1
|
Iwasaki N, Morrison B, Karali A, Roldo M, Blunn G. Measuring full-field strain of the muscle-tendon junction using confocal microscopy combined with digital volume correlation. J Mech Behav Biomed Mater 2025; 164:106925. [PMID: 39938281 DOI: 10.1016/j.jmbbm.2025.106925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/12/2024] [Accepted: 01/31/2025] [Indexed: 02/14/2025]
Abstract
The muscle-tendon junction (MTJ) is a specialized interface that facilitates the transmission of force from the muscle to the tendon which has been implicated in muscle strains and tears. Understanding the transmission of forces and the strain generated in the MTJ is therefore important. For the first time, we report the 3D full-field strain distribution across the muscle-tendon junction (MTJ) using in-situ tensile testing and confocal microscopy coupled with digital volume correlation (DVC). This approach allowed us to measure the mechanical behaviour of the MTJ at the fibre/fascicle level. Acridine orange (AO) in 70% ethanol was used to enhance the contrast of the mouse Achilles-gastrocnemius MTJ, and the specimens were rehydrated prior to the tensile testing, which was performed using custom made tensile rig that fitted under the confocal microscopy. The 3D full-field strain distribution was obtained using DVC, where the strain changes were measured from confocal images taken with the MTJ under preload (0.4 N) and loaded (0.8 N and 1.2 N) representing 2.7- and 4-times body weight. High strain concentration was observed at the junction for both 0.8 N and 1.2 N loads. At the junction, the first principal stain (εp1), shear strain (γ) and von Mises strain (εVM) reached 15.2, 34.2 and 19.2% respectively. This study allowed us to measure fascicle level strain distribution at the MTJ. Using histology, microtears at the MTJ were seen in specimens loaded with 1.2 N which were associated with von Mises strain concentration in the adjacent region. The microtears occurred in regions where the strain level was between 8 and 15%. This study developed a methodology to determine high-resolution strain distribution at the MTJ and has the potential to be used to analyse the strain at the cellular level using higher magnification objectives.
Collapse
Affiliation(s)
- Nodoka Iwasaki
- School of Pharmacy and Biomedical Sciences, St Michael's Building, University of Portsmouth, Portsmouth, PO1 2DT, UK.
| | - Benjamin Morrison
- School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, UK
| | - Aikaterina Karali
- School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth, UK.
| | - Marta Roldo
- School of Pharmacy and Biomedical Sciences, St Michael's Building, University of Portsmouth, Portsmouth, PO1 2DT, UK.
| | - Gordon Blunn
- School of Pharmacy and Biomedical Sciences, St Michael's Building, University of Portsmouth, Portsmouth, PO1 2DT, UK.
| |
Collapse
|
2
|
Zeng Y, Liu X, Wang Z, Gao W, Zhang S, Wang Y, Liu Y, Yu H. Multidepth quantitative analysis of liver cell viscoelastic properties: Fusion of nanoindentation and finite element modeling techniques. Microsc Res Tech 2025; 88:202-212. [PMID: 39254440 DOI: 10.1002/jemt.24697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/11/2024] [Accepted: 08/27/2024] [Indexed: 09/11/2024]
Abstract
Liver cells are the basic functional unit of the liver. However, repeated or sustained injury leads to structural disorders of liver lobules, proliferation of fibrous tissue and changes in structure, thus increasing scar tissue. Cellular fibrosis affects tissue stiffness, shear force, and other cellular mechanical forces. Mechanical force characteristics can serve as important indicators of cell damage and cirrhosis. Atomic force microscopy (AFM) has been widely used to study cell surface mechanics. However, characterization of the deep mechanical properties inside liver cells remains an underdeveloped field. In this work, cell nanoindentation was combined with finite element analysis to simulate and analyze the mechanical responses of liver cells at different depths in vitro and their internal responses and stress diffusion distributions after being subjected to normal stress. The sensitivities of the visco-hyperelastic parameters of the finite element model to the effects of the peak force and equilibrium force were compared. The force curves of alcohol-damaged liver cells at different depths were measured and compared with those of undamaged liver cells. The inverse analysis method was used to simulate the finite element model in vitro. Changes in the parameters of the cell model after injury were explored and analyzed, and their potential for characterizing hepatocellular injury and related treatments was evaluated. RESEARCH HIGHLIGHTS: This study aims to establish an in vitro hyperelastic model of liver cells and analyze the mechanical changes of cells in vitro. An analysis method combining finite element analysis model and nanoindentation was used to obtain the key parameters of the model. The multi-depth mechanical differences and internal structural changes of injured liver cells were analyzed.
Collapse
Affiliation(s)
- Yi Zeng
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
- School of Electronic Information Engineering, Changchun University, Changchun, China
| | - Xianping Liu
- School of Engineering, University of Warwick, Coventry, UK
| | - Zuobin Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
- JR3CN & IRAC, University of Bedfordshire, Luton, UK
| | - Wei Gao
- School of Electronic Information Engineering, Changchun University, Changchun, China
- School of Electronic Information Engineering, Changchun University of Science and Technology, Changchun, China
| | - Shengli Zhang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
| | - Ying Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
| | - Yunqing Liu
- School of Electronic Information Engineering, Changchun University of Science and Technology, Changchun, China
| | - Haiyue Yu
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
| |
Collapse
|
3
|
Venkateshwarlu A, Akshayveer, Singh S, Melnik R. Piezoelectricity and flexoelectricity in biological cells: the role of cell structure and organelles. Biomech Model Mechanobiol 2024:10.1007/s10237-024-01895-7. [PMID: 39455540 DOI: 10.1007/s10237-024-01895-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024]
Abstract
Living tissues experience various external forces on cells, influencing their behaviour, physiology, shape, gene expression, and destiny through interactions with their environment. Despite much research done in this area, challenges remain in our better understanding of the behaviour of the cell in response to external stimuli, including the arrangement, quantity, and shape of organelles within the cell. This study explores the electromechanical behaviour of biological cells, including organelles like microtubules, mitochondria, nuclei, and cell membranes. A two-dimensional bio-electromechanical model for two distinct cell structures has been developed to analyze the behavior of the biological cell to the external electrical and mechanical responses. The piezoelectric and flexoelectric effects have been included via multiphysics coupling for the biological cell. All the governing equations have been discretized and solved by the finite element method. It is found that the longitudinal stress is absent and only the transverse stress plays a crucial role when the mechanical load is imposed on the top side of the cell through compressive displacement. The impact of flexoelectricity is elucidated by introducing a new parameter called the maximum electric potential ratio ( V R , max ). It has been found that V R , max depends upon the orientation angle and shape of the microtubules. The magnitude of V R , max exhibit huge change when we change the shape and orientation of the organelles, which in some cases (boundary condition (BC)-3) can reach to three times of regular shape organelles. Further, the study reveals that the number of microtubules significantly impacts effective elastic and piezoelectric coefficients, affecting cell behavior based on structure, microtubule orientation, and mechanical stress direction. The insight obtained from the current study can assist in advancements in medical therapies such as tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Akepogu Venkateshwarlu
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON, N2L 3C5, Canada.
| | - Akshayveer
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON, N2L 3C5, Canada
| | - Sundeep Singh
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, PE, C1A 4P3, Canada
| | - Roderick Melnik
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON, N2L 3C5, Canada
| |
Collapse
|
4
|
Mohseni M, Vahidi B, Azizi H. Computational simulation of applying mechanical vibration to mesenchymal stem cell for mechanical modulation toward bone tissue engineering. Proc Inst Mech Eng H 2023; 237:1377-1389. [PMID: 37982187 DOI: 10.1177/09544119231208223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Evaluation of cell response to mechanical stimuli at in vitro conditions is known as one of the important issues for modulating cell behavior. Mechanical stimuli, including mechanical vibration and oscillatory fluid flow, act as important biophysical signals for the mechanical modulation of stem cells. In the present study, mesenchymal stem cell (MSC) consists of cytoplasm, nucleus, actin, and microtubule. Also, integrin and primary cilium were considered as mechanoreceptors. In this study, the combined effect of vibration and oscillatory fluid flow on the cell and its components were investigated using numerical modeling. The results of the FEM and FSI model showed that the cell response (stress and strain values) at the frequency of 30 H z mechanical vibration has the highest value. The achieved results on shear stress caused by the fluid flow on the cell showed that the cell experiences shear stress in the range of 0 . 1 - 10 Pa . Mechanoreceptors that bind separately to the cell surface, can be highly stimulated by hydrodynamic pressure and, therefore, can play a role in the mechanical modulation of MSCs at in vitro conditions. The results of this research can be effective in future studies to optimize the conditions of mechanical stimuli applied to the cell culture medium and to determine the mechanisms involved in mechanotransduction.
Collapse
Affiliation(s)
- Mohammadreza Mohseni
- Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Bahman Vahidi
- Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Hamidreza Azizi
- Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| |
Collapse
|
5
|
Luo M, Yang W, Cartwright TN, Higgins JMG, Chen J. Simultaneous Measurement of Single-Cell Mechanics and Cell-to-Materials Adhesion Using Fluidic Force Microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:620-628. [PMID: 34981921 DOI: 10.1021/acs.langmuir.1c01973] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The connection between cells and their substrate is essential for biological processes such as cell migration. Atomic force microscopy nanoindentation has often been adopted to measure single-cell mechanics. Very recently, fluidic force microscopy has been developed to enable rapid measurements of cell adhesion. However, simultaneous characterization of the cell-to-material adhesion and viscoelastic properties of the same cell is challenging. In this study, we present a new approach to simultaneously determine these properties for single cells, using fluidic force microscopy. For MCF-7 cells grown on tissue-culture-treated polystyrene surfaces, we found that the adhesive force and adhesion energy were correlated for each cell. Well-spread cells tended to have stronger adhesion, which may be due to the greater area of the contact between cellular adhesion receptors and the surface. By contrast, the viscoelastic properties of MCF-7 cells cultured on the same surface appeared to have little dependence on cell shape. This methodology provides an integrated approach to better understand the biophysics of multiple cell types.
Collapse
Affiliation(s)
- Ma Luo
- School of Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU, U.K
| | - Wenjian Yang
- School of Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU, U.K
- Research Center for Intelligent Sensing Systems, Zhijiang Laboratory, Hangzhou 311100, China
| | - Tyrell N Cartwright
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K
| | - Jonathan M G Higgins
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K
| | - Jinju Chen
- School of Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU, U.K
| |
Collapse
|
6
|
Gardinier JD. The Diminishing Returns of Mechanical Loading and Potential Mechanisms that Desensitize Osteocytes. Curr Osteoporos Rep 2021; 19:436-443. [PMID: 34216359 PMCID: PMC9306018 DOI: 10.1007/s11914-021-00693-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/27/2021] [Indexed: 11/30/2022]
Abstract
Adaptation to mechanical loading is critical to maintaining bone mass and offers therapeutic potential to preventing age-related bone loss and osteoporosis. However, increasing the duration of loading is met with "diminishing returns" as the anabolic response quickly becomes saturated. As a result, the anabolic response to daily activities and repetitive bouts of loading is limited by the underlying mechanisms that desensitize and render bone unresponsive at the cellular level. Osteocytes are the primary cells that respond to skeletal loading and facilitate the overall anabolic response. Although many of osteocytes' signaling mechanisms activated in response to loading are considered anabolic in nature, several of them can also render osteocytes insensitive to further stimuli and thereby creating a negative feedback loop that limits osteocytes' overall response. The purpose of this review is to examine the potential mechanisms that may contribute to the loss of mechanosensitivity. In particular, we examined the inactivation/desensitization of ion channels and signaling molecules along with the potential role of endocytosis and cytoskeletal reorganization. The significance in defining the negative feedback loop is the potential to identify unique targets for enabling osteocytes to maintain their sensitivity. In doing so, we can begin to cultivate new strategies that capitalize on the anabolic nature of daily activities that repeatedly load the skeleton.
Collapse
|
7
|
Gordon R, Stone R. A short tutorial on the Janus-faced logic of differentiation waves and differentiation trees and their evolution. Biosystems 2021; 205:104414. [PMID: 33775709 DOI: 10.1016/j.biosystems.2021.104414] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 12/31/2022]
Abstract
Differentiation waves offer a different perspective on causality in embryogenesis from that of molecular developmental biology. Janus-faced cybernetic logic, with global and local top down/bottom up dynamics, eschews reductionism, is distinct from emergence, and outlines the process theoretically. Most aspects of differentiation waves require further investigation.
Collapse
Affiliation(s)
- Richard Gordon
- Gulf Specimen Marine Laboratory & Aquarium, 222 Clark Drive Panacea, FL, 32346, USA; C.S. Mott Center for Human Growth & Development Department of Obstetrics & Gynecology Wayne State University, 275 E. Hancock Detroit, MI, 48201, USA.
| | - Robert Stone
- 2785 Oak Meadow, Dr. Howell, MI, 48843, USA; Orthogonal Research and Educational Lab Champaign, IL, USA.
| |
Collapse
|
8
|
Naqvi SM, McNamara LM. Stem Cell Mechanobiology and the Role of Biomaterials in Governing Mechanotransduction and Matrix Production for Tissue Regeneration. Front Bioeng Biotechnol 2020; 8:597661. [PMID: 33381498 PMCID: PMC7767888 DOI: 10.3389/fbioe.2020.597661] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
Mechanobiology has underpinned many scientific advances in understanding how biophysical and biomechanical cues regulate cell behavior by identifying mechanosensitive proteins and specific signaling pathways within the cell that govern the production of proteins necessary for cell-based tissue regeneration. It is now evident that biophysical and biomechanical stimuli are as crucial for regulating stem cell behavior as biochemical stimuli. Despite this, the influence of the biophysical and biomechanical environment presented by biomaterials is less widely accounted for in stem cell-based tissue regeneration studies. This Review focuses on key studies in the field of stem cell mechanobiology, which have uncovered how matrix properties of biomaterial substrates and 3D scaffolds regulate stem cell migration, self-renewal, proliferation and differentiation, and activation of specific biological responses. First, we provide a primer of stem cell biology and mechanobiology in isolation. This is followed by a critical review of key experimental and computational studies, which have unveiled critical information regarding the importance of the biophysical and biomechanical cues for stem cell biology. This review aims to provide an informed understanding of the intrinsic role that physical and mechanical stimulation play in regulating stem cell behavior so that researchers may design strategies that recapitulate the critical cues and develop effective regenerative medicine approaches.
Collapse
Affiliation(s)
- S M Naqvi
- Mechanobiology and Medical Device Research Group, Department of Biomedical Engineering, College of Engineering and Informatics, National University of Ireland Galway, Galway, Ireland
| | - L M McNamara
- Mechanobiology and Medical Device Research Group, Department of Biomedical Engineering, College of Engineering and Informatics, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
9
|
White CM, Haidekker MA, Kisaalita WS. Ratiometric Nanoviscometers: Applications for Measuring Cellular Physical Properties in 3D Cultures. SLAS Technol 2020; 25:234-246. [PMID: 31997709 DOI: 10.1177/2472630319901262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
New insights into the biomechanical properties of cells are revealing the importance of these properties and how they relate to underlying molecular, architectural, and behavioral changes associated with cell state and disease processes. However, the current understanding of how these in vitro biomechanical properties are associated with in vivo processes has been developed based on the traditional monolayer (two-dimensional [2D]) cell culture, which traditionally has not translated well to the three-dimensional (3D) cell culture and in vivo function. Many gold standard methods and tools used to observe the biomechanical properties of 2D cell cultures cannot be used with 3D cell cultures. Fluorescent molecules can respond to external factors almost instantaneously and require relatively low-cost instrumentation. In this review, we provide the background on fluorescent molecular rotors, which are attractive tools due to the relationship of their emission quantum yield with environmental microviscosity. We make the case for their use in both 2D and 3D cell cultures and speculate on their fundamental and practical applications in cell biology.
Collapse
Affiliation(s)
- Charles McRae White
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, Driftmier Engineering Center, University of Georgia, Athens, GA, USA
| | - Mark A Haidekker
- School of Electrical and Computer Engineering, College of Engineering, Driftmier Engineering Center, University of Georgia, Athens, GA, USA
| | - William S Kisaalita
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, Driftmier Engineering Center, University of Georgia, Athens, GA, USA
| |
Collapse
|
10
|
Lee JJ, Rao S, Kaushik G, Azeloglu EU, Costa KD. Dehomogenized Elastic Properties of Heterogeneous Layered Materials in AFM Indentation Experiments. Biophys J 2019; 114:2717-2731. [PMID: 29874620 DOI: 10.1016/j.bpj.2018.04.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 03/16/2018] [Accepted: 04/11/2018] [Indexed: 10/14/2022] Open
Abstract
Atomic force microscopy (AFM) is used to study mechanical properties of biological materials at submicron length scales. However, such samples are often structurally heterogeneous even at the local level, with different regions having distinct mechanical properties. Physical or chemical disruption can isolate individual structural elements but may alter the properties being measured. Therefore, to determine the micromechanical properties of intact heterogeneous multilayered samples indented by AFM, we propose the Hybrid Eshelby Decomposition (HED) analysis, which combines a modified homogenization theory and finite element modeling to extract layer-specific elastic moduli of composite structures from single indentations, utilizing knowledge of the component distribution to achieve solution uniqueness. Using finite element model-simulated indentation of layered samples with micron-scale thickness dimensions, biologically relevant elastic properties for incompressible soft tissues, and layer-specific heterogeneity of an order of magnitude or less, HED analysis recovered the prescribed modulus values typically within 10% error. Experimental validation using bilayer spin-coated polydimethylsiloxane samples also yielded self-consistent layer-specific modulus values whether arranged as stiff layer on soft substrate or soft layer on stiff substrate. We further examined a biophysical application by characterizing layer-specific microelastic properties of full-thickness mouse aortic wall tissue, demonstrating that the HED-extracted modulus of the tunica media was more than fivefold stiffer than the intima and not significantly different from direct indentation of exposed media tissue. Our results show that the elastic properties of surface and subsurface layers of microscale synthetic and biological samples can be simultaneously extracted from the composite material response to AFM indentation. HED analysis offers a robust approach to studying regional micromechanics of heterogeneous multilayered samples without destructively separating individual components before testing.
Collapse
Affiliation(s)
- Jia-Jye Lee
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Biomedical Engineering, The City College of New York, New York, New York
| | - Satish Rao
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Gaurav Kaushik
- Department of Bioengineering, University of California, San Diego, La Jolla, California
| | - Evren U Azeloglu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kevin D Costa
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
11
|
Efremov YM, Velay-Lizancos M, Weaver CJ, Athamneh AI, Zavattieri PD, Suter DM, Raman A. Anisotropy vs isotropy in living cell indentation with AFM. Sci Rep 2019; 9:5757. [PMID: 30962474 PMCID: PMC6453879 DOI: 10.1038/s41598-019-42077-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 03/18/2019] [Indexed: 12/30/2022] Open
Abstract
The measurement of local mechanical properties of living cells by nano/micro indentation relies on the foundational assumption of locally isotropic cellular deformation. As a consequence of assumed isotropy, the cell membrane and underlying cytoskeleton are expected to locally deform axisymmetrically when indented by a spherical tip. Here, we directly observe the local geometry of deformation of membrane and cytoskeleton of different living adherent cells during nanoindentation with the integrated Atomic Force (AFM) and spinning disk confocal (SDC) microscope. We show that the presence of the perinuclear actin cap (apical stress fibers), such as those encountered in cells subject to physiological forces, causes a strongly non-axisymmetric membrane deformation during indentation reflecting local mechanical anisotropy. In contrast, axisymmetric membrane deformation reflecting mechanical isotropy was found in cells without actin cap: cancerous cells MDA-MB-231, which naturally lack the actin cap, and NIH 3T3 cells in which the actin cap is disrupted by latrunculin A. Careful studies were undertaken to quantify the effect of the live cell fluorescent stains on the measured mechanical properties. Using finite element computations and the numerical analysis, we explored the capability of one of the simplest anisotropic models – transverse isotropy model with three local mechanical parameters (longitudinal and transverse modulus and planar shear modulus) – to capture the observed non-axisymmetric deformation. These results help identifying which cell types are likely to exhibit non-isotropic properties, how to measure and quantify cellular deformation during AFM indentation using live cell stains and SDC, and suggest modelling guidelines to recover quantitative estimates of the mechanical properties of living cells.
Collapse
Affiliation(s)
- Yuri M Efremov
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, USA.,Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana, USA
| | | | - Cory J Weaver
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA.,University of South Carolina, Department of Biological Sciences, Jones PSC Building, 712 Main Street, room 517, Columbia, SC, 29208, USA
| | - Ahmad I Athamneh
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana, USA.,Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Pablo D Zavattieri
- Lyles School of Civil Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Daniel M Suter
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana, USA. .,Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA. .,Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, USA. .,Purdue Institute for Integrative Neuroscience, West Lafayette, Indiana, USA.
| | - Arvind Raman
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, USA. .,Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana, USA.
| |
Collapse
|
12
|
Vahabikashi A, Park CY, Perkumas K, Zhang Z, Deurloo EK, Wu H, Weitz DA, Stamer WD, Goldman RD, Fredberg JJ, Johnson M. Probe Sensitivity to Cortical versus Intracellular Cytoskeletal Network Stiffness. Biophys J 2019; 116:518-529. [PMID: 30685055 DOI: 10.1016/j.bpj.2018.12.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 12/04/2018] [Accepted: 12/20/2018] [Indexed: 11/19/2022] Open
Abstract
In development, wound healing, and pathology, cell biomechanical properties are increasingly recognized as being of central importance. To measure these properties, experimental probes of various types have been developed, but how each probe reflects the properties of heterogeneous cell regions has remained obscure. To better understand differences attributable to the probe technology, as well as to define the relative sensitivity of each probe to different cellular structures, here we took a comprehensive approach. We studied two cell types-Schlemm's canal endothelial cells and mouse embryonic fibroblasts (MEFs)-using four different probe technologies: 1) atomic force microscopy (AFM) with sharp tip, 2) AFM with round tip, 3) optical magnetic twisting cytometry (OMTC), and 4) traction microscopy (TM). Perturbation of Schlemm's canal cells with dexamethasone treatment, α-actinin overexpression, or RhoA overexpression caused increases in traction reported by TM and stiffness reported by sharp-tip AFM as compared to corresponding controls. By contrast, under these same experimental conditions, stiffness reported by round-tip AFM and by OMTC indicated little change. Knockout (KO) of vimentin in MEFs caused a diminution of traction reported by TM, as well as stiffness reported by sharp-tip and round-tip AFM. However, stiffness reported by OMTC in vimentin-KO MEFs was greater than in wild type. Finite-element analysis demonstrated that this paradoxical OMTC result in vimentin-KO MEFs could be attributed to reduced cell thickness. Our results also suggest that vimentin contributes not only to intracellular network stiffness but also cortex stiffness. Taken together, this evidence suggests that AFM sharp tip and TM emphasize properties of the actin-rich shell of the cell, whereas round-tip AFM and OMTC emphasize those of the noncortical intracellular network.
Collapse
Affiliation(s)
- Amir Vahabikashi
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois
| | - Chan Young Park
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Kristin Perkumas
- Department of Ophthalmology, Duke University, Durham, North Carolina
| | - Zhiguo Zhang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Emily K Deurloo
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Huayin Wu
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
| | - David A Weitz
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts; Department of Physics, Harvard University, Cambridge, Massachusetts
| | - W Daniel Stamer
- Department of Ophthalmology, Duke University, Durham, North Carolina; Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Robert D Goldman
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Jeffrey J Fredberg
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Mark Johnson
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois; Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Department of Mechanical Engineering, Northwestern University, Evanston, Illinois.
| |
Collapse
|
13
|
Abstract
Cell's elasticity is an integrative parameter summarizing the biophysical outcome of many known and unknown cellular processes. This includes intracellular signaling, cytoskeletal activity, changes of cell volume and morphology, and many others. Not only intracellular processes defines a cell's elasticity but also environmental factors like their biochemical and biophysical surrounding. Therefore, cell mechanics represents a comprehensive variable of life. A cell in its standard conditions shows variabilities of biochemical and biophysical processes resulting in a certain range of cell's elasticity. Changes of the standard conditions, endogenously or exogenously induced, are frequently paralleled by changes of cell elasticity. Therefore cell elasticity could serve as parameter to characterize different states of a cell. Atomic force microscopy (AFM) combines high spatial resolution with very high force sensitivity and allows investigating mechanical properties of living cells under physiological conditions. However, elastic moduli reported in the literature showed a large variability, sometimes by an order of magnitude (or even more) for the same cell type assessed in different labs. Clearly, a prerequisite for the use of cell elasticity to describe the actual cell status is a standardized procedure that allows obtaining comparable values of a cell independent from the instrument, from the lab and operator. Biologically derived variations of elasticity could not be reduced due to the nature of living cells but technically and methodologically derived variations could be minimized by a standardized procedure.This chapter provides a Standardized Nanomechanical AFM Procedure (SNAP) that reduces strongly the variability of results obtained on soft samples and living cells by a reliable method to calibrate AFM cantilevers.
Collapse
Affiliation(s)
- Hermann Schillers
- Institute of Physiology II, University of Münster, Münster, Germany.
| |
Collapse
|
14
|
Mapping heterogeneity of cellular mechanics by multi-harmonic atomic force microscopy. Nat Protoc 2018; 13:2200-2216. [DOI: 10.1038/s41596-018-0031-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Miao Z, Hu Y, Zhang X, Yang X, Tang Y, Kang A, Zhu D. Screening and identification of ligand-protein interactions using functionalized heat shock protein 90-fluorescent mesoporous silica-indium phosphide/zinc sulfide quantum dot nanocomposites. J Chromatogr A 2018; 1562:1-11. [DOI: 10.1016/j.chroma.2018.05.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 01/06/2023]
|
16
|
Septiadi D, Crippa F, Moore TL, Rothen-Rutishauser B, Petri-Fink A. Nanoparticle-Cell Interaction: A Cell Mechanics Perspective. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704463. [PMID: 29315860 DOI: 10.1002/adma.201704463] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/14/2017] [Indexed: 05/22/2023]
Abstract
Progress in the field of nanoparticles has enabled the rapid development of multiple products and technologies; however, some nanoparticles can pose both a threat to the environment and human health. To enable their safe implementation, a comprehensive knowledge of nanoparticles and their biological interactions is needed. In vitro and in vivo toxicity tests have been considered the gold standard to evaluate nanoparticle safety, but it is becoming necessary to understand the impact of nanosystems on cell mechanics. Here, the interaction between particles and cells, from the point of view of cell mechanics (i.e., bionanomechanics), is highlighted and put in perspective. Specifically, the ability of intracellular and extracellular nanoparticles to impair cell adhesion, cytoskeletal organization, stiffness, and migration are discussed. Furthermore, the development of cutting-edge, nanotechnology-driven tools based on the use of particles allowing the determination of cell mechanics is emphasized. These include traction force microscopy, colloidal probe atomic force microscopy, optical tweezers, magnetic manipulation, and particle tracking microrheology.
Collapse
Affiliation(s)
- Dedy Septiadi
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Federica Crippa
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Thomas Lee Moore
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | | | - Alke Petri-Fink
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700, Fribourg, Switzerland
| |
Collapse
|
17
|
Kim JK, Louhghalam A, Lee G, Schafer BW, Wirtz D, Kim DH. Nuclear lamin A/C harnesses the perinuclear apical actin cables to protect nuclear morphology. Nat Commun 2017; 8:2123. [PMID: 29242553 PMCID: PMC5730574 DOI: 10.1038/s41467-017-02217-5] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 11/14/2017] [Indexed: 11/17/2022] Open
Abstract
The distinct spatial architecture of the apical actin cables (or actin cap) facilitates rapid biophysical signaling between extracellular mechanical stimuli and intracellular responses, including nuclear shaping, cytoskeletal remodeling, and the mechanotransduction of external forces into biochemical signals. These functions are abrogated in lamin A/C-deficient mouse embryonic fibroblasts that recapitulate the defective nuclear organization of laminopathies, featuring disruption of the actin cap. However, how nuclear lamin A/C mediates the ability of the actin cap to regulate nuclear morphology remains unclear. Here, we show that lamin A/C expressing cells can form an actin cap to resist nuclear deformation in response to physiological mechanical stresses. This study reveals how the nuclear lamin A/C-mediated formation of the perinuclear apical actin cables protects the nuclear structural integrity from extracellular physical disturbances. Our findings highlight the role of the physical interactions between the cytoskeletal network and the nucleus in cellular mechanical homeostasis.
Collapse
Affiliation(s)
- Jeong-Ki Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, South Korea
| | - Arghavan Louhghalam
- Department of Civil and Environmental Engineering, University of Massachusetts Dartmouth, Dartmouth, MA, 02747, USA
| | - Geonhui Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, South Korea
| | - Benjamin W Schafer
- Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Civil Engineering, The John Hopkins University, Baltimore, MD, 21218, USA
| | - Denis Wirtz
- Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Chemical and Biomolecular Engineering, The John Hopkins University, Baltimore, MD, 21218, USA
- Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD, 21218, USA
- Departments of Pathology and Oncology and Sydney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Dong-Hwee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
18
|
Qiu J, Li FF. Mechanical behavior of an individual adherent MLO-Y4 osteocyte under shear flow. Biomech Model Mechanobiol 2016; 16:63-74. [PMID: 27752793 DOI: 10.1007/s10237-016-0802-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/08/2016] [Indexed: 11/30/2022]
Abstract
Mechanical properties of a single cell and its mechanical response under stimulation play an important role in regulating interactions between cell and extracellular matrix and affecting mechanotransduction. Osteocytes exhibit solid-like viscoelastic behavior in response to the interstitial fluid shear resulting from tissue matrix deformation. This study intends to quantitatively describe the mechanical behavior of osteocytes combining in vitro experiment and fluid-structure interaction (FSI) finite element (FE) model. The cell is configured in the FSI FE model using the observed data from quasi-3D images. Instead of simply assigning the cellular viscoelastic parameters by statistical data, the mechanical parameters are determined by an iterative algorithm comparing the experimental and the computational results from the FE model. The viscoelastic parameters of osteocytes are obtained as: the equilibrium elasticity modulus [Formula: see text], instantaneous elasticity modulus [Formula: see text], viscosity coefficient [Formula: see text]. A novel index to quantify the cell adhesion is also put forward. In addition, an interesting competition phenomenon is revealed on the cell surface concerning stress and strain, i.e., the place with high stress has low strain and that with low stress has high strain. The proposed method provides a novel technique to study the mechanical behavior of individual adherent cell in vitro. It is believed that this quantitative technique not only determines cell mechanical behavior but also helps elucidate the mechanism of mechanotransduction in various types of cells.
Collapse
Affiliation(s)
- Jun Qiu
- Institute for Aero-Engine, School of Aerospace Engineering, Tsinghua University, Mailbox H18, Meng Minwei Science and Technology Building, Beijing, 100084, People's Republic of China.
| | - Fang-Fang Li
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| |
Collapse
|
19
|
Wei F, Yang H, Liu L, Li G. A novel approach for extracting viscoelastic parameters of living cells through combination of inverse finite element simulation and Atomic Force Microscopy. Comput Methods Biomech Biomed Engin 2016; 20:373-384. [PMID: 27627026 DOI: 10.1080/10255842.2016.1233403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Dynamic mechanical behaviour of living cells has been described by viscoelasticity. However, quantitation of the viscoelastic parameters for living cells is far from sophisticated. In this paper, combining inverse finite element (FE) simulation with Atomic Force Microscope characterization, we attempt to develop a new method to evaluate and acquire trustworthy viscoelastic index of living cells. First, influence of the experiment parameters on stress relaxation process is assessed using FE simulation. As suggested by the simulations, cell height has negligible impact on shape of the force-time curve, i.e. the characteristic relaxation time; and the effect originates from substrate can be totally eliminated when stiff substrate (Young's modulus larger than 3 GPa) is used. Then, so as to develop an effective optimization strategy for the inverse FE simulation, the parameters sensitivity evaluation is performed for Young's modulus, Poisson's ratio, and characteristic relaxation time. With the experiment data obtained through typical stress relaxation measurement, viscoelastic parameters are extracted through the inverse FE simulation by comparing the simulation results and experimental measurements. Finally, reliability of the acquired mechanical parameters is verified with different load experiments performed on the same cell.
Collapse
Affiliation(s)
- Fanan Wei
- a State Key Laboratory of Robotics, Shenyang Institute of Automation , Chinese Academy of Sciences , Shenyang , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Haitao Yang
- c Department of Electrical and Computer Engineering , University of Pittsburgh , Pittsburgh , PA , USA
| | - Lianqing Liu
- a State Key Laboratory of Robotics, Shenyang Institute of Automation , Chinese Academy of Sciences , Shenyang , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Guangyong Li
- c Department of Electrical and Computer Engineering , University of Pittsburgh , Pittsburgh , PA , USA
| |
Collapse
|
20
|
Alihemmati Z, Vahidi B, Haghighipour N, Salehi M. Computational simulation of static/cyclic cell stimulations to investigate mechanical modulation of an individual mesenchymal stem cell using confocal microscopy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 70:494-504. [PMID: 27770921 DOI: 10.1016/j.msec.2016.09.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/09/2016] [Accepted: 09/08/2016] [Indexed: 01/27/2023]
Abstract
It has been found that cells react to mechanical stimuli, while the type and magnitude of these cells are different in various physiological and pathological conditions. These stimuli may affect cell behaviors via mechanotransduction mechanisms. The aim of this study is to evaluate mechanical responses of a mesenchymal stem cell (MSC) to a pressure loading using finite elements method (FEM) to clarify procedures of MSC mechanotransduction. The model is constructed based on an experimental set up in which statics and cyclic compressive loads are implemented on a model constructed from a confocal microscopy 3D image of a stem cell. Both of the applied compressive loads are considered in the physiological loading regimes. Moreover, a viscohyperelastic material model was assumed for the cell through which the finite elements simulation anticipates cell behavior based on strain and stress distributions in its components. As a result, high strain and stress values were captured from the viscohyperelastic model because of fluidic behavior of cytosol when compared with the obtained results through the hyperelastic models. It can be concluded that the generated strain produced by cyclic pressure is almost 8% higher than that caused by the static load and the von Mises stress distribution is significantly increased to about 150kPa through the cyclic loading. In total, the results does not only trace the efficacy of an individual 3D model of MSC using biomechanical experiments of cell modulation, but these results provide knowledge in interpretations from cell geometry. The current study was performed to determine a realistic aspect of cell behavior.
Collapse
Affiliation(s)
- Zakieh Alihemmati
- Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Bahman Vahidi
- Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
| | | | - Mohammad Salehi
- Department of Mechanical Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
21
|
A combined experimental atomic force microscopy-based nanoindentation and computational modeling approach to unravel the key contributors to the time-dependent mechanical behavior of single cells. Biomech Model Mechanobiol 2016; 16:297-311. [DOI: 10.1007/s10237-016-0817-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 08/09/2016] [Indexed: 01/08/2023]
|
22
|
Tesson B, Latz MI. Mechanosensitivity of a rapid bioluminescence reporter system assessed by atomic force microscopy. Biophys J 2016; 108:1341-1351. [PMID: 25809248 DOI: 10.1016/j.bpj.2015.02.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/10/2014] [Accepted: 02/02/2015] [Indexed: 11/18/2022] Open
Abstract
Cells are sophisticated integrators of mechanical stimuli that lead to physiological, biochemical, and genetic responses. The bioluminescence of dinoflagellates, alveolate protists that use light emission for predator defense, serves as a rapid noninvasive whole-cell reporter of mechanosensitivity. In this study, we used atomic force microscopy (AFM) to explore the relationship between cell mechanical properties and mechanosensitivity in live cells of the dinoflagellate Pyrocystis lunula. Cell stiffness was 0.56 MPa, consistent with cells possessing a cell wall. Cell response depended on both the magnitude and velocity of the applied force. At the maximum stimulation velocity of 390 μm s(-1), the threshold response occurred at a force of 7.2 μN, resulting in a contact time of 6.1 ms and indentation of 2.1 μm. Cells did not respond to a low stimulation velocity of 20 μm s(-1), indicating a velocity dependent response that, based on stress relaxation experiments, was explained by the cell viscoelastic properties. This study demonstrates the use of AFM to study mechanosensitivity in a cell system that responds at fast timescales, and provides insights into how viscoelastic properties affect mechanosensitivity. It also provides a comparison with previous studies using hydrodynamic stimulation, showing the discrepancy in cell response between direct compressive forces using AFM and those within flow fields based on average flow properties.
Collapse
Affiliation(s)
- Benoit Tesson
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California.
| | - Michael I Latz
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California.
| |
Collapse
|
23
|
Atomic force microscopy indentation and inverse analysis for non-linear viscoelastic identification of breast cancer cells. Math Biosci 2016; 277:77-88. [PMID: 27107978 DOI: 10.1016/j.mbs.2016.03.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 03/27/2016] [Accepted: 03/31/2016] [Indexed: 12/20/2022]
Abstract
Breast cancer cells (MCF-7 and MCF-10A) are studied through indentation with spherical borosilicate glass particles in atomic force microscopy (AFM) contact mode in fluid. Their mechanical properties are obtained by analyzing the recorded reaction force-time response. The analysis is based on comparing experimental data with predictions from finite element (FE) simulation. Here, FE modeling is employed to simulate the AFM indentation experiment which is neither a displacement nor a force controlled test. This approach is expected to overcome many underlying problems of the widely used models such as Hertz contact model due to its capability to capture the contact behaviors between the spherical indentor and the cell, account for cell geometry, and incorporate with large strain theory. In this work, a non-linear viscoelastic (NLV) model in which the viscoelastic part is described by Prony series terms is used for the constitutive model of the cells. The time-dependent material parameters are extracted through an inverse analysis with the use of a surrogate model based on a Kriging estimator. The purpose is to automatically extract the NLV properties of the cells with a more efficient process compared to the iterative inverse technique that has been mostly applied in the literature. The method also allows the use of FE modeling in the analysis of a large amount of experimental data. The NLV parameters are compared between MCF-7 and MCF-10A and MCF-10A treated and untreated with the drug Cytochalasin D to examine the possibility of using relaxation properties as biomarkers for distinguishing these types of breast cancer cells. The comparisons indicate that malignant cells (MCF-7) are softer and exhibit more relaxation than benign cells (MCF-10A). Disrupting the cytoskeleton using the drug Cytochalasin D also results in a larger amount of relaxation in the cell's response. In addition, relaxation properties indicate larger differences as compared to the elastic moduli like instantaneous shear modulus. These results may be useful for disease diagnosing purposes.
Collapse
|
24
|
Fang Y, Lai KWC. Modeling the mechanics of cells in the cell-spreading process driven by traction forces. Phys Rev E 2016; 93:042404. [PMID: 27176326 DOI: 10.1103/physreve.93.042404] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Indexed: 06/05/2023]
Abstract
Mechanical properties of cells and their mechanical interaction with the extracellular environments are main factors influencing cellular function, thus indicating the progression of cells in different disease states. By considering the mechanical interactions between cell adhesion molecules and the extracellular environment, we developed a cell mechanical model that can characterize the mechanical changes in cells during cell spreading. A cell model was established that consisted of various main subcellular components, including cortical cytoskeleton, nuclear envelope, actin filaments, intermediate filaments, and microtubules. We demonstrated the structural changes in subcellular components and the changes in spreading areas during cell spreading driven by traction forces. The simulation of nanoindentation tests was conducted by integrating the indenting force to the cell model. The force-indentation curve of the cells at different spreading states was simulated, and the results showed that cell stiffness increased with increasing traction forces, which were consistent with the experimental results. The proposed cell mechanical model provides a strategy to investigate the mechanical interactions of cells with the extracellular environments through the adhesion molecules and to reveal the cell mechanical properties at the subcellular level as cells shift from the suspended state to the adherent state.
Collapse
Affiliation(s)
- Yuqiang Fang
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Hong Kong
| | - King W C Lai
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Hong Kong
| |
Collapse
|
25
|
Verbruggen SW, Mc Garrigle MJ, Haugh MG, Voisin MC, McNamara LM. Altered mechanical environment of bone cells in an animal model of short- and long-term osteoporosis. Biophys J 2016; 108:1587-1598. [PMID: 25863050 DOI: 10.1016/j.bpj.2015.02.031] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 01/28/2015] [Accepted: 02/03/2015] [Indexed: 01/18/2023] Open
Abstract
Alterations in bone tissue composition during osteoporosis likely disrupt the mechanical environment of bone cells and may thereby initiate a mechanobiological response. It has proved challenging to characterize the mechanical environment of bone cells in vivo, and the mechanical environment of osteoporotic bone cells is not known. The objective of this research is to characterize the local mechanical environment of osteocytes and osteoblasts from healthy and osteoporotic bone in a rat model of osteoporosis. Using a custom-designed micromechanical loading device, we apply strains representative of a range of physical activity (up to 3000 με) to fluorescently stained femur samples from normal and ovariectomized rats. Confocal imaging was simultaneously performed, and digital image correlation techniques were applied to characterize cellular strains. In healthy bone tissue, osteocytes experience higher maximum strains (31,028 ± 4213 με) than osteoblasts (24,921 ± 3,832 με), whereas a larger proportion of the osteoblast experiences strains >10,000 με. Most interestingly, we show that osteoporotic bone cells experience similar or higher maximum strains than healthy bone cells after short durations of estrogen deficiency (5 weeks), and exceeded the osteogenic strain threshold (10,000 με) in a similar or significantly larger proportion of the cell (osteoblast, 12.68% vs. 13.68%; osteocyte, 15.74% vs. 5.37%). However, in long-term estrogen deficiency (34 weeks), there was no significant difference between bone cells in healthy and osteoporotic bone. These results suggest that the mechanical environment of bone cells is altered during early-stage osteoporosis, and that mechanobiological responses act to restore the mechanical environment of the bone tissue after it has been perturbed by ovariectomy.
Collapse
Affiliation(s)
- Stefaan W Verbruggen
- Biomechanics Research Centre, National Centre for Biomedical Engineering Science, Biomedical Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland
| | - Myles J Mc Garrigle
- Biomechanics Research Centre, National Centre for Biomedical Engineering Science, Biomedical Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland
| | - Matthew G Haugh
- Biomechanics Research Centre, National Centre for Biomedical Engineering Science, Biomedical Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland
| | - Muriel C Voisin
- Biomechanics Research Centre, National Centre for Biomedical Engineering Science, Biomedical Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland
| | - Laoise M McNamara
- Biomechanics Research Centre, National Centre for Biomedical Engineering Science, Biomedical Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland.
| |
Collapse
|
26
|
Nguyen TD, Ethier CR. Biomechanical assessment in models of glaucomatous optic neuropathy. Exp Eye Res 2015; 141:125-38. [PMID: 26115620 PMCID: PMC4628840 DOI: 10.1016/j.exer.2015.05.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/20/2015] [Accepted: 05/31/2015] [Indexed: 01/26/2023]
Abstract
The biomechanical environment within the eye is of interest in both the regulation of intraocular pressure and the loss of retinal ganglion cell axons in glaucomatous optic neuropathy. Unfortunately, this environment is complex and difficult to determine. Here we provide a brief introduction to basic concepts of mechanics (stress, strain, constitutive relationships) as applied to the eye, and then describe a variety of experimental and computational approaches used to study ocular biomechanics. These include finite element modeling, direct experimental measurements of tissue displacements using optical and other techniques, direct experimental measurement of tissue microstructure, and combinations thereof. Thanks to notable technical and conceptual advances in all of these areas, we are slowly gaining a better understanding of how tissue biomechanical properties in both the anterior and posterior segments may influence the development of, and risk for, glaucomatous optic neuropathy. Although many challenging research questions remain unanswered, the potential of this body of work is exciting; projects underway include the coupling of clinical imaging with biomechanical modeling to create new diagnostic tools, development of IOP control strategies based on improved understanding the mechanobiology of the outflow tract, and attempts to develop novel biomechanically-based therapeutic strategies for preservation of vision in glaucoma.
Collapse
Affiliation(s)
- Thao D Nguyen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - C Ross Ethier
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, USA; Department of Mechanical Engineering, Georgia Institute of Technology, USA; Institute of Biosciences and Bioengineering, Georgia Institute of Technology, USA; Department of Ophthalmology, Emory University, USA.
| |
Collapse
|
27
|
Zhang Q, Li C, Zhou M, Liao Y, Huang C, Shi J, Wang Y, Wang W. Quantification of carotid plaque elasticity and intraplaque neovascularization using contrast-enhanced ultrasound and image registration-based elastography. ULTRASONICS 2015; 62:253-262. [PMID: 26074459 DOI: 10.1016/j.ultras.2015.05.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 05/18/2015] [Accepted: 05/29/2015] [Indexed: 06/04/2023]
Abstract
It is valuable for evaluation of carotid plaque vulnerability to investigate the relation between intraplaque neovascularization (IPN) and plaque elasticity. The contrast-enhanced ultrasound (CEUS) has been used in IPN measurement, but it cannot assess plaque elasticity. The aim of this study was to develop an ultrasound elastography technique based on registration of CEUS sequential images and to use this technique for direct comparison between IPN and plaque elasticity. We employed a nonrigid image registration method using the free-form deformation model to register a pair of clinical CEUS images at systole and diastole. The 2D displacement field of the plaque was estimated and then utilized to calculate the axial and lateral strain distributions within the plaque, from which quantitative strain parameters were obtained. The IPN was measured semiquantitatively with visual assessment and quantitatively with the time-intensity curve analysis and the analysis of contrast agent spatial distributions. Histopathology with CD34 staining for quantification of microvessel density (MVD) was performed on plaques excised by carotid endarterectomy. Simulation experiments showed that the mean absolute error and the root mean squared error of the displacement estimation were 0.325±0.180 pixel (7.2%±3.8%) and 0.556±0.284 pixel (12.3%±6.1%), respectively, demonstrating high accuracy of the elastography technique. Thirty-eight plaques in 29 patients met the inclusion criteria for the elastography and image analysis, where ten plaques underwent endarterectomy. The 95th percentile (A95) and standard deviation (Asd) of the axial strains exhibited significant differences between the low and high grades of IPN visually assessed (p<0.01). A95 (R=0.579; p<0.001) and Asd (R=0.609; p<0.001) were correlated with the enhanced intensity of plaque, and also correlated with the MVD (R=0.793 and 0.817, respectively; p<0.01), suggesting that plaque became softer and more elastically heterogeneous as IPN increased. These findings provide direct and quantitative evidence for the associations between plaque strains and IPN and might be helpful for evaluation of carotid plaque vulnerability and for plaque risk stratification.
Collapse
Affiliation(s)
- Qi Zhang
- School of Communication and Information Engineering, Shanghai University, 200444 Shanghai, China.
| | - Chaolun Li
- Department of Ultrasound, Zhongshan Hospital, Fudan University, 200032 Shanghai, China.
| | - Moli Zhou
- School of Communication and Information Engineering, Shanghai University, 200444 Shanghai, China
| | - Yu Liao
- School of Communication and Information Engineering, Shanghai University, 200444 Shanghai, China
| | - Chunchun Huang
- School of Communication and Information Engineering, Shanghai University, 200444 Shanghai, China
| | - Jun Shi
- School of Communication and Information Engineering, Shanghai University, 200444 Shanghai, China.
| | - Yuanyuan Wang
- Department of Electronic Engineering, Fudan University, 200433 Shanghai, China.
| | - Wenping Wang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, 200032 Shanghai, China.
| |
Collapse
|
28
|
Geng Y, Wang Z. Review of cellular mechanotransduction on micropost substrates. Med Biol Eng Comput 2015; 54:249-71. [PMID: 26245253 DOI: 10.1007/s11517-015-1343-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 07/07/2015] [Indexed: 01/09/2023]
Abstract
As physical entities, living cells can sense and respond to various stimulations within and outside the body through cellular mechanotransduction. Any deviation in cellular mechanotransduction will not only undermine the orchestrated regulation of mechanical responses, but also lead to the breakdown of their physiological function. Therefore, a quantitative study of cellular mechanotransduction needs to be conducted both in experiments and in computational simulations to investigate the underlying mechanisms of cellular mechanotransduction. In this review, we present an overview of the current knowledge and significant progress in cellular mechanotransduction via micropost substrates. In the aspect of experimental studies, we summarize significant experimental progress and place an emphasis on the coupled relationship among cellular spreading, focal adhesion and contractility as well as the influence of substrate properties on force-involved cellular behaviors. In the other aspect of computational investigations, we outline a coupled framework including the biochemically motivated stress fiber model and thermodynamically motivated adhesion model and present their predicted biomechanical responses and then compare predicted simulation results with experimental observations to further explore the mechanisms of cellular mechanotransduction. At last, we discuss the future perspectives both in experimental technologies and in computational models, as well as facing challenges in the area of cellular mechanotransduction.
Collapse
Affiliation(s)
- Yuxu Geng
- State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing, 400030, China
| | - Zhanjiang Wang
- State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
29
|
Nijenhuis N, Zhao X, Carisey A, Ballestrem C, Derby B. Combining AFM and acoustic probes to reveal changes in the elastic stiffness tensor of living cells. Biophys J 2015; 107:1502-12. [PMID: 25296302 DOI: 10.1016/j.bpj.2014.07.073] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/22/2014] [Accepted: 07/30/2014] [Indexed: 12/20/2022] Open
Abstract
Knowledge of how the elastic stiffness of a cell affects its communication with its environment is of fundamental importance for the understanding of tissue integrity in health and disease. For stiffness measurements, it has been customary to quote a single parameter quantity, e.g., Young's modulus, rather than the minimum of two terms of the stiffness tensor required by elasticity theory. In this study, we use two independent methods (acoustic microscopy and atomic force microscopy nanoindentation) to characterize the elastic properties of a cell and thus determine two independent elastic constants. This allows us to explore in detail how the mechanical properties of cells change in response to signaling pathways that are known to regulate the cell's cytoskeleton. In particular, we demonstrate that altering the tensioning of actin filaments in NIH3T3 cells has a strong influence on the cell's shear modulus but leaves its bulk modulus unchanged. In contrast, altering the polymerization state of actin filaments influences bulk and shear modulus in a similar manner. In addition, we can use the data to directly determine the Poisson ratio of a cell and show that in all cases studied, it is less than, but very close to, 0.5 in value.
Collapse
Affiliation(s)
- Nadja Nijenhuis
- School of Materials, Faculty of Engineering and Physical Sciences, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom; Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Xuegen Zhao
- School of Materials, Faculty of Engineering and Physical Sciences, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Alex Carisey
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Christoph Ballestrem
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Brian Derby
- School of Materials, Faculty of Engineering and Physical Sciences, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
30
|
|
31
|
Mullen CA, Vaughan TJ, Voisin MC, Brennan MA, Layrolle P, McNamara LM. Cell morphology and focal adhesion location alters internal cell stress. J R Soc Interface 2014; 11:20140885. [PMID: 25297316 PMCID: PMC4223909 DOI: 10.1098/rsif.2014.0885] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 09/15/2014] [Indexed: 12/30/2022] Open
Abstract
Extracellular mechanical cues have been shown to have a profound effect on osteogenic cell behaviour. However, it is not known precisely how these cues alter intracellular mechanics to initiate changes in cell behaviour. In this study, a combination of in vitro culture of MC3T3-E1 cells and finite-element modelling was used to investigate the effects of passive differences in substrate stiffness on intracellular mechanics. Cells on collagen-based substrates were classified based on the presence of cell processes and the dimensions of various cellular features were quantified. Focal adhesion (FA) density was quantified from immunohistochemical staining, while cell and substrate stiffnesses were measured using a live-cell atomic force microscope. Computational models of cell morphologies were developed using an applied contraction of the cell body to simulate active cell contraction. The results showed that FA density is directly related to cell morphology, while the effect of substrate stiffness on internal cell tension was modulated by both cell morphology and FA density, as investigated by varying the number of adhesion sites present in each morphological model. We propose that the cells desire to achieve a homeostatic stress state may play a role in osteogenic cell differentiation in response to extracellular mechanical cues.
Collapse
Affiliation(s)
- C A Mullen
- Centre for Biomechanics Research (BMEC), Department of Biomedical Engineering, NUI Galway, Galway, Republic of Ireland National Centre for Biomedical Engineering Science (NCBES), NUI Galway, Galway, Republic of Ireland
| | - T J Vaughan
- Centre for Biomechanics Research (BMEC), Department of Biomedical Engineering, NUI Galway, Galway, Republic of Ireland
| | - M C Voisin
- Centre for Biomechanics Research (BMEC), Department of Biomedical Engineering, NUI Galway, Galway, Republic of Ireland National Centre for Biomedical Engineering Science (NCBES), NUI Galway, Galway, Republic of Ireland
| | - M A Brennan
- INSERM UMR957, Laboratory of the Pathophysiology of Bone Resorption, Faculty of Medicine, University of Nantes, Nantes, France
| | - P Layrolle
- INSERM UMR957, Laboratory of the Pathophysiology of Bone Resorption, Faculty of Medicine, University of Nantes, Nantes, France
| | - L M McNamara
- Centre for Biomechanics Research (BMEC), Department of Biomedical Engineering, NUI Galway, Galway, Republic of Ireland National Centre for Biomedical Engineering Science (NCBES), NUI Galway, Galway, Republic of Ireland
| |
Collapse
|
32
|
Abstract
Nanobiomechanics of living cells is very important to understand cell-materials interactions. This would potentially help to optimize the surface design of the implanted materials and scaffold materials for tissue engineering. The nanoindentation techniques enable quantifying nanobiomechanics of living cells, with flexibility of using indenters of different geometries. However, the data interpretation for nanoindentation of living cells is often difficult. Despite abundant experimental data reported on nanobiomechanics of living cells, there is a lack of comprehensive discussion on testing with different tip geometries, and the associated mechanical models that enable extracting the mechanical properties of living cells. Therefore, this paper discusses the strategy of selecting the right type of indenter tips and the corresponding mechanical models at given test conditions.
Collapse
Affiliation(s)
- Jinju Chen
- School of Mechanical and Systems Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
- Arthritis Research UK (ARUK) Tissue Engineering Centre, Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
| |
Collapse
|
33
|
Nava MM, Raimondi MT, Pietrabissa R. Bio-chemo-mechanical models for nuclear deformation in adherent eukaryotic cells. Biomech Model Mechanobiol 2014; 13:929-43. [DOI: 10.1007/s10237-014-0558-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 01/30/2014] [Indexed: 12/12/2022]
|
34
|
Vargas-Pinto R, Gong H, Vahabikashi A, Johnson M. The effect of the endothelial cell cortex on atomic force microscopy measurements. Biophys J 2014; 105:300-9. [PMID: 23870251 DOI: 10.1016/j.bpj.2013.05.034] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 04/24/2013] [Accepted: 05/13/2013] [Indexed: 10/26/2022] Open
Abstract
We examined whether the presence of the cell cortex might explain, in part, why previous studies using atomic force microscopy (AFM) to measure cell modulus (E) gave higher values with sharp tips than for larger spherical tips. We confirmed these AFM findings in human umbilical vein endothelial cells (HUVEC) and Schlemm's canal (SC) endothelial cells with AFM indentation ≤ 400 nm, two cell types with prominent cortices (312 ± 65 nm in HUVEC and 371 ± 91 nm in SC cells). With spherical tips, E (kPa) was 0.71 ± 0.16 in HUVEC and 0.94 ± 0.06 in SC cells. Much higher values of E were measured using sharp tips: 3.23 ± 0.54 in HUVEC and 6.67 ± 1.07 in SC cells. Previous explanations for this difference such as strain hardening or a substrate effect were shown to be inconsistent with our measurements. Finite element modeling studies showed that a stiff cell cortex could explain the results. In both cell types, Latrunculin-A greatly reduced E for sharp and rounded tips, and also reduced the ratio of the values measured with a sharp tip as compared to a rounded tip. Our results suggest that the cell cortex increases the apparent endothelial cell modulus considerably when measured using a sharp AFM tip.
Collapse
Affiliation(s)
- R Vargas-Pinto
- Biomedical Engineering Department, Northwestern University, Evanston, Illinois, USA
| | | | | | | |
Collapse
|
35
|
Dynamic Analysis of a Spread Cell Using Finite Element Method. MECHANICS OF BIOLOGICAL SYSTEMS AND MATERIALS, VOLUME 4 2014. [DOI: 10.1007/978-3-319-00777-9_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Mathematical modeling of the dynamic mechanical behavior of neighboring sarcomeres in actin stress fibers. Cell Mol Bioeng 2014; 7:73-85. [PMID: 25110525 DOI: 10.1007/s12195-013-0318-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Actin stress fibers (SFs) in live cells consist of series of dynamic individual sarcomeric units. Within a group of consecutive SF sarcomeres, individual sarcomeres can spontaneously shorten or lengthen without changing the overall length of this group, but the underlying mechanism is unclear. We used a computational model to test our hypothesis that this dynamic behavior is inherent to the heterogeneous mechanical properties of the sarcomeres and the cytoplasmic viscosity. Each sarcomere was modeled as a discrete element consisting of an elastic spring, a viscous dashpot and an active contractile unit all connected in parallel, and experiences forces as a result of actin filament elastic stiffness, myosin II contractility, internal viscoelasticity, or cytoplasmic drag. When all four types of forces are considered, the simulated dynamic behavior closely resembles the experimental observations, which include a low-frequency fluctuation in individual sarcomere length and compensatory lengthening and shortening of adjacent sarcomeres. Our results suggest that heterogeneous stiffness and viscoelasticity of actin fibers, heterogeneous myosin II contractility, and the cytoplasmic drag are sufficient to cause spontaneous fluctuations in SF sarcomere length. Our results shed new light to the dynamic behavior of SF and help design experiments to further our understanding of SF dynamics.
Collapse
|
37
|
Xue F, Lennon AB, McKayed KK, Campbell VA, Prendergast PJ. Effect of membrane stiffness and cytoskeletal element density on mechanical stimuli within cells: an analysis of the consequences of ageing in cells. Comput Methods Biomech Biomed Engin 2013; 18:468-76. [PMID: 23947334 DOI: 10.1080/10255842.2013.811234] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A finite element model of a single cell was created and used to compute the biophysical stimuli generated within a cell under mechanical loading. Major cellular components were incorporated in the model: the membrane, cytoplasm, nucleus, microtubules, actin filaments, intermediate filaments, nuclear lamina and chromatin. The model used multiple sets of tensegrity structures. Viscoelastic properties were assigned to the continuum components. To corroborate the model, a simulation of atomic force microscopy indentation was performed and results showed a force/indentation simulation with the range of experimental results. A parametric analysis of both increasing membrane stiffness (thereby modelling membrane peroxidation with age) and decreasing density of cytoskeletal elements (thereby modelling reduced actin density with age) was performed. Comparing normal and aged cells under indentation predicts that aged cells have a lower membrane area subjected to high strain as compared with young cells, but the difference, surprisingly, is very small and may not be measurable experimentally. Ageing is predicted to have a more significant effect on strain deep in the nucleus. These results show that computation of biophysical stimuli within cells are achievable with single-cell computational models; correspondence between computed and measured force/displacement behaviours provides a high-level validation of the model. Regarding the effect of ageing, the models suggest only small, although possibly physiologically significant, differences in internal biophysical stimuli between normal and aged cells.
Collapse
Affiliation(s)
- Feng Xue
- a Trinity Centre for Bioengineering, School of Engineering, Trinity College Dublin , Dublin , Ireland
| | | | | | | | | |
Collapse
|
38
|
Aryaei A, Jayasuriya AC. Mechanical properties of human amniotic fluid stem cells using nanoindentation. J Biomech 2013; 46:1524-30. [PMID: 23628151 PMCID: PMC4930323 DOI: 10.1016/j.jbiomech.2013.03.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 03/22/2013] [Accepted: 03/22/2013] [Indexed: 10/26/2022]
Abstract
The aim of this study was to obtain nanomechanical properties of living cells focusing on human amniotic fluid stem (hAFS) cell using nanoindentation techniques. We modified the conventional method of atomic force microscopy (AFM) in aqueous environment for cell imaging and indentation to avoid inherent difficulties. Moreover, we determined the elastic modulus of murine osteoblast (OB6) cells and hAFS cells at the nucleus and cytoskeleton using force-displacement curves and Hertz theory. Since OB6 cell line has been widely used, it was selected to validate and compare the obtained results with the previous research studies. As a result, we were able to capture high resolution images through utilization of the tapping mode without adding protein or using fixation methods. The maximum depth of indentation was kept below 15% of the cell thickness to minimize the effect of substrate hardness. Nanostructural details on the surface of cells were visualized by AFM and fluorescence microscopy. The cytoskeletal fibers presented remarkable increase in elastic modulus as compared with the nucleus. Furthermore, our results showed that the elastic modulus of hAFS cell edge (31.6 kPa) was lower than that of OB6 cell edge (42.2 kPa). In addition, the elastic modulus of nucleus was 13.9 kPa for hAFS cell and 26.9 kPa for OB6 cells. Differences in cell elastic modulus possibly resulted from the type and number of actin cytoskeleton organization in these two cell types.
Collapse
Affiliation(s)
- Ashkan Aryaei
- Department of Mechanical Engineering, University of Toledo, 1650 N. Westwood Avenue, Toledo, OH 43606-3390, USA
| | - Ambalangodage C. Jayasuriya
- Department of Orthopaedic Surgery, University of Toledo, MS 1094, 3065 Arlington Avenue, Toledo, OH 43614-5807, USA
| |
Collapse
|
39
|
Vaughan TJ, Haugh MG, McNamara LM. A fluid-structure interaction model to characterize bone cell stimulation in parallel-plate flow chamber systems. J R Soc Interface 2013; 10:20120900. [PMID: 23365189 DOI: 10.1098/rsif.2012.0900] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bone continuously adapts its internal structure to accommodate the functional demands of its mechanical environment and strain-induced flow of interstitial fluid is believed to be the primary mediator of mechanical stimuli to bone cells in vivo. In vitro investigations have shown that bone cells produce important biochemical signals in response to fluid flow applied using parallel-plate flow chamber (PPFC) systems. However, the exact mechanical stimulus experienced by the cells within these systems remains unclear. To fully understand this behaviour represents a most challenging multi-physics problem involving the interaction between deformable cellular structures and adjacent fluid flows. In this study, we use a fluid-structure interaction computational approach to investigate the nature of the mechanical stimulus being applied to a single osteoblast cell under fluid flow within a PPFC system. The analysis decouples the contribution of pressure and shear stress on cellular deformation and for the first time highlights that cell strain under flow is dominated by the pressure in the PPFC system rather than the applied shear stress. Furthermore, it was found that strains imparted on the cell membrane were relatively low whereas significant strain amplification occurred at the cell-substrate interface. These results suggest that strain transfer through focal attachments at the base of the cell are the primary mediators of mechanical signals to the cell under flow in a PPFC system. Such information is vital in order to correctly interpret biological responses of bone cells under in vitro stimulation and elucidate the mechanisms associated with mechanotransduction in vivo.
Collapse
Affiliation(s)
- T J Vaughan
- National Centre for Biomedical Engineering Sciences (NCBES), National University of Ireland, Galway, Ireland
| | | | | |
Collapse
|
40
|
Chapin LM, Blankman E, Smith MA, Shiu YT, Beckerle MC. Lateral communication between stress fiber sarcomeres facilitates a local remodeling response. Biophys J 2012. [PMID: 23200042 DOI: 10.1016/j.bpj.2012.09.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Actin stress fibers (SFs) are load-bearing and mechanosensitive structures. To our knowledge, the mechanisms that enable SFs to sense and respond to strain have not been fully defined. Acute local strain events can involve a twofold extension of a single SF sarcomere, but how these dramatic local events affect the overall SF architecture is not believed to be understood. Here we have investigated how SF architecture adjusts to episodes of local strain that occur in the cell center. Using fluorescently tagged zyxin to track the borders of sarcomeres, we characterize the dynamics of resting sarcomeres and strain-site sarcomeres. We find that sarcomeres flanking a strain site undergo rapid shortening that directly compensates for the strain-site extension, illustrating lateral communication of mechanical information along the length of a stress fiber. When a strain-site sarcomere extends asymmetrically, its adjacent sarcomeres exhibit a parallel asymmetric shortening response, illustrating that flanking sarcomeres respond to strain magnitude. After extension, strain-site sarcomeres become locations of new sarcomere addition, highlighting mechanical strain as a trigger of sarcomere addition and revealing a, to our knowledge, novel type of SF remodeling. Our findings provide evidence to suggest SF sarcomeres act as strain sensors and are interconnected to support communication of mechanical information.
Collapse
Affiliation(s)
- Laura M Chapin
- Huntsman Cancer Institute, Departments of Biology and Oncological Sciences, Salt Lake City, UT, USA
| | | | | | | | | |
Collapse
|
41
|
Guolla L, Bertrand M, Haase K, Pelling AE. Force transduction and strain dynamics in actin stress fibres in response to nanonewton forces. J Cell Sci 2012; 125:603-13. [PMID: 22389400 DOI: 10.1242/jcs.088302] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
It is becoming clear that mechanical stimuli are crucial factors in regulating the biology of the cell, but the short-term structural response of a cell to mechanical forces remains relatively poorly understood. We mechanically stimulated cells transiently expressing actin-EGFP with controlled forces (0-20 nN) in order to investigate the structural response of the cell. Two clear force-dependent responses were observed: a short-term (seconds) local deformation of actin stress fibres and a long-term (minutes) force-induced remodelling of stress fibres at cell edges, far from the point of contact. By photobleaching markers along stress fibres we were also able to quantify strain dynamics occurring along the fibres throughout the cell. The results reveal that the cell exhibits complex heterogeneous negative and positive strain fluctuations along stress fibres in resting cells that indicate localized contraction and stretch dynamics. The application of mechanical force results in the activation of myosin contractile activity reflected in an ~50% increase in strain fluctuations. This approach has allowed us to directly observe the activation of myosin in response to mechanical force and the effects of cytoskeletal crosslinking on local deformation and strain dynamics. The results demonstrate that force application does not result in simplistic isotropic deformation of the cytoarchitecture, but rather a complex and localized response that is highly dependent on an intact microtubule network. Direct visualization of force-propagation and stress fibre strain dynamics have revealed several crucial phenomena that take place and ultimately govern the downstream response of a cell to a mechanical stimulus.
Collapse
Affiliation(s)
- Louise Guolla
- Department of Physics, MacDonald Hall, 150 Louis Pasteur, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | | | | | | |
Collapse
|
42
|
Boccaccio A, Frassanito MC, Lamberti L, Brunelli R, Maulucci G, Monaci M, Papi M, Pappalettere C, Parasassi T, Sylla L, Ursini F, De Spirito M. Nanoscale characterization of the biomechanical hardening of bovine zona pellucida. J R Soc Interface 2012; 9:2871-82. [PMID: 22675161 DOI: 10.1098/rsif.2012.0269] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The zona pellucida (ZP) is an extracellular membrane surrounding mammalian oocytes. The so-called zona hardening plays a key role in fertilization process, as it blocks polyspermy, which may also be caused by an increase in the mechanical stiffness of the ZP membrane. However, structural reorganization mechanisms leading to ZP's biomechanical hardening are not fully understood yet. Furthermore, a correct estimate of the elastic properties of the ZP is still lacking. Therefore, the aim of the present study was to investigate the biomechanical behaviour of ZP membranes extracted from mature and fertilized bovine oocytes to better understand the mechanisms involved in the structural reorganization of the ZP that may lead to the biomechanical hardening of the ZP. For that purpose, a hybrid procedure is developed by combining atomic force microscopy nanoindentation measurements, nonlinear finite element analysis and nonlinear optimization. The proposed approach allows us to determine the biomechanical properties of the ZP more realistically than the classical analysis based on Hertz's contact theory, as it accounts for the nonlinearity of finite indentation process, hyperelastic behaviour and material heterogeneity. Experimental results show the presence of significant biomechanical hardening induced by the fertilization process. By comparing various hyperelastic constitutive models, it is found that the Arruda-Boyce eight-chain model best describes the biomechanical response of the ZP. Fertilization leads to an increase in the degree of heterogeneity of membrane elastic properties. The Young modulus changes sharply within a superficial layer whose thickness is related to the characteristic distance between cross-links in the ZP filamentous network. These findings support the hypothesis that biomechanical hardening of bovine ZP is caused by an increase in the number of inter-filaments cross-links whose density should be higher in the ZP inner side.
Collapse
Affiliation(s)
- Antonio Boccaccio
- Dipartimento di Ingegneria Meccanica e Gestionale, Politecnico di Bari, , Bari 70126, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Milner JS, Grol MW, Beaucage KL, Dixon SJ, Holdsworth DW. Finite-element modeling of viscoelastic cells during high-frequency cyclic strain. J Funct Biomater 2012; 3:209-24. [PMID: 24956525 PMCID: PMC4031015 DOI: 10.3390/jfb3010209] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Revised: 03/06/2012] [Accepted: 03/13/2012] [Indexed: 12/20/2022] Open
Abstract
Mechanotransduction refers to the mechanisms by which cells sense and respond to local loads and forces. The process of mechanotransduction plays an important role both in maintaining tissue viability and in remodeling to repair damage; moreover, it may be involved in the initiation and progression of diseases such as osteoarthritis and osteoporosis. An understanding of the mechanisms by which cells respond to surrounding tissue matrices or artificial biomaterials is crucial in regenerative medicine and in influencing cellular differentiation. Recent studies have shown that some cells may be most sensitive to low-amplitude, high-frequency (i.e., 1-100 Hz) mechanical stimulation. Advances in finite-element modeling have made it possible to simulate high-frequency mechanical loading of cells. We have developed a viscoelastic finite-element model of an osteoblastic cell (including cytoskeletal actin stress fibers), attached to an elastomeric membrane undergoing cyclic isotropic radial strain with a peak value of 1,000 µstrain. The results indicate that cells experience significant stress and strain amplification when undergoing high-frequency strain, with peak values of cytoplasmic strain five times higher at 45 Hz than at 1 Hz, and peak Von Mises stress in the nucleus increased by a factor of two. Focal stress and strain amplification in cells undergoing high-frequency mechanical stimulation may play an important role in mechanotransduction.
Collapse
Affiliation(s)
- Jaques S Milner
- Imaging Research Laboratory, Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON N6A 5K8, Canada.
| | - Matthew W Grol
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada.
| | - Kim L Beaucage
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada.
| | - S Jeffrey Dixon
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada.
| | - David W Holdsworth
- Imaging Research Laboratory, Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON N6A 5K8, Canada.
| |
Collapse
|
44
|
Zhou EH, Xu F, Quek ST, Lim CT. A power-law rheology-based finite element model for single cell deformation. Biomech Model Mechanobiol 2012; 11:1075-84. [PMID: 22307682 DOI: 10.1007/s10237-012-0374-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 01/14/2012] [Indexed: 10/14/2022]
Abstract
Physical forces can elicit complex time- and space-dependent deformations in living cells. These deformations at the subcellular level are difficult to measure but can be estimated using computational approaches such as finite element (FE) simulation. Existing FE models predominantly treat cells as spring-dashpot viscoelastic materials, while broad experimental data are now lending support to the power-law rheology (PLR) model. Here, we developed a large deformation FE model that incorporated PLR and experimentally verified this model by performing micropipette aspiration on fibroblasts under various mechanical loadings. With a single set of rheological properties, this model recapitulated the diverse micropipette aspiration data obtained using three protocols and with a range of micropipette sizes. More intriguingly, our analysis revealed that decreased pipette size leads to increased pressure gradient, potentially explaining our previous counterintuitive finding that decreased pipette size leads to increased incidence of cell blebbing and injury. Taken together, our work leads to more accurate rheological interpretation of micropipette aspiration experiments than previous models and suggests pressure gradient as a potential determinant of cell injury.
Collapse
Affiliation(s)
- E H Zhou
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
45
|
Féréol S, Fodil R, Barnat M, Georget V, Milbreta U, Nothias F. Micropatterned ECM substrates reveal complementary contribution of low and high affinity ligands to neurite outgrowth. Cytoskeleton (Hoboken) 2011; 68:373-88. [DOI: 10.1002/cm.20518] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Revised: 04/28/2011] [Accepted: 05/24/2011] [Indexed: 12/12/2022]
|
46
|
|
47
|
Donhauser ZJ, Jobs WB, Binka EC. Mechanics of microtubules: effects of protofilament orientation. Biophys J 2010; 99:1668-75. [PMID: 20816081 DOI: 10.1016/j.bpj.2010.06.065] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 06/18/2010] [Accepted: 06/25/2010] [Indexed: 11/16/2022] Open
Abstract
Microtubules are hollow cylindrical polymers of the protein tubulin that play a number of important dynamic and structural roles in eukaryotic cells. Both in vivo and in vitro microtubules can exist in several possible configurations, differing in the number of protofilaments, helical rise of tubulin dimers, and protofilament skew angle with respect to the main tube axis. Here, finite element modeling is applied to examine the mechanical response of several known microtubule types when subjected to radial deformation. The data presented here provide an important insight into microtubule stiffness and reveal that protofilament orientation does not affect radial stiffness. Rather, stiffness is primarily dependent on the effective Young's modulus of the polymerized material and the effective radius of the microtubule. These results are also directly correlated to atomic force microscopy nanoindentation measurements to allow a more detailed interpretation of previous experiments. When combined with experimental data that show a significant difference between microtubules stabilized with a slowly hydrolyzable GTP analog and microtubules stabilized with paclitaxel, the finite element data suggest that paclitaxel increases the overall radial flexibility of the microtubule wall.
Collapse
|
48
|
Mehrotra S, Hunley SC, Pawelec KM, Zhang L, Lee I, Baek S, Chan C. Cell adhesive behavior on thin polyelectrolyte multilayers: cells attempt to achieve homeostasis of its adhesion energy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:12794-802. [PMID: 20604583 PMCID: PMC2918384 DOI: 10.1021/la101689z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Linearly growing ultrathin polyelectrolyte multilayer (PEM) films of strong polyelectrolytes, poly(diallyldimethylammonium chloride) (PDAC), and sulfonated polystyrene, sodium salt (SPS) exhibit a gradual shift from cytophilic to cytophobic behavior, with increasing thickness for films of less than 100 nm. Previous explanations based on film hydration, swelling, and changes in the elastic modulus cannot account for the cytophobicity observed with these thin films as the number of bilayers increases. We implemented a finite element analysis to help elucidate the observed trends in cell spreading. The simulation results suggest that cells maintain a constant level of energy consumption (energy homeostasis) during active probing and thus respond to changes in the film stiffness as the film thickness increases by adjusting their morphology and the number of focal adhesions recruited and thereby their attachment to a substrate.
Collapse
Affiliation(s)
- Sumit Mehrotra
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Kirmizis D, Logothetidis S. Atomic force microscopy probing in the measurement of cell mechanics. Int J Nanomedicine 2010; 5:137-45. [PMID: 20463929 PMCID: PMC2865008 DOI: 10.2147/ijn.s5787] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Indexed: 11/23/2022] Open
Abstract
Atomic force microscope (AFM) has been used incrementally over the last decade in cell biology. Beyond its usefulness in high resolution imaging, AFM also has unique capabilities for probing the viscoelastic properties of living cells in culture and, even more, mapping the spatial distribution of cell mechanical properties, providing thus an indirect indicator of the structure and function of the underlying cytoskeleton and cell organelles. AFM measurements have boosted our understanding of cell mechanics in normal and diseased states and provide future potential in the study of disease pathophysiology and in the establishment of novel diagnostic and treatment options.
Collapse
Affiliation(s)
- Dimitrios Kirmizis
- Department of Physics, Laboratory for Thin Films-Nanosystems and Nanometrology, Aristotle University, Thessaloniki, Greece.
| | | |
Collapse
|
50
|
Ziebarth NM, Rico F, Moy VT. Structural and Mechanical Mechanisms of Ocular Tissues Probed by AFM. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/978-3-642-03535-7_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|