1
|
Xue M, Cao Y, Shen C, Guo W. Computational Advances of Protein/Neurotransmitter-membrane Interactions Involved in Vesicle Fusion and Neurotransmitter Release. J Mol Biol 2023; 435:167818. [PMID: 36089056 DOI: 10.1016/j.jmb.2022.167818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/22/2022] [Accepted: 09/04/2022] [Indexed: 02/04/2023]
Abstract
Vesicle fusion is of crucial importance to neuronal communication at neuron terminals. The exquisite but complex fusion machinery for neurotransmitter release is tightly controlled and regulated by protein/neurotransmitter-membrane interactions. Computational 'microscopies', in particular molecular dynamics simulations and related techniques, have provided notable insight into the physiological process over the past decades, and have made enormous contributions to fields such as neurology, pharmacology and pathophysiology. Here we review the computational advances of protein/neurotransmitter-membrane interactions related to presynaptic vesicle-membrane fusion and neurotransmitter release, and outline the in silico challenges ahead for understanding this important physiological process.
Collapse
Affiliation(s)
- Minmin Xue
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Yuwei Cao
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Chun Shen
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| | - Wanlin Guo
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China; State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, China.
| |
Collapse
|
2
|
Ghosh S, Chatterjee S, Satpati P. Effect of a monovalent salt on the energetics of an antimicrobial-peptide: micelle dissociation. Phys Chem Chem Phys 2022; 24:23669-23678. [PMID: 36148810 DOI: 10.1039/d2cp02735f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Antimicrobial peptides (AMPs) are promising antimicrobial and therapeutic agents. Recently, we synthesized a cationic 14 residue AMP (LL-14: LKWLKKLLKWLKKL), which showed high broad-spectrum antimicrobial activity. However, the antimicrobial activity of LL-14 was compromised in the presence of NaCl. Salt sensitivity of antimicrobial potency is one of the fundamental limitations of AMP therapeutics. Thus, understanding the thermodynamics of AMP binding to simple membrane-mimetic systems and the effect of NaCl that contributes to their stability is crucial for designing promising AMPs against microbial infection. In this work, we reported computational analysis of LL-14 binding to SDS micelles (the simplest bacterial membrane mimic) at various NaCl concentrations (0.0%, 0.5%, 1.0% w/v). The thermodynamics of LL-14 dissociation from the SDS micelles was estimated by employing steered molecular dynamics (SMD) simulation followed by umbrella sampling. The results indicated that the increase in NaCl concentration systematically disfavoured the LL-14:SDS binding, primarily by stabilizing the dissociative state (i.e., free LL-14 and free micelles in water). We proposed a kinetic scheme in which the salt-induced selective stabilization of the dissociative state increased the activation barrier for the peptide:micelle binding event resulting in reduced affinity. Center-of-mass pulling indicated that the interactions involving the N-terminal of the LL-14 (residues 1-6) and SDS micelle were crucial for the stability of the LL-14:SDS complex, and LL-14 underwent a conformational change (helix → unstructured) before dissociating from the SDS micelle. The observed structural features from the peptide:micelle dissociation pathway corroborate our previous simulations as well as circular dichroism (CD), and fluorescence experiments.
Collapse
Affiliation(s)
- Suvankar Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Sunanda Chatterjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Priyadarshi Satpati
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
3
|
Ghosh S, Chatterjee S, Satpati P. Effect of Leu/Val Mutation on the Energetics of Antimicrobial Peptide:Micelle Binding. J Phys Chem B 2022; 126:5262-5273. [PMID: 35815580 DOI: 10.1021/acs.jpcb.2c01293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recently, we had reported a synthetic positively charged leucine-rich 14-residue-long antimicrobial peptide (AMP, LL-14: NH3+-LKWLKKLLKWLKKL-CONH2), which was highly active and cytotoxic relative to its valine analogue (VV-14). However, the thermodynamics underlying this differential toxicity and antimicrobial activity was unclear. Understanding the energetics of peptide binding to micelles (simplest membrane mimic, viz., SDS as a bacterial membrane and DPC as a eukaryotic membrane) and the effect of Leu → Val peptide mutations on the stability of the peptide:micelle complexes are of great academic interest and relevant for the rational design of potent and selective AMPs for therapeutic use. Here, we have reported the molecular dynamics free energy simulations that allowed us to quantitatively estimate the strength of peptide discrimination (based on single- or multiple-site Leu/Val mutations in LL-14) by membrane mimetic micelles (SDS and DPC) and decipher the energetics underlying peptide selectivity by micelles. The Leu-containing peptide (LL-14) was found to be preferred for micelle (SDS and DPC) binding relative to its Val analogues (single or multiple Val mutants). The strength of the preference depended on the position of the Leu/Val mutation in the peptide. Surprisingly, the N-terminal LL-14 single mutation (Leu → Val: L1V) was found to fine-tune the electrostatic interactions, resulting in the highest peptide selectivity (ΔΔG ∼ 8 kcal/mol for both SDS and DPC). However, the mechanism of L1V peptide selectivity was distinctly different for SDS and DPC micelles. SDS ensured high selectivity by disrupting the peptide:micelle salt bridge, whereas DPC desolvated the broken-peptide-backbone hydrogen bond in the V1 peptide:micelle complex. Mutations (Leu → Val) in the middle positions of the LL-14 (4th, 7th, 8th, and 11th) were disfavored by the micelles primarily due to the loss of peptide:micelle hydrophobic interactions. Peptides differing at the C-terminal (i.e., L14V) were recognized by SDS micelles (ΔΔG ∼ 4 kcal/mol) by altering peptide:micelle interactions. L14V mutation, on the other hand, did not play any role in the peptide:DPC binding, as no direct interactions between the C-terminal and DPC micelle were observed due to obvious electrostatic reasons. The strength of selectivity favoring LL-14 binding against VV-14 was found to be much higher for DPC micelles (ΔΔG ∼ 25 kcal/mol) relative to SDS micelles (ΔΔG ∼ 19 kcal/mol). The loss of the peptide:micelle hydrophobic contact in response to LL-14 → VV-14 mutation was found to be significantly larger for DPC relative to SDS micelles, resulting in higher discriminatory power for the former. Peptide:SDS salt bridges seemed to prevent the loss of peptide:micelle hydrophobic contact to some extent, leading to weaker selectivity for SDS micelles. High selectivity of DPC micelles provided an efficient mechanism for VV-14 dissociation from DPC micelles, whereas low-selectivity of SDS micelles ensured binding of both LL-14 and VV-14. To the best of our knowledge, this is the first study in which the experimental observations (antimicrobial activity and toxicity) between leucine-rich and valine-rich peptides have been explained by establishing a direct link between the energetics and structures.
Collapse
Affiliation(s)
- Suvankar Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Sunanda Chatterjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Priyadarshi Satpati
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
4
|
Patra P, Banerjee R, Chakrabarti J. Effect of biphosphate salt on dipalmitoylphosphatidylcholine bilayer deformation by Tat polypeptide. Biopolymers 2022; 113:e23518. [PMID: 35621373 DOI: 10.1002/bip.23518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 11/06/2022]
Abstract
Translocation of positively charged cell penetrating peptides (CPP) through cell membrane is important in drug delivery. Here we report all-atom molecular dynamics simulations to investigate how a biphosphate salt in a solvent affects the interaction of a CPP, HIV-1 Tat peptide with model dipalmitoylphosphatidylcholine (DPPC) lipid bilayer. Tat peptide has a large number of basic arginines and a couple of polar glutamines. We observe that in absence of salt, the basic residues of the polypeptide get localized in the vicinity of the membrane without altering the bilayer properties much; polypeptide induce local thinning of the bilayer membrane at the area of localization. In presence of biphosphate salt, the basic residues, dressed by the biphosphate ions, are repelled by the phosphate head groups of the lipid molecules. However, polar glutamine prefers to stay in the vicinity of the bilayer. This leads to larger local bilayer thickness at the contact point by the polar residue and non-uniform bilayer thickness profile. The thickness deformation of bilayer structure disappears upon mutating the polar residue, suggesting importance of the polar residue in bilayer deformation. Our studies point to control bilayer deformation by appropriate peptide sequence and solvent conditions.
Collapse
Affiliation(s)
- Piya Patra
- Maulana Abul Kalam Azad University of Technology, West Bengal, Haringhata, Nadia, West Bengal, India
| | - Raja Banerjee
- Maulana Abul Kalam Azad University of Technology, West Bengal, Haringhata, Nadia, West Bengal, India
| | - Jaydeb Chakrabarti
- Department of Chemical, Biological and Macro-Molecular Sciences, Thematic Unit of Excellence on Computational Materials Science and Technical Research Centre, S. N. Bose National Centre for Basic Sciences, Salt Lake, Kolkata, West Bengal, India
| |
Collapse
|
5
|
Zouhir A, Semmar N. Structure-activity trend analysis between amino-acids and minimal inhibitory concentration of antimicrobial peptides. Chem Biol Drug Des 2021; 99:438-455. [PMID: 34965022 DOI: 10.1111/cbdd.14003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 10/03/2021] [Accepted: 10/23/2021] [Indexed: 11/29/2022]
Abstract
Antimicrobial peptides (AMPs) provide large structural libraries of molecules with high variability of constitutional amino-acids (AAs). Highlighting structural organization and structure-activity trends in such molecular systems provide key information on structural associations and functional conditions that could usefully help for drug design. This work presents link analyses between minimal inhibitory concentration (MIC) and different types of constitutional AAs of anti-Pseudomonas aeruginosa AMPs. This scope was based on a dataset of 328 published molecules. Regulation levels of AAs in AMPs were statistically ordinated by correspondence analysis helping for classification of the 328 AMPs into nine structurally homogeneous peptide clusters (PCs 1-9) characterized by high/low relative occurrences of different AAs. Within each PC, negative trends between MIC and AAs were highlighted by iterated multiple linear regression models built by bootstrap processes (bagging). MIC-decrease was linked to different AAs that varied with PCs: alcohol type AAs (Thr, Ser) in Cys-rich and low Arg PCs (PCs 1-3); basic AAs (Lys, Arg) in Pro-rich and low Val PCs (PCs 4-8); Trp (heterocyclic AA) in Arg-rich PCs (PCs 6, 7, 9). Aliphatic AAs (more particularly Gly) showed MIC-reduction effects in different PCs essentially under interactive forms.
Collapse
Affiliation(s)
- Abdelmajid Zouhir
- University of Tunis El Manar, Institut Supérieur des Sciences Biologiques Appliquées de Tunis
| | - Nabil Semmar
- University of Tunis El Manar, Laboratory of BioInformatics, bioMathematics and bioStatistics (BIMS), Pasteur Institute of Tunis, Tunisia
| |
Collapse
|
6
|
Ghosh S, Pandit G, Debnath S, Chatterjee S, Satpati P. Effect of monovalent salt concentration and peptide secondary structure in peptide-micelle binding. RSC Adv 2021; 11:36836-36849. [PMID: 35494385 PMCID: PMC9043568 DOI: 10.1039/d1ra06772a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/27/2021] [Indexed: 12/14/2022] Open
Abstract
Recently, we reported a cationic 14 residue peptide LL-14 (LKWLKKLLKWLKKL) with salt-sensitive broad-spectrum antimicrobial potency. However, the mechanism of its salt (NaCl) sensitivity remained unclear. In this study, we have reported computational (∼14.2 μs of MD) and experimental (CD, fluorescence) investigations to examine the salt-sensitivity and the role of peptide secondary structure on LL-14 binding to simple membrane mimetic (SDS, DPC) systems. LL-14 was shown to adopt a random coil (Pc) conformation in water and α-helical conformation (Ph) in the peptide:SDS micelle complex, accompanied by tryptophan burial, using both simulations and experiments. Simulations successfully deconvoluted the LL-14:micelle binding event in terms of secondary structure (random coil Pcversus helix Ph) and gave atomic insight into the initial and final LL-14:SDS complexes. Electrostatics drove the N-terminus (L1 and K2) of LL-14 (Pc or Ph) to bind the SDS micellar surface, initiating complex formation. LL-14 in amphipathic Ph conformation bound faster and buried deeper into the SDS micelle relative to Pc. Increasing NaCl concentration incrementally delayed LL-14:micelle binding by shielding the overall charges of the interacting partners. LL-14 binding to the SDS micelle was significantly faster relative to that of the zwitterionic DPC micelle due to electrostatic reasons. Cationic α-helical amphipathic peptides (with positively charged N-terminus) with low salt-ion concentration seemed to be ideal for faster SDS binding. We report computational (∼14.2 μs of MD) and experimental (CD, fluorescence) investigations to examine the salt-sensitivity and the role of the peptide secondary structure on LL-14 binding to simple membrane mimetic systems.![]()
Collapse
Affiliation(s)
- Suvankar Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati Guwahati 781039 Assam India +91-361-2582249 +91-361-2583205
| | - Gopal Pandit
- Department of Chemistry, Indian Institute of Technology Guwahati Guwahati 781039 Assam India +91-361-2583310
| | - Swapna Debnath
- Department of Chemistry, Indian Institute of Technology Guwahati Guwahati 781039 Assam India +91-361-2583310
| | - Sunanda Chatterjee
- Department of Chemistry, Indian Institute of Technology Guwahati Guwahati 781039 Assam India +91-361-2583310
| | - Priyadarshi Satpati
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati Guwahati 781039 Assam India +91-361-2582249 +91-361-2583205
| |
Collapse
|
7
|
Gaza J, Leyson JJC, Peña GT, Nellas RB. pH-Dependent Conformations of an Antimicrobial Spider Venom Peptide, Cupiennin 1a, from Unbiased HREMD Simulations. ACS OMEGA 2021; 6:24166-24175. [PMID: 34568695 PMCID: PMC8459419 DOI: 10.1021/acsomega.1c03729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Cupiennin 1a is an antimicrobial peptide found in the venom of the spider Cupiennius salei. A highly cationic peptide, its cell lysis activity has been found to vary between neutral and charged membranes. In this study, Hamiltonian replica-exchange molecular dynamics (HREMD) was used to determine the conformational ensemble of the peptide in both charged (pH 3) and neutral (pH 11) states. The obtained free energy landscapes demonstrated the conformational diversity of the neutral peptide. At high pH, the peptide was found to adopt helix-hinge-helix and disordered structures. At pH 3, the peptide is structured with a high propensity toward α-helices. The presence of these α-helices seems to assist the peptide in recognizing membrane surfaces. These results highlight the importance of the charged residues in the stabilization of the peptide structure and the subsequent effects of pH on the peptide's conformational diversity and membrane activity. These findings may provide insights into the antimicrobial activity of Cupiennin 1a and other amphipathic linear peptides toward different cell membranes.
Collapse
Affiliation(s)
- Jokent
T. Gaza
- Institute
of Chemistry, College of Science, University
of the Philippines Diliman, 1101 Quezon City, Philippines
| | - Jarold John C. Leyson
- Institute
of Chemistry, College of Science, University
of the Philippines Diliman, 1101 Quezon City, Philippines
| | - Gardee T. Peña
- Department
of Biochemistry, Faculty of Pharmacy, University
of Santo Tomas, España Blvd, 1008 Manila, Philippines
| | - Ricky B. Nellas
- Institute
of Chemistry, College of Science, University
of the Philippines Diliman, 1101 Quezon City, Philippines
| |
Collapse
|
8
|
Bertrand B, Garduño-Juárez R, Munoz-Garay C. Estimation of pore dimensions in lipid membranes induced by peptides and other biomolecules: A review. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183551. [PMID: 33465367 DOI: 10.1016/j.bbamem.2021.183551] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023]
Abstract
The cytoplasmic membrane is one of the most frequent cell targets of antimicrobial peptides (AMPs) and other biomolecules. Understanding the mechanism of action of AMPs at the molecular level is of utmost importance for designing of new membrane-specific molecules. In particular, the formation of pores, the structure and size of these pores are of great interest and require nanoscale resolution approaches, therefore, biophysical strategies are essential to achieve an understanding of these processes at this scale. In the case of membrane active peptides, pore formation or general membrane disruption is usually the last step before cell death, and so, pore size is generally directly associated to pore structure and stability and loss of cellular homeostasis, implicated in overall peptide activity. Up to date, there has not been a critical review discussing the methods that can be used specifically for estimating the pore dimensions induced by membrane active peptides. In this review we discuss the scope, relevance and popularity of the different biophysical techniques such as liposome leakage experiments, advanced microscopy, neutron or X-ray scattering, electrophysiological techniques and molecular dynamics studies, all of them useful for determining pore structure and dimension.
Collapse
Affiliation(s)
- Brandt Bertrand
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México (ICF-UNAM), Avenida Universidad 2001, Chamilpa, 62210 Cuernavaca, Morelos, Mexico
| | - Ramón Garduño-Juárez
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México (ICF-UNAM), Avenida Universidad 2001, Chamilpa, 62210 Cuernavaca, Morelos, Mexico
| | - Carlos Munoz-Garay
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México (ICF-UNAM), Avenida Universidad 2001, Chamilpa, 62210 Cuernavaca, Morelos, Mexico.
| |
Collapse
|
9
|
Clifton LA, Campbell RA, Sebastiani F, Campos-Terán J, Gonzalez-Martinez JF, Björklund S, Sotres J, Cárdenas M. Design and use of model membranes to study biomolecular interactions using complementary surface-sensitive techniques. Adv Colloid Interface Sci 2020; 277:102118. [PMID: 32044469 DOI: 10.1016/j.cis.2020.102118] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 01/07/2023]
Abstract
Cellular membranes are complex structures and simplified analogues in the form of model membranes or biomembranes are used as platforms to understand fundamental properties of the membrane itself as well as interactions with various biomolecules such as drugs, peptides and proteins. Model membranes at the air-liquid and solid-liquid interfaces can be studied using a range of complementary surface-sensitive techniques to give a detailed picture of both the structure and physicochemical properties of the membrane and its resulting interactions. In this review, we will present the main planar model membranes used in the field to date with a focus on monolayers at the air-liquid interface, supported lipid bilayers at the solid-liquid interface and advanced membrane models such as tethered and floating membranes. We will then briefly present the principles as well as the main type of information on molecular interactions at model membranes accessible using a Langmuir trough, quartz crystal microbalance with dissipation monitoring, ellipsometry, atomic force microscopy, Brewster angle microscopy, Infrared spectroscopy, and neutron and X-ray reflectometry. A consistent example for following biomolecular interactions at model membranes is used across many of the techniques in terms of the well-studied antimicrobial peptide Melittin. The overall objective is to establish an understanding of the information accessible from each technique, their respective advantages and limitations, and their complementarity.
Collapse
Affiliation(s)
- Luke A Clifton
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 OQX, United Kingdom
| | - Richard A Campbell
- Division of Pharmacy and Optometry, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Federica Sebastiani
- Department of Biomedical Science and Biofilms - Research Center for Biointerfaces, Malmö University, 20506 Malmö, Sweden
| | - José Campos-Terán
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Av. Vasco de Quiroga 4871, Col. Santa Fe, Delegación Cuajimalpa de Morelos, 05348, Mexico; Lund Institute of advanced Neutron and X-ray Science, Lund University, Scheelevägen 19, 223 70 Lund, Sweden
| | - Juan F Gonzalez-Martinez
- Department of Biomedical Science and Biofilms - Research Center for Biointerfaces, Malmö University, 20506 Malmö, Sweden
| | - Sebastian Björklund
- Department of Biomedical Science and Biofilms - Research Center for Biointerfaces, Malmö University, 20506 Malmö, Sweden
| | - Javier Sotres
- Department of Biomedical Science and Biofilms - Research Center for Biointerfaces, Malmö University, 20506 Malmö, Sweden
| | - Marité Cárdenas
- Department of Biomedical Science and Biofilms - Research Center for Biointerfaces, Malmö University, 20506 Malmö, Sweden.
| |
Collapse
|
10
|
Combining scattering and computer simulation for the study of biomolecular soft interfaces. Curr Opin Colloid Interface Sci 2018. [DOI: 10.1016/j.cocis.2018.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
11
|
Cytotoxicity and Antibacterial Effect of Trp-Substituted CM11 Cationic Peptide Against Drug-Resistant Isolates of Brucella melitensis Alone and in Combination with Recommended Antibiotics. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-017-9658-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Alvares DS, Wilke N, Ruggiero Neto J. Effect of N-terminal acetylation on lytic activity and lipid-packing perturbation induced in model membranes by a mastoparan-like peptide. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:737-748. [PMID: 29287697 DOI: 10.1016/j.bbamem.2017.12.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 12/04/2017] [Accepted: 12/20/2017] [Indexed: 01/30/2023]
Abstract
L1A (IDGLKAIWKKVADLLKNT-NH2) is a peptide that displays a selective antibacterial activity to Gram-negative bacteria without being hemolytic. Its lytic activity in anionic lipid vesicles was strongly enhanced when its N-terminus was acetylated (ac-L1A). This modification seems to favor the perturbation of the lipid core of the bilayer by the peptide, resulting in higher membrane lysis. In the present study, we used lipid monolayers and bilayers as membrane model systems to explore the impact of acetylation on the L1A lytic activity and its correlation with lipid-packing perturbation. The lytic activity investigated in giant unilamellar vesicles (GUVs) revealed that the acetylated peptide permeated the membrane at higher rates compared with L1A, and modified the membrane's mechanical properties, promoting shape changes. The peptide secondary structure and the changes in the environment of the tryptophan upon adsorption to large unilamellar vesicles (LUVs) were monitored by circular dichroism (CD) and red-edge excitation shift experiments (REES), respectively. These experiments showed that the N-terminus acetylation has an important effect on both, peptide secondary structure and peptide insertion into the bilayer. This was also confirmed by experiments of insertion into lipid monolayers. Compression isotherms for peptide/lipid mixed films revealed that ac-L1A dragged lipid molecules to the more disordered phase, generating a more favorable environment and preventing the lipid molecules from forming stiff films. Enthalpy changes in the main phase transition of the lipid membrane upon peptide insertion suggested that the acetylated peptide induced higher impact than the non-acetylated one on the thermotropic behavior of anionic vesicles.
Collapse
Affiliation(s)
- Dayane S Alvares
- UNESP - São Paulo State University, IBILCE, Department of Physics, São José do Rio Preto, SP, Brazil
| | - Natalia Wilke
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC-CONICET), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidade Nacional de Córdoba, Argentina
| | - João Ruggiero Neto
- UNESP - São Paulo State University, IBILCE, Department of Physics, São José do Rio Preto, SP, Brazil.
| |
Collapse
|
13
|
Peptides and Peptidomimetics for Antimicrobial Drug Design. Pharmaceuticals (Basel) 2015; 8:366-415. [PMID: 26184232 PMCID: PMC4588174 DOI: 10.3390/ph8030366] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/27/2015] [Accepted: 06/17/2015] [Indexed: 12/21/2022] Open
Abstract
The purpose of this paper is to introduce and highlight a few classes of traditional antimicrobial peptides with a focus on structure-activity relationship studies. After first dissecting the important physiochemical properties that influence the antimicrobial and toxic properties of antimicrobial peptides, the contributions of individual amino acids with respect to the peptides antibacterial properties are presented. A brief discussion of the mechanisms of action of different antimicrobials as well as the development of bacterial resistance towards antimicrobial peptides follows. Finally, current efforts on novel design strategies and peptidomimetics are introduced to illustrate the importance of antimicrobial peptide research in the development of future antibiotics.
Collapse
|
14
|
Pluhackova K, Wassenaar TA, Kirsch S, Böckmann RA. Spontaneous adsorption of coiled-coil model peptides K and E to a mixed lipid bilayer. J Phys Chem B 2015; 119:4396-408. [PMID: 25719673 DOI: 10.1021/acs.jpcb.5b00434] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A molecular description of the lipid-protein interactions underlying the adsorption of proteins to membranes is crucial for understanding, for example, the specificity of adsorption or the binding strength of a protein to a bilayer, or for characterizing protein-induced changes of membrane properties. In this paper, we extend an automated in silico assay (DAFT) for binding studies and apply it to characterize the adsorption of the model fusion peptides E and K to a mixed phospholipid/cholesterol membrane using coarse-grained molecular dynamics simulations. In addition, we couple the coarse-grained protocol to reverse transformation to atomistic resolution, thereby allowing to study molecular interactions with high detail. The experimentally observed differential binding of the peptides E and K to membranes, as well as the increased binding affinity of helical over unstructered peptides, could be well reproduced using the polarizable Martini coarse-grained (CG) force field. Binding to neutral membranes is shown to be dominated by initial binding of the positively charged N-terminus to the phospholipid headgroup region, followed by membrane surface-aligned insertion of the peptide at the interface between the hydrophobic core of the membrane and its polar headgroup region. Both coarse-grained and atomistic simulations confirm a before hypothesized snorkeling of lysine side chains for the membrane-bound state of the peptide K. Cholesterol was found to be enriched in peptide vicinity, which is probably of importance for the mechanism of membrane fusion. The applied sequential multiscale method, using coarse-grained simulations for the slow adsorption process of peptides to membranes followed by backward transformation to atomistic detail and subsequent atomistic simulations of the preformed peptide-lipid complexes, is shown to be a versatile approach to study the interactions of peptides or proteins with biomembranes.
Collapse
Affiliation(s)
- Kristyna Pluhackova
- Computational Biology, Department of Biology, University of Erlangen-Nürnberg, Staudtstr. 5, 91052 Erlangen, Germany
| | - Tsjerk A Wassenaar
- Computational Biology, Department of Biology, University of Erlangen-Nürnberg, Staudtstr. 5, 91052 Erlangen, Germany
| | - Sonja Kirsch
- Computational Biology, Department of Biology, University of Erlangen-Nürnberg, Staudtstr. 5, 91052 Erlangen, Germany
| | - Rainer A Böckmann
- Computational Biology, Department of Biology, University of Erlangen-Nürnberg, Staudtstr. 5, 91052 Erlangen, Germany
| |
Collapse
|
15
|
Euston SR. Molecular simulation of adsorption of hydrophobin HFBI to the air–water, DPPC–water and decane–water interfaces. Food Hydrocoll 2014. [DOI: 10.1016/j.foodhyd.2013.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Bi X, Wang C, Dong W, Zhu W, Shang D. Antimicrobial properties and interaction of two Trp-substituted cationic antimicrobial peptides with a lipid bilayer. J Antibiot (Tokyo) 2014; 67:361-8. [DOI: 10.1038/ja.2014.4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 12/14/2013] [Accepted: 01/07/2014] [Indexed: 01/06/2023]
|
17
|
Mousavi SZ, Amjad-Iranagh S, Nademi Y, Modarress H. Carbon nanotube-encapsulated drug penetration through the cell membrane: an investigation based on steered molecular dynamics simulation. J Membr Biol 2013; 246:697-704. [PMID: 23979172 DOI: 10.1007/s00232-013-9587-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 08/08/2013] [Indexed: 11/26/2022]
Abstract
Understanding the penetration mechanisms of carbon nanotube (CNTs)-encapsulated drugs through the phospholipid bilayer cell membrane is an important issue for the development of intracellular drug delivery systems. In the present work, steered molecular dynamics (SMD) simulation was used to explore the possibility of penetration of a polar drug, paclitaxel (PTX), encapsulated inside the CNT, through a dipalmitoylphosphatidylcholine bilayer membrane. The interactions between PTX and CNT and between PTX and the confined water molecules inside the CNT had a significant effect on the penetration process of PTX. The results reveal that the presence of a PTX molecule increases the magnitude of the pulling force. The effect of pulling velocity on the penetration mechanism was also investigated by a series of SMD simulations, and it is shown that the pulling velocity had a significant effect on pulling force and the interaction between lipid bilayer and drug molecule.
Collapse
Affiliation(s)
- Seyedeh Zahra Mousavi
- Department of Chemical Engineering, Amirkabir University of Technology, Hafez Avenue, Tehran, Iran
| | | | | | | |
Collapse
|
18
|
A peptide derived from phage display library exhibits antibacterial activity against E. coli and Pseudomonas aeruginosa. PLoS One 2013; 8:e56081. [PMID: 23409125 PMCID: PMC3569419 DOI: 10.1371/journal.pone.0056081] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 01/03/2013] [Indexed: 11/19/2022] Open
Abstract
Emergence of drug resistant strains to currently available antibiotics has resulted in the quest for novel antimicrobial agents. Antimicrobial peptides (AMPs) are receiving attention as alternatives to antibiotics. In this study, we used phage-display random peptide library to identify peptides binding to the cell surface of E. coli. The peptide with sequence RLLFRKIRRLKR (EC5) bound to the cell surface of E. coli and exhibited certain features common to AMPs and was rich in Arginine and Lysine residues. Antimicrobial activity of the peptide was tested in vitro by growth inhibition assays and the bacterial membrane permeabilization assay. The peptide was highly active against gram-negative organisms and showed significant bactericidal activity against E. coli and P. aeruginosa resulting in a reduction of 5 log(10) CFU/ml. In homologous plasma and platelets, incubation of EC5 with the bacteria resulted in significant reduction of E. coli and P. aeruginosa, compared to the peptide-free controls. The peptide was non-hemolytic and non-cytotoxic when tested on eukaryotic cells in culture. EC5 was able to permeabilize the outer membrane of E. coli and P. aeruginosa causing rapid depolarization of cytoplasmic membrane resulting in killing of the cells at 5 minutes of exposure. The secondary structure of the peptide showed a α-helical conformation in the presence of aqueous environment. The bacterial lipid interaction with the peptide was also investigated using Molecular Dynamic Simulations. Thus this study demonstrates that peptides identified to bind to bacterial cell surface through phage-display screening may additionally aid in identifying and developing novel antimicrobial peptides.
Collapse
|
19
|
Gopal R, Seo CH, Song PI, Park Y. Effect of repetitive lysine-tryptophan motifs on the bactericidal activity of antimicrobial peptides. Amino Acids 2012; 44:645-60. [PMID: 22914980 PMCID: PMC3549253 DOI: 10.1007/s00726-012-1388-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Accepted: 08/07/2012] [Indexed: 12/19/2022]
Abstract
Previous studies identified lysine- and tryptophan-rich sequences within various cationic antimicrobial peptides. In the present study, we synthesized a series of peptides composed of lysine (K)-tryptophan (W) repeats (KW)n (where n equals 2, 3, 4 or 5) with amidation of the C-terminal to increase cationicity. We found that increases in chain length up to (KW)4 enhanced the peptides’ antibacterial activity; (KW)5 exhibited somewhat less bactericidal activity than (KW)4. Cytotoxicity, measured as lysis of human red blood cells, also increased with increasing chain length. With (KW)5, reduced antibacterial activity and increased cytotoxicity correlated with greater hydrophobicity and self-aggregation in the aqueous environment. The peptides acted by inducing rapid collapse of the bacterial transmembrane potential and induction of membrane permeability. The mode of interaction of the peptides and the phosphate groups of lipopolysaccharide was dependent upon the peptides’ ability to permeate the membrane. Longer peptides [(KW)4 and (KW)5] but not shorter peptides [(KW)2 and (KW)3] strongly bound and partially inserted into negatively charged, anionic lipid bilayers. These longer peptides also induced membrane permeabilization and aggregation of lipid vesicles. The peptides had a disordered structure in aqueous solution, and only (KW)4 and (KW)5 displayed a folded conformation on lipid membranes. Moreover, (KW)4 destroyed and agglutinated bacterial cells, demonstrating its potential as an antimicrobial agent. Collectively, the results show (KW)4 to be the most efficacious peptide in the (KW)n series, exhibiting strong antibacterial activity with little cytotoxicity.
Collapse
Affiliation(s)
- Ramamourthy Gopal
- Research Center for Proteineous Materials, Chosun University, Kwangju, South Korea
| | | | | | | |
Collapse
|
20
|
Strand length-dependent antimicrobial activity and membrane-active mechanism of arginine- and valine-rich β-hairpin-like antimicrobial peptides. Antimicrob Agents Chemother 2012; 56:2994-3003. [PMID: 22391533 DOI: 10.1128/aac.06327-11] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antimicrobial peptides with amphipathic β-hairpin-like structures have potent antimicrobial properties and low cytotoxicity. The effect of VR or RV motifs on β-hairpin-like antimicrobial peptides has not been investigated. In this study, a series of β-hairpin-like peptides, Ac-C(VR)(n)(D)PG (RV)(n)C-NH(2) (n = 1, 2, 3, 4, or 5), were synthesized, and the effect of chain length on antimicrobial activity was evaluated. The antimicrobial activity of the peptides initially increased and then decreased with chain length. Longer peptides stimulated the toxicity to mammalian cells. VR3, a 16-mer peptide with seven amino acids in the strand, displayed the highest therapeutic index and represents the optimal chain length. VR3 reduced bacterial counts in the mouse peritoneum and increased the survival rate of mice at 7 days after Salmonella enterica serovar Typhimurium infection in vivo. The circular dichroism (CD) spectra demonstrated that the secondary structure of the peptides was a β-hairpin or β-sheet in the presence of an aqueous and membrane-mimicking environment. VR3 had the same degree of penetration into the outer and inner membranes as melittin. Experiments simulating the membrane environment showed that Trp-containing VRW3 (a VR3 analog) tends to interact preferentially with negatively charged vesicles in comparison to zwitterionic vesicles, which supports the biological activity data. Additionally, VR3 resulted in greater membrane damage than melittin as determined using a flow cytometry-based membrane integrity assay. Collectively, the data for synthetic lipid vesicles and whole bacteria demonstrated that the VR3 peptide killed bacteria via targeting the cell membrane. This assay could be an effective pathway to screen novel candidates for antibiotic development.
Collapse
|
21
|
Nonella M, Seeger S. Monitoring peptide-surface interaction by means of molecular dynamics simulation. Chem Phys 2010. [DOI: 10.1016/j.chemphys.2010.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Abstract
Recent advances in molecular dynamics (MD) simulation methods and in available computational resources have allowed for more reliable simulations of biological phenomena. From all-atom MD simulations, we are now able to visualize in detail the interactions between antimicrobial peptides (AMPs) and a variety of membrane mimics. This helps us to understand the molecular mechanisms of antimicrobial activity and toxicity. This chapter describes how to set up and conduct molecular dynamics simulations of AMPs and membrane mimics. Details are given for the construction of systems of interest for studying AMPs, which can include simulations of peptides in water, micelles, or lipid bilayers. Explanations of the parameters needed for running a simulation are provided as well.
Collapse
|
23
|
Manna M, Mukhopadhyay C. Cause and effect of melittin-induced pore formation: a computational approach. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:12235-12242. [PMID: 19754202 DOI: 10.1021/la902660q] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Melittin embedded in a palmitoyl oleyl phosphatidylcholine bilayer at a high peptide/lipid ratio (1:30) was simulated in the presence of explicit water and ions. The simulation results indicate the incipience of an ion-permeable water pore through collective membrane perturbation by bound peptides. The positively charged residues of melittin not only act as "anchors" but also disrupt the membrane, leading to cell lysis. A detailed analysis of the lipid tail order parameter profile depicts localized membrane perturbation. The lipids in the vicinity of the aqueous cavity adopt a tilted conformation, which allows local bilayer thinning. The prepore thus formed can be considered as the melittin-induced structural defects in the bilayer membrane. Because of the strong cationic nature, the melittin-induced prepore exhibits selectivity toward anions over cations. As Cl(-) ions entered into the prepore, they are electrostatically entrapped by positively charged residues located at its wall. The confined motion of the Cl(-) ions in the membrane interior is obvious from calculated diffusion coefficients. Moreover, reorientation of the local lipids occurs in such a way that few lipid heads along with peptide helices can line the surface of the penetrating aqueous phase. The flipping of lipids argued in favor of melittin-induced toroidal pore over a barrel-stave mechanism. Thus, our result provides atomistic level details of the mechanism of membrane disruption by antimicrobial peptide melittin.
Collapse
Affiliation(s)
- Moutusi Manna
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata-700 009, India
| | | |
Collapse
|
24
|
Khandelia H, Kaznessis YN. Molecular dynamics simulations of the helical antimicrobial peptide ovispirin-1 in a zwitterionic dodecylphosphocholine micelle: insights into host-cell toxicity. J Phys Chem B 2007; 109:12990-6. [PMID: 16852612 DOI: 10.1021/jp050162n] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We have carried out a 40-ns all-atom molecular dynamics simulation of the helical antimicrobial peptide ovispirin-1 (OVIS) in a zwitterionic diphosphocholine (DPC) micelle. The DPC micelle serves as an economical and effective model for a cellular membrane owing to the presence of a choline headgroup, which resembles those of membrane phospholipids. OVIS, which was initially placed along a micelle diameter, diffuses out to the water-DPC interface, and the simulation stabilizes to an interface-bound steady state in 40 ns. The helical content of the peptide marginally increases in the process. The final conformation, orientation, and the structure of OVIS are in excellent agreement with the experimentally observed properties of the peptide in the presence of lipid bilayers composed of 75% zwitterionic lipids. The amphipathic peptide binds to the micelle with its hydrophobic face buried in the micellar core and the polar side chains protruding into the aqueous phase. There is overwhelming evidence that points to the significant and indispensable participation of hydrophobic residues in binding to the zwitterionic interface. The simulation starts with a conformation that is unbiased toward the final experimentally known binding state of the peptide. The ability of the model to reproduce experimental binding states despite this starting conformation is encouraging.
Collapse
Affiliation(s)
- Himanshu Khandelia
- Department of Chemical Engineering and Materials Science and The Digital Technology Center, University of Minnesota, 421 Washington Avenue Southeast, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
25
|
Liu Z, Brady A, Young A, Rasimick B, Chen K, Zhou C, Kallenbach NR. Length effects in antimicrobial peptides of the (RW)n series. Antimicrob Agents Chemother 2006; 51:597-603. [PMID: 17145799 PMCID: PMC1797765 DOI: 10.1128/aac.00828-06] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A class of antimicrobial peptides involved in host defense consists of sequences rich in Arg and Trp-R and -W. Analysis of the pharmacophore in these peptides revealed that chains as short as trimers of sequences such as WRW and RWR have antimicrobial activity (M. B. Strom, B. E. Haug, M. L. Skar, W. Stensen, T. Stiberg, and J. S. Svendsen, J. Med. Chem. 46:1567-1570, 2003). To evaluate the effect of chain length on antimicrobial activity, we synthesized a series of peptides containing simple sequence repeats, (RW)n-NH2 (where n equals 1, 2, 3, 4, or 5), and determined their antimicrobial and hemolytic activity. The antimicrobial activity of the peptides increases with chain length, as does the hemolysis of red blood cells. Within the experimental error, longer peptides (n equals 3, 4, or 5) show similar values for the ratio of hemolytic activity to antibacterial activity, or the hemolytic index. The (RW)3 represents the optimal chain length in terms of the efficacy of synthesis and selectivity as evaluated by the hemolytic index. Circular dichroism spectroscopy indicates that these short peptides appear to be unfolded in aqueous solution but acquire structure in the presence of phospholipids. Interaction of the peptides with model lipid vesicles was examined using tryptophan fluorescence. The (RW)n peptides preferentially interact with bilayers containing the negatively charged headgroup phosphatidylglycerol relative to those containing a zwitterionic headgroup, phosphatidylcholine.
Collapse
Affiliation(s)
- Zhigang Liu
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Volkov VV, Nuti F, Takaoka Y, Chelli R, Papini AM, Righini R. Hydration and Hydrogen Bonding of Carbonyls in Dimyristoyl-Phosphatidylcholine Bilayer. J Am Chem Soc 2006; 128:9466-71. [PMID: 16848484 DOI: 10.1021/ja0614621] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We combine two-color ultrafast infrared spectroscopy and molecular dynamics simulation to investigate the hydration of carbonyl moieties in a dimyristoyl-phosphatidylcholine bilayer. Excitation with femtosecond infrared pulses of the OD stretching mode of heavy water produces a time dependent change of the absorption band of the phospholipid carbonyl groups. This intermolecular vibrational coupling affects the entire C=O band, thus suggesting that the optical inhomogeneity of the infrared response of carbonyl in phospholipid membranes cannot be attributed to the variance in hydration. Both the experimental and the theoretical results demonstrate that sn-1 carbonyl has a higher propensity to form hydrogen bonds with water in comparison to sn-2. The time-resolved experiment allows following the evolution of the system from a nonequilibrium localization of energy in the OD stretching mode to a thermally equilibrated condition and provides the characteristic time constants of the process. The approach opens a new opportunity for investigation of intermolecular structural relations in complex systems, like membranes, polymers, proteins, and glasses.
Collapse
Affiliation(s)
- Victor V Volkov
- European Laboratory for Nonlinear Spectroscopy (LENS), Via Nello Carrara 1, I-50019 Sesto Fiorentino, Italy.
| | | | | | | | | | | |
Collapse
|
27
|
Driving engineering of novel antimicrobial peptides from simulations of peptide-micelle interactions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:1224-34. [PMID: 16753133 DOI: 10.1016/j.bbamem.2006.03.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Revised: 03/06/2006] [Accepted: 03/08/2006] [Indexed: 10/24/2022]
Abstract
Simulations of antimicrobial peptides in membrane mimics can provide the high resolution, atomistic picture that is necessary to decipher which sequence and structure components are responsible for activity and toxicity. With such detailed insight, engineering new sequences that are active but non-toxic can, in principle, be rationalized. Armed with supercomputers and accurate force fields for biomolecular interactions, we can now investigate phenomena that span hundreds of nanoseconds. Although the phenomena involved in antimicrobial activity, (i.e., diffusion of peptides, interaction with lipid layers, secondary structure attainment, possible surface aggregation, possible formation of pores, and destruction of the lipid layer integrity) collectively span time scales still prohibitively long for classical mechanics simulations, it is now feasible to investigate the initial approach of single peptides and their interaction with membrane mimics. In this article, we discuss the promise and the challenges of widely used models and detail our recent work on peptide-micelle simulations as an attractive alternative to peptide-bilayer simulations. We detail our results with two large structural classes of peptides, helical and beta-sheet and demonstrate how simulations can assist in engineering of novel antimicrobials with therapeutic potential.
Collapse
|
28
|
Langham AA, Khandelia H, Kaznessis YN. How can a β-sheet peptide be both a potent antimicrobial and harmfully toxic? Molecular dynamics simulations of protegrin-1 in micelles. Biopolymers 2006; 84:219-31. [PMID: 16235232 DOI: 10.1002/bip.20397] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In this work, the naturally occurring beta-hairpin antimicrobial peptide protegrin-1 (PG-1) is studied by molecular dynamics simulation in all-atom sodium dodecylsulfate and dodecylphosphocholine micelles. These simulations provide a high-resolution picture of the interactions between the peptide and simple models of bacterial and mammalian membranes. Both micelles show significant disruption, as is expected for a peptide that is both active against bacteria and toxic to host cells. There is, however, clear differentiation between the behavior in SDS versus DPC, which suggests different mechanisms of interaction for PG-1 with mammalian and bacterial membranes. Specifically, the equilibrium orientation of the peptide relative to SDS is a mirror image of its position relative to DPC. In both systems, the arginine residues of PG-1 strongly interact with the head groups of the micelles. In DPC, the peptide prefers a location closer to the core of the micelle with Phe12, Val14, and Val16 imbedded in the core and the other side of the hairpin, which includes Leu5 and Tyr7, located closer to the surface of the micelle. In SDS, the peptide prefers a location at the micelle-water interface. The peptide position is reversed, with Leu5 and Cys6 imbedded furthest in the micelle core and Phe12, Val14, and Val16 on the surface of the micelle. We discuss the implications of these results with respect to activity and toxicity.
Collapse
Affiliation(s)
- Allison A Langham
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
29
|
Kandasamy SK, Larson RG. Binding and insertion of alpha-helical anti-microbial peptides in POPC bilayers studied by molecular dynamics simulations. Chem Phys Lipids 2005; 132:113-32. [PMID: 15530453 DOI: 10.1016/j.chemphyslip.2004.09.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We have performed molecular dynamics simulations of the interactions of two alpha-helical anti-microbial peptides, magainin2 and its synthetic analog of MSI-78, with palmitoyl-oleoyl-phosphatidylcholine (POPC) lipid bilayers. We used various initial positions and orientations of the peptide with respect to the lipid bilayer, including a surface-bound state parallel to the interface, a trans-membrane state, and a partially inserted state. Our 20 ns long simulations show that both magainin2 and MSI-78 are most stable in the lipid environment, with the peptide destabilized to different extents in both aqueous and lipid/water interfacial environments. We found that there are strong specific interactions between the lysine residues of the peptides and the lipid head-group regions. MSI-78, owing to its large number of lysines, shows better binding characteristics and overall stability when compared to magainin2. We also find that both peptides destabilize the bilayer environment, as observed by the increase in lipid tail disorder and the induction of local curvature on the lipid head-groups by the peptides. From all the simulations, we conclude that the hydrogen bonding interactions between the lysines of the peptides and the oxygens of the polar lipid head-groups are the strongest and determine the overall peptide binding characteristics to the lipids.
Collapse
Affiliation(s)
- Senthil K Kandasamy
- Department of Chemical Engineering, The University of Michigan, Ann Arbor, MI 48109-2036, USA
| | | |
Collapse
|
30
|
Ash WL, Zlomislic MR, Oloo EO, Tieleman DP. Computer simulations of membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1666:158-89. [PMID: 15519314 DOI: 10.1016/j.bbamem.2004.04.012] [Citation(s) in RCA: 204] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Accepted: 04/29/2004] [Indexed: 11/30/2022]
Abstract
Computer simulations are rapidly becoming a standard tool to study the structure and dynamics of lipids and membrane proteins. Increasing computer capacity allows unbiased simulations of lipid and membrane-active peptides. With the increasing number of high-resolution structures of membrane proteins, which also enables homology modelling of more structures, a wide range of membrane proteins can now be simulated over time spans that capture essential biological processes. Longer time scales are accessible by special computational methods. We review recent progress in simulations of membrane proteins.
Collapse
Affiliation(s)
- Walter L Ash
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary AB, Canada T2N 1N4
| | | | | | | |
Collapse
|
31
|
Volkov V, Hamm P. A two-dimensional infrared study of localization, structure, and dynamics of a dipeptide in membrane environment. Biophys J 2004; 87:4213-25. [PMID: 15377516 PMCID: PMC1304930 DOI: 10.1529/biophysj.104.045435] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Using methods of time-resolved two-dimensional infrared (2D-IR) spectroscopy, we approach the problem of the structural characterization of small polypeptide systems in a membrane environment. The 2D-IR spectra recorded for a model dipeptide in different environments demonstrated a significant change in the homogeneous and inhomogeneous broadenings of the amide I resonances when the molecule inserts either into a surfactant or a phospholipid membrane. Besides the change in the diagonal features in the 2D-IR response, we observe both intramolecular and intermolecular crosspeaks between the carbonyls of the dipeptide and the phospholipid. Considering the character of the diagonal peaks and the presence of the crosspeaks, we discuss the localization of the dipeptide moieties in the membrane. Using both the anisotropy and relative intensity of the observed intramolecular crosspeaks between the two amide I modes, we provide observables that help to determine the phi/psi-dihedral angles for the backbone of the dipeptide. Time dependent studies revealed slower conformational fluctuations of the dipeptide backbone in a membrane as compared to that in an aqueous environment.
Collapse
Affiliation(s)
- V Volkov
- Physikalisch Chemisches Institut, Universität Zürich, 8057 Zürich, Switzerland
| | | |
Collapse
|
32
|
Simonsen AC, Hansen PL, Klösgen B. Nanobubbles give evidence of incomplete wetting at a hydrophobic interface. J Colloid Interface Sci 2004; 273:291-9. [PMID: 15051463 DOI: 10.1016/j.jcis.2003.12.035] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2003] [Accepted: 12/12/2003] [Indexed: 10/26/2022]
Abstract
The appearance of a hydrophobic surface, namely a crystalline (111) Si wafer coated with a thick soft polystyrene film, and the morphological changes along this interface depending on the polarity of an adjoining liquid phase were studied with magnetic tapping mode atomic force microscopy. Interfacially associated nanobubbles of decreasing size and number are observed as the hydrophobicity of the subphase increases. The disturbance of the water structure in the contact region induces the formation of nanobubbles. The topology of the interface is visualized, starting with the dry polymer under normal atmosphere conditions and observing the changes as air is replaced by a series of liquids. With water, the surface coverage of the substrate with bubbles is almost a close-packed configuration. The bubble shape is well approximated by spherical caps of a rather low aspect ratio. The Gaussian size distributions of bubble shape parameters are discussed. The contact angle of the nanobubbles is substantially smaller than the corresponding number measured for a macroscopic droplet. This apparent discrepancy might be resolved if the nanobubbles were assumed to exist along the interface as a connecting sublayer between a depleted water film at the hydrophobic polymer surface and an adsorbed macrodroplet.
Collapse
Affiliation(s)
- Adam Cohen Simonsen
- Physics Department, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | | | | |
Collapse
|
33
|
Lampela O, Juffer AH, Rauk A. Conformational Analysis of Glutathione in Aqueous Solution with Molecular Dynamics. J Phys Chem A 2003. [DOI: 10.1021/jp030556j] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Pandit SA, Bostick D, Berkowitz ML. An algorithm to describe molecular scale rugged surfaces and its application to the study of a water/lipid bilayer interface. J Chem Phys 2003. [DOI: 10.1063/1.1582833] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
35
|
Jing W, Hunter HN, Hagel J, Vogel HJ. The structure of the antimicrobial peptide Ac-RRWWRF-NH2 bound to micelles and its interactions with phospholipid bilayers. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 2003; 61:219-29. [PMID: 12662355 DOI: 10.1034/j.1399-3011.2003.00050.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The hexapeptide Ac-RRWWRF-NH2 has earlier been identified as a potent antimicrobial peptide by screening synthetic combinatorial hexapeptide libraries. In this study, it was found that this peptide had a large influence on the thermotropic phase behavior of model membranes containing the negatively charged headgroup phosphatidylglycerol, a major component of bacterial membranes. In contrast, differential scanning calorimetry showed that it had little effect on model membranes containing the zwitterionic phosphatidylcholine headgroup, the main component of erythrocyte membranes. This behavior is consistent with its biological activity and with its affinity to these membranes as determined by titration calorimetry, implying that peptide-lipid interactions play an important role in this process. The structure of this peptide bound to membrane-mimetic sodium dodecyl sulfate (SDS) and dodecylphosphocholine micelles has been determined using conventional two-dimensional nuclear magnetic resonance methods. It forms a marked amphipathic structure in SDS with its hydrophobic residues on one side of the structure and with the positively charged residues on the other side. This amphipathic structure may allow this peptide to penetrate deeper into the interfacial region of negatively charged membranes, leading to local membrane destabilization. Knowledge about the importance of electrostatic interactions of Arg and the role of Trp residues as a membrane interface anchor will provide insight into the future design of potent antimicrobial peptidomimetics.
Collapse
Affiliation(s)
- W Jing
- Structural Biology Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | | | | | |
Collapse
|
36
|
Stern HA, Feller SE. Calculation of the dielectric permittivity profile for a nonuniform system: Application to a lipid bilayer simulation. J Chem Phys 2003. [DOI: 10.1063/1.1537244] [Citation(s) in RCA: 207] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
37
|
Shepherd CM, Vogel HJ, Tieleman DP. Interactions of the designed antimicrobial peptide MB21 and truncated dermaseptin S3 with lipid bilayers: molecular-dynamics simulations. Biochem J 2003; 370:233-43. [PMID: 12423203 PMCID: PMC1223151 DOI: 10.1042/bj20021255] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2002] [Revised: 10/24/2002] [Accepted: 11/08/2002] [Indexed: 11/17/2022]
Abstract
Molecular-dynamics simulations covering 30 ns of both a natural and a synthetic antimicrobial peptide in the presence of a zwitterionic lipid bilayer were performed. In both simulations, copies of the peptides were placed in an alpha-helical conformation on either side of the bilayer about 10 A (1 A=0.1 nm) from the interface, with either the hydrophobic or the positively charged face of the helix directed toward the bilayer surface. The degree of peptide-lipid interaction was dependent on the starting configuration: surface binding and subsequent penetration of the bilayer was observed for the hydrophobically oriented peptides, while the charge-oriented peptides demonstrated at most partial surface binding. Aromatic residues near the N-termini of the peptides appear to play an important role in driving peptide-lipid interactions. A correlation between the extent of peptide-lipid interactions and helical stability was observed in the simulations. Insertion of the peptides into the bilayer caused a dramatic increase in the lateral area per lipid and decrease in the bilayer thickness, resulting in substantial disordering of the lipid chains. Results from the simulations are consistent with early stages of proposed mechanisms for the lytic activity of antimicrobial peptides. In addition to these 'free' simulations, 25 ns simulations were carried out with the peptides constrained at three different distances relative to the bilayer interface. The constraint forces are in agreement with the extent of peptide-bilayer insertion observed in the free simulations.
Collapse
Affiliation(s)
- Craig M Shepherd
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, AB, Canada T2N 1N4
| | | | | |
Collapse
|
38
|
Mungikar AA, Forciniti D. Computer simulations and neutron reflectivity of proteins at interfaces. Chemphyschem 2002; 3:993-9. [PMID: 12516208 DOI: 10.1002/cphc.200290015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Computer simulations in conjunction with neutron reflectivity is an excellent combination for the study of biological materials at solid-liquid interfaces: Both techniques have excellent resolution levels (Angströms) and they are mature. A stronger interaction between physicists and biologists will allow the use of these two approaches in topics of biological-biomedical interest.
Collapse
Affiliation(s)
- Amol A Mungikar
- Department of Chemical Engineering, University of Missouri-Rolla, Rolla, MO 65409, USA
| | | |
Collapse
|
39
|
Vogel HJ, Schibli DJ, Jing W, Lohmeier-Vogel EM, Epand RF, Epand RM. Towards a structure-function analysis of bovine lactoferricin and related tryptophan- and arginine-containing peptides. Biochem Cell Biol 2002; 80:49-63. [PMID: 11908643 DOI: 10.1139/o01-213] [Citation(s) in RCA: 241] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The iron-binding protein lactoferrin is a multifunctional protein that has antibacterial, antifungal, antiviral, antitumour, anti-inflammatory, and immunoregulatory properties. All of these additional properties appear to be related to its highly basic N-terminal region. This part of the protein can be released in the stomach by pepsin cleavage at acid pH. The 25-residue antimicrobial peptide that is released is called lactoferricin. In this work, we review our knowledge about the structure of the peptide and attempt to relate this to its many functions. Microcalorimetry and fluorescence spectroscopy data regarding the interaction of the peptide with model membranes show that binding to net negatively charged bacterial and cancer cell membranes is preferred over neutral eukaryotic membranes. Binding of the peptide destabilizes the regular membrane bilayer structure. Residues that are of particular importance for the activity of lactoferricin are tryptophan and arginine. These two amino acids are also prevalent in "penetratins", which are regions of proteins or synthetic peptides that can spontaneously cross membranes and in short hexapeptide antimicrobial peptides derived through combinatorial chemistry. While the antimicrobial, antifungal, antitumour, and antiviral properties of lactoferricin can be related to the Trp/Arg-rich portion of the peptide, we suggest that the anti-inflammatory and immunomodulating properties are more related to a positively charged region of the molecule, which, like the alpha- and beta-defensins, may act as a chemokine. Few small peptides are involved in as wide a range of host defense functions as bovine and human lactoferricin.
Collapse
Affiliation(s)
- Hans J Vogel
- Department of Biological Sciences, University of Calgary, AB, Canada.
| | | | | | | | | | | |
Collapse
|
40
|
Sun F. Constant normal pressure, constant surface tension, and constant temperature molecular dynamics simulation of hydrated 1,2-dilignoceroylphosphatidylcholine monolayer. Biophys J 2002; 82:2511-9. [PMID: 11964239 PMCID: PMC1302041 DOI: 10.1016/s0006-3495(02)75594-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
A constant normal pressure, constant surface tension, and constant temperature (NP(N)gammaT) molecular dynamics (MD) simulation of the liquid condensed phase of a 1,2-dilignoceroylphosphatidylcholine (DLGPC) monolayer has been performed at 293.15 K. A DLGPC molecule has two saturated 24-carbon acyl chains, giving the hydrocarbon core thickness of the monolayer approximately 28 A, which is close to the hydrocarbon core thickness of a membrane of a living system. NP(N)gammaT ensemble was used to reproduce the experimental observations, such as area/lipid, because surface tension is an essential factor in determining the monolayer structure. Data analysis on DLGPC/water monolayer shows that various liquid condensed-phase properties of the monolayer have been well reproduced from the simulation, indicating that surface tension 22.9 mN/M used in the simulation is an appropriate condition for the condensed-phase NP(N)gammaT simulation. The simulation results suggest that this long-chain phospholipid monolayer shares many structural characteristics with typical short-chain 1,2-diacylphosphatidylcholine systems, such as DPPC/water monolayer in the condensed phase and DPPC/water bilayer in the gel phase. Furthermore, it was found that DLGPC/water monolayer has almost completely rotationally disordered acyl chains, which have not been observed so far in short-chain 1,2-diacylphosphatidylcholine/water bilayers. This study indicates the good biological relevance of the DLGPC/water monolayer which might be useful in protein/lipid studies to reveal protein structure and protein/lipid interactions in a membrane environment.
Collapse
Affiliation(s)
- Feng Sun
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
41
|
Marx SO, Gaburjakova J, Gaburjakova M, Henrikson C, Ondrias K, Marks AR. Coupled gating between cardiac calcium release channels (ryanodine receptors). Circ Res 2001; 88:1151-8. [PMID: 11397781 DOI: 10.1161/hh1101.091268] [Citation(s) in RCA: 268] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Excitation-contraction coupling in heart muscle requires the activation of Ca(2+)-release channels/type 2 ryanodine receptors (RyR2s) by Ca(2+) influx. RyR2s are arranged on the sarcoplasmic reticular membrane in closely packed arrays such that their large cytoplasmic domains contact one another. We now show that multiple RyR2s can be isolated under conditions such that they remain physically coupled to one another. When these coupled channels are examined in planar lipid bilayers, multiple channels exhibit simultaneous gating, termed "coupled gating." Removal of the regulatory subunit, the FK506 binding protein (FKBP12.6), functionally but not physically uncouples multiple RyR2 channels. Coupled gating between RyR2 channels may be an important regulatory mechanism in excitation-contraction coupling as well as in other signaling pathways involving intracellular Ca(2+) release.
Collapse
Affiliation(s)
- S O Marx
- Center for Molecular Cardiology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
42
|
Gaburjakova M, Gaburjakova J, Reiken S, Huang F, Marx SO, Rosemblit N, Marks AR. FKBP12 binding modulates ryanodine receptor channel gating. J Biol Chem 2001; 276:16931-5. [PMID: 11279144 DOI: 10.1074/jbc.m100856200] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ryanodine receptor (RyR1)/calcium release channel on the sarcoplasmic reticulum of skeletal muscle is comprised of four 565,000-dalton RyR1s, each of which binds one FK506 binding protein (FKBP12). RyR1 is required for excitation-contraction coupling in skeletal muscle. FKBP12, a cis-trans peptidyl-prolyl isomerase, is required for the normal gating of the RyR1 channel. In the absence of FKBP12, RyR1 channels exhibit increased gating frequency, suggesting that FKBP12 "stabilizes" the channel in the open and closed states. We now show that substitution of a Gly, Glu, or Ile for Val2461 in RyR1 prevents FKBP12 binding to RyR1, resulting in channels with increased gating frequency. In the case of the V2461I mutant RyR1, normal channel function can be restored by adding FKBP12.6, an isoform of FKBP12. These data identify Val2461 as a critical residue required for FKBP12 binding to RyR1 and demonstrate the functional role for FKBP12 in the RyR1 channel complex.
Collapse
Affiliation(s)
- M Gaburjakova
- Center for Molecular Cardiology and Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | | | | | |
Collapse
|