The reduction in thickness provides the opportunity to study the effects of drugs and/or hydrophilic penetration enhancers on the structure of SC in full detail by X-ray or neutron reflectivity. In addition, the oligo-lamellar systems allows one to infer not only the lamellar spacing, but also the total thickness of the oligo-SC model and changes thereof can be monitored. This improvement is most helpful for the understanding of transdermal drug administration on the nanoscale. The results are compared to the commonly used multilamellar lipid model systems and advantages and disadvantages of both models are discussed.
Collapse
Affiliation(s)
- Josefin Mueller
- Institute of Pharmacy, Martin Luther University , Wolfgang-Langenbeck-Straße 4, 06120 Halle, Germany
| | - Annett Schroeter
- Institute of Pharmacy, Martin Luther University , Wolfgang-Langenbeck-Straße 4, 06120 Halle, Germany
| | - Roland Steitz
- Institute of Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH , Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Marcus Trapp
- Institute of Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH , Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Reinhard H H Neubert
- Institute of Pharmacy, Martin Luther University , Wolfgang-Langenbeck-Straße 4, 06120 Halle, Germany
| |
Collapse
|
15
|
Quatela A, Miloudi L, Tfayli A, Baillet-Guffroy A. In vivo Raman Microspectroscopy: Intra- and Intersubject Variability of Stratum Corneum Spectral Markers. Skin Pharmacol Physiol 2016; 29:102-9. [DOI: 10.1159/000445079] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 02/28/2016] [Indexed: 11/19/2022]
|
16
|
Pyatski Y, Zhang Q, Mendelsohn R, Flach CR. Effects of permeation enhancers on flufenamic acid delivery in Ex vivo human skin by confocal Raman microscopy. Int J Pharm 2016; 505:319-28. [PMID: 27063850 DOI: 10.1016/j.ijpharm.2016.04.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/22/2016] [Accepted: 04/04/2016] [Indexed: 10/22/2022]
Abstract
For effective topical delivery, a drug must cross the stratum corneum (SC) barrier into viable tissue. The use of permeation enhancers is a widespread approach for barrier modification. In the current study, flufenamic acid (FluA), a non-steroidal anti-inflammatory drug, is a model agent for investigating the influence of hydrophobic versus hydrophilic enhancers. In separate experiments, FluA in octanol or propylene glycol/ethanol (75/25) is applied to the SC for varying times followed by confocal Raman microscopic mapping of drug and enhancer penetration and spatial distribution. Deuterated versions of the enhancers permit us to spectroscopically distinguish the exogenous chemicals from the endogenous SC lipids without affecting penetration parameters. The FluA pathway is tracked by the CC stretching mode at ∼1618cm(-1). Discrete, small inclusions of both enhancers are observed throughout the SC. High concentrations of FluA are co-localized with octanol domains which appear to provide a pathway to the viable epidermis for the drug. In contrast, FluA concentrates in the upper SC when using the hydrophilic agent and endogenous lipids appear unperturbed in regions outside the enhancer pockets. The ability to examine perturbations to endogenous ultrastructure and molecular structure in skin while tracking penetration pathways provides insight into delivery mechanisms.
Collapse
Affiliation(s)
- Yelena Pyatski
- Rutgers University, Department of Chemistry, 73 Warren Street, Newark, NJ 07102, United States
| | - Qihong Zhang
- Rutgers University, Department of Chemistry, 73 Warren Street, Newark, NJ 07102, United States
| | - Richard Mendelsohn
- Rutgers University, Department of Chemistry, 73 Warren Street, Newark, NJ 07102, United States
| | - Carol R Flach
- Rutgers University, Department of Chemistry, 73 Warren Street, Newark, NJ 07102, United States.
| |
Collapse
|
17
|
Short MA, Wang W, Tai IT, Zeng H. Development and in vivo testing of a high frequency endoscopic Raman spectroscopy system for potential applications in the detection of early colonic neoplasia. JOURNAL OF BIOPHOTONICS 2016; 9:44-48. [PMID: 26587679 DOI: 10.1002/jbio.201500205] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/09/2015] [Accepted: 10/24/2015] [Indexed: 06/05/2023]
Abstract
The objective of this study was to build and test an adjunct system to a colonoscope for in vivo measurement of Raman spectra from colon tissue for potentially improving the detection of early cancers. The novelty of this system was that low cost fibre optic probes were used, without the addition of expensive optical filters. Good quality in vivo Raman spectra were successfully obtained with a 1 s integration time in the high frequency (HF) range from normal tissue and polyps of patients during a colonoscopy. The polyps were subsequently removed, and their pathology determined. The acquired in vivo Raman spectra showed clear changes between tissue with normal and tubular adenoma pathology. Further clinical study with this low cost HF Raman probe is warranted to fully test its clinical utility.
Collapse
Affiliation(s)
- Michael A Short
- Imaging Unit - Integrative Oncology Department, BC Cancer Agency Research Centre, 675 West 10th Avenue, Vancouver, B.C., Canada, V5Z 1L3
| | - Wenbo Wang
- Imaging Unit - Integrative Oncology Department, BC Cancer Agency Research Centre, 675 West 10th Avenue, Vancouver, B.C., Canada, V5Z 1L3
| | - Isabella T Tai
- Division of Gastroenterology, University of British Columbia and Genome Sciences Centre, BC Cancer Agency Research Centre, 675 West 10th Avenue, Vancouver, B.C., Canada, V5Z 1L3
| | - Haishan Zeng
- Imaging Unit - Integrative Oncology Department, BC Cancer Agency Research Centre, 675 West 10th Avenue, Vancouver, B.C., Canada, V5Z 1L3.
| |
Collapse
|
18
|
Franzen L, Windbergs M. Applications of Raman spectroscopy in skin research--From skin physiology and diagnosis up to risk assessment and dermal drug delivery. Adv Drug Deliv Rev 2015; 89:91-104. [PMID: 25868454 DOI: 10.1016/j.addr.2015.04.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 03/24/2015] [Accepted: 04/01/2015] [Indexed: 11/29/2022]
Abstract
In the field of skin research, confocal Raman microscopy is an upcoming analytical technique. Substantial technical progress in design and performance of the individual setup components like detectors and lasers as well as the combination with confocal microscopy enables chemically selective and non-destructive sample analysis with high spatial resolution in three dimensions. Due to these advantages, the technique bears tremendous potential for diverse skin applications ranging from the analysis of physiological component distribution in skin tissue and the diagnosis of pathological states up to biopharmaceutical investigations such as drug penetration kinetics within the different tissue layers. This review provides a comprehensive introduction about the basic principles of Raman microscopy highlighting the advantages and considering the limitations of the technique for skin applications. Subsequently, an overview about skin research studies applying Raman spectroscopy is given comprising various in vitro as well as in vivo implementations. Furthermore, the future perspective and potential of Raman microscopy in the field of skin research are discussed.
Collapse
Affiliation(s)
- Lutz Franzen
- Saarland University, Department of Biopharmaceutics and Pharmaceutical Technology, Saarbruecken, Germany
| | - Maike Windbergs
- Saarland University, Department of Biopharmaceutics and Pharmaceutical Technology, Saarbruecken, Germany; Helmholtz Centre for Infection Research, Helmholtz Institute for Pharmaceutical Research Saarland, Department of Drug Delivery, Saarbruecken, Germany; PharmBioTec GmbH, Saarbruecken, Germany.
| |
Collapse
|
19
|
Tracking heavy water (D2O) incorporation for identifying and sorting active microbial cells. Proc Natl Acad Sci U S A 2014; 112:E194-203. [PMID: 25550518 DOI: 10.1073/pnas.1420406112] [Citation(s) in RCA: 288] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Microbial communities are essential to the function of virtually all ecosystems and eukaryotes, including humans. However, it is still a major challenge to identify microbial cells active under natural conditions in complex systems. In this study, we developed a new method to identify and sort active microbes on the single-cell level in complex samples using stable isotope probing with heavy water (D2O) combined with Raman microspectroscopy. Incorporation of D2O-derived D into the biomass of autotrophic and heterotrophic bacteria and archaea could be unambiguously detected via C-D signature peaks in single-cell Raman spectra, and the obtained labeling pattern was confirmed by nanoscale-resolution secondary ion MS. In fast-growing Escherichia coli cells, label detection was already possible after 20 min. For functional analyses of microbial communities, the detection of D incorporation from D2O in individual microbial cells via Raman microspectroscopy can be directly combined with FISH for the identification of active microbes. Applying this approach to mouse cecal microbiota revealed that the host-compound foragers Akkermansia muciniphila and Bacteroides acidifaciens exhibited distinctive response patterns to amendments of mucin and sugars. By Raman-based cell sorting of active (deuterated) cells with optical tweezers and subsequent multiple displacement amplification and DNA sequencing, novel cecal microbes stimulated by mucin and/or glucosamine were identified, demonstrating the potential of the nondestructive D2O-Raman approach for targeted sorting of microbial cells with defined functional properties for single-cell genomics.
Collapse
|
20
|
Comparative SAXS and DSC study on stratum corneum structural organization in an epidermal cell culture model (ROC): impact of cultivation time. Eur J Pharm Sci 2013; 50:577-85. [PMID: 23770376 DOI: 10.1016/j.ejps.2013.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 06/01/2013] [Accepted: 06/02/2013] [Indexed: 11/20/2022]
Abstract
Cell cultured skin equivalents present an alternative for dermatological in vitro evaluations of drugs and excipients as they provide the advantage of availability, lower variability and higher assay robustness compared to native skin. For penetration/permeation studies, an adequate stratum corneum barrier similar to that of human stratum corneum is, however, a prerequisite. In this study, the stratum corneum lipid organization in an epidermal cell culture model based on rat epidermal keratinocytes (REK organotypic culture, ROC) was investigated by small-angle X-ray scattering (SAXS) in dependence on ROC cultivation time and in comparison to native human and rat stratum cornea. In addition, the thermal phase behavior was studied by differential scanning calorimetry (DSC) and barrier properties were checked by measurements of the permeability of tritiated water. The development of the barrier of ROC SC obtained at different cultivation times (7, 14 and 21 days at the air-liquid interface) was connected with an increase in structural order of the SC lipids in SAXS measurements: Already cultivation for 14 days at the air-liquid interface resulted overall in a competent SC permeability barrier and SC lipid organization. Cultivation for 21 days resulted in further minor changes in the structural organization of ROC SC. The SAXS patterns of ROC SC had overall large similarities with that of human SC and point to the presence of a long periodicity phase with a repeat distance of about 122Å, e.g. slightly smaller than that determined for human SC in the present study (127Å). Moreover, SAXS results also indicate the presence of covalently bound ceramides, which are crucial for a proper SC barrier, although the corresponding thermal transitions were not clearly detectable by DSC. Due to the competent SC barrier properties and high structural and organizational similarity to that of native human SC, ROC presents a promising alternative for in vitro studies, particularly as it can be obtained under overall rather straightforward cell culture conditions and thus low assay costs.
Collapse
|
21
|
van Smeden J, Janssens M, Gooris GS, Bouwstra JA. The important role of stratum corneum lipids for the cutaneous barrier function. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:295-313. [PMID: 24252189 DOI: 10.1016/j.bbalip.2013.11.006] [Citation(s) in RCA: 352] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/08/2013] [Accepted: 11/10/2013] [Indexed: 01/28/2023]
Abstract
The skin protects the body from unwanted influences from the environment as well as excessive water loss. The barrier function of the skin is located in the stratum corneum (SC). The SC consists of corneocytes embedded in a lipid matrix. This lipid matrix is crucial for the lipid skin barrier function. This paper provides an overview of the reported SC lipid composition and organization mainly focusing on healthy and diseased human skin. In addition, an overview is provided on the data describing the relation between lipid modulations and the impaired skin barrier function. Finally, the use of in vitro lipid models for a better understanding of the relation between the lipid composition, lipid organization and skin lipid barrier is discussed. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.
Collapse
Affiliation(s)
- J van Smeden
- Department of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - M Janssens
- Department of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - G S Gooris
- Department of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - J A Bouwstra
- Department of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
22
|
Vyumvuhore R, Tfayli A, Duplan H, Delalleau A, Manfait M, Baillet-Guffroy A. Effects of atmospheric relative humidity on Stratum Corneum structure at the molecular level: ex vivo Raman spectroscopy analysis. Analyst 2013; 138:4103-11. [DOI: 10.1039/c3an00716b] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
23
|
Ali SM, Bonnier F, Ptasinski K, Lambkin H, Flynn K, Lyng FM, Byrne HJ. Raman spectroscopic mapping for the analysis of solar radiation induced skin damage. Analyst 2013; 138:3946-56. [DOI: 10.1039/c3an36617k] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
24
|
Abstract
Every year around 2.5–3 million skin lesions are biopsied in the US, and a fraction of these – between 50,000 and 100,000 – are diagnosed as melanoma. Diagnostic instruments that allow early detection of melanoma are the key to improving survival rates and reducing the number of unnecessary biopsies, the associated morbidity, and the costs of care. Advances in technology over the past 2 decades have enabled the development of new, sophisticated test methods, which are currently undergoing laboratory and small-scale clinical testing. This review highlights and compares some of the emerging technologies that hold the promise of melanoma diagnosis at an early stage of the disease. The needs for detection at different levels (patient, primary care, specialized care) are discussed, and three broad classes of instruments are identified that are capable of satisfying these needs. Technical and clinical requirements on the diagnostic instruments are introduced to aid the comparison and evaluation of new technologies. White- and polarized-light imaging, spatial and spectroscopic multispectral methods, quantitative thermographic imaging, confocal microscopy, Optical Coherence Tomography (OCT), and Terahertz (THZ) imaging methods are highlighted in light of the criteria identified in the review. Based on the properties, possibilities, and limitations of individual methods, those best suited for a particular setting are identified. Challenges faced in development and wide-scale application of novel technologies are addressed.
Collapse
Affiliation(s)
- Cila Herman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
25
|
Fourier transform infrared spectroscopy studies of lipid domain formation in normal and ceramide deficient stratum corneum lipid models. Int J Pharm 2012; 435:63-8. [DOI: 10.1016/j.ijpharm.2011.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 10/29/2011] [Accepted: 11/03/2011] [Indexed: 11/18/2022]
|
26
|
Larsson K, Quinn P, Sato K, Tiberg F. Lipid barriers at the environment–body interface. Lipids 2012. [DOI: 10.1533/9780857097910.219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
27
|
Using laser Raman spectroscopy to reduce false positives of autofluorescence bronchoscopies: a pilot study. J Thorac Oncol 2011; 6:1206-14. [PMID: 21847040 DOI: 10.1097/jto.0b013e3182178ef7] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Preneoplastic lesions of the bronchial tree have a high probability of developing into malignant tumors. Currently, the best method for localizing them for further treatment is a combined white light bronchoscopy (WLB) and autofluorescence bronchoscopy (AFB) (WLB + AFB). The average specificity from large clinical trials for this combined detection method is approximately 60%, leading to many false positives. The object of this study is to determine whether adding point laser Raman spectroscopy (LRS) to a WLB + AFB has the potential to improve the specificity of preneoplastic lesion detection and what the implication is to the detection sensitivity. METHODS An LRS system was developed to collect real-time, in vivo lung spectra with a fiber optic catheter passed down the instrument channel of a bronchoscope. WLB + AFB imaging modalities were used to identify lesions from 26 subjects, from which 129 Raman spectra were measured. Multivariate statistical analyses were performed on the spectra with a leave-one-out crossvalidation. RESULTS Clear in vivo Raman spectra were obtained in 1 second. The location of individual Raman peaks in the spectra correlated well with the known positions of Raman peaks generated by lipids, proteins, and water molecules. Preneoplastic lesions were detected with a sensitivity of 96% and a specificity of 91%. CONCLUSION Adding point LRS analysis to WLB + AFB imaging has the ability to detect preneoplastic lesions in real time with high sensitivity and specificity. The use of LRS has great potential for substantially reducing the number of false-positive biopsies associated with WLB + AFB with very little reduction in the detection sensitivity.
Collapse
|
28
|
Groen D, Gooris GS, Barlow DJ, Lawrence MJ, van Mechelen JB, Demé B, Bouwstra JA. Disposition of ceramide in model lipid membranes determined by neutron diffraction. Biophys J 2011; 100:1481-9. [PMID: 21402030 DOI: 10.1016/j.bpj.2011.02.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 02/01/2011] [Accepted: 02/01/2011] [Indexed: 10/18/2022] Open
Abstract
The lipid matrix present in the uppermost layer of the skin, the stratum corneum, plays a crucial role in the skin barrier function. The lipids are organized into two lamellar phases. To gain more insight into the molecular organization of one of these lamellar phases, we performed neutron diffraction studies. In the diffraction pattern, five diffraction orders were observed attributed to a lamellar phase with a repeat distance of 5.4 nm. Using contrast variation, the scattering length density profile could be calculated showing a typical bilayer arrangement. To obtain information on the arrangement of ceramides in the unit cell, a mixture that included a partly deuterated ceramide was also examined. The scattering length density profile of the 5.4-nm phase containing this deuterated ceramide demonstrated a symmetric arrangement of the ceramides with interdigitating acyl chains in the center of the unit cell.
Collapse
Affiliation(s)
- D Groen
- Leiden/Amsterdam Center for Drug Research, Department of Drug Delivery Technology, Gorlaeus Laboratories, University of Leiden, Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
29
|
Nonlinear interferometric vibrational imaging for fast label-free visualization of molecular domains in skin. Anal Bioanal Chem 2011; 400:2817-25. [PMID: 21465094 DOI: 10.1007/s00216-011-4953-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 03/21/2011] [Accepted: 03/22/2011] [Indexed: 10/18/2022]
Abstract
The most prevalent molecular constituents of skin are spatially mapped by the use of nonlinear interferometric vibrational imaging, a coherent anti-Stokes Raman scattering (CARS)-based technique. Raman-like profiles over the range from 2,800 to 3,000 cm(-1) are acquired by means of completely suppressing the non-resonant background, allowing the generation of images based on the molecule-specific spectral profiles over the probed region with high spatial resolution. A simple algorithm that maps spectral content to color allows the visualization of histology in a manner analogous to that obtained with more conventional staining procedures (e.g., hematoxylin-eosin), but faster and with the benefit of having access to localized spectra, which could further enhance the potential for diagnosis of diseases, especially during the early stages of development.
Collapse
|
30
|
Schultz ZD, Levin IW. Vibrational spectroscopy of biomembranes. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2011; 4:343-66. [PMID: 21456972 DOI: 10.1146/annurev-anchem-061010-114048] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Vibrational spectroscopy, commonly associated with IR absorption and Raman scattering, has provided a powerful approach for investigating interactions between biomolecules that make up cellular membranes. Because the IR and Raman signals arise from the intrinsic properties of these molecules, vibrational spectroscopy probes the delicate interactions that regulate biomembranes with minimal perturbation. Numerous innovative measurements, including nonlinear optical processes and confined bilayer assemblies, have provided new insights into membrane behavior. In this review, we highlight the use of vibrational spectroscopy to study lipid-lipid interactions. We also examine recent work in which vibrational measurements have been used to investigate the incorporation of peptides and proteins into lipid bilayers, and we discuss the interactions of small molecules and drugs with membrane structures. Emerging techniques and measurements on intact cellular membranes provide a prospective on the future of vibrational spectroscopic studies of biomembranes.
Collapse
Affiliation(s)
- Zachary D Schultz
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA.
| | | |
Collapse
|
31
|
Schultz ZD. Raman Spectroscopic Imaging of Cholesterol and Docosahexaenoic Acid Distribution in the Retinal Rod Outer Segment. Aust J Chem 2011; 64:611-616. [PMID: 21799539 DOI: 10.1071/ch11019] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Raman vibrational spectroscopic imaging was performed on retinal rod cells isolated from bullfrogs (Rana catesbeiana). The Raman spectra enable determination of the lipid and protein rich rod outer segment (ROS) from the nucleus and inner segment of the cell. Peak fitting analysis of spectra obtained from individual rod photoreceptor cells show characteristic vibrational modes that can be associated with cholesterol and docosahexaenoic acid containing lipids. These results provide direct observations of biomolecular gradients in the rod photoreceptor cells, which, thus far, have been based on indirect detergent extracts and histochemical analysis with indicators such as filipin. The detected biomolecules are associated with regulation of the integral membrane protein rhodopsin, and methods capable direct observation of these biomolecules offer new routes to exploring their role in the regulation of cellular processes.
Collapse
Affiliation(s)
- Zachary D Schultz
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46566
| |
Collapse
|
32
|
Guillard E, Tfayli A, Manfait M, Baillet-Guffroy A. Thermal dependence of Raman descriptors of ceramides. Part II: effect of chains lengths and head group structures. Anal Bioanal Chem 2010; 399:1201-13. [DOI: 10.1007/s00216-010-4389-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 10/17/2010] [Accepted: 10/25/2010] [Indexed: 10/18/2022]
|
33
|
Wang X, Ujihara M, Imae T, Ishikubo A, Sugiyama Y, Okamoto T. Characterization of mimetic lipid mixtures of stratum corneum. Colloids Surf B Biointerfaces 2010; 78:92-100. [DOI: 10.1016/j.colsurfb.2010.02.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 02/12/2010] [Accepted: 02/12/2010] [Indexed: 10/19/2022]
|
34
|
Thermal dependence of Raman descriptors of ceramides. Part I: effect of double bonds in hydrocarbon chains. Anal Bioanal Chem 2010; 397:1281-96. [DOI: 10.1007/s00216-010-3614-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 02/16/2010] [Accepted: 02/22/2010] [Indexed: 10/19/2022]
|
35
|
Watanabe H, Obata Y, Onuki Y, Ishida K, Takayama K. Novel Preparation of Intercellular Lipid Models of the Stratum Corneum Containing Stereoactive Ceramide. Chem Pharm Bull (Tokyo) 2010; 58:312-7. [DOI: 10.1248/cpb.58.312] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Rodríguez G, Barbosa-Barros L, Rubio L, Cócera M, Díez A, Estelrich J, Pons R, Caelles J, De la Maza A, López O. Conformational changes in stratum corneum lipids by effect of bicellar systems. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:10595-10603. [PMID: 19735132 DOI: 10.1021/la901410h] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy was applied to study the effects of the bicelles formed by dimyristoyl-glycero-phosphocholine (DMPC) and dihexanoyl-glycero-phosphocholine (DHPC) in porcine stratum corneum (SC) in vitro. A comparison of skin samples treated and untreated with bicelles at different temperatures was carried out. The analysis of variations after treatment in the position of the symmetric CH2 stretching, CH2 scissoring, and CH2 rocking vibrations reported important information about the effect of bicelles on the skin. Bicellar systems caused a phase transition from the gel or solid state to the liquid crystalline state in the lipid conformation of SC, reflecting the major order-disorder transition from hexagonally packed to disordered chains. Grazing incidence small and wide X-ray scattering (GISAXS and GIWAXS) techniques confirmed this effect of bicelles on the SC. These results are probably related to with the permeabilizing effect previously described for the DMPC/DHPC bicelles.
Collapse
Affiliation(s)
- Gelen Rodríguez
- Departament de Tecnologia Química i de Tensioactius, Institut de Química Avancada de Catalunya (IQAC), Consejo Superior de Investigaciones Cientificas (CSIC), C/ Jordi Girona 18-26, 08034 Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Baby AR, Lacerda ÁCL, Sarruf FD, Pinto CASDO, Consiglieri VO, Serra CHDR, Velasco MVR, Kawano Y, Kaneko TM. Spectroscopic and thermal characterization of alternative model biomembranes from shed skins of Bothrops jararaca and Spilotis pullatus. BRAZ J PHARM SCI 2009. [DOI: 10.1590/s1984-82502009000300006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recently, there has been an interest in the use of shed snake skin as alternative model biomembrane for human stratum corneum. This research work presented as objective the qualitative characterization of alternative model biomembranes from Bothrops jararaca and Spilotis pullatus by FT-Raman, PAS-FTIR and DSC. The employed biophysical techniques permitted the characterization of the biomembranes from shed snake skin of B. jararaca and S. pullatus by the identification of vibrational frequencies and endothermic transitions that are similar to those of the human stratum corneum.
Collapse
|
38
|
Effect of dimethyl sulfoxide on the phase behavior of model stratum corneum lipid mixtures. Chem Phys Lipids 2009; 161:11-21. [DOI: 10.1016/j.chemphyslip.2009.06.141] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 05/22/2009] [Accepted: 06/16/2009] [Indexed: 11/30/2022]
|
39
|
Brief E, Kwak S, Cheng JTJ, Kitson N, Thewalt J, Lafleur M. Phase behavior of an equimolar mixture of N-palmitoyl-D-erythro-sphingosine, cholesterol, and palmitic acid, a mixture with optimized hydrophobic matching. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:7523-7532. [PMID: 19563230 DOI: 10.1021/la9003643] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The phase behavior and lipid mixing properties of an equimolar mixture of nonhydroxylated palmitoyl ceramide (Cer16), palmitic acid (PA), and cholesterol have been investigated using 2H NMR and vibrational spectroscopy. This mixture is formed by the three main classes of lipids found in the stratum corneum (SC), the top layer of the epidermis, and provides an optimized hydrophobic matching. Therefore, its behavior highlights the role played by hydrophobic matching on the phase behavior of SC lipids. We found that, below 45 degrees C, the mixture is essentially formed of coexisting crystalline domains with a small fraction of lipids (less than 20%) that forms a gel or fluid phase, likely ensuring cohesion between the solid domains. Upon heating, there is the formation of a liquid ordered phase mainly composed of PA and cholesterol, including a small fraction of Cer16. This finding is particularly highlighted by correlation vibrational microspectroscopy that indicates that domains enriched in cholesterol and PA include more disordered Cer16 than those found in the Cer16-rich domains. Solubilization of Cer16 in the fluid phase occurs progressively upon further heating, and this leads to the formation of a nonlamellar self-assembly where the motions are isotropic on the NMR time scale. It is found that the miscibility of Cer16 with cholesterol and PA is more limited than the one previously observed for ceramide III extracted from bovine brain, which is heterogeneous in chain composition and includes, in addition to Cer16, analogous ceramide with longer alkyl chains that are not hydrophobically matched with cholesterol and PA. Therefore, it is inferred that, in SC, the chain heterogeneity is a stronger criteria for lipid miscibility than chain hydrophobic matching.
Collapse
Affiliation(s)
- Elana Brief
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|
40
|
Quantitative label-free imaging of lipid composition and packing of individual cellular lipid droplets using multiplex CARS microscopy. Biophys J 2008; 95:4908-14. [PMID: 18689461 DOI: 10.1529/biophysj.108.137737] [Citation(s) in RCA: 179] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lipid droplets (LDs) are highly dynamic organelles that perform multiple functions, including the regulated storage and release of cholesterol and fatty acids. Information on the molecular composition of individual LDs within their cellular context is crucial in understanding the diverse biological functions of LDs, as well as their involvement in the development of metabolic disorders such as obesity, type II diabetes, and atherosclerosis. Although ensembles of LDs isolated from cells and tissues were analyzed in great detail, quantitative information on the heterogeneity in lipid composition of individual droplets, and possible variations within single lipid droplets, is lacking. Therefore, we used a label-free quantitative method to image lipids within LDs in 3T3-L1 cells. The method combines submicron spatial resolution in three dimensions, using label-free coherent anti-Stokes Raman scattering microscopy, with quantitative analysis based on the maximum entropy method. Our method allows quantitative imaging of the chemistry (level of acyl unsaturation) and physical state (acyl chain order) of individual LDs. Our results reveal variations in lipid composition and physical state between LDs contained in the same cell, and even within a single LD.
Collapse
|
41
|
Gotter B, Faubel W, Neubert RHH. Optical methods for measurements of skin penetration. Skin Pharmacol Physiol 2008; 21:156-65. [PMID: 18523413 DOI: 10.1159/000131081] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Fourier transform infrared photoacoustic (PAS), photothermal deflection (PDS) and Raman spectroscopy belong to the modern innovative noninvasive analytical tools that are beginning to be recognized as highly potential techniques for the noninvasive study of biological tissues and human skin under in vivo conditions. They can be applied to obtain information regarding the molecular composition of the skin down to several hundred micrometers below the skin surface. All three methods allow depth-resolved investigations. While PAS and PDS use a frequency modulation of the excitation beam to reach deeper regions in the sample, the principle of confocal Raman microspectroscopy (CRM) is a movement of the specimen in the focal plane. In consideration of depth measurements PAS and PDS complete the applicable spectrum of CRM, since Raman microscopy requires particular transparent materials.
Collapse
Affiliation(s)
- B Gotter
- Institute of Pharmacy, Martin Luther University, Halle/Saale, Germany.
| | | | | |
Collapse
|
42
|
Caussin J, Gooris GS, Janssens M, Bouwstra JA. Lipid organization in human and porcine stratum corneum differs widely, while lipid mixtures with porcine ceramides model human stratum corneum lipid organization very closely. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1472-82. [PMID: 18381060 DOI: 10.1016/j.bbamem.2008.03.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2007] [Revised: 02/28/2008] [Accepted: 03/06/2008] [Indexed: 11/18/2022]
Abstract
The conformational disordering and lateral packing of lipids in porcine and human isolated stratum corneum (SC) was compared using Fourier transform infrared spectroscopy (FTIR). It was shown that SC of both species differ markedly, porcine SC lipids being arranged predominantly in a hexagonal lattice while lipids in human SC are predominantly packed in the denser orthorhombic lattice. However, the lipid organization of equimolar ceramide:cholesterol:free fatty acid (CER:CHOL:FFA) mixtures prepared with isolated porcine CER or human CER is very similar, only the transition temperatures differed being slightly lower in mixtures with porcine CER. Therefore, the difference in lateral packing between human and porcine stratum corneum is not due to the difference in CER composition. Furthermore, it is possible to use more readily available porcine CER in model lipid mixtures to mimic lipid organization in human SC. As the equimolar porcine CER:CHOL:FFA mixtures closely mimic the lipid organization in human SC, both human SC and this mixture were selected to examine the effect of glycerol on the lipid phase behaviour. It was found that high concentrations of glycerol change the lamellar organization slightly, while domains with an orthorhombic lateral packing are still observed.
Collapse
Affiliation(s)
- Julia Caussin
- Leiden/Amsterdam Center for Drug Research, Gorlaeus Laboratories, Leiden University, The Netherlands
| | | | | | | |
Collapse
|
43
|
Kessner D, Ruettinger A, Kiselev MA, Wartewig S, Neubert RHH. Properties of ceramides and their impact on the stratum corneum structure. Part 2: stratum corneum lipid model systems. Skin Pharmacol Physiol 2008; 21:58-74. [PMID: 18187965 DOI: 10.1159/000112956] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Accepted: 07/23/2007] [Indexed: 11/19/2022]
Abstract
The stratum corneum (SC) represents the outermost layer of the mammalian skin, exhibits the main skin barrier and plays an important role in the water penetration pathway through the SC. Knowing the structure and properties of the SC at the molecular level is essential for studying drug penetration through the SC and for the development of new dermal drug delivery systems. Therefore, research interest is focused on the SC lipid matrix and on water diffusion through it. Thus, the ultimate aim is to design a lipid mixture that mimics the barrier properties of the human SC to a high extent and that can substitute the SC in drug delivery systems. This review summarizes various studies performed on either isolated animal or human ceramide based SC model systems, coming to the result that using synthetic lipids with a well-defined architecture allows good extrapolation to the in vivo situation. This review is the continuation of part 1 that is focused on a detailed description of the thermotropic and/or lyotropic phase behaviour of single ceramide types obtained by various experimental techniques. The objective of part 2 is to reflect the numerous studies on SC lipid model systems, namely binary, ternary and multicomponent systems, during the last decade. In this context, neutron diffraction as a prospective tool for analyzing the internal membrane structure is addressed in particular. Based on these new insights, current SC models are presented, whose validations are still under discussion. A profound knowledge about SC lipid organization at the molecular level is still missing.
Collapse
Affiliation(s)
- D Kessner
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle-Saale, Germany
| | | | | | | | | |
Collapse
|
44
|
Bernard G, Auger M, Soucy J, Pouliot R. Physical characterization of the stratum corneum of an in vitro psoriatic skin model by ATR-FTIR and Raman spectroscopies. Biochim Biophys Acta Gen Subj 2007; 1770:1317-23. [PMID: 17659842 DOI: 10.1016/j.bbagen.2007.06.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 06/15/2007] [Accepted: 06/15/2007] [Indexed: 10/23/2022]
Abstract
The stratum corneum is an important permeability barrier for the skin. The disorganization of the skin protective barrier characterizes some skin diseases such as psoriasis. Indeed, psoriatic skin is known to be more permeable than normal human skin. An in vitro human skin substitute may be obtained by the auto-assembly method. This method was adapted to produce psoriatic substitutes. FTIR spectroscopy is a well-established method to evaluate the order of hydrocarbon chains in terms of population of trans and gauche conformers. Using ATR-FTIR, we have compared the physicochemical properties of the stratum corneum in skin models derived from uninvolved and involved psoriatic cells with those derived from normal cells. Our results suggest that the stratum corneum of involved psoriatic skin substitutes is less organized than that of normal skin substitutes. Also, it seems that the properties of uninvolved psoriatic skin may vary with seriousness of the disease. The development of a new psoriatic skin model would be helpful in the design of new treatments and to increase the understanding of the mechanisms of this pathology.
Collapse
Affiliation(s)
- Geneviève Bernard
- Département de Chimie, Université Laval, Québec, Québec, Canada G1K 7P4
| | | | | | | |
Collapse
|
45
|
Chen X, Kwak S, Lafleur M, Bloom M, Kitson N, Thewalt J. Fatty acids influence "solid" phase formation in models of stratum corneum intercellular membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:5548-56. [PMID: 17402763 DOI: 10.1021/la063640+] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Stacked intercellular lipid membranes in the uppermost epidermal layer, the stratum corneum (SC), are responsible for skin's barrier function. These membranes are unique in composition, the major lipids being ceramides (Cer), cholesterol, and free fatty acids (FFA) in approximately equimolar proportions. Notably, SC lipids include chains much longer than those of most biological membranes. Previously we showed that Cer's small hydrophilic headgroup enabled SC model membranes composed of bovine brain ceramide (BBCer), cholesterol, and palmitic acid in equimolar proportion to solidify at pH 5.2. In order to determine the influence of FFA chain length on the phase behavior of such membranes, we used 2H NMR and FT-IR to study BBCer/cholesterol/FFA dispersions containing linear saturated FFA 14-22 carbons long. Independent of chain length, the solid phase dominated the FFA spectrum at physiological temperature. Upon heating, each dispersion underwent phase transitions to a liquid crystalline phase (only weakly evident for the membrane containing FFA-C22) and then to an isotropic phase. The phase behavior, the lipid mixing properties, and the transition temperatures are shown to depend strongly on FFA chain length. A distribution of FFA chain lengths is found in the SC and could be required for the coexistence of a proportion of solid lipids with some more fluid domains, which is known to be necessary for normal skin barrier function.
Collapse
Affiliation(s)
- Xin Chen
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
| | | | | | | | | | | |
Collapse
|
46
|
Dromard T, Ravaine V, Ravaine S, Lévêque JL, Sojic N. Remote in vivo imaging of human skin corneocytes by means of an optical fiber bundle. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2007; 78:053709. [PMID: 17552827 DOI: 10.1063/1.2736346] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Human corneocytes forming the outermost layer of the epidermis (stratum corneum) were imaged in vivo by epifluorescence through a coherent optical fiber bundle. A very simple and rapid method to remotely visualize the cells forming this protective layer of the skin is presented. After the topical application of fluorescein, the distal face of an optical fiber bundle is gently applied perpendicularly onto the labeled skin (contact mode). Remote fluorescence images of the corneocytes are acquired in 50 ms through the bundle comprising 30 000 individually cladded 3.5 microm diameter optical fibers. The very short focal distance which is an intrinsic characteristic of such bundles, allows visualizing only the most superficial monolayer of cells in contact with the external environment. An image displays about 400-500 cells directly on the human body. The size and the arrangement of the corneocytes can thus be acquired and analyzed in a very simple and easy way. The method is flexible and can be used for any location on the human body. Using a gradient-index lens objective (magnification 2.8x) fused to the distal face of the bundle allows the shape of the corneocytes to be better resolved. In addition, the working distance is 300 microm and hence this second approach works in a noncontact imaging mode. Both approaches are complementary and allow providing instantaneously either a global view of the cells with a possible statistical determination of their area or morphological information, which are essential for dermatology and cosmetic sciences. Finally, to improve the quality and the contrast of the recorded images, we tested silica nanoparticles containing fluorescein. In brief, this diagnostic method is nontoxic, painless, easy to use, noninvasive, and nondestructive.
Collapse
Affiliation(s)
- Tanguy Dromard
- Institut des Sciences Moléculaires, Université Bordeaux 1, ENSCPB, UMR CNRS 5255, Groupe NanoSystèmes Analytiques, 16 avenue Pey Berland, 33607 Pessac, France
| | | | | | | | | |
Collapse
|
47
|
Arseneault M, Lafleur M. Cholesterol sulfate and Ca(2+) modulate the mixing properties of lipids in stratum corneum model mixtures. Biophys J 2006; 92:99-114. [PMID: 17028138 PMCID: PMC1697843 DOI: 10.1529/biophysj.106.090167] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The influence of cholesterol sulfate (CS) and calcium on the phase behavior of lipid mixtures mimicking the stratum corneum (SC) lipids was examined using vibrational spectroscopy. Raman microspectrocopy showed that equimolar mixtures of ceramide, palmitic acid, and cholesterol underwent a phase transition in which, at low temperatures, lipids formed mainly a mosaic of microcrystalline phase-separated domains, and above 45 degrees C, a more fluid and disordered phase in which the three lipid species were more miscible. In the presence of Ca(2+), there was the formation of fatty acid-Ca(2+) complexes that led to domains stable on heating. Consequently, these lipid mixtures remained heterogeneous, and the fatty acid molecules were not extensively involved in the formation of the fluid lipid phase, which included mainly ceramide and cholesterol. However, the presence of CS displaced the association site of Ca(2+) ions and inhibited the formation of domains formed by the fatty acid molecules complexed with Ca(2+) ions. This work reveals that CS and Ca(2+) modulate the lipid mixing properties and the lipid order in SC lipid models. The balance in the equilibria involving Ca(2+), CS, and fatty acids is proposed to have an impact on the organization and the function of the epidermis.
Collapse
|
48
|
Baby AR, Lacerda ACL, Velasco MVR, Lopes PS, Kawano Y, Kaneko TM. Spectroscopic studies of stratum corneum model membrane from Bothrops jararaca treated with cationic surfactant. Colloids Surf B Biointerfaces 2006; 50:61-5. [PMID: 16725316 DOI: 10.1016/j.colsurfb.2006.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Revised: 03/28/2006] [Accepted: 04/10/2006] [Indexed: 10/24/2022]
Abstract
This research employed FT-Raman and PAS-FTIR spectroscopic techniques to evaluate the interaction of cetyl trimethyl ammonium chloride (CTAC), a cationic surfactant, on the stratum corneum (SC) of shed snake skins from Bothrops jararaca, used as model membranes. Surfactant aqueous solutions (50.0 and 0.78 gl(-1)) with neutral pH were applied on the samples with intervals of 4, 8 (whole SC) and 12h (SC tape-stripped). Samples presented modifications of the topography for all conditions of the assays and the monomers of the surfactant, instead of the micelles, seemed to interact with the keratin. The SC model membranes treated with CTAC have had an augment of water content (except for whole SC treated for 8h) indicated by the expansion of the band 3600-3300 cm(-1), mainly for the tape-stripped samples after 12h treatment. Concentration appeared to be an important factor related to an increase of the tissue hydration.
Collapse
Affiliation(s)
- André Rolim Baby
- Department of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo, 580 Prof. Lineu Prestes Av., bloco 13, Conjunto das Químicas, Cidade Universitária, 05508-900 São Paulo, SP, Brazil.
| | | | | | | | | | | |
Collapse
|
49
|
Li L, Wang H, Cheng JX. Quantitative coherent anti-Stokes Raman scattering imaging of lipid distribution in coexisting domains. Biophys J 2005; 89:3480-90. [PMID: 16126824 PMCID: PMC1366843 DOI: 10.1529/biophysj.105.065607] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We demonstrate quantitative vibrational imaging of specific lipid molecules in single bilayers using laser-scanning coherent anti-Stokes Raman scattering (CARS) microscopy with a lateral resolution of 0.25 mum. A lipid is spectrally separated from other molecules by using deuterated acyl chains that provide a large CARS signal from the symmetric CD(2) stretch vibration around 2100 cm(-1). Our temperature control experiments show that d62-DPPC has similar bilayer phase segregation property as DPPC when mixing with DOPC. By using epi-detection and optimizing excitation and detection conditions, we are able to generate a clear vibrational contrast from d62-DPPC of 10% molar fraction in a single bilayer of DPPC/d62-DPPC mixture. We have developed and experimentally verified an image analysis model that can derive the relative molecular concentration from the difference of the two CARS intensities measured at the peak and dip frequencies of a CARS band. With the above strategies, we have measured the molar density of d62-DPPC in the coexisting domains inside the DOPC/d62-DPPC (1:1) supported bilayers incorporated with 0-40% cholesterol. The observed interesting changes of phospholipid organization upon addition of cholesterol to the bilayer are discussed.
Collapse
Affiliation(s)
- Li Li
- Weldon School of Biomedical Engineering and Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
50
|
Ouimet J, Lafleur M. Hydrophobic match between cholesterol and saturated fatty acid is required for the formation of lamellar liquid ordered phases. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2004; 20:7474-7481. [PMID: 15323491 DOI: 10.1021/la0491293] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Palmitic acid and cholesterol have been shown to form, under certain conditions, bilayers in the liquid ordered (lo) phase. In the present work, the contribution of the hydrophobic match between cholesterol (chol), and the acyl chain of saturated fatty acids (FA) has been examined. The behavior of FA/chol mixtures where the FA acyl chain length was varied between 12 and 24 carbon atoms was investigated by infrared and 2H NMR spectroscopy, as well as by differential scanning calorimetry. It was found that only fatty acids with acyl chains of 14-18 carbon atoms lead to the formation of lo phase bilayers. The length of these chains corresponds, in fact, to the length of the long axis of the cholesterol molecule. Therefore, the hydrophobic match between the apolar parts of the molecular constituents appears to be a requisite for the formation of lamellar lo phases.
Collapse
Affiliation(s)
- Jaclin Ouimet
- Department of Chemistry, Université de Montréal, Montréal, Québec, Canada, H3C 3J7
| | | |
Collapse
|