1
|
Structural determinants of the dominant conformational epitopes of phospholipase A2 receptor in primary membranous nephropathy. J Biol Chem 2022; 298:101605. [PMID: 35065076 PMCID: PMC8867125 DOI: 10.1016/j.jbc.2022.101605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 12/27/2022] Open
Abstract
Anti-phospholipase A2 receptor autoantibody (PLA2R-Ab) plays a critical role in the pathogenesis of primary membranous nephropathy (PMN), an autoimmune kidney disease characterized by immune deposits in the glomerular subepithelial spaces and proteinuria. However, the mechanism of how PLA2R-Abs interact with the conformational epitope(s) of PLA2R has remained elusive. PLA2R is a single transmembrane helix receptor containing ten extracellular domains that begin with a CysR domain followed by a FnII and eight CTLD domains. Here, we examined the interactions of PLA2R-Ab with the full PLA2R protein, N-terminal domain truncations, and C-terminal domain deletions under either denaturing or physiological conditions. Our data demonstrate that the PLA2R-Abs against the dominant epitope (the N-terminal CysR-CTLD1 triple domain) possess weak cross-reactivities to the C-terminal domains beyond CTLD1. Moreover, both the CysR and CTLD1 domains are required to form a conformational epitope for PLA2R-Ab interaction, with FnII serving as a linker domain. Upon close examination, we also observed that patients with newly diagnosed PMN carry two populations of PLA2R-Abs in sera that react to the denatured CysR-CTLD3 (the PLA2R-Ab1) and denatured CysR-CTLD1 (the PLA2R-Ab2) domain complexes on Western blots, respectively. Furthermore, the PLA2R-Ab1 appeared at an earlier time point than PLA2R-Ab2 in patients, whereas the increased levels of PLA2R-Ab2 coincided with the worsening of proteinuria. In summary, our data support that an integrated folding of the three PLA2R N-terminal domains, CysR, FnII, and CTLD1, is a prerequisite to forming the PLA2R conformational epitope and that the dominant epitope-reactive PLA2R-Ab2 plays a critical role in PMN clinical progression.
Collapse
|
2
|
Abstract
This Feature Article presents a view of the protein folding transition based on the hypothesis that Nature has built features within the sequences that enable a Shortcut to efficient folding. Nature's Shortcut is proposed to be the early establishment of a set of nonlocal weak contacts, constituting protein loops that significantly constrain regions of the collapsed disordered protein into a native-like low-resolution fluctuating topology of major sections of the backbone. Nature's establishment of this scaffold of nonlocal contacts is claimed to bypass what would otherwise be a nearly hopeless unaided search for the final three-dimensional structure in proteins longer than ∼100 amino acids. To support this main contention of the Feature Article, the loop hypothesis (LH) description of early folding events is experimentally tested with time-resolved Förster resonance energy transfer techniques for adenylate kinase, and the data are shown to be consistent with theoretical predictions from the sequential collapse model (SCM). The experimentally based LH and the theoretically founded SCM are argued to provide a unified picture of the role of nonlocal contacts as constituting Nature's Shortcut to protein folding. Importantly, the SCM is shown to reliably predict key nonlocal contacts utilizing only primary sequence information. This view on Nature's Shortcut is open to the protein community for further detailed assessment, including its practical consequences, by suitable application of advanced experimental and computational techniques.
Collapse
Affiliation(s)
| | - Elisha Haas
- The Goodman Faculty of Life Sciences , Bar-Ilan University , Ramat Gan 52900 , Israel
| | | |
Collapse
|
3
|
|
4
|
Nichols P, Li L, Kumar S, Buck PM, Singh SK, Goswami S, Balthazor B, Conley TR, Sek D, Allen MJ. Rational design of viscosity reducing mutants of a monoclonal antibody: hydrophobic versus electrostatic inter-molecular interactions. MAbs 2015; 7:212-30. [PMID: 25559441 DOI: 10.4161/19420862.2014.985504] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
High viscosity of monoclonal antibody formulations at concentrations ≥100 mg/mL can impede their development as products suitable for subcutaneous delivery. The effects of hydrophobic and electrostatic intermolecular interactions on the solution behavior of MAB 1, which becomes unacceptably viscous at high concentrations, was studied by testing 5 single point mutants. The mutations were designed to reduce viscosity by disrupting either an aggregation prone region (APR), which also participates in 2 hydrophobic surface patches, or a negatively charged surface patch in the variable region. The disruption of an APR that lies at the interface of light and heavy chain variable domains, VH and VL, via L45K mutation destabilized MAB 1 and abolished antigen binding. However, mutation at the preceding residue (V44K), which also lies in the same APR, increased apparent solubility and reduced viscosity of MAB 1 without sacrificing antigen binding or thermal stability. Neutralizing the negatively charged surface patch (E59Y) also increased apparent solubility and reduced viscosity of MAB 1, but charge reversal at the same position (E59K/R) caused destabilization, decreased solubility and led to difficulties in sample manipulation that precluded their viscosity measurements at high concentrations. Both V44K and E59Y mutations showed similar increase in apparent solubility. However, the viscosity profile of E59Y was considerably better than that of the V44K, providing evidence that inter-molecular interactions in MAB 1 are electrostatically driven. In conclusion, neutralizing negatively charged surface patches may be more beneficial toward reducing viscosity of highly concentrated antibody solutions than charge reversal or aggregation prone motif disruption.
Collapse
Key Words
- APR, Aggregation Prone Region
- ASA, Accessible Surface Area
- ASAFv-HPH, hydrophilic accessible surface area of the Fv portion
- ASAFv-HYD, hydrophobic accessible surface area of the Fv portion
- CE, Capillary Electrophoresis
- CH2
- CH3, third constant domain in heavy chain
- CHO, Chinese Hamster Ovary
- D0, diffusion coefficient at infinite dilution
- DFv, dipole moment of Fv
- DLS, Dynamic Light Scattering
- ELISA, Enzyme-Linked Immunosorbent Assay
- Fab, fragment antigen binding
- Fc, fragment crystallizable
- Fv, fragment variable
- HC, heavy chain
- IgG, immunoglobulin G
- LC, light chain
- MAB 1 Control, MAB 1 expressed in CHO cells
- MD, molecular dynamics
- NTU, Nephelometric Turbidity Unit
- PEG, polyethylene glycol
- Pagg-VH, aggregation propensity of VH domain
- Pagg-VL, aggregation propensity of VL domain
- RPM, revolutions per minute
- SE-HPLC, Size Exclusion High Performance Liquid Chromatography
- Tm, thermal transition temperature
- VH, variable domain in the heavy chain
- VL, variable domain in the light chain
- ZDHH, Debye-Huckel Henry Charge
- ZFv, net charge of the Fv
- ZFv-app, apparent charge of the Fv
- aggregation prone regions
- cIEF, capillary Isoelectric Focusing
- cP, centipoise
- high concentration
- kD, protein-protein interaction parameter
- mAb, monoclonal antibody
- molecular modeling
- monoclonal antibodies
- negatively charged patches
- rational design
- second constant domain in the heavy chain
- solubility
- viscosity
- ΔGFv, change in Free energy of Fv
- η, solution viscosity
- η0, solvent viscosity
- ηrel, relative viscosity
- ξFv, zeta-potential of the Fv
Collapse
Affiliation(s)
- Pilarin Nichols
- a Biotherapeutics Pharmaceutical Sciences Research and Development; Pfizer Inc. ; Andover , MA USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Giri Rao VVH, Gosavi S. In the multi-domain protein adenylate kinase, domain insertion facilitates cooperative folding while accommodating function at domain interfaces. PLoS Comput Biol 2014; 10:e1003938. [PMID: 25393408 PMCID: PMC4230728 DOI: 10.1371/journal.pcbi.1003938] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 09/25/2014] [Indexed: 12/30/2022] Open
Abstract
Having multiple domains in proteins can lead to partial folding and increased aggregation. Folding cooperativity, the all or nothing folding of a protein, can reduce this aggregation propensity. In agreement with bulk experiments, a coarse-grained structure-based model of the three-domain protein, E. coli Adenylate kinase (AKE), folds cooperatively. Domain interfaces have previously been implicated in the cooperative folding of multi-domain proteins. To understand their role in AKE folding, we computationally create mutants with deleted inter-domain interfaces and simulate their folding. We find that inter-domain interfaces play a minor role in the folding cooperativity of AKE. On further analysis, we find that unlike other multi-domain proteins whose folding has been studied, the domains of AKE are not singly-linked. Two of its domains have two linkers to the third one, i.e., they are inserted into the third one. We use circular permutation to modify AKE chain-connectivity and convert inserted-domains into singly-linked domains. We find that domain insertion in AKE achieves the following: (1) It facilitates folding cooperativity even when domains have different stabilities. Insertion constrains the N- and C-termini of inserted domains and stabilizes their folded states. Therefore, domains that perform conformational transitions can be smaller with fewer stabilizing interactions. (2) Inter-domain interactions are not needed to promote folding cooperativity and can be tuned for function. In AKE, these interactions help promote conformational dynamics limited catalysis. Finally, using structural bioinformatics, we suggest that domain insertion may also facilitate the cooperative folding of other multi-domain proteins. Most individual protein domains fold in an all or nothing fashion. This cooperative folding is important because it reduces the existence of partially folded proteins which can stick to each other and create disease causing aggregates. However, numerous proteins have multiple domains, independent units of folding, stability and/or function. Several such proteins also fold cooperatively. It is thought that strong interactions between individual domains allow the folding to propagate from a nucleating domain to neighbouring ones and this enables cooperative folding in multi-domain proteins. Here, we computationally study the folding of the three-domain protein AKE and find instead that the topology of the protein, wherein the two less stable domains are inserted into the more stable one, promotes folding cooperativity. When the more stable domain is folded, the ends of the inserted domains are constrained and this allows them to fold easily. In such a protein topology, strong inter-domain interactions are not needed to promote folding cooperativity. Interface amino acids which would have been involved in ensuring that the domains fit together correctly can now be tuned for binding or catalysis or conformational transitions. Thus, inserted domains may be present in multi-domain proteins to promote both function and folding.
Collapse
Affiliation(s)
- V. V. Hemanth Giri Rao
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Shachi Gosavi
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
- * E-mail:
| |
Collapse
|
6
|
Akhoon BA, Singh KP, Varshney M, Gupta SK, Shukla Y, Gupta SK. Understanding the mechanism of atovaquone drug resistance in Plasmodium falciparum cytochrome b mutation Y268S using computational methods. PLoS One 2014; 9:e110041. [PMID: 25334024 PMCID: PMC4198183 DOI: 10.1371/journal.pone.0110041] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 09/15/2014] [Indexed: 11/25/2022] Open
Abstract
The rapid appearance of resistant malarial parasites after introduction of atovaquone (ATQ) drug has prompted the search for new drugs as even single point mutations in the active site of Cytochrome b protein can rapidly render ATQ ineffective. The presence of Y268 mutations in the Cytochrome b (Cyt b) protein is previously suggested to be responsible for the ATQ resistance in Plasmodium falciparum (P. falciparum). In this study, we examined the resistance mechanism against ATQ in P. falciparum through computational methods. Here, we reported a reliable protein model of Cyt bc1 complex containing Cyt b and the Iron-Sulphur Protein (ISP) of P. falciparum using composite modeling method by combining threading, ab initio modeling and atomic-level structure refinement approaches. The molecular dynamics simulations suggest that Y268S mutation causes ATQ resistance by reducing hydrophobic interactions between Cyt bc1 protein complex and ATQ. Moreover, the important histidine contact of ATQ with the ISP chain is also lost due to Y268S mutation. We noticed the induced mutation alters the arrangement of active site residues in a fashion that enforces ATQ to find its new stable binding site far away from the wild-type binding pocket. The MM-PBSA calculations also shows that the binding affinity of ATQ with Cyt bc1 complex is enough to hold it at this new site that ultimately leads to the ATQ resistance.
Collapse
Affiliation(s)
- Bashir A. Akhoon
- Department of Bioinformatics, Systems Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Krishna P. Singh
- Department of Bioinformatics, Systems Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Megha Varshney
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Shishir K. Gupta
- Department of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, Würzburg, Germany
| | - Yogeshwar Shukla
- Department of Proteomics, CSIR-Indian Institute of Toxicology Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Shailendra K. Gupta
- Department of Bioinformatics, Systems Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
- * E-mail:
| |
Collapse
|
7
|
|
8
|
Buck PM, Kumar S, Singh SK. On the role of aggregation prone regions in protein evolution, stability, and enzymatic catalysis: insights from diverse analyses. PLoS Comput Biol 2013; 9:e1003291. [PMID: 24146608 PMCID: PMC3798281 DOI: 10.1371/journal.pcbi.1003291] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 08/30/2013] [Indexed: 11/18/2022] Open
Abstract
The various roles that aggregation prone regions (APRs) are capable of playing in proteins are investigated here via comprehensive analyses of multiple non-redundant datasets containing randomly generated amino acid sequences, monomeric proteins, intrinsically disordered proteins (IDPs) and catalytic residues. Results from this study indicate that the aggregation propensities of monomeric protein sequences have been minimized compared to random sequences with uniform and natural amino acid compositions, as observed by a lower average aggregation propensity and fewer APRs that are shorter in length and more often punctuated by gate-keeper residues. However, evidence for evolutionary selective pressure to disrupt these sequence regions among homologous proteins is inconsistent. APRs are less conserved than average sequence identity among closely related homologues (≥80% sequence identity with a parent) but APRs are more conserved than average sequence identity among homologues that have at least 50% sequence identity with a parent. Structural analyses of APRs indicate that APRs are three times more likely to contain ordered versus disordered residues and that APRs frequently contribute more towards stabilizing proteins than equal length segments from the same protein. Catalytic residues and APRs were also found to be in structural contact significantly more often than expected by random chance. Our findings suggest that proteins have evolved by optimizing their risk of aggregation for cellular environments by both minimizing aggregation prone regions and by conserving those that are important for folding and function. In many cases, these sequence optimizations are insufficient to develop recombinant proteins into commercial products. Rational design strategies aimed at improving protein solubility for biotechnological purposes should carefully evaluate the contributions made by candidate APRs, targeted for disruption, towards protein structure and activity. Biotechnology requires the large-scale expression, yield, and storage of recombinant proteins. Each step in protein production has the potential to cause aggregation as proteins, not evolved to exist outside the cell, endure the various steps involved in commercial manufacturing processes. Mechanistic studies into protein aggregation have revealed that certain sequence regions contribute more to the aggregation propensity of a protein than other sequence regions do. Efforts to disrupt these regions have thus far indicated that rational sequence engineering is a useful technique to reduce the aggregation of biotechnologically relevant proteins. To improve our ability to rationally engineer proteins with enhanced expression, solubility, and shelf-life we conducted extensive analyses of aggregation prone regions (APRs) within protein sequences to characterize the various roles these regions play in proteins. Findings from this work indicate that protein sequences have evolved by minimizing their aggregation propensities. However, we also found that many APRs are conserved in protein families and are essential to maintain protein stability and function. Therefore, the contributions that APRs, targeted for disruption, make towards protein stability and function should be carefully evaluated when improving protein solubility via rational design.
Collapse
Affiliation(s)
- Patrick M Buck
- Pharmaceutical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Chesterfield, Missouri, United States of America
| | | | | |
Collapse
|
9
|
Srivastava M, Gupta SK, Abhilash PC, Singh N. Structure prediction and binding sites analysis of curcin protein of Jatropha curcas using computational approaches. J Mol Model 2011; 18:2971-9. [PMID: 22146985 DOI: 10.1007/s00894-011-1320-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 11/22/2011] [Indexed: 11/29/2022]
Abstract
Ribosome inactivating proteins (RIPs) are defense proteins in a number of higher-plant species that are directly targeted toward herbivores. Jatropha curcas is one of the biodiesel plants having RIPs. The Jatropha seed meal, after extraction of oil, is rich in curcin, a highly toxic RIP similar to ricin, which makes it unsuitable for animal feed. Although the toxicity of curcin is well documented in the literature, the detailed toxic properties and the 3D structure of curcin has not been determined by X-ray crystallography, NMR spectroscopy or any in silico techniques to date. In this pursuit, the structure of curcin was modeled by a composite approach of 3D structure prediction using threading and ab initio modeling. Assessment of model quality was assessed by methods which include Ramachandran plot analysis and Qmean score estimation. Further, we applied the protein-ligand docking approach to identify the r-RNA binding residue of curcin. The present work provides the first structural insight into the binding mode of r-RNA adenine to the curcin protein and forms the basis for designing future inhibitors of curcin. Cloning of a future peptide inhibitor within J. curcas can produce non-toxic varieties of J. curcas, which would make the seed-cake suitable as animal feed without curcin detoxification.
Collapse
Affiliation(s)
- Mugdha Srivastava
- Eco-Auditing Laboratory, National Botanical Research Institute, CSIR, Lucknow, 226001 Uttar Pradesh, India.
| | | | | | | |
Collapse
|
10
|
Meirovitch E, Shapiro YE, Polimeno A, Freed JH. Structural dynamics of bio-macromolecules by NMR: the slowly relaxing local structure approach. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2010; 56:360-405. [PMID: 20625480 PMCID: PMC2899824 DOI: 10.1016/j.pnmrs.2010.03.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Affiliation(s)
- Eva Meirovitch
- The Mina and Everard Goodman Faculty of Life Sciences, Bar–Ilan University, Ramat-Gan 52900 Israel
| | - Yury E. Shapiro
- The Mina and Everard Goodman Faculty of Life Sciences, Bar–Ilan University, Ramat-Gan 52900 Israel
| | - Antonino Polimeno
- Department of Physical Chemistry, University of Padua, 35131 Padua, Italy
| | - Jack H. Freed
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853-1301, U.S.A
| |
Collapse
|
11
|
Panayiotou C, Solaroli N, Johansson M, Karlsson A. Evidence of an intact N-terminal translocation sequence of human mitochondrial adenylate kinase 4. Int J Biochem Cell Biol 2009; 42:62-9. [PMID: 19766732 DOI: 10.1016/j.biocel.2009.09.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 09/08/2009] [Accepted: 09/11/2009] [Indexed: 10/20/2022]
Abstract
Adenylate kinases are abundant nucleoside monophosphate kinases, which catalyze the phosphorylation of AMP by using ATP or GTP as phosphate donors. A previously cloned cDNA was named adenylate kinase 4 (AK4) based on its sequence similarity with known AKs but with no confirmed AK enzyme activity. In the present study the AK4 cDNA was expressed in Escherichia coli and the substrate specificity and kinetic properties of the recombinant protein were characterized. The enzyme catalyzed the phosphorylation of AMP, dAMP, CMP and dCMP with ATP or GTP as phosphate donors and AK4 also phosphorylated AMP with UTP as phosphate donor. The kinetic parameters of the enzyme were determined for AMP and dAMP with ATP as phosphate donor and for AMP with GTP as phosphate donor. AK4 showed its highest efficiency when phosphorylating AMP with GTP and a slightly lower efficiency for the phosphorylation of AMP with ATP. Among the three reactions for which kinetics were performed, dAMP was the poorest substrate. The AK4 mitochondrial localization was confirmed by expression of AK4 as a fusion protein with GFP in HeLa cells. The mitochondrial import sequence was shown to be located within the first N-terminal 11 amino acid residues, very close to the ATP-binding region of the enzyme. Import analysis suggested that the mitochondrial import sequence was not cleaved and thus the enzyme retained its activity upon entering the mitochondria. Site directed mutagenesis of amino acids Lys 4 and Arg 7 showed that these two residues were essential for mitochondrial import.
Collapse
Affiliation(s)
- Christakis Panayiotou
- Department of Laboratory Medicine, Karolinska Institute, F68, S-141 86 Huddinge, Sweden.
| | | | | | | |
Collapse
|
12
|
Ataei F, Hosseinkhani S, Khajeh K. Limited Proteolysis of Luciferase as a Reporter in Nanosystem Biology: A Comparative Study. Photochem Photobiol 2009; 85:1162-7. [DOI: 10.1111/j.1751-1097.2009.00583.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Shapiro YE, Kahana E, Meirovitch E. Domain Mobility in Proteins from NMR/SRLS. J Phys Chem B 2009; 113:12050-60. [DOI: 10.1021/jp901522c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Yury E. Shapiro
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Edith Kahana
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Eva Meirovitch
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
14
|
Brooks B, Brooks C, MacKerell A, Nilsson L, Petrella R, Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner A, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor R, Post C, Pu J, Schaefer M, Tidor B, Venable RM, Woodcock HL, Wu X, Yang W, York D, Karplus M. CHARMM: the biomolecular simulation program. J Comput Chem 2009; 30:1545-614. [PMID: 19444816 PMCID: PMC2810661 DOI: 10.1002/jcc.21287] [Citation(s) in RCA: 6282] [Impact Index Per Article: 392.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
CHARMM (Chemistry at HARvard Molecular Mechanics) is a highly versatile and widely used molecular simulation program. It has been developed over the last three decades with a primary focus on molecules of biological interest, including proteins, peptides, lipids, nucleic acids, carbohydrates, and small molecule ligands, as they occur in solution, crystals, and membrane environments. For the study of such systems, the program provides a large suite of computational tools that include numerous conformational and path sampling methods, free energy estimators, molecular minimization, dynamics, and analysis techniques, and model-building capabilities. The CHARMM program is applicable to problems involving a much broader class of many-particle systems. Calculations with CHARMM can be performed using a number of different energy functions and models, from mixed quantum mechanical-molecular mechanical force fields, to all-atom classical potential energy functions with explicit solvent and various boundary conditions, to implicit solvent and membrane models. The program has been ported to numerous platforms in both serial and parallel architectures. This article provides an overview of the program as it exists today with an emphasis on developments since the publication of the original CHARMM article in 1983.
Collapse
Affiliation(s)
- B.R. Brooks
- Laboratory of Computational Biology, National Heart, Lung, and
Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - C.L. Brooks
- Departments of Chemistry & Biophysics, University of
Michigan, Ann Arbor, MI 48109
| | - A.D. MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy,
University of Maryland, Baltimore, MD, 21201
| | - L. Nilsson
- Karolinska Institutet, Department of Biosciences and Nutrition,
SE-141 57, Huddinge, Sweden
| | - R.J. Petrella
- Department of Chemistry and Chemical Biology, Harvard University,
Cambridge, MA 02138
- Department of Medicine, Harvard Medical School, Boston, MA
02115
| | - B. Roux
- Department of Biochemistry and Molecular Biology, University of
Chicago, Gordon Center for Integrative Science, Chicago, IL 60637
| | - Y. Won
- Department of Chemistry, Hanyang University, Seoul
133–792 Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - M. Karplus
- Department of Chemistry and Chemical Biology, Harvard University,
Cambridge, MA 02138
- Laboratoire de Chimie Biophysique, ISIS, Université de
Strasbourg, 67000 Strasbourg France
| |
Collapse
|
15
|
Tsai CJ, Ma B, Nussinov R. Intra-molecular chaperone: the role of the N-terminal in conformational selection and kinetic control. Phys Biol 2009; 6:013001. [PMID: 19193974 DOI: 10.1088/1478-3975/6/1/013001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The vast majority of the proteins in nature are under thermodynamic control, consistent with the universally accepted notion that proteins exist in their thermodynamically most stable state. Yet, recently a number of examples of proteins whose fold is under kinetic control have come to light. Their functions and environments vary. The first among these are some proteases, discovered in the early 1990s. There, an N-terminal proregion is self-cleaved after the protein folded, leaving the remainder of the chain in a kinetically trapped state. A related scenario was observed for microcin J25, an antibacterial peptide. This peptide presents a trapped covalently knotted conformation. The third and the most recently discovered case is the multidrug-resistant transporter protein, P-glycoprotein. There, a synonymous 'silent' mutation leads to ribosome stalling with a consequent altered kinetically trapped state. Here we argue that in all three examples, the N-terminal plays the role of an intra-molecular chaperone, that is, the N-terminal conformation selects among all competing local conformations of a downstream segment. By providing a pattern, the N-terminal chaperone segment assists the protein folding process. If the N-terminal is subsequently cleaved, the protein can be under kinetic control, since it is trapped in a thermodynamically less-stable state.
Collapse
Affiliation(s)
- Chung-Jung Tsai
- Basic Research Program, SAIC-Frederick Inc, Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA
| | | | | |
Collapse
|
16
|
Lou H, Cukier RI. Molecular dynamics of apo-adenylate kinase: a distance replica exchange method for the free energy of conformational fluctuations. J Phys Chem B 2007; 110:24121-37. [PMID: 17125384 DOI: 10.1021/jp064303c] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A large domain motion in adenylate kinase from E. coli (AKE) is studied with molecular dynamics. AKE undergoes a large-scale rearrangement of its lid and AMP-binding domains when the open form closes over its substrates, AMP, and Mg2+-ATP, whereby the AMP-binding and lid domains come closer to the core. The third domain, the core, is relatively stable during this motion. A reaction coordinate that monitors the distance between the AMP-binding and core domains is selected to be able to compare with the results of energy transfer experiments. Sampling along this reaction coordinate is carried out by using a distance replica exchange method (DREM), where systems that differ by a restraint potential enforcing different reaction coordinate values are independently simulated with periodic attempts at exchange of these systems. Several methods are used to study the efficiency and convergence properties of the DREM simulation and compared with an analogous non-DREM simulation. The DREM greatly accelerates the rate and extent of configurational sampling and leads to equilibrium sampling as measured by monitoring collective modes obtained from a principal coordinate analysis. The potential of mean force along the reaction coordinate reveals a rather flat region for distances from the open to a relatively closed AKE conformation. The potential of mean force for smaller distances has a distinct minimum that is quite close to that found in the closed form X-ray structure. In concert with a decrease in the reaction coordinate distance (AMP-binding-to-core distance) the lid-to-core distance of AKE also decreases. Therefore, apo AKE can fluctuate from its open form to conformations that are quite similar to its closed form X-ray structure, even in the absence of its substrates.
Collapse
Affiliation(s)
- Hongfeng Lou
- Department of Chemistry and the Quantitative Biology Modeling Initiative, Michigan State University, East Lansing, Michigan 48824-1322, USA
| | | |
Collapse
|
17
|
Lou H, Cukier RI. Molecular Dynamics of Apo-Adenylate Kinase: A Principal Component Analysis. J Phys Chem B 2006; 110:12796-808. [PMID: 16800615 DOI: 10.1021/jp061976m] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adenylate kinase from E. coli (AKE) is studied with molecular dynamics. AKE undergoes large-scale motions of its Lid and AMP-binding domains when its open form closes over its substrates, AMP and Mg2+-ATP. The third domain, the Core, is relatively stable during closing. The resulting trajectory is analyzed with a principal component analysis method that decomposes the atom motions into modes ordered by their decreasing contributions to the total protein fluctuation. Simulations at 303 K (normal T) and 500 K (high T) reveal that at both temperatures the first three modes account for 70% of the total fluctuation. The residues that contribute the most to these three modes are concentrated in the Lid and AMP-binding domains. Analysis of the normal T modes indicates that the Lid and AMP-binding domains sample a broad distribution of conformations indicating that AKE is designed to provide its substrates with a large set of conformations. The high T results show that the Lid initially closes toward the Core. Subsequently, the Lid rotates to a new stable conformation that is different from what is observed in the substrate-bound AKE. These results are discussed in the context of experimental data that indicate that adenylate kinases do sample more than one conformational state in solution and that each of these conformational states undergoes substantial fluctuations. A pair of residues is suggested for labeling that would be useful for monitoring distance fluctuations by energy transfer experiments.
Collapse
Affiliation(s)
- Hongfeng Lou
- Department of Chemistry and the Quantitative Biology Modeling Initiative, Michigan State University, East Lansing, Michigan 48824, USA
| | | |
Collapse
|
18
|
Chan CH, Liang HK, Hsiao NW, Ko MT, Lyu PC, Hwang JK. Relationship between local structural entropy and protein thermostability. Proteins 2006; 57:684-91. [PMID: 15532068 DOI: 10.1002/prot.20263] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We developed a technique to compute structural entropy directly from protein sequences. We explored the possibility of using structural entropy to identify residues involved in thermal stabilization of various protein families. Examples include methanococcal adenylate kinase, Ribonuclease HI and holocytochrome c(551). Our results show that the positions of the largest structural entropy differences between wild type and mutant usually coincide with the residues relevant to thermostability. We also observed a good linear relationship between the average structural entropy and the melting temperatures for adenylate kinase and its chimeric constructs. To validate this linear relationship, we compiled a large dataset comprised of 1153 sequences and found that most protein families still display similar linear relationships. Our results suggest that the multitude of interactions involved in thermal stabilization may be generalized into the tendency of proteins to maintain local structural conservation. The linear relationship between structural entropy and protein thermostability should be useful in the study of protein thermal stabilization.
Collapse
Affiliation(s)
- Chen-Hsiung Chan
- Department of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | | | | | | | | | | |
Collapse
|
19
|
Temiz NA, Meirovitch E, Bahar I. Escherichia coli adenylate kinase dynamics: comparison of elastic network model modes with mode-coupling (15)N-NMR relaxation data. Proteins 2005; 57:468-80. [PMID: 15382240 PMCID: PMC1752299 DOI: 10.1002/prot.20226] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The dynamics of adenylate kinase of Escherichia coli (AKeco) and its complex with the inhibitor AP(5)A, are characterized by correlating the theoretical results obtained with the Gaussian Network Model (GNM) and the anisotropic network model (ANM) with the order parameters and correlation times obtained with Slowly Relaxing Local Structure (SRLS) analysis of (15)N-NMR relaxation data. The AMPbd and LID domains of AKeco execute in solution large amplitude motions associated with the catalytic reaction Mg(+2)*ATP + AMP --> Mg(+2)*ADP + ADP. Two sets of correlation times and order parameters were determined by NMR/SRLS for AKeco, attributed to slow (nanoseconds) motions with correlation time tau( perpendicular) and low order parameters, and fast (picoseconds) motions with correlation time tau( parallel) and high order parameters. The structural connotation of these patterns is examined herein by subjecting AKeco and AKeco*AP(5)A to GNM analysis, which yields the dynamic spectrum in terms of slow and fast modes. The low/high NMR order parameters correlate with the slow/fast modes of the backbone elucidated with GNM. Likewise, tau( parallel) and tau( perpendicular) are associated with fast and slow GNM modes, respectively. Catalysis-related domain motion of AMPbd and LID in AKeco, occurring per NMR with correlation time tau( perpendicular), is associated with the first and second collective slow (global) GNM modes. The ANM-predicted deformations of the unliganded enzyme conform to the functional reconfiguration induced by ligand-binding, indicating the structural disposition (or potential) of the enzyme to bind its substrates. It is shown that NMR/SRLS and GNM/ANM analyses can be advantageously synthesized to provide insights into the molecular mechanisms that control biological function.
Collapse
Affiliation(s)
- N. Alpay Temiz
- Center for Computational Biology & Bioinformatics,
Department of Biochemistry and Molecular Genetics, School of Medicine,
University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Eva Meirovitch
- Center for Computational Biology & Bioinformatics,
Department of Biochemistry and Molecular Genetics, School of Medicine,
University of Pittsburgh, Pittsburgh, Pennsylvania
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900,
Israel
| | - Ivet Bahar
- Center for Computational Biology & Bioinformatics,
Department of Biochemistry and Molecular Genetics, School of Medicine,
University of Pittsburgh, Pittsburgh, Pennsylvania
- *Correspondence to: Ivet Bahar, Center for
Computational Biology and Bioinformatics, Department of Biochemistry and
Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA
15261. E-mail:
| |
Collapse
|
20
|
Gu Y, Gordon DM, Amutha B, Pain D. A GTP:AMP phosphotransferase, Adk2p, in Saccharomyces cerevisiae. Role of the C terminus in protein folding/stabilization, thermal tolerance, and enzymatic activity. J Biol Chem 2005; 280:18604-9. [PMID: 15753074 DOI: 10.1074/jbc.m500847200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adenylate kinases participate in maintaining the homeostasis of cellular nucleotides. Depending on the yeast strains, the GTP:AMP phosphotransferase is encoded by the nuclear gene ADK2 with or without a single base pair deletion/insertion near the 3' end of the open reading frame, and the corresponding protein exists as either Adk2p (short) or Adk2p (long) in the mitochondrial matrix. These two forms are identical except that the three C-terminal residues of Adk2p (short) are changed in Adk2p (long), and the latter contains an additional nine amino acids at the C terminus of the protein. The short form of Adk2p has so far been considered to be inactive (Schricker, R., Magdolen, V., Strobel, G., Bogengruber, E., Breitenbach, M., and Bandlow, W. (1995) J. Biol. Chem. 270, 31103-31110). Using purified proteins, we show that at the physiological temperature for yeast growth (30 degrees C), both short and long forms of Adk2p are enzymatically active. However, in contrast to the short form, Adk2p (long) is quite resistant to thermal inactivation, urea denaturation, and degradation by trypsin. Unfolding of the long form by high concentrations of urea greatly stimulated its import into isolated mitochondria. Using an integration-based gene-swapping approach, we found that regardless of the yeast strains used, the steady state levels of endogenous Adk2p (long) in mitochondria were 5-10-fold lower compared with those of Adk2p (short). Together, these results suggest that the modified C-terminal domain in Adk2p (long) is not essential for enzyme activity, but it contributes to and strengthens protein folding and/or stability and is particularly important for maintaining enzyme activity under stress conditions.
Collapse
Affiliation(s)
- Yajuan Gu
- Department of Pharmacology and Physiology, UMDNJ-New Jersey Medical School, Newark, New Jersey 07103-1709, USA
| | | | | | | |
Collapse
|
21
|
Abstract
Structural analysis is useful in elucidating structural features responsible for enhanced thermal stability of proteins. However, due to the rapid increase of sequenced genomic data, there are far more protein sequences than the corresponding three-dimensional (3D) structures. The usual sequence-based amino acid composition analysis provides useful but simplified clues about the amino acid types related to thermal stability of proteins. In this work, we developed a statistical approach to identify the significant amino acid coupling sequence patterns in thermophilic proteins. The amino acid coupling sequence pattern is defined as any 2 types of amino acids separated by 1 or more amino acids. Using this approach, we construct the rho profiles for the coupling patterns. The rho value gives a measure of the relative occurrence of a coupling pattern in thermophiles compared with mesophiles. We found that thermophiles and mesophiles exhibit significant bias in their amino acid coupling patterns. We showed that such bias is mainly due to temperature adaptation instead of species or GC content variations. Though no single outstanding coupling pattern can adequately account for protein thermostability, we can use a group of amino acid coupling patterns having strong statistical significance (p values < 10(-7)) to distinguish between thermophilic and mesophilic proteins. We found a good correlation between the optimal growth temperatures of the genomes and the occurrences of the coupling patterns (the correlation coefficient is 0.89). Furthermore, we can separate the thermophilic proteins from their mesophilic orthologs using the amino acid coupling patterns. These results may be useful in the study of the enhanced stability of proteins from thermophiles-especially when structural information is scarce. Proteins 2005. (c) 2005 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Han-Kuen Liang
- Institute of Bioinformatics, National Chiao Tung University, HsinChu, Taiwan
| | | | | | | |
Collapse
|
22
|
Barzilai A, Kumar S, Wolfson H, Nussinov R. Potential folding-function interrelationship in proteins. Proteins 2004; 56:635-49. [PMID: 15281117 DOI: 10.1002/prot.20132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The possibility is addressed that protein folding and function may be related via regions that are critical for both folding and function. This approach is based on the building blocks folding model that describes protein folding as binding events of conformationally fluctuating building blocks. Within these, we identify building block fragments that are critical for achieving the native fold. A library of such critical building blocks (CBBs) is constructed. Then, it is asked whether the functionally important residues fall in these CBB fragments. We find that for over two-thirds of the proteins in our library with available functional information, the catalytic or binding site residues lie within the CBB regions. From the evolutionary standpoint, a folding-function relationship is advantageous, since the need to guard against mutations is limited to one region. Furthermore, conformationally similar CBBs are found in globally unrelated proteins with different functions. Hence, substituting CBBs may lead to designed proteins with altered functions. We further find that the CBBs in our library are conformationally unstable.
Collapse
Affiliation(s)
- Adi Barzilai
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | | |
Collapse
|
23
|
Janssen E, Kuiper J, Hodgson D, Zingman LV, Alekseev AE, Terzic A, Wieringa B. Two structurally distinct and spatially compartmentalized adenylate kinases are expressed from the AK1 gene in mouse brain. Mol Cell Biochem 2004; 256-257:59-72. [PMID: 14977170 DOI: 10.1023/b:mcbi.0000009859.15267.db] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Adenylate kinases (AK, EC 2.7.4.3) have been considered important enzymes for energy homeostasis and metabolic signaling. To gain a better understanding of their cell-specific significance we studied the structural and functional aspects of products of one adenylate kinase gene, AK1, in mouse tissues. By combined computer database comparison and Northern analysis of mRNAs, we identified transcripts of 0.7 and 2.0 kilobases with different 5' and 3' non-coding regions which result from alternative use of promoters and polyadenylation sites. These mRNAs specify two distinct proteins, AK1 and a membrane-bound AK1 isoform (AK1beta), which differ in their N-terminal end and are co-expressed in several tissues with high-energy demand, including the brain. Immunohistochemical analysis of brain tissue and primary neurons and astrocytes in culture demonstrated that AK1 isoforms are expressed predominantly in neurons. AK1beta, when tested in transfected COS-1 and N2a neuroblastoma cells, located at the cellular membrane and was able to catalyze phosphorylation of ADP in vitro. In addition, AK1beta mediated AMP-induced activation of recombinant ATP-sensitive potassium channels in the presence of ATP. Thus, two structurally distinct AK1 isoforms co-exist in the mouse brain within distinct cellular locations. These enzymes may function in promoting energy homeostasis in the compartmentalized cytosol and in translating cellular energetic signals to membrane metabolic sensors.
Collapse
Affiliation(s)
- Edwin Janssen
- Department of Cell Biology, NCMLS University Medical Center, University of Nijmegen, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
A simple extension of the EEF1 energy function to heterogeneous membrane-aqueous media is proposed. The extension consists of (a) development of solvation parameters for a nonpolar phase using experimental data for the transfer of amino acid side-chains from water to cyclohexane, (b) introduction of a heterogeneous membrane-aqueous system by making the reference solvation free energy of each atom dependent on the vertical coordinate, (c) a modification of the distance-dependent dielectric model to account for reduced screening of electrostatic interactions in the membrane, and (d) an adjustment of the EEF1 aqueous model in light of recent calculations of the potential of mean force between amino acid side-chains in water. The electrostatic model is adjusted to match experimental observations for polyalanine, polyleucine, and the glycophorin A dimer. The resulting energy function (IMM1) reproduces the preference of Trp and Tyr for the membrane interface, gives reasonable energies of insertion into or adsorption onto a membrane, and allows stable 1-ns MD simulations of the glycophorin A dimer. We find that the lowest-energy orientation of melittin in bilayers varies, depending on the thickness of the hydrocarbon layer.
Collapse
Affiliation(s)
- Themis Lazaridis
- Department of Chemistry, City College of the City University of New York, New York 10031, USA.
| |
Collapse
|
25
|
Haspel N, Tsai CJ, Wolfson H, Nussinov R. Reducing the computational complexity of protein folding via fragment folding and assembly. Protein Sci 2003; 12:1177-87. [PMID: 12761388 PMCID: PMC2323902 DOI: 10.1110/ps.0232903] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2002] [Revised: 12/23/2002] [Accepted: 02/23/2003] [Indexed: 10/27/2022]
Abstract
Understanding, and ultimately predicting, how a 1-D protein chain reaches its native 3-D fold has been one of the most challenging problems during the last few decades. Data increasingly indicate that protein folding is a hierarchical process. Hence, the question arises as to whether we can use the hierarchical concept to reduce the practically intractable computational times. For such a scheme to work, the first step is to cut the protein sequence into fragments that form local minima on the polypeptide chain. The conformations of such fragments in solution are likely to be similar to those when the fragments are embedded in the native fold, although alternate conformations may be favored during the mutual stabilization in the combinatorial assembly process. Two elements are needed for such cutting: (1) a library of (clustered) fragments derived from known protein structures and (2) an assignment algorithm that selects optimal combinations to "cover" the protein sequence. The next two steps in hierarchical folding schemes, not addressed here, are the combinatorial assembly of the fragments and finally, optimization of the obtained conformations. Here, we address the first step in a hierarchical protein-folding scheme. The input is a target protein sequence and a library of fragments created by clustering building blocks that were generated by cutting all protein structures. The output is a set of cutout fragments. We briefly outline a graph theoretic algorithm that automatically assigns building blocks to the target sequence, and we describe a sample of the results we have obtained.
Collapse
Affiliation(s)
- Nurit Haspel
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
26
|
Haspel N, Tsai CJ, Wolfson H, Nussinov R. Hierarchical protein folding pathways: a computational study of protein fragments. Proteins 2003; 51:203-15. [PMID: 12660989 DOI: 10.1002/prot.10294] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have previously presented a building block folding model. The model postulates that protein folding is a hierarchical top-down process. The basic unit from which a fold is constructed, referred to as a hydrophobic folding unit, is the outcome of combinatorial assembly of a set of "building blocks." Results obtained by the computational cutting procedure yield fragments that are in agreement with those obtained experimentally by limited proteolysis. Here we show that as expected, proteins from the same family give very similar building blocks. However, different proteins can also give building blocks that are similar in structure. In such cases the building blocks differ in sequence, stability, contacts with other building blocks, and in their 3D locations in the protein structure. This result, which we have repeatedly observed in many cases, leads us to conclude that while a building block is influenced by its environment, nevertheless, it can be viewed as a stand-alone unit. For small-sized building blocks existing in multiple conformations, interactions with sister building blocks in the protein will increase the population time of the native conformer. With this conclusion in hand, it is possible to develop an algorithm that predicts the building block assignment of a protein sequence whose structure is unknown. Toward this goal, we have created sequentially nonredundant databases of building block sequences. A protein sequence can be aligned against these, in order to be matched to a set of potential building blocks.
Collapse
Affiliation(s)
- Nurit Haspel
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | | |
Collapse
|
27
|
Affiliation(s)
- Yaakov Levy
- Department of Chemical Physics, School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel, and Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Amedeo Caflisch
- Department of Chemical Physics, School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel, and Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
28
|
Tsai CJ, Polverino de Laureto P, Fontana A, Nussinov R. Comparison of protein fragments identified by limited proteolysis and by computational cutting of proteins. Protein Sci 2002; 11:1753-70. [PMID: 12070328 PMCID: PMC2373665 DOI: 10.1110/ps.4100102] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2001] [Revised: 04/17/2002] [Accepted: 04/17/2002] [Indexed: 10/14/2022]
Abstract
Here we present a comparison between protein fragments produced by limited proteolysis and those identified by computational cutting based on the building block folding model. The principles upon which the two methods are based are different. Limited proteolysis of natively folded proteins occurs at flexible sites and never at the level of chain segments of regular secondary structure such as alpha-helices. Therefore, the targets for limited proteolysis are locally unfolded regions. In contrast, the computational cutting algorithm considers the compactness of the fragments, their nonpolar buried surface area, and their isolatedness, that is, the surface area which was buried prior to the cutting and becomes exposed subsequently. Despite the different criteria, there is an overall correspondence between sites or regions of limited proteolysis with those identified by computational cutting. The computational cutting method has been applied to several model proteins for which detailed limited proteolysis data are available, namely apomyoglobin, cytochrome c, ribonuclease A, alpha-lactalbumin, and thermolysin. As expected, more cuts are obtained computationally than experimentally and the agreement is better when a number of proteolytic enzymes are used. For example, cytochrome c is cleaved by thermolysin at 56-57, 45-46, and at 80-81, and by proteinase K at 48-49 and 50-51. Incubation of the noncovalent and native-like complex of cytochrome c fragments 1-56 and 57-104 with proteinase K yielded the gapped protein species 1-48/57-104 and finally 1-40/57-104. Computational cutting of cytochrome c reproduced the major experimental observations, with cuts at 47, 64-65 or 65-66 and 80-81 and an unstable 32-47 region not assigned to any building block. The next step, not addressed in this work, is to probe the ability of the generated fragments to fold independently. Since both the computational algorithm and limited proteolysis attempt to dissect the protein folding problem, the general agreement between the two procedures is gratifying. This consistency allows us to propose the use of limited proteolysis to produce protein fragments that can adopt an independent folding and, therefore, to study folding intermediates. The results of the present study appear to validate the building block folding model and are in line with the proposal that protein folding is a hierarchical process, where parts constituting local minima of energy fold first, with their subsequent association and mutual stabilization to finally yield the global fold.
Collapse
Affiliation(s)
- Chung-Jung Tsai
- Laboratory of Experimental and Computational Biology, National Cancer Institute, Frederick, MD 21702, USA
| | | | | | | |
Collapse
|
29
|
Levy Y, Becker OM. Conformational polymorphism of wild-type and mutant prion proteins: Energy landscape analysis. Proteins 2002; 47:458-68. [PMID: 12001224 DOI: 10.1002/prot.10095] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Conformational transitions are thought to be the prime mechanism of prion diseases. In this study, the energy landscapes of a wild-type prion protein (PrP) and the D178N and E200K mutant proteins were mapped, enabling the characterization of the normal isoforms (PrP(C)) and partially unfolded isoforms (PrP(PU)) of the three prion protein analogs. It was found that the three energy landscapes differ in three respects: (i) the relative stability of the PrP(C) and the PrP(PU) states, (ii) the transition pathways from PrP(C) to PrP(PU), and (iii) the relative stability of the three helices in the PrP(C) state. In particular, it was found that although helix 1 (residues 144-156) is the most stable helix in wild-type PrP, its stability is dramatically reduced by both mutations. This destabilization is due to changes in the charge distribution that affects the internal salt bridges responsible for the greater stability of this helix in wild-type PrP. Although both mutations result in similar destabilization of helix 1, they a have different effect on the overall stability of PrP(C) and of PrP(PU) isoforms and on structural properties. The destabilization of helix 1 by mutations provides additional evidences to the role of this helix in the pathogenic transition from the PrP(C) to the pathogenic isoform PrP(SC).
Collapse
Affiliation(s)
- Yaakov Levy
- Department of Chemical Physics, School of Chemistry, Tel Aviv University, Tel Aviv, Israel.
| | | |
Collapse
|
30
|
Lazaridis T, Masunov A, Gandolfo F. Contributions to the binding free energy of ligands to avidin and streptavidin. Proteins 2002; 47:194-208. [PMID: 11933066 DOI: 10.1002/prot.10086] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The free energy of binding of a ligand to a macromolecule is here formally decomposed into the (effective) energy of interaction, reorganization energy of the ligand and the macromolecule, conformational entropy change of the ligand and the macromolecule, and translational and rotational entropy loss of the ligand. Molecular dynamics simulations with implicit solvation are used to evaluate these contributions in the binding of biotin, biotin analogs, and two peptides to avidin and streptavidin. We find that the largest contribution opposing binding is the protein reorganization energy, which is calculated to be from 10 to 30 kcal/mol for the ligands considered here. The ligand reorganization energy is also significant for flexible ligands. The translational/rotational entropy is 4.5-6 kcal/mol at 1 M standard state and room temperature. The calculated binding free energies are in the correct range, but the large statistical uncertainty in the protein reorganization energy precludes precise predictions. For some complexes, the simulations show multiple binding modes, different from the one observed in the crystal structure. This finding is probably due to deficiencies in the force field but may also reflect considerable ligand flexibility.
Collapse
Affiliation(s)
- Themis Lazaridis
- Department of Chemistry, City College of the City University of New York, New York, New York 10031, USA.
| | | | | |
Collapse
|
31
|
Cerasoli E, Kelly SM, Coggins JR, Boam DJ, Clarke DT, Price NC. The refolding of type II shikimate kinase from Erwinia chrysanthemi after denaturation in urea. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:2124-32. [PMID: 11985590 DOI: 10.1046/j.1432-1033.2002.ejb.02862.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Shikimate kinase was chosen as a convenient representative example of the subclass of alpha/beta proteins with which to examine the mechanism of protein folding. In this paper we report on the refolding of the enzyme after denaturation in urea. As shown by the changes in secondary and tertiary structure monitored by far UV circular dichroism (CD) and fluorescence, respectively, the enzyme was fully unfolded in 4 m urea. From an analysis of the unfolding curve in terms of the two-state model, the stability of the folded state could be estimated as 17 kJ.mol-1. Approximately 95% of the enzyme activity could be recovered on dilution of the urea from 4 to 0.36 m. The results of spectroscopic studies indicated that refolding occurred in at least four kinetic phases, the slowest of which (k = 0.009 s-1) corresponded with the regain of shikimate binding and of enzyme activity. The two most rapid phases were associated with a substantial increase in the binding of 8-anilino-1-naphthalenesulfonic acid with only modest changes in the far UV CD, indicating that a collapsed intermediate with only partial native secondary structure was formed rapidly. The relevance of the results to the folding of other alpha/beta domain proteins is discussed.
Collapse
Affiliation(s)
- Eleonora Cerasoli
- Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, Joseph Black Building, University of Glasgow, Scotland, UK
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
Here we show that the locations of molecular hinges in protein structures fall between building block elements. Building blocks are fragments of the protein chain which constitute local minima. These elements fold first. In the next step they associate through a combinatorial assembly process. While chain-linked building blocks may be expected to trial-associate first, if unstable, alternate more stable associations will take place. Hence, we would expect that molecular hinges will be at such inter-building block locations, or at the less stable, unassigned regions. On the other hand, hinge-bending motions are well known to be critical for protein function. Hence, protein folding and protein function are evolutionarily related. Further, the pathways through which proteins attain their three dimensional folds are determined by protein topology. However, at the same time the locations of the hinges, and hinge-bending motions are also an outcome of protein topology. Thus, protein folding and function appear coupled, and relate to protein topology. Here we provide some results illustrating such a relationship.
Collapse
Affiliation(s)
- N Sinha
- Intramural Research Support Program-SAIC Laboratory of Experimental and Computational Biology, NCI-Frederick, National Institutes of Health, Bldg 469, Rm 151, Frederick, MD 21702, USA
| | | | | |
Collapse
|