1
|
Fink A, Ben Hur D, Wani NA, Cohen H, Segev-Zarko LA, Arnusch CJ, Shai Y. Development of Nontoxic Peptides for Lipopolysaccharide Neutralization and Sepsis Treatment. ACS Pharmacol Transl Sci 2024; 7:1795-1806. [PMID: 38898940 PMCID: PMC11184611 DOI: 10.1021/acsptsci.4c00033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 06/21/2024]
Abstract
Host defense peptides (HDPs), also named antimicrobial peptides (AMPs), are increasingly being recognized for serving multiple functions in protecting the host from infection and disease. Previous studies have shown that various HDPs can also neutralize lipopolysaccharide (LPS, endotoxin), as well as lipoteichoic acid (LTA), inducing macrophage activation. However, antimicrobial activity is usually accompanied by systemic toxicity which makes it difficult to use HDPs as antiendotoxin agents. Here we report that key parameters can uncouple these two functions yielding nontoxic peptides with potent LPS and LTA neutralization activities in vitro and in animal models. The data reveal that peptide length, the number, and the placement of positive charges are important parameters involved in LPS neutralization. Crucially, the peptide exhibited a separation between its membrane-disrupting and antimicrobial properties, effectively decoupling them from its ability to neutralize LPS. This essential distinction prevented systemic toxicity and led to the peptide's complete rescue of mice suffering from severe septic shock in two distinct models. Strong binding to LPS, changes in structure, and oligomerization state upon LPS binding were important factors that determined the activity of the peptides. In the face of the increasing threat of septic shock worldwide, it is crucial to grasp how we can neutralize harmful substances like LPS. This knowledge is vital for creating nontoxic treatments for sepsis.
Collapse
Affiliation(s)
- Avner Fink
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 76100, Israel
- MilliporeSigma
Life Science, Kiryat
Hamada 13, 9777613 Jerusalem, Israel
| | - Daniel Ben Hur
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Naiem Ahmad Wani
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Hadar Cohen
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Li-Av Segev-Zarko
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Christopher J. Arnusch
- Department
of Desalination and Water Treatment, Zuckerberg Institute for Water
Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus 8499000, Israel
| | - Yechiel Shai
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 76100, Israel
| |
Collapse
|
2
|
Hango CR, Backlund CM, Davis HC, Posey ND, Minter LM, Tew GN. Non-Covalent Carrier Hydrophobicity as a Universal Predictor of Intracellular Protein Activity. Biomacromolecules 2021; 22:2850-2863. [PMID: 34156837 DOI: 10.1021/acs.biomac.1c00242] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Over the past decade, extensive optimization of polymeric cell-penetrating peptide (CPP) mimics (CPPMs) by our group has generated a substantial library of broadly effective carriers which circumvent the need for covalent conjugation often required by CPPs. In this study, design rules learned from CPPM development were applied to reverse-engineer the first library of simple amphiphilic block copolypeptides for non-covalent protein delivery, namely, poly(alanine-block-arginine), poly(phenylalanine-block-arginine), and poly(tryptophan-block-arginine). This new CPP library was screened for enhanced green fluorescent protein and Cre recombinase delivery alongside a library of CPPMs featuring equivalent side-chain configurations. Due to the added hydrophobicity imparted by the polymer backbone as compared to the polypeptide backbone, side-chain functionality was not a universal predictor of carrier performance. Rather, overall carrier hydrophobicity predicted the top performers for both internalization and activity of protein cargoes, regardless of backbone identity. Furthermore, comparison of protein uptake and function revealed carriers which facilitated high gene recombination despite remarkably low Cre internalization, leading us to formalize the concept of intracellular availability (IA) of the delivered cargo. IA, a measure of cargo activity per quantity of cargo internalized, provides valuable insight into the physical relationship between cellular internalization and bioavailability, which can be affected by bottlenecks such as endosomal escape and cargo release. Importantly, carriers with maximal IA existed within a narrow hydrophobicity window, more hydrophilic than those exhibiting maximal cargo uptake. Hydrophobicity may be used as a scaffold-independent predictor of protein uptake, function, and IA, enabling identification of new, effective carriers which would be overlooked by uptake-based screening methods.
Collapse
Affiliation(s)
- Christopher R Hango
- Department of Polymer Science & Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Coralie M Backlund
- Department of Polymer Science & Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Hazel C Davis
- Department of Polymer Science & Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Nicholas D Posey
- Department of Polymer Science & Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Lisa M Minter
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States.,Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, Untied States
| | - Gregory N Tew
- Department of Polymer Science & Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States.,Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States.,Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, Untied States
| |
Collapse
|
3
|
Moosmann B, Schindeldecker M, Hajieva P. Cysteine, glutathione and a new genetic code: biochemical adaptations of the primordial cells that spread into open water and survived biospheric oxygenation. Biol Chem 2021; 401:213-231. [PMID: 31318686 DOI: 10.1515/hsz-2019-0232] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 07/08/2019] [Indexed: 12/13/2022]
Abstract
Life most likely developed under hyperthermic and anaerobic conditions in close vicinity to a stable geochemical source of energy. Epitomizing this conception, the first cells may have arisen in submarine hydrothermal vents in the middle of a gradient established by the hot and alkaline hydrothermal fluid and the cooler and more acidic water of the ocean. To enable their escape from this energy-providing gradient layer, the early cells must have overcome a whole series of obstacles. Beyond the loss of their energy source, the early cells had to adapt to a loss of external iron-sulfur catalysis as well as to a formidable temperature drop. The developed solutions to these two problems seem to have followed the principle of maximum parsimony: Cysteine was introduced into the genetic code to anchor iron-sulfur clusters, and fatty acid unsaturation was installed to maintain lipid bilayer viscosity. Unfortunately, both solutions turned out to be detrimental when the biosphere became more oxidizing after the evolution of oxygenic photosynthesis. To render cysteine thiol groups and fatty acid unsaturation compatible with life under oxygen, numerous counter-adaptations were required including the advent of glutathione and the addition of the four latest amino acids (methionine, tyrosine, tryptophan, selenocysteine) to the genetic code. In view of the continued diversification of derived antioxidant mechanisms, it appears that modern life still struggles with the initially developed strategies to escape from its hydrothermal birthplace. Only archaea may have found a more durable solution by entirely exchanging their lipid bilayer components and rigorously restricting cysteine usage.
Collapse
Affiliation(s)
- Bernd Moosmann
- Evolutionary Biochemistry and Redox Medicine, Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, D-55128 Mainz, Germany
| | - Mario Schindeldecker
- Evolutionary Biochemistry and Redox Medicine, Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, D-55128 Mainz, Germany
| | - Parvana Hajieva
- Cellular Adaptation Group, Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, D-55128 Mainz, Germany
| |
Collapse
|
4
|
Aisenbrey C, Salnikov ES, Bechinger B. Solid-State NMR Investigations of the MHC II Transmembrane Domains: Topological Equilibria and Lipid Interactions. J Membr Biol 2019; 252:371-384. [PMID: 31187155 DOI: 10.1007/s00232-019-00071-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/25/2019] [Indexed: 10/26/2022]
Abstract
The major histocompatibility complex class II (MHC II) membrane proteins are key players in the adaptive immune response. An aberrant function of these molecules is associated with a large number of autoimmune diseases such as diabetes type I and chronic inflammatory diseases. The MHC class II is assembled from DQ alpha 1 and DQ beta 1 which come together as a heterodimer through GXXXG-mediated protein-protein interactions and a highly specific protein-sphingomyelin-C18 interaction motif located on DQA1. This association can have important consequences in regulating the function of these membrane proteins. Here, we investigated the structure and topology of the DQA1 and DQB1 transmembrane helical domains by CD-, oriented 2H and 15N solid-state NMR spectroscopies. The spectra at peptide-to-lipid ratios of 0.5 to 2 mol% are indicative of a topological equilibrium involving a helix crossing the membrane with a tilt angle of about 20° and another transmembrane topology with around 30° tilt. The latter is probably representing a dimer. Furthermore, at the lowest peptide-to-lipid ratio, a third polypeptide population becomes obvious. Interestingly, the DQB1 and to a lesser extent the DQA1 transmembrane helical domains exhibit a strong fatty acyl chain disordering effect on the inner segments of the 2H-labelled palmitoyl chain of POPC bilayers. This phosphatidylcholine disordering requires the presence of sphingomyelin-C18 suggesting that the ensemble of transmembrane polypeptide and sphingolipid exerts positive curvature strain.
Collapse
Affiliation(s)
- Christopher Aisenbrey
- Institut de Chimie, Université de Strasbourg/CNRS, UMR7177, 4, Rue Blaise Pascal, 67070, Strasbourg, France
| | - Evgeniy S Salnikov
- Institut de Chimie, Université de Strasbourg/CNRS, UMR7177, 4, Rue Blaise Pascal, 67070, Strasbourg, France
| | - Burkhard Bechinger
- Institut de Chimie, Université de Strasbourg/CNRS, UMR7177, 4, Rue Blaise Pascal, 67070, Strasbourg, France.
| |
Collapse
|
5
|
Affiliation(s)
- Xiaolin Cheng
- Division of Medicinal Chemistry and Pharmacognosy, Biophysics Graduate Program, Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jeremy C. Smith
- UT/ORNL Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6309, United States
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
6
|
da Cunha NB, Cobacho NB, Viana JFC, Lima LA, Sampaio KBO, Dohms SSM, Ferreira ACR, de la Fuente-Núñez C, Costa FF, Franco OL, Dias SC. The next generation of antimicrobial peptides (AMPs) as molecular therapeutic tools for the treatment of diseases with social and economic impacts. Drug Discov Today 2017; 22:234-248. [PMID: 27890668 PMCID: PMC7185764 DOI: 10.1016/j.drudis.2016.10.017] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 10/28/2016] [Accepted: 10/31/2016] [Indexed: 12/02/2022]
Abstract
Anti-infective drugs have had a key role in the contemporary world, contributing to dramatically decrease mortality rates caused by infectious diseases worldwide. Antimicrobial peptides (AMPs) are multifunctional effectors of the innate immune system of mucosal surfaces and present antimicrobial activity against a range of pathogenic viruses, bacteria, and fungi. However, the discovery and development of new antibacterial drugs is a crucial step to overcome the great challenge posed by the emergence of antibiotic resistance. In this review, we outline recent advances in the development of novel AMPs with improved antimicrobial activities that were achieved through characteristic structural design. In addition, we describe recent progress made to overcome some of the major limitations that have hindered peptide biosynthesis.
Collapse
Affiliation(s)
- Nicolau B da Cunha
- Center of Proteomic and Biochemical Analysis, Post-Graduation in Genomic Sciences and Biotechnology Universidade Católica de Brasília UCB, SGAN 916, Modulo B, Bloco C, 70.790-160 Brasilia, DF, Brazil; Genomic Sciences and Biotechnology Program - Universidade Católica de Brasília UCB, SGAN 916, Modulo B, Bloco C, 70.790-160 Brasilia, DF, Brazil
| | - Nicole B Cobacho
- Center of Proteomic and Biochemical Analysis, Post-Graduation in Genomic Sciences and Biotechnology Universidade Católica de Brasília UCB, SGAN 916, Modulo B, Bloco C, 70.790-160 Brasilia, DF, Brazil
| | - Juliane F C Viana
- Center of Proteomic and Biochemical Analysis, Post-Graduation in Genomic Sciences and Biotechnology Universidade Católica de Brasília UCB, SGAN 916, Modulo B, Bloco C, 70.790-160 Brasilia, DF, Brazil; Universidade Ceuma, Rua Josué Montello, 1, 65060-645 São Luís, MA, Brazil
| | - Loiane A Lima
- Center of Proteomic and Biochemical Analysis, Post-Graduation in Genomic Sciences and Biotechnology Universidade Católica de Brasília UCB, SGAN 916, Modulo B, Bloco C, 70.790-160 Brasilia, DF, Brazil
| | - Kamila B O Sampaio
- Center of Proteomic and Biochemical Analysis, Post-Graduation in Genomic Sciences and Biotechnology Universidade Católica de Brasília UCB, SGAN 916, Modulo B, Bloco C, 70.790-160 Brasilia, DF, Brazil
| | - Stephan S M Dohms
- Center of Proteomic and Biochemical Analysis, Post-Graduation in Genomic Sciences and Biotechnology Universidade Católica de Brasília UCB, SGAN 916, Modulo B, Bloco C, 70.790-160 Brasilia, DF, Brazil
| | - Arthur C R Ferreira
- Center of Proteomic and Biochemical Analysis, Post-Graduation in Genomic Sciences and Biotechnology Universidade Católica de Brasília UCB, SGAN 916, Modulo B, Bloco C, 70.790-160 Brasilia, DF, Brazil
| | - César de la Fuente-Núñez
- Synthetic Biology Group, MIT Synthetic Biology Center, Massachusetts Institute of Technology, 02139 Cambridge, MA, USA; Research Laboratory of Electronics, Massachusetts Institute of Technology, 02139 Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, 02139 Cambridge, MA, USA; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 02142 Cambridge, MA, USA; Broad Institute of MIT and Harvard, 02142 Cambridge, MA, USA; Harvard Biophysics Program, Harvard University, 02115 Boston, MA, USA
| | - Fabrício F Costa
- Genomic Sciences and Biotechnology Program - Universidade Católica de Brasília UCB, SGAN 916, Modulo B, Bloco C, 70.790-160 Brasilia, DF, Brazil.
| | - Octávio L Franco
- Center of Proteomic and Biochemical Analysis, Post-Graduation in Genomic Sciences and Biotechnology Universidade Católica de Brasília UCB, SGAN 916, Modulo B, Bloco C, 70.790-160 Brasilia, DF, Brazil; Genomic Sciences and Biotechnology Program - Universidade Católica de Brasília UCB, SGAN 916, Modulo B, Bloco C, 70.790-160 Brasilia, DF, Brazil; S-Inova Biotech, Post-Graduation in Biotechnology, Universidade Católica Dom Bosco, 79117-900 Campo Grande, MS, Brazil
| | - Simoni C Dias
- Center of Proteomic and Biochemical Analysis, Post-Graduation in Genomic Sciences and Biotechnology Universidade Católica de Brasília UCB, SGAN 916, Modulo B, Bloco C, 70.790-160 Brasilia, DF, Brazil; Genomic Sciences and Biotechnology Program - Universidade Católica de Brasília UCB, SGAN 916, Modulo B, Bloco C, 70.790-160 Brasilia, DF, Brazil
| |
Collapse
|
7
|
Pawar AB, Deshpande SA, Gopal SM, Wassenaar TA, Athale CA, Sengupta D. Thermodynamic and kinetic characterization of transmembrane helix association. Phys Chem Chem Phys 2015; 17:1390-8. [DOI: 10.1039/c4cp03732d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The transient dimerization of transmembrane proteins is an important event in several cellular processes and here we use coarse-grain and meso-scale modeling methods to quantify their underlying dynamics.
Collapse
Affiliation(s)
| | | | | | - Tsjerk A. Wassenaar
- Department of Biology
- Computational Biology
- University of Erlangen-Nürnberg
- 91058 Erlangen
- Germany
| | | | | |
Collapse
|
8
|
Kemayo Koumkoua P, Aisenbrey C, Salnikov E, Rifi O, Bechinger B. On the design of supramolecular assemblies made of peptides and lipid bilayers. J Pept Sci 2014; 20:526-36. [PMID: 24909405 DOI: 10.1002/psc.2656] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/29/2014] [Accepted: 04/29/2014] [Indexed: 02/02/2023]
Abstract
Peptides confer interesting properties to materials, supramolecular assemblies and to lipid membranes and are used in analytical devices or within delivery vehicles. Their relative ease of production combined with a high degree of versatility make them attractive candidates to design new such products. Here, we review and demonstrate how CD- and solid-state NMR spectroscopic approaches can be used to follow the reconstitution of peptides into membranes and to describe some of their fundamental characteristics. Whereas CD spectroscopy is used to monitor secondary structure in different solvent systems and thereby aggregation properties of the highly hydrophobic domain of p24, a protein involved in vesicle trafficking, solid-state NMR spectroscopy was used to deduce structural information and the membrane topology of a variety of peptide sequences found in nature or designed. (15)N chemical shift solid-state NMR spectroscopy indicates that the hydrophobic domain of p24 as well as a designed sequence of 19 hydrophobic amino acid residues adopt transmembrane alignments in phosphatidylcholine membranes. In contrast, the amphipathic antimicrobial peptide magainin 2 and the designed sequence LK15 align parallel to the bilayer surface. Additional angular information is obtained from deuterium solid-state NMR spectra of peptide sites labelled with (2)H3-alanine, whereas (31)P and (2)H solid-state NMR spectra of the lipids furnish valuable information on the macroscopic order and phase properties of the lipid matrix. Using these approaches, peptides and reconstitution protocols can be elaborated in a rational manner, and the analysis of a great number of peptide sequences is reviewed. Finally, a number of polypeptides with membrane topologies that are sensitive to a variety of environmental conditions such as pH, lipid composition and peptide-to-lipid ratio will be presented.
Collapse
Affiliation(s)
- Patricia Kemayo Koumkoua
- Université de Strasbourg / CNRS, UMR7177, Institut de Chimie, 1, rue Blaise Pascal, 67070, Strasbourg, France
| | | | | | | | | |
Collapse
|
9
|
Bermejo IL, Arnulphi C, Ibáñez de Opakua A, Alonso-Mariño M, Goñi FM, Viguera AR. Membrane partitioning of the pore-forming domain of colicin A. Role of the hydrophobic helical hairpin. Biophys J 2014; 105:1432-43. [PMID: 24047995 DOI: 10.1016/j.bpj.2013.08.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 08/08/2013] [Accepted: 08/12/2013] [Indexed: 10/26/2022] Open
Abstract
The colicins are bacteriocins that target Escherichia coli and kill bacterial cells through different mechanisms. Colicin A forms ion channels in the inner membranes of nonimmune bacteria. This activity resides exclusively in its C-terminal fragment (residues 387-592). The soluble free form of this domain is a 10 α-helix bundle. The hydrophobic helical hairpin, H8-H9, is buried inside the structure and shielded by eight amphipathic surface helices. The interaction of the C-terminal colicin A domain and several chimeric variants with lipidic vesicles was examined here by isothermal titration calorimetry. In the mutant constructions, natural sequences of the hydrophobic helices H8 and H9 were either removed or substituted by polyalanine or polyleucine. All the constructions fully associated with DOPG liposomes including the mutant that lacked helices H8 and H9, indicating that amphipathic rather than hydrophobic helices were the major determinants of the exothermic binding reactions. Alanine is not specially favored in the lipid-bound form; the chimeric construct with polyalanine produced lower enthalpy gain. On the other hand, the large negative heat capacities associated with partitioning, a characteristic feature of the hydrophobic effect, were found to be dependent on the sequence hydrophobicity of helices H8 and H9.
Collapse
Affiliation(s)
- Ivan L Bermejo
- Unidad de Biofísica (CSIC, UPV/EHU), Barrio Sarriena s/n, Leioa, Spain
| | | | | | | | | | | |
Collapse
|
10
|
Gopinath T, Mote KR, Veglia G. Sensitivity and resolution enhancement of oriented solid-state NMR: application to membrane proteins. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2013; 75:50-68. [PMID: 24160761 PMCID: PMC3850070 DOI: 10.1016/j.pnmrs.2013.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 06/16/2013] [Indexed: 05/19/2023]
Abstract
Oriented solid-state NMR (O-ssNMR) spectroscopy is a major technique for the high-resolution analysis of the structure and topology of transmembrane proteins in native-like environments. Unlike magic angle spinning (MAS) techniques, O-ssNMR spectroscopy requires membrane protein preparations that are uniformly oriented (mechanically or magnetically) so that anisotropic NMR parameters, such as dipolar and chemical shift interactions, can be measured to determine structure and orientation of membrane proteins in lipid bilayers. Traditional sample preparations involving mechanically aligned lipids often result in short relaxation times which broaden the (15)N resonances and encumber the manipulation of nuclear spin coherences. The introduction of lipid bicelles as membrane mimicking systems has changed this scenario, and the more favorable relaxation properties of membrane protein (15)N and (13)C resonances make it possible to develop new, more elaborate pulse sequences for higher spectral resolution and sensitivity. Here, we describe our recent progress in the optimization of O-ssNMR pulse sequences. We explain the theory behind these experiments, demonstrate their application to small and medium size proteins, and describe the technical details for setting up these new experiments on the new generation of NMR spectrometers.
Collapse
Affiliation(s)
- T. Gopinath
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States
| | - Kaustubh R. Mote
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| |
Collapse
|
11
|
Zhong L, Tu R, Gilchrist ML. Tether-supported biomembranes with α-helical peptide-based anchoring constructs. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:299-307. [PMID: 23190371 PMCID: PMC3542394 DOI: 10.1021/la303628n] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The strict requirement of constructing a native lipid environment to preserve the structure and functionality of membrane proteins is the starting constraint when building biomaterials and sensor systems from these biomolecules. To enhance the viability of supported biomembranes systems and build new ligand display interfaces, we apply rationally designed peptides partitioned into the lipid bilayer interface. Peptides designed to form membrane-spanning α-helical anchoring domains are synthesized using solid-phase peptide synthesis. K(3)A(4)L(2)A(7)L(2)A(3)K(2)-FITC is synthesized on the 100 mg scale for use as a biomembrane anchoring molecule, where orthogonal side-chain modifications allow us to introduce probes enabling peptide localization within supported bilayers. The peptides are found to form α-helical domains within liposomes as assessed with circular dichroism spectroscopy. These peptides are designed to be incorporated into lipid bilayers supported by microspheres and serve as biomembrane anchoring moieties to amino-terminated surfaces. Here, the silica bead surface (4.7 μm diameter) is activated with homobifunctional NHS-PEG(3000)-NHS as "polymer cushion" spacers. This tethering to a subset of the K(3)A(4)L(2)A(7)L(2)A(3)K(2)-FITC molecules present in the bilayer is achieved by the fusion of liposomes followed by coupling of the peptide amino groups to the NHS presented from the silica microsphere surfaces. The biomembrane distributions of tethered and untethered K(3)A(4)L(2)A(7)L(2)A(3)K(2)-FITC are probed with confocal microscopy and are found to give 3D reconstructions consistent with largely homogeneous supported biomembranes. The fluidity of the untethered fraction of peptides within supported membranes is quantified using the fluorescence recovery after photobleaching (FRAP) technique. The presence of the PEG(3000) polymer cushion facilitated a 28.9% increase in peptide diffusivity over untethered bilayers at the lowest peptide to lipid ratio we examined. We show that rationally designed peptide-based anchors can be used to tether lipid bilayers, creating a polymer-cushioned lipid microenvironment on surfaces with high lateral mobility and facilitating the development of a new platform for ligand displays.
Collapse
Affiliation(s)
- Lina Zhong
- Department of Chemical Engineering, The Grove School of Engineering, The City College of New York, 140 Street @ Convent Ave, New York NY 10031
| | - Raymond Tu
- Department of Chemical Engineering, The Grove School of Engineering, The City College of New York, 140 Street @ Convent Ave, New York NY 10031
| | - M. Lane Gilchrist
- Department of Chemical Engineering, The Grove School of Engineering, The City College of New York, 140 Street @ Convent Ave, New York NY 10031
- Department of Biomedical Engineering, The Grove School of Engineering, The City College of New York, 140 Street @ Convent Ave, New York NY 10031
| |
Collapse
|
12
|
Bechinger B, Salnikov ES. The membrane interactions of antimicrobial peptides revealed by solid-state NMR spectroscopy. Chem Phys Lipids 2012; 165:282-301. [DOI: 10.1016/j.chemphyslip.2012.01.009] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 01/25/2012] [Accepted: 01/27/2012] [Indexed: 01/29/2023]
|
13
|
Contribution of topology determinants of a viral movement protein to its membrane association, intracellular traffic, and viral cell-to-cell movement. J Virol 2011; 85:7797-809. [PMID: 21593169 DOI: 10.1128/jvi.02465-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The p7B movement protein (MP) of Melon necrotic spot virus (MNSV) is a single-pass membrane protein associated with the endoplasmic reticulum (ER), the Golgi apparatus (GA), and plasmodesmata (Pd). Experimental data presented here revealed that the p7B transmembrane domain (TMD) was sufficient to target the green fluorescent protein (GFP) to ER membranes. In addition, the short extramembrane regions of p7B were essential for subsequent ER export and transport to the GA and Pd. Microsomal partitioning and bimolecular fluorescence assays supported a type II topology of p7B in planta. Mutations affecting conventional determinants of p7B membrane topology, such as the TMD secondary structure, the overall hydrophobicity profile, the so-called "aromatic belt," and the net charge distribution on either side of the TMD, were engineered into infectious RNAs to investigate the relationship between the MP structure and MNSV cell-to-cell movement. The results revealed that (i) the overall hydrophobic profile and the α-helix integrity of the TMD were relevant for virus movement, (ii) modification of the net charge balance of the regions flanking both TMD sides drastically reduced cell-to-cell movement, (iii) localization of p7B to the GA was necessary but not sufficient for virus movement, and (iv) membrane insertion was essential for p7B function in virus movement. Our results therefore indicate that MNSV cell-to-cell movement requires sequential transport of p7B from the ER via the GA to Pd, which is modulated by a combination of several signals with different strengths in the extramembrane regions and TMD of the MP.
Collapse
|
14
|
Schneggenburger PE, Beerlink A, Weinhausen B, Salditt T, Diederichsen U. Peptide model helices in lipid membranes: insertion, positioning, and lipid response on aggregation studied by X-ray scattering. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2011; 40:417-36. [PMID: 21181143 PMCID: PMC3070074 DOI: 10.1007/s00249-010-0645-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 11/08/2010] [Accepted: 11/12/2010] [Indexed: 11/18/2022]
Abstract
Studying membrane active peptides or protein fragments within the lipid bilayer environment is particularly challenging in the case of synthetically modified, labeled, artificial, or recently discovered native structures. For such samples the localization and orientation of the molecular species or probe within the lipid bilayer environment is the focus of research prior to an evaluation of their dynamic or mechanistic behavior. X-ray scattering is a powerful method to study peptide/lipid interactions in the fluid, fully hydrated state of a lipid bilayer. For one, the lipid response can be revealed by observing membrane thickening and thinning as well as packing in the membrane plane; at the same time, the distinct positions of peptide moieties within lipid membranes can be elucidated at resolutions of up to several angstroms by applying heavy-atom labeling techniques. In this study, we describe a generally applicable X-ray scattering approach that provides robust and quantitative information about peptide insertion and localization as well as peptide/lipid interaction within highly oriented, hydrated multilamellar membrane stacks. To this end, we have studied an artificial, designed β-helical peptide motif in its homodimeric and hairpin variants adopting different states of oligomerization. These peptide lipid complexes were analyzed by grazing incidence diffraction (GID) to monitor changes in the lateral lipid packing and ordering. In addition, we have applied anomalous reflectivity using synchrotron radiation as well as in-house X-ray reflectivity in combination with iodine-labeling in order to determine the electron density distribution ρ(z) along the membrane normal (z axis), and thereby reveal the hydrophobic mismatch situation as well as the position of certain amino acid side chains within the lipid bilayer. In the case of multiple labeling, the latter technique is not only applicable to demonstrate the peptide's reconstitution but also to generate evidence about the relative peptide orientation with respect to the lipid bilayer.
Collapse
Affiliation(s)
- Philipp E. Schneggenburger
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr. 2, 37077 Göttingen, Germany
| | - André Beerlink
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Britta Weinhausen
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Tim Salditt
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Ulf Diederichsen
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr. 2, 37077 Göttingen, Germany
| |
Collapse
|
15
|
Bechinger B. Insights into the mechanisms of action of host defence peptides from biophysical and structural investigations. J Pept Sci 2011; 17:306-14. [DOI: 10.1002/psc.1343] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 11/12/2010] [Accepted: 11/15/2010] [Indexed: 01/09/2023]
|
16
|
Yano Y, Shimai N, Matsuzaki K. Design of a Soluble Transmembrane Helix for Measurements of Water-Membrane Partitioning. J Phys Chem B 2010; 114:1925-31. [DOI: 10.1021/jp910185w] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yoshiaki Yano
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Norie Shimai
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Katsumi Matsuzaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
17
|
Transmembrane vs. non-transmembrane hydrophobic helix topography in model and natural membranes. Curr Opin Struct Biol 2009; 19:464-72. [DOI: 10.1016/j.sbi.2009.07.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Accepted: 07/10/2009] [Indexed: 11/21/2022]
|
18
|
de Planque MRR, Killian JA. Protein–lipid interactions studied with designed transmembrane peptides: role of hydrophobic matching and interfacial anchoring (Review). Mol Membr Biol 2009; 20:271-84. [PMID: 14578043 DOI: 10.1080/09687680310001605352] [Citation(s) in RCA: 243] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Biological membranes are characterized by a heterogeneous composition, which is not only manifested in the wide variety of their components, but also in aspects like the lateral organization, topology, and conformation of proteins and lipids. In bringing about the correct membrane structure, protein-lipid interactions can be expected to play a prominent role. The extent of hydrophobic matching between transmembrane protein segments and lipids potentially constitutes a versatile director of membrane organization, because a tendency to avoid hydrophobic mismatch could result in compensating adaptations such as tilt of the transmembrane segment or segregation into distinct domains. Also, interfacial interactions between lipid headgroups and the aromatic and charged residues that typically flank transmembrane domains may act as an organizing element. In this review, we discuss the numerous model studies that have systematically explored the influence of hydrophobic matching and interfacial anchoring on membrane structure. Designed peptides consisting of a polyleucine or polyleucine/alanine hydrophobic stretch, which is flanked on both sides by tryptophan or lysine residues, reflect the general layout of transmembrane protein segments. It is shown for phosphatidylcholine bilayers and for other model membranes that these peptides adapt a transmembrane topology without extensive peptide or lipid adaptations under conditions of hydrophobic matching, but that significant rearrangements can result from hydrophobic mismatch. Moreover, these effects depend on the nature of the flanking residues, implying a modulation of the mismatch response by interfacial interactions of the flanking residues. The implications of these model studies for the organization of biomembranes are discussed in the context of recent experiments with more complex systems.
Collapse
Affiliation(s)
- Maurits R R de Planque
- Department of Biochemistry of Membranes, Center for Biomembranes and Lipid Enzymology, Institute of Biomembranes, Utrecht University, Utrecht, The Netherlands.
| | | |
Collapse
|
19
|
Aisenbrey C, Goormaghtigh E, Ruysschaert JM, Bechinger B. Translocation of amino acyl residues from the membrane interface to the hydrophobic core: thermodynamic model and experimental analysis using ATR-FTIR spectroscopy. Mol Membr Biol 2009; 23:363-74. [PMID: 16923729 DOI: 10.1080/09687860600738742] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The interactions of a series of histidine-containing peptides with biological model membranes have been investigated by attenuated total reflection Fourier transform infra red (ATR-FTIR) spectroscopy. Related peptides have previously been shown to exhibit antibiotic and DNA transfection activities. The 26-residue LAH4X4 peptides were designed in such a manner to form amphipathic helical structures in membrane environments. Four histidines and four variable amino acids X constitute one face of the helix whereas leucines and alanines characterize the opposite hydrophobic surface. The dichroic ratio of ATR-FTIR spectra has been used to follow the pH-dependent transition from in-plane to transmembrane alignments upon increase in pH. A theoretical model of the topological modulations is presented and the experimental transition curves analysed in order to reveal the Gibbs free energy of transition. The novel concept provides access to the free energy changes associated with the amino acids X incorporated into an extended alpha-helix and in the context of phospholipid bilayers. For the peptides of the series the Gibbs free energies associated with the transition from the membrane interface to the bilayer interior follow the sequence of amino acids: L<A approximately I<S approximately F<T approximately G<V approximately W<<Y.
Collapse
|
20
|
Kouzayha A, Wattraint O, Sarazin C. Interactions of two transmembrane peptides in supported lipid bilayers studied by a 31P and 15N MAOSS NMR strategy. Biochimie 2009; 91:774-8. [DOI: 10.1016/j.biochi.2009.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Partitioning of amino-acid analogues in a five-slab membrane model. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:2234-43. [DOI: 10.1016/j.bbamem.2008.06.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 05/15/2008] [Accepted: 06/17/2008] [Indexed: 11/20/2022]
|
22
|
Effect of lipid composition on the topography of membrane-associated hydrophobic helices: stabilization of transmembrane topography by anionic lipids. J Mol Biol 2008; 379:704-18. [PMID: 18479706 DOI: 10.1016/j.jmb.2008.04.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 04/08/2008] [Accepted: 04/09/2008] [Indexed: 10/22/2022]
Abstract
To investigate the effect of lipid structure upon the membrane topography of hydrophobic helices, the behavior of hydrophobic peptides was studied in model membrane vesicles. To define topography, fluorescence and fluorescence quenching methods were used to determine the location of a Trp at the center of the hydrophobic sequence. For peptides with cationic residues flanking the hydrophobic sequence, the stability of the transmembrane (TM) configuration (relative to a membrane-bound non-TM state) increased as a function of lipid composition on the order: 1:1 (mol:mol) 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC):1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine approximately 6:4 POPC:cholesterol<POPC approximately dioleoylphosphatidylcholine (DOPC)<1,2-dioleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] sodium salt (DOPG)</=1,2-dioleoyl-sn-glycero-3-[phospho-l-serine] sodium salt (DOPS), indicating that the anionic lipids DOPG and DOPS most strongly stabilized the TM configuration. TM stabilization was near maximal at 20-30 mol% anionic lipid, which are physiologically relevant values. TM stabilization by anionic lipid was observed for hydrophobic sequences with a diverse set of sequences (including polyAla), diverse lengths (from 12 to 22 residues), and various cationic flanking residues (H, R, or K), but not when the flanking residues were uncharged. TM stabilization by anionic lipid was also dependent on the number of cationic residues flanking the hydrophobic sequence, but was still significant with only one cationic residue flanking each end of the peptide. These observations are consistent with TM-stabilizing effects being electrostatic in origin. However, Trp located more deeply in DOPS vesicles relative to DOPG vesicles, and peptides in DOPS vesicles showed increased helix formation relative to DOPG and all other lipid compositions. These observations fit a model in which DOPS anchors flanking residues near the membrane surface more strongly than does DOPG and/or increases the stability of the TM state to a greater degree than DOPG. We conclude that anionic lipids can have significant and headgroup structure-specific effects upon membrane protein topography.
Collapse
|
23
|
Affiliation(s)
- Kevin R Mackenzie
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
24
|
Krishnakumar SS, London E. The control of transmembrane helix transverse position in membranes by hydrophilic residues. J Mol Biol 2007; 374:1251-69. [PMID: 17997412 DOI: 10.1016/j.jmb.2007.10.032] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 10/10/2007] [Accepted: 10/11/2007] [Indexed: 11/18/2022]
Abstract
The ability of hydrophilic residues to shift the transverse position of transmembrane (TM) helices within bilayers was studied in model membrane vesicles. Transverse shifts were detected by fluorescence measurements of the membrane depth of a Trp residue at the center of a hydrophobic sequence. They were also estimated from the effective length of the TM-spanning sequence, derived from the stability of the TM configuration under conditions of negative hydrophobic mismatch. Hydrophilic residues (at the fifth position in a 21-residue hydrophobic sequence composed of alternating Leu and Ala residues and flanked on both ends by two Lys) induced transverse shifts that moved the hydrophilic residue closer to the membrane surface. At pH 7, the dependence of the extent of shift upon the identity of the hydrophilic residue increased in the order: L < G approximately = Y approximately = T < R approximately = H < S < P < K < E approximately = Q < N < D. By varying pH, shifts with ionizable residues fully charged or uncharged were measured, and the extent of shift increased in the order: L < G approximately = Y approximately = H(o) approximately = T < E(o) approximately = R < S < P < K+ < Q approximately = D(o) approximately = H+ < N approximately = E- < D-. The dependence of transverse shifts upon hydrophilic residue identity was consistent with the hypothesis that shift magnitude is largely controlled by the combination of side chain hydrophilicity, ionization state, and ability to position polar groups near the bilayer surface (snorkeling). Additional experiments showed that shift was also modulated by the position of the hydrophilic residue in the sequence and the hydrophobicity of the sequence moved out of the bilayer core upon shifting. Combined, these studies show that the insertion boundaries of TM helices are very sensitive to sequence, and can be altered even by weakly hydrophilic residues. Thus, many TM helices may have the capacity to exist in more than one transverse position. Knowledge of the magnitudes of transverse shifts induced by different hydrophilic residues should be useful for design of mutagenesis studies measuring the effect of transverse TM helix position upon function.
Collapse
Affiliation(s)
- Shyam S Krishnakumar
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | | |
Collapse
|
25
|
Krishnakumar SS, London E. Effect of sequence hydrophobicity and bilayer width upon the minimum length required for the formation of transmembrane helices in membranes. J Mol Biol 2007; 374:671-87. [PMID: 17950311 DOI: 10.1016/j.jmb.2007.09.037] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 09/11/2007] [Accepted: 09/12/2007] [Indexed: 10/22/2022]
Abstract
The minimum hydrophobic length necessary to form a transmembrane (TM) helix in membranes was investigated using model membrane-inserted hydrophobic helices. The fluorescence of a Trp at the center of the sequence and its sensitivity to quenching were used to ascertain helix position within the membrane. Peptides with hydrophobic cores composed of poly(Leu) were compared to sequences containing a poly 1:1 Leu:Ala core (which have a hydrophobicity typical of natural TM helices). Studies varying bilayer width revealed that the poly(Leu) core peptides predominately formed a TM state when the bilayer width exceeded hydrophobic sequence length by (i.e. when negative mismatch was) up to approximately 11-12 A (e.g. the case of a 11-12 residue hydrophobic sequence in bilayers with a biologically relevant width, i.e. dioleoylphosphatidylcholine (DOPC) bilayers), while poly(LeuAla) core peptides formed predominantly TM state with negative mismatch of up to 9 A (a 13 residue hydrophobic sequence in DOPC bilayers). This indicates that minimum length necessary to form a predominating amount of a TM state (minimum TM length) is only modestly hydrophobicity-dependent for the sequences studied here, and a formula that defines the minimum TM length as a function of hydrophobicity for moderately-to-highly hydrophobic sequences was derived. The minimum length able to form a stable TM helix for alternating LeuAla sequences, and that for sequences with a Leu block followed by an Ala block, was similar, suggesting that a hydrophobicity gradient along the sequence may not be an important factor in TM stability. TM stability was also similar for sequences flanked by different charged ionizable residues (Lys, His, Asp). However, ionizable flanking residues destabilized the TM configuration much more when charged than when uncharged. The ability of short hydrophobic sequences to form TM helices in membranes in the presence of substantial negative mismatch implies that lipid bilayers have a considerable ability to adjust to negative mismatch, and that short TM helices may be more common than generally believed. Factors that modulate the ability of bilayers to adjust to mismatch may strongly affect the configuration of short hydrophobic helices.
Collapse
Affiliation(s)
- Shyam S Krishnakumar
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | | |
Collapse
|
26
|
Han X, Hristova K, Wimley WC. Protein folding in membranes: insights from neutron diffraction studies of a membrane beta-sheet oligomer. Biophys J 2007; 94:492-505. [PMID: 17872952 PMCID: PMC2157250 DOI: 10.1529/biophysj.107.113183] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Studies of the assembly of the hexapeptide Acetyl-Trp-Leu(5) (AcWL(5)) into beta-sheets in membranes have provided insights into membrane protein folding. Yet, the exact structure of the oligomer in the lipid bilayer is unknown. Here we use neutron diffraction to study the disposition of the peptides in bilayers. We find that pairs of adjacent deuterium-labeled leucines have no well-defined peak or dip in the transmembrane distribution profiles, indicative of heterogeneity in the depth of membrane insertion. At the same time, the monomeric homolog AcWL(4) exhibits a homogeneous, well-defined, interfacial location in neutron diffraction experiments. Thus, although the bilayer location of monomeric AcWL(4) is determined by hydrophobicity matching or complementarity within the bilayer, the AcWL(5) molecules in the oligomer are positioned at different depths within the bilayer because they assemble into a staggered transmembrane beta-sheet. The AcWL(5) assembly is dominated by protein-protein interactions rather than hydrophobic complementarity. These results have implications for the structure and folding of proteins in their native membrane environment and highlight the importance of the interplay between hydrophobic complementarity and protein-protein interactions in determining the structure of membrane proteins.
Collapse
Affiliation(s)
- Xue Han
- The Johns Hopkins University, Department of Materials Science and Engineering, Baltimore, Maryland 21218, USA
| | | | | |
Collapse
|
27
|
Lorin A, Charloteaux B, Fridmann-Sirkis Y, Thomas A, Shai Y, Brasseur R. Mode of Membrane Interaction and Fusogenic Properties of a de Novo Transmembrane Model Peptide Depend on the Length of the Hydrophobic Core. J Biol Chem 2007; 282:18388-18396. [PMID: 17459883 DOI: 10.1074/jbc.m700099200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Model peptides composed of alanine and leucine residues are often used to mimic single helical transmembrane domains. Many studies have been carried out to determine how they interact with membranes. However, few studies have investigated their lipid-destabilizing effect. We designed three peptides designated KALRs containing a hydrophobic stretch of 14, 18, or 22 alanines/leucines surrounded by charged amino acids. Molecular modeling simulations in an implicit membrane model as well as attenuated total reflection-Fourier transform infrared analyses show that KALR is a good model of a transmembrane helix. However, tryptophan fluorescence and attenuated total reflection-Fourier transform infrared spectroscopy indicate that the extent of binding and insertion into lipids increases with the length of the peptide hydrophobic core. Although binding can be directly correlated to peptide hydrophobicity, we show that insertion of peptides into a membrane is determined by the length of the peptide hydrophobic core. Functional studies were performed by measuring the ability of peptides to induce lipid mixing and leakage of liposomes. The data reveal that whereas KALR14 does not destabilize liposomal membranes, KALR18 and KALR22 induce 40 and 50% of lipid-mixing, and 65 and 80% of leakage, respectively. These results indicate that a transmembrane model peptide can induce liposome fusion in vitro if it is long enough. The reasons for the link between length and fusogenicity are discussed in relation to studies of transmembrane domains of viral fusion proteins. We propose that fusogenicity depends not only on peptide insertion but also on the ability of peptides to destabilize the two leaflets of the liposome membrane.
Collapse
Affiliation(s)
- Aurélien Lorin
- Gembloux Agricultural University, Centre de Biophysique Moléculaire Numérique, B-5030 Gembloux, Belgium
| | - Benoit Charloteaux
- Gembloux Agricultural University, Centre de Biophysique Moléculaire Numérique, B-5030 Gembloux, Belgium
| | - Yael Fridmann-Sirkis
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Annick Thomas
- Gembloux Agricultural University, Centre de Biophysique Moléculaire Numérique, B-5030 Gembloux, Belgium
| | - Yechiel Shai
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Robert Brasseur
- Gembloux Agricultural University, Centre de Biophysique Moléculaire Numérique, B-5030 Gembloux, Belgium.
| |
Collapse
|
28
|
Loudet C, Manet S, Gineste S, Oda R, Achard MF, Dufourc EJ. Biphenyl bicelle disks align perpendicular to magnetic fields on large temperature scales: a study combining synthesis, solid-state NMR, TEM, and SAXS. Biophys J 2007; 92:3949-59. [PMID: 17307824 PMCID: PMC1868983 DOI: 10.1529/biophysj.106.097758] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A phosphatidylcholine lipid (PC) containing a biphenyl group in one of its acyl chains (1-tetradecanoyl-2-(4-(4-biphenyl)butanoyl)-sn-glycero-3-PC, TBBPC) was successfully synthesized with high yield. Water mixtures of TBBPC with a short-chain C(6) lipid, dicaproyl-PC (DCPC), lead to bicelle systems formation. Freeze-fracture electron microscopy evidenced the presence of flat bilayered disks of 800 A diameter for adequate composition, hydration, and temperature conditions. Because of the presence of the biphenyl group, which confers to the molecule a positive magnetic anisotropy Delta chi, the disks align with their normal, n, parallel to the magnetic field B(0), as directly detected by (31)P, (14)N, (2)H solid-state NMR and also using small-angle x-ray scattering after annealing in the field. Temperature-composition and temperature-hydration diagrams were established. Domains where disks of TBBPC/DCPC align with their normal parallel to the field were compared to chain-saturated lipid bicelles made of DMPC(dimyristoylPC)/DCPC, which orient with their normal perpendicular to B(0). TBBPC/DCPC bicelles exist on a narrow range of long- versus short-chain lipid ratios (3%) but over a large temperature span around room temperature (10-75 degrees C), whereas DMPC/DCPC bicelles exhibit the reverse situation, i.e., large compositional range (22%) and narrow temperature span (25-45 degrees C). The two types of bicelles present orienting properties up to 95% dilution but with the peculiarity that water trapped in biphenyl bicelles exhibits ordering properties twice as large as those observed in the saturated-chains analog, which offers very interesting properties for structural studies on hydrophilic or hydrophobic embedded biomolecules.
Collapse
Affiliation(s)
- Cécile Loudet
- UMR 5248 CBMN, CNRS-Université Bordeaux 1-ENITAB, Institut Européen de Chimie et Biologie, Pessac, France
| | | | | | | | | | | |
Collapse
|
29
|
Duckwitz W, Hausmann R, Aschrafi A, Schmalzing G. P2X5 Subunit Assembly Requires Scaffolding by the Second Transmembrane Domain and a Conserved Aspartate. J Biol Chem 2006; 281:39561-72. [PMID: 17001079 DOI: 10.1074/jbc.m606113200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Functional homomeric and heteromeric ATP-gated P2X receptor channels have been shown to display a characteristic trimeric architecture. Of the seven different isoforms (designated P2X(1)-P2X(7)), P2X(5) occurs in humans primarily as a non-functional variant lacking the C-terminal end of the ectodomain and the outer half of the second transmembrane domain. We show that this truncated variant, which results from the splice-skipping of exon 10, is prone to subunit aggregation because the residual transmembrane domain 2 is too short to insert into the membrane. Alleviation of the negative hydrophobic mismatch by the addition of a stretch of moderately hydrophobic residues enabled formation of a second membrane-spanning domain and strictly parallel homotrimerization. Systematic mutagenesis identified only one transmembrane domain 2 residue, Asp(355), which supported homotrimerization in a side chain-specific manner. Our results indicate that transmembrane domain 2 formation contributes 2-fold to hP2X(5) homotrimerization by tethering the end of the ectodomain to the membrane, thereby topologically restricting conformational mobility, and by intramembrane positioning of Asp(355). While transmembrane domain 2 appears to favor assembly by enabling productive subunit interactions in the ectodomain, Asp(355) seems to assist by simultaneously driving intramembrane helix interactions. Overall, these results indicate a complex interplay between topology, helix-helix interactions, and oligomerization to achieve a correctly folded structure.
Collapse
Affiliation(s)
- Wiebke Duckwitz
- Department of Molecular Pharmacology, Rheinisch-Westfaelische Technische Hochschule (RWTH) Aachen, Wendlingweg 2, D-52074 Aachen, Germany
| | | | | | | |
Collapse
|
30
|
Esteban-Martín S, Salgado J. Self-assembling of peptide/membrane complexes by atomistic molecular dynamics simulations. Biophys J 2006; 92:903-12. [PMID: 17085495 PMCID: PMC1779969 DOI: 10.1529/biophysj.106.093013] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Model biological membranes consisting of peptide/lipid-bilayer complexes can nowadays be studied by classical molecular dynamics (MD) simulations at atomic detail. In most cases, the simulation starts with an assumed state of a peptide in a preformed bilayer, from which equilibrium configurations are difficult to obtain due to a relatively slow molecular diffusion. As an alternative, we propose an extension of reported work on the self-organization of unordered lipids into bilayers, consisting of including a peptide molecule in the initial random configuration to obtain a membrane-bound peptide simultaneous to the formation of the lipid bilayer. This strategy takes advantage of the fast reorganization of lipids, among themselves and around the peptide, in an aqueous environment. Model peptides of different hydrophobicity, CH3-CO-W2L18W2-NH2 (WL22) and CH3-CO-W2A18W2-NH2 (WA22), in dipalmitoyl-phosphatidylcholine (DPPC) are used as test cases. In the equilibrium states of the peptide/membrane complexes, achieved in time ranges of 50-100 ns, the two peptides behave as expected from experimental and theoretical studies. The strongly hydrophobic WL22 is inserted in a transmembrane configuration and the marginally apolar, alanine-based WA22 is found in two alternative states: transmembrane inserted or parallel to the membrane plane, embedded close to the bilayer interface, with similar stability. This shows that the spontaneous assembly of peptides and lipids is an unbiased and reliable strategy to produce and study models of equilibrated peptide/lipid complexes of unknown membrane-binding mode and topology.
Collapse
Affiliation(s)
- Santi Esteban-Martín
- Institute of Molecular Science, University of Valencia, 46980 Paterna, Valencia, Spain
| | | |
Collapse
|
31
|
Sengupta D, Meinhold L, Langosch D, Ullmann GM, Smith JC. Understanding the energetics of helical peptide orientation in membranes. Proteins 2006; 58:913-22. [PMID: 15657932 DOI: 10.1002/prot.20383] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Understanding the energetic factors determining the positioning and orientation of single-helical peptides in membranes is of fundamental interest in structural biology. Here, a simple 5-slab continuum dielectric model for the membrane is examined that distinguishes between the solvent, headgroup, and core regions. An analytical solution for the electrostatic solvation of a single dipole and an all-atom model of N-methylacetamide are used to demonstrate the effect of the dielectric boundaries in the system on peptide dipole orientation. The dipole orientation energy is shown to dominate the electrostatic solvation energy of a polyalanine helix in the membrane. With an additional surface-area-dependent term to account for the cavity formation in the aqueous region, the continuum electrostatics description is used to examine several helical peptides, the atoms of which are explicitly represented with a molecular mechanics force field. The experimentally determined tilt angles of a number of peptides of alternating alanine and leucine residues, and of glycophorin and melittin, are accurately reproduced by the model. The factors determining the tilt angles and their fluctuations are analyzed. The tilt angles of the simpler peptides are found to increase approximately linearly with peptide length; this effect is also rationalized. The analysis and model presented here provide a step toward the prediction of helical membrane protein structure.
Collapse
Affiliation(s)
- Durba Sengupta
- IWR-Computational Molecular Biophysics, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
32
|
Sauer I, Nikolenko H, Keller S, Abu Ajaj K, Bienert M, Dathe M. Dipalmitoylation of a cellular uptake-mediating apolipoprotein E-derived peptide as a promising modification for stable anchorage in liposomal drug carriers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:552-61. [PMID: 16681993 DOI: 10.1016/j.bbamem.2006.03.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Revised: 03/06/2006] [Accepted: 03/09/2006] [Indexed: 11/18/2022]
Abstract
Liposomes equipped with cellular uptake-mediating peptidic vector compounds have attracted much attention as target-specific drug delivery systems. Aside from the development of the target recognition motif itself, vector coupling to liposomes while conserving the active conformation constitutes an important element in carrier development. To elucidate the most efficient way for adsorptive peptide binding to liposomes, we synthesized and characterized two-domain peptides comprising a cationic sequence derived from the binding domain of apolipoprotein E (apoE) for the low-density lipoprotein receptor and different lipid-binding motifs, that is, an amphipathic helix, a transmembrane helix, single fatty acids or two palmitoyl chains. Peptide properties considered relevant for peptide-liposome complexes to initiate an endocytotic cellular uptake such as lipid binding, helicity, stability of anchorage, bilayer-disturbing activity, and toxicity showed that the dipalmitoyl derivative was the most suitable to associate the apoE peptide to the surface of liposomes. The peptide showed pronounced lipid affinity and was stably anchored within the lipid bilayer on a time scale of at least 30 min. The helicity of about 40% in the lipid-bound state and the location of the amphipathic helix on the liposomal surface provided the prerequisites for interaction of the complex with the cell surface-located receptor. The concentration of the dipalmitoylated peptide to permeabilize neutral lipid bilayers (lipid concentration 25 microM) was 0.06 microM and a 2 microM concentration reduced cell viability to about 80%. Efficient internalization of liposomes bearing about 180 peptide derivatives on the surface into brain capillary endothelial cells was monitored by confocal laser scanning microscopy. The concept of complexation using dipalmitoylated peptides may offer an efficient substitute to covalent vector coupling and a prospective way to optimize the capacity of liposomes as drug delivery systems also for different targets.
Collapse
Affiliation(s)
- Ines Sauer
- Leibniz Institute of Molecular Pharmacology (FMP), Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Aisenbrey C, Kinder R, Goormaghtigh E, Ruysschaert JM, Bechinger B. Interactions Involved in the Realignment of Membrane-associated Helices. J Biol Chem 2006; 281:7708-16. [PMID: 16407268 DOI: 10.1074/jbc.m513151200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A series of histidine-containing peptides (LAH4X6) was designed to investigate the membrane interactions of selected side chains. To this purpose, their pH-dependent transitions from in-plane to transmembrane orientations were investigated by attenuated total reflection Fourier transform infrared and oriented solid-state NMR spectroscopies. Peptides of the same family have previously been shown to exhibit antibiotic and DNA transfection activities. Solution NMR spectroscopy indicates that these peptides form amphipathic helical structures in membrane environments, and the technique was also used to characterize the pK values of all histidines in the presence of detergent micelles. Whereas one face of the amphipathic helix is clearly hydrophobic, the opposite side is flanked by four histidines surrounding six leucine, alanine, glycine, tryptophan, or tyrosine residues, respectively. This diversity in peptide composition causes pronounced shifts in the midpoint pH of the in-plane to transmembrane helical transition, which is completely abolished for the peptides carrying the most hydrophilic amino acid residues. These properties open up a conceptually new approach to study in a quantitative manner the hydrophobic as well as specific interactions of amino acids in membranes. Notably, the resulting scale for whole residue transitions from the bilayer interface to the hydrophobic membrane interior is obtained from extended helical sequences in lipid bilayers.
Collapse
Affiliation(s)
- Christopher Aisenbrey
- Institut/Faculté de Chimie, Université Louis Pasteur/CNRS LC3-UMR7177, 4 Rue Blaise Pascal, Strasbourg 67070, France
| | | | | | | | | |
Collapse
|
34
|
Hesselink RW, Koehorst RBM, Nazarov PV, Hemminga MA. Membrane-bound peptides mimicking transmembrane Vph1p helix 7 of yeast V-ATPase: A spectroscopic and polarity mismatch study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1716:137-45. [PMID: 16257593 DOI: 10.1016/j.bbamem.2005.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Revised: 08/29/2005] [Accepted: 08/30/2005] [Indexed: 11/18/2022]
Abstract
The V-ATPases are a family of ATP-dependent proton pumps, involved in a variety of cellular processes, including bone breakdown. V-ATPase enzymes that are too active in the latter process can result in osteoporosis, and inhibitors of the enzyme could be used to treat this disease. As a first step in studying the structure and function of the membrane-embedded interface at which proton translocation takes place, and its role in V-ATPase inhibition, synthetic peptides P1 and P2 consisting of 25 amino acid residues are presented here that mimic Vph1p helix 7 of yeast V-ATPase. A single mutation R10A between peptide P1 and P2 makes it possible to focus on the role of the essential arginine residue R735 in proton translocation. In the present work, we use a novel combination of spectroscopic techniques, such as CD spectroscopy, tryptophan emission spectra, acrylamide quenching and parallax analysis, and polarity mismatch modeling to characterize the peptides P1 and P2 in lipid bilayer systems. Based on both the spectroscopic experiments and the polarity mismatch modeling, P1 and P2 adopt a similar transmembrane conformation, with a mainly alpha-helical structure in the central part, placing the tryptophan residue at position 12 at a location 4+/-2 A from the centre of the lipid bilayer. Furthermore, the arginine at position 10 in P1 does not have an effect on the bilayer topology of the peptide, showing that the long, flexible side chain of this residue is able to snorkel towards the lipid headgroup region. This large flexibility of R735 might be important for its function in proton translocation in the V-ATPase enzyme.
Collapse
Affiliation(s)
- Renske W Hesselink
- Laboratory of Biophysics, Wageningen University, Dreijenlaan 3, NL-6703 HA, P.O. Box 8128, 6700 ET Wageningen, The Netherlands
| | | | | | | |
Collapse
|
35
|
Aussenac F, Lavigne B, Dufourc EJ. Toward bicelle stability with ether-linked phospholipids: temperature, composition, and hydration diagrams by 2H and 31P solid-state NMR. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005; 21:7129-35. [PMID: 16042433 DOI: 10.1021/la050243a] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Phosphorus and deuterium wide line NMR was used to determine diagrams of binary mixtures of 1,2-di-O-tetradecyl-sn-glycero-3-phosphocholine (DIOMPC) and 1,2-di-O-hexyl-sn-glycero-3-phosphocholine (DIOHPC) ether-phospholipids. By varying the hydration, h, the temperature, T, and the mole fraction, X, of long-chain ether-phospholipids, we delineated the conditions for which such systems are oriented by the magnetic field, in the presence of 100 mM KCl. The 3D domain is found for X = 62-90%, T = 27-50 degrees C, and h = 70-98%. At 80% hydration, the domain shape (X = 70-90% and T = 27-42 degrees C) is close to that already observed for ester-phospholipids mixtures (Raffard, G.; Steinbruckner, S.; Arnold, A.; Davis, J. H.; Dufourc, E. J. Langmuir 2000, 16, 7655-7662) where disc-shaped bicelles of 300-600 A have been found by electron microscopy (Arnold, A.; Labrot, T.; Oda, R.; Dufourc, E. J. Biophys. J. 2002, 83, 2667-2680). Systems made of ether-linked lipids are much more stable on time and acidic conditions than those made of ester lipids. Assuming that the disc-shaped species are also found with ether lipids, their diameter as determined from integration of phosphorus NMR lines ranges from 240 to 440 A +/- 10%; it is generally independent of hydration and temperature but decreases with decreasing long-chain lipid content, X. The structure and the dynamics of water in the DIOMPC-DIOHPC were characterized by (2)H NMR. Water exchanges between the membrane surface where it is bound and a bulk isotropic pool lead to an average ordered state for temperatures in the bicelle region and above, thus offering a larger thermal span for structural studies of dissolved molecules.
Collapse
Affiliation(s)
- Fabien Aussenac
- Bruker Biospin, Laboratoire d'applications, Wissembourg, France, and UMR5144 CNRS-UBx1, Institut Européen de Chimie et Biologie, Pessac, France
| | | | | |
Collapse
|
36
|
Loudet C, Khemtémourian L, Aussenac F, Gineste S, Achard MF, Dufourc EJ. Bicelle membranes and their use for hydrophobic peptide studies by circular dichroism and solid state NMR. Biochim Biophys Acta Gen Subj 2005; 1724:315-23. [PMID: 15961233 DOI: 10.1016/j.bbagen.2005.04.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Revised: 04/23/2005] [Accepted: 04/26/2005] [Indexed: 10/25/2022]
Abstract
Mixtures of dicaproyl- (DC), dimyristoyl- (DM) and 1-tetradecanoyl-2-biphenylbutanoyl-(TBB) phosphatidylcholine (PC) in water produce bicelle membranes that are oriented by magnetic fields. DMPC/DCPC systems orient such that their membrane plane is parallel to the magnetic field, whereas for TBBPC/DCPC, the plane is perpendicular to the field. Partial temperature-composition-hydration diagrams are established using solid-state 31P-NMR. DMPC/DCPC bicelles exist on a large range of composition but on a narrow temperature domain (25-45 degrees C). At converse, TBBPC/DCPC form bicelles on a narrow compositional range but over a large temperature span (10-70 degrees C). The TBBPC/DCPC bicelles are shown to be a very powerful potential tool to study the orientation of hydrophobic helices in membranes using wide line 15N-NMR. The DMPC/DCPC system that undergoes a micelle-to-bicelle transition on going from 10 degrees C to 40 degrees C may be used with circular dichroism to study the state of association of hydrophobic helices within the membrane. Results suggest that the transmembrane fragment of the neu/erbB-2 receptor is monomeric in micellar medium and dimeric/multimeric in bicelle membranes.
Collapse
Affiliation(s)
- Cécile Loudet
- UMR5144 MOBIOS, CNRS-UBx1, Institut Européen de Chimie et Biologie, 33607 Pessac, France
| | | | | | | | | | | |
Collapse
|
37
|
Lopez CF, Nielsen SO, Ensing B, Moore PB, Klein ML. Structure and dynamics of model pore insertion into a membrane. Biophys J 2005; 88:3083-94. [PMID: 15722425 PMCID: PMC1305460 DOI: 10.1529/biophysj.104.053769] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A cylindrical transmembrane molecule is constructed by linking hydrophobic sites selected from a coarse grain model. The resulting hollow tube assembly serves as a representation of a transmembrane channel, pore, or a carbon nanotube. The interactions of a coarse grain di-myristoyl-phosphatidyl-choline hydrated bilayer with both a purely hydrophobic tube and a tube with hydrophilic caps are studied. The hydrophobic tube rotates in the membrane and becomes blocked by lipid tails after a few tens of nanoseconds. The hydrophilic sites of the capped tube stabilize it by anchoring the tube in the lipid headgroup/water interfacial region of each membrane leaflet. The capped tube remains free of lipid tails. The capped tube spontaneously conducts coarse grain water sites; the free-energy profile of this process is calculated using three different methods and is compared to the barrier for water permeation through the lipid bilayer. Spontaneous tube insertion into an undisturbed lipid bilayer is also studied, which we reported briefly in a previous publication. The hydrophobic tube submerges into the membrane core in a carpetlike manner. The capped tube laterally fuses with the closest leaflet, and then, after plunging into the membrane interior, rotates to assume a transbilayer orientation. Two lipids become trapped at the end of the tube as it penetrates the membrane. The hydrophilic headgroups of these lipids associate with the lower tube cap and assist the tube in crossing the interior of the membrane. When the rotation is complete these lipids detach from the tube caps and fuse with the lower leaflet lipids.
Collapse
Affiliation(s)
- Carlos F Lopez
- Center for Molecular Modeling and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
38
|
Hessa T, Kim H, Bihlmaier K, Lundin C, Boekel J, Andersson H, Nilsson I, White SH, von Heijne G. Recognition of transmembrane helices by the endoplasmic reticulum translocon. Nature 2005; 433:377-81. [PMID: 15674282 DOI: 10.1038/nature03216] [Citation(s) in RCA: 768] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Accepted: 11/16/2004] [Indexed: 11/08/2022]
Abstract
Membrane proteins depend on complex translocation machineries for insertion into target membranes. Although it has long been known that an abundance of nonpolar residues in transmembrane helices is the principal criterion for membrane insertion, the specific sequence-coding for transmembrane helices has not been identified. By challenging the endoplasmic reticulum Sec61 translocon with an extensive set of designed polypeptide segments, we have determined the basic features of this code, including a 'biological' hydrophobicity scale. We find that membrane insertion depends strongly on the position of polar residues within transmembrane segments, adding a new dimension to the problem of predicting transmembrane helices from amino acid sequences. Our results indicate that direct protein-lipid interactions are critical during translocon-mediated membrane insertion.
Collapse
Affiliation(s)
- Tara Hessa
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Pohorille A, Schweighofer K, Wilson MA. The origin and early evolution of membrane channels. ASTROBIOLOGY 2005; 5:1-17. [PMID: 15711166 DOI: 10.1089/ast.2005.5.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The origin and early evolution of ion channels are considered from the point of view that the transmembrane segments of membrane proteins are structurally quite simple and do not require specific sequences to fold. We argue that the transport of solute species, especially ions, required an early evolution of efficient transport mechanisms, and that the emergence of simple ion channels was protobiologically plausible. We also argue that, despite their simple structure, such channels could possess properties that, at the first sight, appear to require markedly greater complexity. These properties can be subtly modulated by local modifications to the sequence rather than global changes in molecular architecture. In order to address the evolution and development of ion channels, we focus on identifying those protein domains that are commonly associated with ion channel proteins and are conserved throughout the three main domains of life (Eukarya, Bacteria, and Archaea). We discuss the potassium-sodium-calcium superfamily of voltage-gated ion channels, mechanosensitive channels, porins, and ABC-transporters and argue that these families of membrane channels have sufficiently universal architectures that they can readily adapt to the diverse functional demands arising during evolution.
Collapse
Affiliation(s)
- Andrew Pohorille
- NASA Ames Research Center, Moffett Field, California 94035, USA.
| | | | | |
Collapse
|
40
|
Bechinger B, Aisenbrey C, Bertani P. The alignment, structure and dynamics of membrane-associated polypeptides by solid-state NMR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1666:190-204. [PMID: 15519315 DOI: 10.1016/j.bbamem.2004.08.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Accepted: 08/06/2004] [Indexed: 10/26/2022]
Abstract
Solid-state NMR spectroscopy is being developed at a fast pace for the structural investigation of immobilized and non-crystalline biomolecules. These include proteins and peptides associated with phospholipid bilayers. In contrast to solution NMR spectroscopy, where complete or almost complete averaging leads to isotropic values, the anisotropic character of nuclear interactions is apparent in solid-state NMR spectra. In static samples the orientation dependence of chemical shift, dipolar or quadrupolar interactions, therefore, provides angular constraints when the polypeptides have been reconstituted into oriented membranes. Furthermore, solid-state NMR spectroscopy of aligned samples offers distinct advantages in allowing access to dynamic processes such as topological equilibria or rotational diffusion in membrane environments. Alternatively, magic angle sample spinning (MAS) results in highly resolved NMR spectra, provided that the sample is sufficiently homogenous. MAS spinning solid-state NMR spectra allow to measure distances and dihedral angles with high accuracy. The technique has recently been developed to selectively establish through-space and through-bond correlations between nuclei, similar to the approaches well-established in solution-NMR spectroscopy.
Collapse
Affiliation(s)
- Burkhard Bechinger
- Faculté de chimie, Institut le Bel, 4, rue Blaise Pascal, 67000 Strasbourg, France.
| | | | | |
Collapse
|
41
|
Pukala TL, Brinkworth CS, Carver JA, Bowie JH. Investigating the importance of the flexible hinge in caerin 1.1: solution structures and activity of two synthetically modified caerin peptides. Biochemistry 2004; 43:937-44. [PMID: 14744137 DOI: 10.1021/bi035760b] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Caerin 1.1 is a potent broad-spectrum antibacterial peptide isolated from a number of Australian frogs of the Litoria genus. In membrane-like media, this peptide adopts two alpha-helices, separated by a flexible hinge region bounded by Pro15 and Pro19. Previous studies have suggested that the hinge region is important for effective orientation of the two helices within the bacterial cell membrane, resulting in lysis via the carpet mechanism. To evaluate the importance of the two Pro residues, they were replaced with either Ala or Gly. The antibacterial activity of these two peptides was tested, and their three-dimensional structures were determined using two-dimensional NMR spectroscopy and restrained molecular dynamics calculations. The resulting structures indicate that the central hinge angle decreases significantly upon replacement of the Pro residues with Gly and to a further extent with Ala. This trend was mirrored by a corresponding decrease in antibiotic activity, further exemplifying the necessity of the hinge in caerin 1.1 and related peptides. In a broader context, the use of Pro, Gly, and Ala variants of caerin 1.1 has enabled the relationship between conformational flexibility and activity to be directly investigated in a systematic manner.
Collapse
Affiliation(s)
- Tara L Pukala
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | | | | | | |
Collapse
|
42
|
Abstract
A simple extension of the EEF1 energy function to heterogeneous membrane-aqueous media is proposed. The extension consists of (a) development of solvation parameters for a nonpolar phase using experimental data for the transfer of amino acid side-chains from water to cyclohexane, (b) introduction of a heterogeneous membrane-aqueous system by making the reference solvation free energy of each atom dependent on the vertical coordinate, (c) a modification of the distance-dependent dielectric model to account for reduced screening of electrostatic interactions in the membrane, and (d) an adjustment of the EEF1 aqueous model in light of recent calculations of the potential of mean force between amino acid side-chains in water. The electrostatic model is adjusted to match experimental observations for polyalanine, polyleucine, and the glycophorin A dimer. The resulting energy function (IMM1) reproduces the preference of Trp and Tyr for the membrane interface, gives reasonable energies of insertion into or adsorption onto a membrane, and allows stable 1-ns MD simulations of the glycophorin A dimer. We find that the lowest-energy orientation of melittin in bilayers varies, depending on the thickness of the hydrocarbon layer.
Collapse
Affiliation(s)
- Themis Lazaridis
- Department of Chemistry, City College of the City University of New York, New York 10031, USA.
| |
Collapse
|
43
|
Yano Y, Takemoto T, Kobayashi S, Yasui H, Sakurai H, Ohashi W, Niwa M, Futaki S, Sugiura Y, Matsuzaki K. Topological stability and self-association of a completely hydrophobic model transmembrane helix in lipid bilayers. Biochemistry 2002; 41:3073-80. [PMID: 11863446 DOI: 10.1021/bi011161y] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Investigation of interactions between hydrophobic model peptides and lipid bilayers is perhaps the only way to elucidate the principles of the folding and stability of membrane proteins (White, S. H., and Wimley, W. C. (1998) Biochim. Biophys. Acta 1367, 339-352). We designed the completely hydrophobic "inert" peptide modeling a transmembrane (TM) helix without any of the specific side-chain interactions expected, X-(LALAAAA)(3)-NH(2) [X = Ac (I), 7-nitro-2-1,3-benzoxadiazol-4-yl (II), or 5(6)-carboxytetramethylrhodamine (III)]. Fourier transform infrared-polarized attenuated total reflection measurements revealed that I as well as II assume a TM helix in hydrated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayers. Dithionite quenching experiments detected no topological change (flip-flop) in the helix II for at least 24 h. Thus, the TM helix itself is a highly stable structure, even in the absence of flanking hydrophilic or aromatic amino acids which are suggested to play important roles in stable TM positioning. Helix self-association in lipid bilayers was detected by fluorescence resonance energy transfer between II and III. The peptide was in a monomer-antiparallel dimer equilibrium with an association free energy of approximately -13 kJ/mol. Electron spin resonance spectra of 1-palmitoyl-2-stearoyl-(14-doxyl)-sn-glycero-3-phosphocholine demonstrated the presence of a motionally restricted component at lower temperatures.
Collapse
Affiliation(s)
- Yoshiaki Yano
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|