1
|
Voce N, Stevenson P. Experimentally Probing the Effect of Confinement Geometry on Lipid Diffusion. J Phys Chem B 2024; 128:4404-4413. [PMID: 38574293 PMCID: PMC11089508 DOI: 10.1021/acs.jpcb.3c07388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/06/2024]
Abstract
The lateral mobility of molecules within the cell membrane is ultimately governed by the local environment of the membrane. Confined regions induced by membrane structures, such as protein aggregates or the actin meshwork, occur over a wide range of length scales and can impede or steer the diffusion of membrane components. However, a detailed picture of the origins and nature of these confinement effects remains elusive. Here, we prepare model lipid systems on substrates patterned with confined domains of varying geometries constructed with different materials to explore the influences of physical boundary conditions and specific molecular interactions on diffusion. We demonstrate a platform that is capable of significantly altering and steering the long-range diffusion of lipids by using simple oxide deposition approaches, enabling us to systematically explore how confinement size and shape impact diffusion over multiple length scales. While we find that a "boundary condition" description of the system captures underlying trends in some cases, we are also able to directly compare our systems to analytical models, revealing the unexpected breakdown of several approximate solutions. Our results highlight the importance of considering the length scale dependence when discussing properties such as diffusion.
Collapse
Affiliation(s)
- Nicole Voce
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
| | - Paul Stevenson
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
2
|
Taylor JM, Conboy JC. Sum-frequency vibrational spectroscopy, a tutorial: Applications for the study of lipid membrane structure and dynamics. Biointerphases 2024; 19:031201. [PMID: 38738942 DOI: 10.1116/6.0003594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/23/2024] [Indexed: 05/14/2024] Open
Abstract
Planar supported lipid bilayers (PSLBs) are an ideal model for the study of lipid membrane structures and dynamics when using sum-frequency vibrational spectroscopy (SFVS). In this paper, we describe the construction of asymmetric PSLBs and the basic SFVS theory needed to understand and make measurements on these membranes. Several examples are presented, including the determination of phospholipid orientation and measuring phospholipid transmembrane translocation (flip-flop).
Collapse
Affiliation(s)
- Joshua M Taylor
- Department of Chemistry, University of Utah, 315 South 1400 East RM. 2020, Salt Lake City, Utah 84112
| | - John C Conboy
- Department of Chemistry, University of Utah, 315 South 1400 East RM. 2020, Salt Lake City, Utah 84112
| |
Collapse
|
3
|
Makky A, Czajor J, Konovalov O, Zhakhov A, Ischenko A, Behl A, Singh S, Abuillan W, Shevtsov M. X-ray reflectivity study of the heat shock protein Hsp70 interaction with an artificial cell membrane model. Sci Rep 2023; 13:19157. [PMID: 37932378 PMCID: PMC10628213 DOI: 10.1038/s41598-023-46066-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/27/2023] [Indexed: 11/08/2023] Open
Abstract
Membrane-bound heat shock protein 70 (Hsp70) apart from its intracellular localization was shown to be specifically expressed on the plasma membrane surface of tumor but not normal cells. Although the association of Hsp70 with lipid membranes is well documented the exact mechanisms for chaperone membrane anchoring have not been fully elucidated. Herein, we addressed the question of how Hsp70 interacts with negatively charged phospholipids in artificial lipid compositions employing the X-ray reflectivity (XRR) studies. In a first step, the interactions between dioleoylphosphatidylcholine (DOPC) in the presence or absence of dioleoylphosphatidylserine (DOPS) and Hsp70 had been assessed using Quartz crystal microbalance measurements, suggesting that Hsp70 adsorbs to the surface of DOPC/DOPS bilayer. Atomic force microscopy (AFM) imaging demonstrated that the presence of DOPS is required for stabilization of the lipid bilayer. The interaction of Hsp70 with DOPC/DOPS lipid compositions was further quantitatively determined by high energy X-ray reflectivity. A systematic characterization of the chaperone-lipid membrane interactions by various techniques revealed that artificial membranes can be stabilized by the electrostatic interaction of anionic DOPS lipids with Hsp70.
Collapse
Affiliation(s)
- Ali Makky
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - Julian Czajor
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, University of Heidelberg, 69120, Heidelberg, Germany
| | - Oleg Konovalov
- European Synchrotron Radiation Facility (ESRF), 38043, Grenoble, France
| | - Alexander Zhakhov
- Saint-Petersburg Pasteur Institute, Mira Str. 14, 197101, St. Petersburg, Russia
| | - Alexander Ischenko
- Saint-Petersburg Pasteur Institute, Mira Str. 14, 197101, St. Petersburg, Russia
| | - Ankita Behl
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Wasim Abuillan
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, University of Heidelberg, 69120, Heidelberg, Germany.
| | - Maxim Shevtsov
- Klinikum Rechts Der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.
- Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky Ave. 4, 194064, St. Petersburg, Russia.
- Personalized Medicine Centre, Almazov National Medical Research Centre, Akkuratova Str. 2, 197341, St. Petersburg, Russia.
| |
Collapse
|
4
|
Aleksanyan M, Grafmüller A, Crea F, Georgiev VN, Yandrapalli N, Block S, Heberle J, Dimova R. Photomanipulation of Minimal Synthetic Cells: Area Increase, Softening, and Interleaflet Coupling of Membrane Models Doped with Azobenzene-Lipid Photoswitches. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304336. [PMID: 37653602 PMCID: PMC10625111 DOI: 10.1002/advs.202304336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/24/2023] [Indexed: 09/02/2023]
Abstract
Light can effectively interrogate biological systems in a reversible and physiologically compatible manner with high spatiotemporal precision. Understanding the biophysics of photo-induced processes in bio-systems is crucial for achieving relevant clinical applications. Employing membranes doped with the photolipid azobenzene-phosphatidylcholine (azo-PC), a holistic picture of light-triggered changes in membrane kinetics, morphology, and material properties obtained from correlative studies on cell-sized vesicles, Langmuir monolayers, supported lipid bilayers, and molecular dynamics simulations is provided. Light-induced membrane area increases as high as ≈25% and a ten-fold decrease in the membrane bending rigidity is observed upon trans-to-cis azo-PC isomerization associated with membrane leaflet coupling and molecular curvature changes. Vesicle electrodeformation measurements and atomic force microscopy reveal that trans azo-PC bilayers are thicker than palmitoyl-oleoyl phosphatidylcholine (POPC) bilayers but have higher specific membrane capacitance and dielectric constant suggesting an increased ability to store electric charges across the membrane. Lastly, incubating POPC vesicles with azo-PC solutions results in the insertion of azo-PC in the membrane enabling them to become photoresponsive. All these results demonstrate that light can be used to finely manipulate the shape, mechanical and electric properties of photolipid-doped minimal cell models, and liposomal drug carriers, thus, presenting a promising therapeutic alternative for the repair of cellular disorders.
Collapse
Affiliation(s)
- Mina Aleksanyan
- Max Planck Institute of Colloids and InterfacesScience Park Golm14476PotsdamGermany
- Institute for Chemistry and BiochemistryFreie Universität Berlin14195BerlinGermany
| | - Andrea Grafmüller
- Max Planck Institute of Colloids and InterfacesScience Park Golm14476PotsdamGermany
| | - Fucsia Crea
- Department of PhysicsFreie Universität Berlin14195BerlinGermany
| | - Vasil N. Georgiev
- Max Planck Institute of Colloids and InterfacesScience Park Golm14476PotsdamGermany
| | - Naresh Yandrapalli
- Max Planck Institute of Colloids and InterfacesScience Park Golm14476PotsdamGermany
| | - Stephan Block
- Institute for Chemistry and BiochemistryFreie Universität Berlin14195BerlinGermany
| | - Joachim Heberle
- Department of PhysicsFreie Universität Berlin14195BerlinGermany
| | - Rumiana Dimova
- Max Planck Institute of Colloids and InterfacesScience Park Golm14476PotsdamGermany
| |
Collapse
|
5
|
Goodchild J, Walsh DL, Laurent H, Connell SD. PDMS as a Substrate for Lipid Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:10843-10854. [PMID: 37494418 PMCID: PMC10413950 DOI: 10.1021/acs.langmuir.3c00944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/13/2023] [Indexed: 07/28/2023]
Abstract
PDMS (polydimethylsiloxane) is a cheap, optically clear polymer that is elastic and can be easily and quickly fabricated into a wide array of microscale and nanoscale architectures, making it a versatile substrate for biophysical experiments on cell membranes. It is easy to imagine many new experiments will be devised that require a bilayer to be placed upon a substrate that is flexible or easily cast into a desired geometry, such as in lab-on-a-chip, organ-on-chip, and microfluidic applications, or for building accurate membrane models that replicate the surface structure and elasticity of the cytoskeleton. However, PDMS has its limitations, and the extent to which the behavior of membranes is affected on PDMS has not been fully explored. We use AFM and fluorescence optical microscopy to investigate the use of PDMS as a substrate for the formation and study of supported lipid bilayers (SLBs). Lipid bilayers form on plasma-treated PDMS and show free diffusion and normal phase transitions, confirming its suitability as a model bilayer substrate. However, lipid-phase separation on PDMS is severely restricted due to the pinning of domains to surface roughness, resulting in the cessation of lateral hydrodynamic flow. We show the high-resolution porous structure of PDMS and the extreme smoothing effect of oxygen plasma treatment used to hydrophilize the surface, but this is not flat enough to allow domain formation. We also observe bilayer degradation over hour timescales, which correlates with the known hydrophobic recovery of PDMS, and establish a critical water contact angle of 30°, above which bilayers degrade or not form at all. Care must be taken as incomplete surface oxidation and hydrophobic recovery result in optically invisible membrane disruption, which will also be transparent to fluorescence microscopy and lipid diffusion measurements in the early stages.
Collapse
Affiliation(s)
- James
A. Goodchild
- Molecular
and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Danielle L. Walsh
- Molecular
and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Harrison Laurent
- Molecular
and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Simon D. Connell
- Molecular
and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
- Bragg
Centre for Materials Research, William Henry Bragg Building, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
6
|
Goodband R, Bain CD, Staykova M. Comparative Study of Lipid- and Polymer-Supported Membranes Obtained by Vesicle Fusion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5674-5681. [PMID: 35471971 PMCID: PMC9097520 DOI: 10.1021/acs.langmuir.2c00266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/12/2022] [Indexed: 06/14/2023]
Abstract
We compare the fusion of giant lipid and block-copolymer vesicles on glass and poly(dimethylsiloxane) substrates. Both types of vesicles are similar in their ability to fuse to hydrophilic substrates and form patches with distinct heart or circular shapes. We use epifluorescence/confocal microscopy and atomic force microscopy on membrane patches to (i) characterize bilayer fluidity and patch-edge stability and (ii) follow the intermediate stages in the formation of continuous supported bilayers. Polymer membranes show much lower membrane fluidity and, unlike lipids, an inability of adjacent patches to fuse spontaneously into continuous membranes. We ascribe this effect to hydration repulsion forces acting between the patch edges, which can be diminished by increasing the sample temperature. We show that large areas of supported polymer membranes can be created by fusing giant vesicles on glass or poly(dimethylsiloxane) substrates and annealing their edges.
Collapse
Affiliation(s)
| | - Colin D. Bain
- Department
of Chemistry, Durham University, Durham DH1 3LE, U.K.
| | | |
Collapse
|
7
|
Santos FC, Marquês JT, Bento‐Oliveira A, Almeida RF. Sphingolipid‐enriched domains in fungi. FEBS Lett 2020; 594:3698-3718. [DOI: 10.1002/1873-3468.13986] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/21/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Filipa C. Santos
- Centro de Química Estrutural Faculdade de Ciências, Universidade de Lisboa Campo Grande Portugal
| | - Joaquim T. Marquês
- Centro de Química Estrutural Faculdade de Ciências, Universidade de Lisboa Campo Grande Portugal
| | - Andreia Bento‐Oliveira
- Centro de Química Estrutural Faculdade de Ciências, Universidade de Lisboa Campo Grande Portugal
| | - Rodrigo F.M. Almeida
- Centro de Química Estrutural Faculdade de Ciências, Universidade de Lisboa Campo Grande Portugal
| |
Collapse
|
8
|
Kamble S, Patil S, Appala VRM. Nano-mechanical characterization of asymmetric DLPC/DSPC supported lipid bilayers. Chem Phys Lipids 2020; 234:105007. [PMID: 33160952 DOI: 10.1016/j.chemphyslip.2020.105007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 10/13/2020] [Accepted: 11/02/2020] [Indexed: 11/25/2022]
Abstract
Asymmetric distribution of lipid molecules in the inner and outer leaflets of the plasma membrane is a common occurrence in the membrane formation. Such asymmetric arrangement is a crucial parameter to manipulate the properties of the cell membrane. It controls signal transduction, endocytosis, exocytosis in the cells. The artificial membrane is often used to study the lateral and transverse arrangement of the lipid molecules in place of the cell membrane. Nano-mechanical characterization of the model membrane helps to understand the mechanical stability of the lipid bilayer. The stability is sensitive to the variations in the lipid composition and their local organization. In this article, we present both topographical and nano-mechanical properties of lipid bilayer characterized by atomic force microscopy (AFM). The results show that the asymmetric lipid bilayer formation is an intrinsic character. We have selected a bi-component fluid-gel phase 1,2-dilauroyl-sn-glycero-3-phosphocholine:1,2-disteroyl-sn-glycero-3-phosphocholine (DLPC: DSPC) system for our studies. We have observed domain formation and phase separation in the bilayer by increasing the composition of the gel phase DSPC. In force spectroscopy studies, we determine the mechanical strength of the bilayer for unique mixtures of DLPC: DSPC by measuring the breakthrough force. These results also show the effect of asymmetry in the lipid bilayer. Besides AFM studies, we have implemented a coarse-grained (CG) molecular dynamics (MD) simulation using the gromacs package at room temperature and 1 bar pressure. The results from the simulation study have been compared with AFM study. It was found that the simulation studies corroborated the findings from AFM such as an increase in the bilayer thickness, change in the phase state, asymmetric and symmetric domain formation in the lipid bilayer.
Collapse
Affiliation(s)
- Sagar Kamble
- Department of Applied Physics, Defence Institute of Advanced Technology (DIAT) DU., Girinagar, Pune, India
| | - Snehal Patil
- Department of Applied Physics, Defence Institute of Advanced Technology (DIAT) DU., Girinagar, Pune, India
| | | |
Collapse
|
9
|
Bento-Oliveira A, Santos FC, Marquês JT, Paulo PMR, Korte T, Herrmann A, Marinho HS, de Almeida RFM. Yeast Sphingolipid-Enriched Domains and Membrane Compartments in the Absence of Mannosyldiinositolphosphorylceramide. Biomolecules 2020; 10:biom10060871. [PMID: 32517183 PMCID: PMC7356636 DOI: 10.3390/biom10060871] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/25/2020] [Accepted: 06/02/2020] [Indexed: 12/14/2022] Open
Abstract
The relevance of mannosyldiinositolphosphorylceramide [M(IP)2C] synthesis, the terminal complex sphingolipid class in the yeast Saccharomyces cerevisiae, for the lateral organization of the plasma membrane, and in particular for sphingolipid-enriched gel domains, was investigated by fluorescence spectroscopy and microscopy. We also addressed how changing the complex sphingolipid profile in the plasma membrane could influence the membrane compartments (MC) containing either the arginine/ H+ symporter Can1p (MCC) or the proton ATPase Pma1p (MCP). To achieve these goals, wild-type (wt) and ipt1Δ cells, which are unable to synthesize M(IP)2C accumulating mannosylinositolphosphorylceramide (MIPC), were compared. Living cells, isolated plasma membrane and giant unilamellar vesicles reconstituted from plasma membrane lipids were labelled with various fluorescent membrane probes that report the presence and organization of distinct lipid domains, global order, and dielectric properties. Can1p and Pma1p were tagged with GFP and mRFP, respectively, in both yeast strains, to evaluate their lateral organization using confocal fluorescence intensity and fluorescence lifetime imaging. The results show that IPT1 deletion strongly affects the rigidity of gel domains but not their relative abundance, whereas no significant alterations could be perceived in ergosterol-enriched domains. Moreover, in these cells lacking M(IP)2C, a clear alteration in Pma1p membrane distribution, but no significant changes in Can1p distribution, were observed. Thus, this work reinforces the notion that sphingolipid-enriched domains distinct from ergosterol-enriched regions are present in the S. cerevisiae plasma membrane and suggests that M(IP)2C is important for a proper hydrophobic chain packing of sphingolipids in the gel domains of wt cells. Furthermore, our results strongly support the involvement of sphingolipid domains in the formation and stability of the MCP, possibly being enriched in this compartment.
Collapse
Affiliation(s)
- Andreia Bento-Oliveira
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal; (A.B.-O.); (F.C.S.); (J.T.M.); (H.S.M.)
| | - Filipa C. Santos
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal; (A.B.-O.); (F.C.S.); (J.T.M.); (H.S.M.)
| | - Joaquim Trigo Marquês
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal; (A.B.-O.); (F.C.S.); (J.T.M.); (H.S.M.)
| | - Pedro M. R. Paulo
- Centro de Química Estrutural, Instituto Superior Técnico, 1049-001 Lisbon, Portugal;
| | - Thomas Korte
- Department of Biology, Molecular Biophysics, IRI Life Sciences, Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (T.K.); (A.H.)
| | - Andreas Herrmann
- Department of Biology, Molecular Biophysics, IRI Life Sciences, Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (T.K.); (A.H.)
| | - H. Susana Marinho
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal; (A.B.-O.); (F.C.S.); (J.T.M.); (H.S.M.)
| | - Rodrigo F. M. de Almeida
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal; (A.B.-O.); (F.C.S.); (J.T.M.); (H.S.M.)
- Correspondence: ; Tel.: +351-217-500-925
| |
Collapse
|
10
|
Kamiya N, Kayanuma M, Fujitani H, Shinoda K. A New Lipid Force Field (FUJI). J Chem Theory Comput 2020; 16:3664-3676. [PMID: 32384238 DOI: 10.1021/acs.jctc.9b01195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
To explore inhomogeneous and anisotropic systems such as lipid bilayers, the Lennard-Jones particle mesh Ewald (LJ-PME) method has been applied without a conventional isotropic dispersion correction. As the popular AMBER and CHARMM lipid force fields were developed using a cutoff scheme, their lipid bilayers unacceptably shrink when using the LJ-PME method. In this study, a new all-atom lipid force field (FUJI) was developed on the basis of the AMBER force-field scheme including the Lipid14 van der Waals parameters. Point charges were calculated using the restrained electrostatic potentials of many lipid conformers. Further, torsion energy profiles were calculated using high-level ab initio molecular orbitals (LCCSD(T)/Aug-cc-pVTZ//LMP2/Aug-cc-pVTZ), following which the molecular mechanical dihedral parameters were derived through a fast Fourier transform. By incorporation of these parameters into a new lipid force field without fitting experimental data, the desired lipid characteristics such as the area per lipid and lateral diffusion coefficients were obtained through GROMACS molecular dynamics simulations using the LJ-PME method and virtual hydrogen sites. The calculated area per lipid and lateral diffusion coefficients showed satisfactory agreement with experimental data. Furthermore, the electron-density profiles along the membrane normal were calculated for pure lipid bilayers, and the resulting membrane thicknesses agreed well with the experimental values. As the new lipid force field is compatible with FUJI for protein and small molecules, the new FUJI force field will offer accurate modeling for complex systems consisting of various membrane proteins and lipids.
Collapse
Affiliation(s)
- Nozomu Kamiya
- Fujitsu Limited Bio-IT R&D Office, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Megumi Kayanuma
- Research Center for Computational Design of Advanced Functional Materials, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Hideaki Fujitani
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Keiko Shinoda
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
11
|
Gupta A, Phang IY, Wohland T. To Hop or not to Hop: Exceptions in the FCS Diffusion Law. Biophys J 2020; 118:2434-2447. [PMID: 32333863 PMCID: PMC7231916 DOI: 10.1016/j.bpj.2020.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/31/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
Diffusion obstacles in membranes have not been directly visualized because of fast membrane dynamics and the occurrence of subresolution molecular complexes. To understand the obstacle characteristics, mobility-based methods are often used as an indirect way of assessing the membrane structure. Molecular movement in biological plasma membranes is often characterized by anomalous diffusion, but the exact underlying mechanisms are still elusive. Imaging total internal reflection fluorescence correlation spectroscopy (ITIR-FCS) is a well-established mobility-based method that provides spatially resolved diffusion coefficient maps and is combined with FCS diffusion law analysis to examine subresolution membrane organization. In recent years, although FCS diffusion law analysis has been instrumental in providing new insights into the membrane structure below the optical diffraction limit, there are certain exceptions and anomalies that require further clarification. To this end, we correlate the membrane structural features imaged by atomic force microscopy (AFM) with the dynamics measured using ITIR-FCS. We perform ITIR-FCS measurements on supported lipid bilayers (SLBs) of various lipid compositions to characterize the anomalous diffusion of lipid molecules in distinct obstacle configurations, along with the high-resolution imaging of the membrane structures with AFM. Furthermore, we validate our experimental results by performing simulations on image grids with experimentally determined obstacle configurations. This study demonstrates that FCS diffusion law analysis is a powerful tool to determine membrane heterogeneities implied from dynamics measurements. Our results corroborate the commonly accepted interpretations of imaging FCS diffusion law analysis, and we show that exceptions happen when domains reach the percolation threshold in a biphasic membrane and a network of domains behaves rather like a meshwork, resulting in hop diffusion.
Collapse
Affiliation(s)
- Anjali Gupta
- Department of Biological Sciences and NUS Centre for Bio-Imaging Sciences, National University of Singapore, Singapore, Singapore
| | - Inn Yee Phang
- Institute of Materials Research and Engineering, Singapore, Singapore
| | - Thorsten Wohland
- Department of Biological Sciences and NUS Centre for Bio-Imaging Sciences, National University of Singapore, Singapore, Singapore; Department of Chemistry, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
12
|
Nomura K, Yamaguchi T, Mori S, Fujikawa K, Nishiyama KI, Shimanouchi T, Tanimoto Y, Morigaki K, Shimamoto K. Alteration of Membrane Physicochemical Properties by Two Factors for Membrane Protein Integration. Biophys J 2019; 117:99-110. [PMID: 31164197 PMCID: PMC6626835 DOI: 10.1016/j.bpj.2019.05.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/08/2019] [Accepted: 05/14/2019] [Indexed: 12/01/2022] Open
Abstract
After a nascent chain of a membrane protein emerges from the ribosomal tunnel, the protein is integrated into the cell membrane. This process is controlled by a series of proteinaceous molecular devices, such as signal recognition particles and Sec translocons. In addition to these proteins, we discovered two endogenous components regulating membrane protein integration in the inner membrane of Escherichia coli. The integration is blocked by diacylglycerol (DAG), whereas the blocking is relieved by a glycolipid named membrane protein integrase (MPIase). Here, we investigated the influence of these integration-blocking and integration-promoting factors on the physicochemical properties of membrane lipids via solid-state NMR and fluorescence measurements. These factors did not have destructive effects on membrane morphology because the membrane maintained its lamellar structure and did not fuse in the presence of DAG and/or MPIase at their effective concentrations. We next focused on membrane flexibility. DAG did not affect the mobility of the membrane surface, whereas the sugar chain in MPIase was highly mobile and enhanced the flexibility of membrane lipid headgroups. Comparison with a synthetic MPIase analog revealed the effects of the long sugar chain on membrane properties. The acyl chain order inside the membrane was increased by DAG, whereas the increase was cancelled by the addition of MPIase. MPIase also loosened the membrane lipid packing. Focusing on the transbilayer movement, MPIase reduced the rapid flip-flop motion of DAG. On the other hand, MPIase could not compensate for the diminished lateral diffusion by DAG. These results suggest that by manipulating the membrane lipids dynamics, DAG inhibits the protein from contacting the inner membrane, whereas the flexible long sugar chain of MPIase increases the opportunity for interaction between the membrane and the protein, leading to membrane integration of the newly formed protein.
Collapse
Affiliation(s)
- Kaoru Nomura
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan.
| | - Toshiyuki Yamaguchi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Shoko Mori
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Kohki Fujikawa
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Ken-Ichi Nishiyama
- Department of Biological Chemistry and Food Sciences, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| | | | - Yasushi Tanimoto
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | | | - Keiko Shimamoto
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan.
| |
Collapse
|
13
|
Zeno WF, Ogunyankin MO, Longo ML. Scaling relationships for translational diffusion constants applied to membrane domain dissolution and growth. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1994-2003. [PMID: 29501605 DOI: 10.1016/j.bbamem.2018.02.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/24/2018] [Accepted: 02/26/2018] [Indexed: 01/10/2023]
Abstract
We compare the way that relationships for diffusion constants scale with the size of diffusing membrane domains and the geometry of their environments. Then, we review our experimental work on the dynamics of dissolution/growth of membrane domains in crowding induced mixing, phase separation, and Ostwald ripening in a highly confined environment. Overall, the scaling relationships applied to diffusion constants obtained by fits to our dynamic data indicate that dissolution and growth is influenced by the diffusion of clusters or small domains of lipids, in addition to kinetic processes and geometrical constraints.
Collapse
Affiliation(s)
- Wade F Zeno
- Department of Chemical Engineering, University of California Davis, Davis, CA 95616, United States
| | - Maria O Ogunyankin
- Department of Chemical Engineering, University of California Davis, Davis, CA 95616, United States
| | - Marjorie L Longo
- Department of Chemical Engineering, University of California Davis, Davis, CA 95616, United States.
| |
Collapse
|
14
|
Olenick LL, Chase HM, Fu L, Zhang Y, McGeachy AC, Dogangun M, Walter SR, Wang HF, Geiger FM. Single-component supported lipid bilayers probed using broadband nonlinear optics. Phys Chem Chem Phys 2018; 20:3063-3072. [DOI: 10.1039/c7cp02549a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Broadband SFG spectroscopy is shown to offer considerable advantages over scanning systems in terms of signal-to-noise ratios when probing well-formed single-component supported lipid bilayers formed from zwitterionic lipids with PC headgroups.
Collapse
Affiliation(s)
| | | | - Li Fu
- William R. Wiley Environmental Molecular Sciences Laboratory
- Pacific Northwest National Laboratory
- Richland
- USA
- Sanofi-Genzyme
| | - Yun Zhang
- William R. Wiley Environmental Molecular Sciences Laboratory
- Pacific Northwest National Laboratory
- Richland
- USA
- Institute of Optics and Electronics
| | | | - Merve Dogangun
- Department of Chemistry
- Northwestern University
- Evanston
- USA
| | | | - Hong-fei Wang
- Department of Chemistry
- Fudan University
- Shanghai 200433
- China
| | | |
Collapse
|
15
|
Leung C, Hodel AW, Brennan AJ, Lukoyanova N, Tran S, House CM, Kondos SC, Whisstock JC, Dunstone MA, Trapani JA, Voskoboinik I, Saibil HR, Hoogenboom BW. Real-time visualization of perforin nanopore assembly. NATURE NANOTECHNOLOGY 2017; 12:467-473. [PMID: 28166206 DOI: 10.1038/nnano.2016.303] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 12/29/2016] [Indexed: 06/06/2023]
Abstract
Perforin is a key protein of the vertebrate immune system. Secreted by cytotoxic lymphocytes as soluble monomers, perforin can self-assemble into oligomeric pores of 10-20 nm inner diameter in the membranes of virus-infected and cancerous cells. These large pores facilitate the entry of pro-apoptotic granzymes, thereby rapidly killing the target cell. To elucidate the pathways of perforin pore assembly, we carried out real-time atomic force microscopy and electron microscopy studies. Our experiments reveal that the pore assembly proceeds via a membrane-bound prepore intermediate state, typically consisting of up to approximately eight loosely but irreversibly assembled monomeric subunits. These short oligomers convert to more closely packed membrane nanopore assemblies, which can subsequently recruit additional prepore oligomers to grow the pore size.
Collapse
Affiliation(s)
- Carl Leung
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK
- Department of Crystallography/Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, UK
| | - Adrian W Hodel
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - Amelia J Brennan
- Killer Cell Biology Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3000, Australia
| | - Natalya Lukoyanova
- Department of Crystallography/Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, UK
| | - Sharon Tran
- Killer Cell Biology Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3000, Australia
| | - Colin M House
- Cancer Cell Death Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3000, Australia
| | - Stephanie C Kondos
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - James C Whisstock
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria 3800, Australia
- The ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Victoria 3800, Australia
| | - Michelle A Dunstone
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria 3800, Australia
- The ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, Victoria 3800, Australia
- Department of Microbiology, Monash University, Melbourne, Victoria 3800, Australia
| | - Joseph A Trapani
- Cancer Cell Death Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Ilia Voskoboinik
- Killer Cell Biology Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Helen R Saibil
- Department of Crystallography/Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, UK
| | - Bart W Hoogenboom
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, UK
- Department of Physics and Astronomy, University College London, London WC1E 6BT, UK
| |
Collapse
|
16
|
West JD, Zhu Y, Saem S, Moran-Mirabal J, Hitchcock AP. X-ray Absorption Spectroscopy and Spectromicroscopy of Supported Lipid Bilayers. J Phys Chem B 2017; 121:4492-4501. [DOI: 10.1021/acs.jpcb.7b02646] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Jonathan D. West
- Department of Chemistry and
Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Yujie Zhu
- Department of Chemistry and
Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Sokunthearath Saem
- Department of Chemistry and
Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Jose Moran-Mirabal
- Department of Chemistry and
Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Adam P. Hitchcock
- Department of Chemistry and
Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
17
|
Blachon F, Harb F, Munteanu B, Piednoir A, Fulcrand R, Charitat T, Fragneto G, Pierre-Louis O, Tinland B, Rieu JP. Nanoroughness Strongly Impacts Lipid Mobility in Supported Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:2444-2453. [PMID: 28219008 DOI: 10.1021/acs.langmuir.6b03276] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In vivo lipid membranes interact with rough supramolecular structures such as protein clusters and fibrils. How these features whose size ranges from a few nanometers to a few tens of nanometers impact lipid and protein mobility is still being investigated. Here, we study supported phospholipid bilayers, a unique biomimetic model, deposited on etched surfaces bearing nanometric corrugations. The surface roughness and mean curvature are carefully characterized by AFM imaging using ultrasharp tips. Neutron specular reflectivity supplements this surface characterization and indicates that the bilayers follow the large-scale corrugations of the substrate. We measure the lateral mobility of lipids in both the fluid and gel phases by fluorescence recovery after patterned photobleaching. Although the mobility is independent of the roughness in the gel phase, it exhibits a 5-fold decrease in the fluid phase when the roughness increases from 0.2 to 10 nm. These results are interpreted with a two-phase model allowing for a strong decrease in the lipid mobility in highly curved or defect-induced gel-like nanoscale regions. This suggests a strong link between membrane curvature and fluidity, which is a key property for various cell functions such as signaling and adhesion.
Collapse
Affiliation(s)
- Florence Blachon
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - Frédéric Harb
- Doctoral School for Science and Technology, Platform for Research in NanoSciences and Nanotechnology, Campus Pierre Gemayel, Lebanese University , Fanar-Metn BP 90239 Beirut, Lebanon
| | - Bogdan Munteanu
- CNRS, INSA de Lyon, LaMCoS, UMR5259, Université de Lyon , 69621 Lyon, France
| | - Agnès Piednoir
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - Rémy Fulcrand
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - Thierry Charitat
- Université de Strasbourg, Institut Charles Sadron , UPR22, CNRS, 67034 Strasbourg Cedex 2, France
| | - Giovanna Fragneto
- Institut Laue-Langevin , 71 Avenue des Martyrs, F-38042 Grenoble, France
| | - Olivier Pierre-Louis
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - Bernard Tinland
- CINaM-CNRS, Aix-Marseille Université , UMR7325, 13288 Marseille, France
| | - Jean-Paul Rieu
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| |
Collapse
|
18
|
Kijewska K, Blanchard GJ. Using Diffusion To Characterize Interfacial Heterogeneity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:1155-1161. [PMID: 28094955 DOI: 10.1021/acs.langmuir.6b04341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report on the use of molecular diffusional motion over a range of length scales to characterize compositional heterogeneity in monolayer structures. This work focuses on the diffusional motion of perylene in two types of films supported on functionalized silica surfaces: single-component (stearic acid) and two-component (hydrocarbon/fluorocarbon) films. Langmuir-Blodgett (LB) monolayers were deposited directly on silica or were bound to surface-modified silica by means of metal ion complexation. The LB films were characterized by their π-A isotherms and by Brewster angle microscopy (BAM) during formation and deposition. Chromophore mobility and monolayer structural heterogeneity were evaluated by comparing rotational diffusion data (fluorescence anisotropy decay imaging) and translational diffusion data (fluorescence recovery after photobleaching) on the same LB films. Our results indicate that the mobility of the chromophore depends sensitively on both metal ion identity and film composition.
Collapse
Affiliation(s)
- Krystyna Kijewska
- Department of Chemistry, Michigan State University , 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
- Department of Chemistry, University of Warsaw , Pasteura 1, 02-093 Warsaw, Poland
| | - Gary J Blanchard
- Department of Chemistry, Michigan State University , 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
19
|
Zeno WF, Johnson KE, Sasaki DY, Risbud SH, Longo ML. Dynamics of Crowding-Induced Mixing in Phase Separated Lipid Bilayers. J Phys Chem B 2016; 120:11180-11190. [PMID: 27723342 PMCID: PMC5548394 DOI: 10.1021/acs.jpcb.6b07119] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We use fluorescence microscopy to examine the dynamics of the crowding-induced mixing transition of liquid ordered (Lo)-liquid disordered (Ld) phase separated lipid bilayers when the following particles of increasing size bind to either the Lo or Ld phase: Ubiquitin, green fluorescent protein (GFP), and nanolipoprotein particles (NLPs) of two diameters. These proteinaceous particles contained histidine-tags, which were phase targeted by binding to iminodiacetic acid (IDA) head groups, via a Cu2+ chelating mechanism, of lipids that specifically partition into either the Lo phase or Ld phase. The degree of steric pressure was controlled by varying the size of the bound particle (10-240 kDa) and the amount of binding sites present (i.e., DPIDA concentrations of 9 and 12 mol%) in the supported lipid multibilayer platform used here. We develop a mass transfer-based diffusional model to analyze the observed Lo phase domain dissolution that, along with visual observations and activation energy calculations, provides insight into the sequence of events in crowding-induced mixing. Our results suggest that the degree of steric pressure and target phase influence not only the efficacy of steric-pressure induced mixing, but the rate and controlling mechanism for which it occurs.
Collapse
Affiliation(s)
- Wade F. Zeno
- Department of Chemical Engineering, University of California Davis, Davis, California 95616, United States
| | - Kaitlin E. Johnson
- Department of Chemical Engineering, University of California Davis, Davis, California 95616, United States
| | - Darryl Y. Sasaki
- Sandia National Laboratories, P.O. Box 969, Livermore, California 94551, United States
| | - Subhash H. Risbud
- Department of Materials Science and Engineering, University of California Davis, Davis, California 95616, United States
| | - Marjorie L. Longo
- Department of Chemical Engineering, University of California Davis, Davis, California 95616, United States
| |
Collapse
|
20
|
Faller R. Molecular modeling of lipid probes and their influence on the membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2353-2361. [PMID: 26891817 DOI: 10.1016/j.bbamem.2016.02.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 02/08/2016] [Accepted: 02/09/2016] [Indexed: 01/03/2023]
Abstract
In this review a number of Molecular Dynamics simulation studies are discussed which focus on the understanding of the behavior of lipid probes in biomembranes. Experiments often use specialized probe moieties or molecules to report on the behavior of a membrane and try to gain information on the membrane as a whole from the probe lipids as these probes are the only things an experiment sees. Probes can be used to make NMR, EPR and fluorescence accessible to the membrane and use fluorescent or spin-active moieties for this purpose. Clearly membranes with and without probes are not identical which makes it worthwhile to elucidate the differences between them with detailed atomistic simulations. In almost all cases these differences are confined to the local neighborhood of the probe molecules which are sparsely used and generally present as single molecules. In general, the behavior of the bulk membrane lipids can be qualitatively understood from the probes but in most cases their properties cannot be directly quantitatively deduced from the probe behavior. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.
Collapse
Affiliation(s)
- Roland Faller
- Department of Chemical Engineering & Materials Science, University of California-Davis, Davis, CA 95616, USA.
| |
Collapse
|
21
|
Zuccarello L, Rampazzo E, Petrizza L, Prodi L, Satriano C. The influence of fluorescent silica nanoparticle surface chemistry on the energy transfer processes with lipid bilayers. RSC Adv 2016. [DOI: 10.1039/c6ra09816a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A study of 3D and 2D intracellular FRET processes at the interface between surface tailored silica nanoparticles and lipid bilayers.
Collapse
Affiliation(s)
- L. Zuccarello
- Department of Chemical Sciences
- University of Catania
- Catania
- Italy
| | - E. Rampazzo
- Department of Chemistry
- “G. Ciamician”
- University of Bologna
- Bologna
- Italy
| | - L. Petrizza
- Department of Chemistry
- “G. Ciamician”
- University of Bologna
- Bologna
- Italy
| | - L. Prodi
- Department of Chemistry
- “G. Ciamician”
- University of Bologna
- Bologna
- Italy
| | - C. Satriano
- Department of Chemical Sciences
- University of Catania
- Catania
- Italy
| |
Collapse
|
22
|
Bilayer membrane interactions with nanofabricated scaffolds. Chem Phys Lipids 2015; 192:75-86. [DOI: 10.1016/j.chemphyslip.2015.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/16/2015] [Accepted: 07/25/2015] [Indexed: 01/17/2023]
|
23
|
Marquês JT, Cordeiro AM, Viana AS, Herrmann A, Marinho HS, de Almeida RFM. Formation and Properties of Membrane-Ordered Domains by Phytoceramide: Role of Sphingoid Base Hydroxylation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:9410-9421. [PMID: 26262576 DOI: 10.1021/acs.langmuir.5b02550] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Phytoceramide is the backbone of major sphingolipids in fungi and plants and is essential in several tissues of animal organisms, such as human skin. Its sphingoid base, phytosphingosine, differs from that usually found in mammals by the addition of a hydroxyl group to the 4-ene, which may be a crucial factor for the different properties of membrane microdomains among those organisms and tissues. Recently, sphingolipid hydroxylation in animal cells emerged as a key feature in several physiopathological processes. Hence, the study of the biophysical properties of phytosphingolipids is also relevant in that context since it helps us to understand the effects of sphingolipid hydroxylation. In this work, binary mixtures of N-stearoyl-phytoceramide (PhyCer) with palmitoyloleoylphosphatidylcholine (POPC) were studied. Steady-state and time-resolved fluorescence of membrane probes, X-ray diffraction, atomic force microscopy, and confocal microscopy were employed. As for other saturated ceramides, highly rigid gel domains start to form with just ∼5 mol % PhyCer at 24 °C. However, PhyCer gel-enriched domains in coexistence with POPC-enriched fluid present additional complexity since their properties (maximal order, shape, and thickness) change at specific POPC/PhyCer molar ratios, suggesting the formation of highly stable stoichiometric complexes with their own properties, distinct from both POPC and PhyCer. A POPC/PhyCer binary phase diagram, supported by the different experimental approaches employed, is proposed with complexes of 3:1 and 1:2 stoichiometries which are stable at least from ∼15 to ∼55 °C. Thus, it provides mechanisms for the in vivo formation of sphingolipid-enriched gel domains that may account for stable membrane compartments and diffusion barriers in eukaryotic cell membranes.
Collapse
Affiliation(s)
- Joaquim T Marquês
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal
| | - André M Cordeiro
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal
| | - Ana S Viana
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal
| | - Andreas Herrmann
- Department of Biology, Molecular Biophysics, Humboldt University , Berlin, Germany
| | - H Susana Marinho
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal
| | - Rodrigo F M de Almeida
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
24
|
Allgeyer ES, Sterling SM, Gunewardene MS, Hess ST, Neivandt DJ, Mason MD. Combining total internal reflection sum frequency spectroscopy spectral imaging and confocal fluorescence microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:987-994. [PMID: 25506739 DOI: 10.1021/la5036932] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Understanding surface and interfacial lateral organization in material and biological systems is critical in nearly every field of science. The continued development of tools and techniques viable for elucidation of interfacial and surface information is therefore necessary to address new questions and further current investigations. Sum frequency spectroscopy (SFS) is a label-free, nonlinear optical technique with inherent surface specificity that can yield critical organizational information on interfacial species. Unfortunately, SFS provides no spatial information on a surface; small scale heterogeneities that may exist are averaged over the large areas typically probed. Over the past decade, this has begun to be addressed with the advent of SFS microscopy. Here we detail the construction and function of a total internal reflection (TIR) SFS spectral and confocal fluorescence imaging microscope directly amenable to surface investigations. This instrument combines, for the first time, sample scanning TIR-SFS imaging with confocal fluorescence microscopy.
Collapse
Affiliation(s)
- Edward S Allgeyer
- Department of Physics and Astronomy, ‡Department of Chemical and Biological Engineering, and §Graduate School of Biomedical Sciences and Engineering, University of Maine , Orono, Maine 04469, United States
| | | | | | | | | | | |
Collapse
|
25
|
Alessandrini A, Facci P. Phase transitions in supported lipid bilayers studied by AFM. SOFT MATTER 2014; 10:7145-7164. [PMID: 25090108 DOI: 10.1039/c4sm01104j] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We review the capabilities of Atomic Force Microscopy (AFM) in the study of phase transitions in Supported Lipid Bilayers (SLBs). AFM represents a powerful technique to cover the resolution range not available to fluorescence imaging techniques and where spectroscopic data suggest what the relevant lateral scale for domain formation might be. Phase transitions of lipid bilayers involve the formation of domains characterized by different heights with respect to the surrounding phase and are therefore easily identified by AFM in liquid solution once the bilayer is confined to a flat surface. Even if not endowed with high time resolution, AFM allows light to be shed on some aspects related to lipid phase transitions in the case of both a single lipid component and lipid mixtures containing sterols also. We discuss here the obtained results in light of the peculiarities of supported lipid bilayer model systems.
Collapse
Affiliation(s)
- Andrea Alessandrini
- Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Via Campi 213/A, 41125, Modena, Italy.
| | | |
Collapse
|
26
|
Dickson CJ, Madej BD, Skjevik AA, Betz RM, Teigen K, Gould IR, Walker RC. Lipid14: The Amber Lipid Force Field. J Chem Theory Comput 2014; 10:865-879. [PMID: 24803855 PMCID: PMC3985482 DOI: 10.1021/ct4010307] [Citation(s) in RCA: 966] [Impact Index Per Article: 87.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Indexed: 11/29/2022]
Abstract
![]()
The AMBER lipid force field has been
updated to create Lipid14,
allowing tensionless simulation of a number of lipid types with the
AMBER MD package. The modular nature of this force field allows numerous
combinations of head and tail groups to create different lipid types,
enabling the easy insertion of new lipid species. The Lennard-Jones
and torsion parameters of both the head and tail groups have been
revised and updated partial charges calculated. The force field has
been validated by simulating bilayers of six different lipid types
for a total of 0.5 μs each without applying a surface tension;
with favorable comparison to experiment for properties such as area
per lipid, volume per lipid, bilayer thickness, NMR order parameters,
scattering data, and lipid lateral diffusion. As the derivation of
this force field is consistent with the AMBER development philosophy,
Lipid14 is compatible with the AMBER protein, nucleic acid, carbohydrate,
and small molecule force fields.
Collapse
Affiliation(s)
- Callum J Dickson
- Department of Chemistry and Institute of Chemical Biology, Imperial College London , South Kensington SW7 2AZ, United Kingdom
| | - Benjamin D Madej
- San Diego Supercomputer Center, University of California San Diego , 9500 Gilman Drive MC0505, La Jolla, California 92093-0505, United States ; Department of Chemistry and Biochemistry, University of California San Diego , 9500 Gilman Drive MC0505, La Jolla, California 92093-0505, United States
| | - Age A Skjevik
- San Diego Supercomputer Center, University of California San Diego , 9500 Gilman Drive MC0505, La Jolla, California 92093-0505, United States ; Department of Biomedicine, University of Bergen , N-5009 Bergen, Norway
| | - Robin M Betz
- San Diego Supercomputer Center, University of California San Diego , 9500 Gilman Drive MC0505, La Jolla, California 92093-0505, United States
| | - Knut Teigen
- Department of Biomedicine, University of Bergen , N-5009 Bergen, Norway
| | - Ian R Gould
- Department of Chemistry and Institute of Chemical Biology, Imperial College London , South Kensington SW7 2AZ, United Kingdom
| | - Ross C Walker
- San Diego Supercomputer Center, University of California San Diego , 9500 Gilman Drive MC0505, La Jolla, California 92093-0505, United States ; Department of Chemistry and Biochemistry, University of California San Diego , 9500 Gilman Drive MC0505, La Jolla, California 92093-0505, United States
| |
Collapse
|
27
|
Guo SM, Bag N, Mishra A, Wohland T, Bathe M. Bayesian total internal reflection fluorescence correlation spectroscopy reveals hIAPP-induced plasma membrane domain organization in live cells. Biophys J 2014; 106:190-200. [PMID: 24411251 PMCID: PMC3907249 DOI: 10.1016/j.bpj.2013.11.4458] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 11/01/2013] [Accepted: 11/19/2013] [Indexed: 11/22/2022] Open
Abstract
Amyloid fibril deposition of human islet amyloid polypeptide (hIAPP) in pancreatic islet cells is implicated in the pathogenesis of type II diabetes. A growing number of studies suggest that small peptide aggregates are cytotoxic via their interaction with the plasma membrane, which leads to membrane permeabilization or disruption. A recent study using imaging total internal reflection-fluorescence correlation spectroscopy (ITIR-FCS) showed that monomeric hIAPP induced the formation of cellular plasma membrane microdomains containing dense lipids, in addition to the modulation of membrane fluidity. However, the spatial organization of microdomains and their temporal evolution were only partially characterized due to limitations in the conventional analysis and interpretation of imaging FCS datasets. Here, we apply a previously developed Bayesian analysis procedure to ITIR-FCS data to resolve hIAPP-induced microdomain spatial organization and temporal dynamics. Our analysis enables the visualization of the temporal evolution of multiple diffusing species in the spatially heterogeneous cell membrane, lending support to the carpet model for the association mode of hIAPP aggregates with the plasma membrane. The presented Bayesian analysis procedure provides an automated and general approach to unbiased model-based interpretation of imaging FCS data, with broad applicability to resolving the heterogeneous spatial-temporal organization of biological membrane systems.
Collapse
Affiliation(s)
- Syuan-Ming Guo
- Laboratory for Computational Biology & Biophysics, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Nirmalya Bag
- Departments of Biological Sciences and Chemistry, and Centre for Bioimaging Sciences, National University of Singapore, Singapore
| | - Aseem Mishra
- Departments of Biological Sciences and Chemistry, and Centre for Bioimaging Sciences, National University of Singapore, Singapore
| | - Thorsten Wohland
- Departments of Biological Sciences and Chemistry, and Centre for Bioimaging Sciences, National University of Singapore, Singapore.
| | - Mark Bathe
- Laboratory for Computational Biology & Biophysics, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
28
|
Wilke N. Lipid Monolayers at the Air–Water Interface. ADVANCES IN PLANAR LIPID BILAYERS AND LIPOSOMES 2014. [DOI: 10.1016/b978-0-12-418698-9.00002-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
29
|
Chao L, Richards MJ, Hsia CY, Daniel S. Two-Dimensional Continuous Extraction in Multiphase Lipid Bilayers To Separate, Enrich, and Sort Membrane-Bound Species. Anal Chem 2013; 85:6696-702. [DOI: 10.1021/ac4006952] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Ling Chao
- School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, New York
14853, United States
| | - Mark J. Richards
- School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, New York
14853, United States
| | - Chih-Yun Hsia
- School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, New York
14853, United States
| | - Susan Daniel
- School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, New York
14853, United States
| |
Collapse
|
30
|
Chung M, Koo B, Boxer SG. Formation and analysis of topographical domains between lipid membranes tethered by DNA hybrids of different lengths. Faraday Discuss 2013; 161:333-45; discussion 419-59. [PMID: 23805748 PMCID: PMC3703934 DOI: 10.1039/c2fd20108a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We recently described a strategy to prepare DNA-tethered lipid membranes either to fixed DNA on a surface or to DNA displayed on a supported bilayer [Boxer et al., J. Struct. Biol., 2009, 168, 190; Boxer et al., Langmuir, 2011, 27, 5492]. With the latter system, the DNA hybrids are laterally mobile; when orthogonal sense-antisense pairs of different lengths are used, the DNA hybrids segregate by height and the tethered membrane deforms to accommodate the height difference. This architecture is particularly useful for modelling interactions between membranes mediated by molecular recognition and resembles cell-to-cell junctions. The length, affinity and population of the DNA hybrids between the membranes are completely controllable. Interesting patterns of height segregation are observed by fluorescence interference contrast microscopy. Diverse behavior is observed in the segregation and pattern forming process and possible mechanisms are discussed. This model system captures some of the essential physics of synapse formation and is a step towards understanding lipid membrane behaviour in cell-to-cell junctions.
Collapse
Affiliation(s)
- Minsub Chung
- Department of Chemistry, Stanford University, Stanford, CA 94305-5012 (USA); fax +1 650-723-4817; Tel. +1 650 723 4482;
| | - Bonjun Koo
- Department of Chemistry, Stanford University, Stanford, CA 94305-5012 (USA); fax +1 650-723-4817; Tel. +1 650 723 4482;
| | - Steven G. Boxer
- Department of Chemistry, Stanford University, Stanford, CA 94305-5012 (USA); fax +1 650-723-4817; Tel. +1 650 723 4482;
| |
Collapse
|
31
|
Saxton MJ. Wanted: a positive control for anomalous subdiffusion. Biophys J 2012; 103:2411-22. [PMID: 23260043 DOI: 10.1016/j.bpj.2012.10.038] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 09/23/2012] [Accepted: 10/10/2012] [Indexed: 11/25/2022] Open
Abstract
Anomalous subdiffusion in cells and model systems is an active area of research. The main questions are whether diffusion is anomalous or normal, and if it is anomalous, its mechanism. The subject is controversial, especially the hypothesis that crowding causes anomalous subdiffusion. Anomalous subdiffusion measurements would be strengthened by an experimental standard, particularly one able to cross-calibrate the different types of measurements. Criteria for a calibration standard are proposed. First, diffusion must be anomalous over the length and timescales of the different measurements. The length-scale is fundamental; the time scale can be adjusted through the viscosity of the medium. Second, the standard must be theoretically well understood, with a known anomalous subdiffusion exponent, ideally readily tunable. Third, the standard must be simple, reproducible, and independently characterizable (by, for example, electron microscopy for nanostructures). Candidate experimental standards are evaluated, including obstructed lipid bilayers; aqueous systems obstructed by nanopillars; a continuum percolation system in which a prescribed fraction of randomly chosen obstacles in a regular array is ablated; single-file diffusion in pores; transient anomalous subdiffusion due to binding of particles in arrays such as transcription factors in randomized DNA arrays; and computer-generated physical trajectories.
Collapse
Affiliation(s)
- Michael J Saxton
- Department of Biochemistry and Molecular Medicine, University of California at Davis, Davis, California, USA.
| |
Collapse
|
32
|
Substrate Effects on the Formation Process, Structure and Physicochemical Properties of Supported Lipid Bilayers. MATERIALS 2012. [PMCID: PMC5449048 DOI: 10.3390/ma5122658] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Supported lipid bilayers are artificial lipid bilayer membranes existing at the interface between solid substrates and aqueous solution. Surface structures and properties of the solid substrates affect the formation process, fluidity, two-dimensional structure and chemical activity of supported lipid bilayers, through the 1–2 nm thick water layer between the substrate and bilayer membrane. Even on SiO2/Si and mica surfaces, which are flat and biologically inert, and most widely used as the substrates for the supported lipid bilayers, cause differences in the structure and properties of the supported membranes. In this review, I summarize several examples of the effects of substrate structures and properties on an atomic and nanometer scales on the solid-supported lipid bilayers, including our recent reports.
Collapse
|
33
|
Watanabe K, Miyazaki R, Terakado G, Okazaki T, Morigaki K, Kano H. Localized surface plasmon microscopy of submicron domain structures of mixed lipid bilayers. BIOMEDICAL OPTICS EXPRESS 2012; 3:2012-20. [PMID: 23024897 PMCID: PMC3447545 DOI: 10.1364/boe.3.002012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 07/08/2012] [Accepted: 07/09/2012] [Indexed: 05/29/2023]
Abstract
We propose scanning localized surface plasmon microscopy of mixed lipid bilayers with submicron domain structures. Our observation technique, which employs localized surface plasmons excited on a flat metal surface as a sensing probe, provides non-label and non-contact imaging with the spatial resolution of ∼ 170 nm. We experimentally show that submicron domain structures of mixed lipid bilayers can be observed. A detailed analysis finds that the domains are classified into two groups.
Collapse
Affiliation(s)
- Koyo Watanabe
- Unit of Measurement Technology, CEMIS-OULU, University of Oulu, PO Box 51, 87101 Kajaani,
Finland
| | - Ryosuke Miyazaki
- Department of Electrical and Electronic Engineering, Muroran Institute of Technology, Mizumoto 27-1, Muroran, Hokkaido 050-8585,
Japan
| | - Goro Terakado
- Department of Electrical and Electronic Engineering, Muroran Institute of Technology, Mizumoto 27-1, Muroran, Hokkaido 050-8585,
Japan
| | - Takashi Okazaki
- Research Institute for Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda 563-8577,
Japan
| | - Kenichi Morigaki
- Research Institute for Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda 563-8577,
Japan
- Research Center for Environmental Genomics, Kobe University, Nada-ku, Kobe 657-8501,
Japan
| | - Hiroshi Kano
- Department of Electrical and Electronic Engineering, Muroran Institute of Technology, Mizumoto 27-1, Muroran, Hokkaido 050-8585,
Japan
| |
Collapse
|
34
|
Kusumi A, Fujiwara TK, Chadda R, Xie M, Tsunoyama TA, Kalay Z, Kasai RS, Suzuki KGN. Dynamic organizing principles of the plasma membrane that regulate signal transduction: commemorating the fortieth anniversary of Singer and Nicolson's fluid-mosaic model. Annu Rev Cell Dev Biol 2012; 28:215-50. [PMID: 22905956 DOI: 10.1146/annurev-cellbio-100809-151736] [Citation(s) in RCA: 296] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The recent rapid accumulation of knowledge on the dynamics and structure of the plasma membrane has prompted major modifications of the textbook fluid-mosaic model. However, because the new data have been obtained in a variety of research contexts using various biological paradigms, the impact of the critical conceptual modifications on biomedical research and development has been limited. In this review, we try to synthesize our current biological, chemical, and physical knowledge about the plasma membrane to provide new fundamental organizing principles of this structure that underlie every molecular mechanism that realizes its functions. Special attention is paid to signal transduction function and the dynamic aspect of the organizing principles. We propose that the cooperative action of the hierarchical three-tiered mesoscale (2-300 nm) domains--actin-membrane-skeleton induced compartments (40-300 nm), raft domains (2-20 nm), and dynamic protein complex domains (3-10 nm)--is critical for membrane function and distinguishes the plasma membrane from a classical Singer-Nicolson-type model.
Collapse
Affiliation(s)
- Akihiro Kusumi
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8507, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Bag N, Sankaran J, Paul A, Kraut RS, Wohland T. Calibration and Limits of Camera-Based Fluorescence Correlation Spectroscopy: A Supported Lipid Bilayer Study. Chemphyschem 2012; 13:2784-94. [DOI: 10.1002/cphc.201200032] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 04/19/2012] [Indexed: 12/22/2022]
|
37
|
Lee YK, Nam JM. Electrofluidic lipid membrane biosensor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:832-837. [PMID: 22271621 DOI: 10.1002/smll.201102093] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Indexed: 05/31/2023]
Affiliation(s)
- Young Kwang Lee
- Department of Chemistry, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-747, South Korea
| | | |
Collapse
|
38
|
Jämbeck JPM, Lyubartsev AP. Derivation and systematic validation of a refined all-atom force field for phosphatidylcholine lipids. J Phys Chem B 2012; 116:3164-79. [PMID: 22352995 PMCID: PMC3320744 DOI: 10.1021/jp212503e] [Citation(s) in RCA: 428] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 02/18/2012] [Indexed: 11/29/2022]
Abstract
An all-atomistic force field (FF) has been developed for fully saturated phospholipids. The parametrization has been largely based on high-level ab initio calculations in order to keep the empirical input to a minimum. Parameters for the lipid chains have been developed based on knowledge about bulk alkane liquids, for which thermodynamic and dynamic data are excellently reproduced. The FFs ability to simulate lipid bilayers in the liquid crystalline phase in a tensionless ensemble was tested in simulations of three lipids: 1,2-diauroyl-sn-glycero-3-phospocholine (DLPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), and 1,2-dipalmitoyl-sn-glycero-3-phospcholine (DPPC). Computed areas and volumes per lipid, and three different kinds of bilayer thicknesses, have been investigated. Most importantly NMR order parameters and scattering form factors agree in an excellent manner with experimental data under a range of temperatures. Further, the compatibility with the AMBER FF for biomolecules as well as the ability to simulate bilayers in gel phase was demonstrated. Overall, the FF presented here provides the important balance between the hydrophilic and hydrophobic forces present in lipid bilayers and therefore can be used for more complicated studies of realistic biological membranes with protein insertions.
Collapse
Affiliation(s)
- Joakim P. M. Jämbeck
- Division of Physical Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, SE-10691, Sweden
| | - Alexander P. Lyubartsev
- Division of Physical Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, SE-10691, Sweden
| |
Collapse
|
39
|
Hsu CJ, Hsieh WT, Waldman A, Clarke F, Huseby ES, Burkhardt JK, Baumgart T. Ligand mobility modulates immunological synapse formation and T cell activation. PLoS One 2012; 7:e32398. [PMID: 22384241 PMCID: PMC3284572 DOI: 10.1371/journal.pone.0032398] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 01/30/2012] [Indexed: 12/11/2022] Open
Abstract
T cell receptor (TCR) engagement induces clustering and recruitment to the plasma membrane of many signaling molecules, including the protein tyrosine kinase zeta-chain associated protein of 70 kDa (ZAP70) and the adaptor SH2 domain-containing leukocyte protein of 76 kDa (SLP76). This molecular rearrangement results in formation of the immunological synapse (IS), a dynamic protein array that modulates T cell activation. The current study investigates the effects of apparent long-range ligand mobility on T cell signaling activity and IS formation. We formed stimulatory lipid bilayers on glass surfaces from binary lipid mixtures with varied composition, and characterized these surfaces with respect to diffusion coefficient and fluid connectivity. Stimulatory ligands coupled to these surfaces with similar density and orientation showed differences in their ability to activate T cells. On less mobile membranes, central supramolecular activation cluster (cSMAC) formation was delayed and the overall accumulation of CD3ζ at the IS was reduced. Analysis of signaling microcluster (MC) dynamics showed that ZAP70 MCs exhibited faster track velocity and longer trajectories as a function of increased ligand mobility, whereas movement of SLP76 MCs was relatively insensitive to this parameter. Actin retrograde flow was observed on all surfaces, but cell spreading and subsequent cytoskeletal contraction were more pronounced on mobile membranes. Finally, increased tyrosine phosphorylation and persistent elevation of intracellular Ca2+ were observed in cells stimulated on fluid membranes. These results point to ligand mobility as an important parameter in modulating T cell responses.
Collapse
Affiliation(s)
- Chih-Jung Hsu
- Department of Chemistry, The Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Wan-Ting Hsieh
- Department of Chemistry, The Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Abraham Waldman
- Department of Chemistry, The Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Fiona Clarke
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Eric S. Huseby
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Janis K. Burkhardt
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: (TB); (JKB)
| | - Tobias Baumgart
- Department of Chemistry, The Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: (TB); (JKB)
| |
Collapse
|
40
|
Skaug MJ, Faller R, Longo ML. Correlating anomalous diffusion with lipid bilayer membrane structure using single molecule tracking and atomic force microscopy. J Chem Phys 2012; 134:215101. [PMID: 21663377 DOI: 10.1063/1.3596377] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Anomalous diffusion has been observed abundantly in the plasma membrane of biological cells, but the underlying mechanisms are still unclear. In general, it has not been possible to directly image the obstacles to diffusion in membranes, which are thought to be skeleton bound proteins, protein aggregates, and lipid domains, so the dynamics of diffusing particles is used to deduce the obstacle characteristics. We present a supported lipid bilayer system in which we characterized the anomalous diffusion of lipid molecules using single molecule tracking, while at the same time imaging the obstacles to diffusion with atomic force microscopy. To explain our experimental results, we performed lattice Monte Carlo simulations of tracer diffusion in the presence of the experimentally determined obstacle configurations. We correlate the observed anomalous diffusion with obstacle area fraction, fractal dimension, and correlation length. To accurately measure an anomalous diffusion exponent, we derived an expression to account for the time-averaging inherent to all single molecule tracking experiments. We show that the length of the single molecule trajectories is critical to the determination of the anomalous diffusion exponent. We further discuss our results in the context of confinement models and the generating stochastic process.
Collapse
Affiliation(s)
- Michael J Skaug
- Department of Chemical Engineering and Materials Science, University of California Davis, Davis, California 95616, USA
| | | | | |
Collapse
|
41
|
Setiawan I, Blanchard GJ. Evaluating the sensitivity of lipid headgroup-bound chromophores to their local environment. J Phys Chem B 2012; 116:966-73. [PMID: 22176261 DOI: 10.1021/jp209651f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report on the steady state and time-resolved fluorescence behavior of the chromophore 1,2-dimiryristoyl-sn-glycero-3-phosphoethanolamine-N-lissamine rhodamine B sulfonyl ammonium salt (SR-DMPE) in a series of solution phase and lipid bilayer environments. The issue of interest is whether or not the lipid headgroup-bound chromophore is sensitive to its local environment under conditions where vesicles have not been formed in lipid-containing mixtures and where unilamellar vesicles have been formed by extrusion. Our data point to the strong interaction of SR-DMPE with 1,2-dimirystoyl-sn-glycero-phosphocholine (DMPC) in solution whether or not the solution has undergone extrusion. The amount of SR-DMPE in the lipid-containing systems affects both the steady state and time-resolved spectroscopic response. Excitation of the chromophore to the S(2) state deposits sufficient excess energy into the system to influence its rotational diffusion dynamics, demonstrating significant interactions between SR-DMPE and DMPC. Comparison of SR-DMPE reorientation dynamics in DMPC-containing solutions with corresponding data on SR-DMPE in aqueous solution indicates that the lipids impose a restrictive local environment on the chromophore that is a factor of ca. 10 more viscous than an aqueous environment. The similarity of the reorientation data in all DMPC-containing solutions suggests that SR-DMPE is a local probe that is not sensitive to longer range organization.
Collapse
Affiliation(s)
- Iwan Setiawan
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, USA
| | | |
Collapse
|
42
|
Leidy C, Ocampo J, Duelund L, Mouritsen OG, Jørgensen K, Peters GH. Membrane restructuring by phospholipase A2 is regulated by the presence of lipid domains. Biophys J 2011; 101:90-9. [PMID: 21723818 DOI: 10.1016/j.bpj.2011.02.062] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 02/22/2011] [Accepted: 02/24/2011] [Indexed: 12/13/2022] Open
Abstract
Secretory phospholipase A(2) (sPLA(2)) catalyzes the hydrolysis of glycerophospholipids. This enzyme is sensitive to membrane structure, and its activity has been shown to increase in the presence of liquid-crystalline/gel (L(α)/L(β)) lipid domains. In this work, we explore whether lipid domains can also direct the activity of the enzyme by inducing hydrolysis of certain lipid components due to preferential activity of the enzyme toward lipid domains susceptible to sPLA(2). Specifically, we show that the presence of L(α)/L(β) and L(α)/P(β') phase coexistence in a 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)/1,2 distearoyl-sn-glycero-3-phosphocholine (DSPC) system results in the preferential hydrolysis of the shorter-chained lipid component in the mixture, leading to an enrichment in the longer-chained component. The restructuring process is monitored by atomic force microscopy on supported single and double bilayers formed by vesicle fusion. We observe that during preferential hydrolysis of the DMPC-rich L(α) regions, the L(β) and P(β') regions grow and reseal, maintaining membrane integrity. This result indicates that a sharp reorganization of the membrane structure can occur during sPLA(2) hydrolysis without necessarily destroying the membrane. We confirm by high-performance liquid chromatography the preferential hydrolysis of DMPC within the phase coexistence region of the DMPC/DSPC phase diagram, showing that this preferential hydrolysis is accentuated close to the solidus phase boundary. Differential scanning calorimetry results show that this preferential hydrolysis in the presence of lipid domains leads to a membrane system with a higher-temperature melting profile due to enrichment in DSPC. Together, these results show that the presence of lipid domains can induce specificity in the hydrolytic activity of the enzyme, resulting in marked differences in the physical properties of the membrane end-product.
Collapse
Affiliation(s)
- Chad Leidy
- Department of Physics, Universidad de los Andes, Bogotá, Colombia.
| | | | | | | | | | | |
Collapse
|
43
|
Deshmukh SS, Tang K, Kálmán L. Lipid binding to the carotenoid binding site in photosynthetic reaction centers. J Am Chem Soc 2011; 133:16309-16. [PMID: 21894992 DOI: 10.1021/ja207750z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lipid binding to the carotenoid binding site near the inactive bacteriochlorophyll monomer was probed in the reaction centers of carotenoid-less mutant, R-26 from Rhodobacter sphaeroides. Recently, a marked light-induced change of the local dielectric constant in the vicinity of the inactive bacteriochlorophyll monomer was reported in wild type that was attributed to structural changes that ultimately lengthened the lifetime of the charge-separated state by 3 orders of magnitude (Deshmukh, S. S.; Williams, J. C.; Allen, J. P.; Kalman, L. Biochemistry 2011, 50, 340). Here in the R-26 reaction centers, the combination of light-induced structural changes and lipid binding resulted in a 5 orders of magnitude increase in the lifetime of the charge-separated state involving the oxidized dimer and the reduced primary quinone in proteoliposomes. Only saturated phospholipids with fatty acid chains of 12 and 14 carbon atoms long were bound successfully at 8 °C by cooling the reaction center protein slowly from room temperature. In addition to reporting a dramatic increase of the lifetime of the charge-separated state at physiologically relevant temperatures, this study reveals a novel lipid binding site in photosynthetic reaction center. These results shed light on a new potential application of the reaction center in energy storage as a light-driven biocapacitor since the charges separated by ∼30 Å in a low-dielectric medium can be prevented from recombination for hours.
Collapse
Affiliation(s)
- Sasmit S Deshmukh
- Department of Physics, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | | | | |
Collapse
|
44
|
Wilke N, Maggio B. Electrostatic field effects on membrane domain segregation and on lateral diffusion. Biophys Rev 2011; 3:185-192. [PMID: 28510045 DOI: 10.1007/s12551-011-0057-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 08/20/2011] [Indexed: 12/17/2022] Open
Abstract
Natural membranes are organized structures of neutral and charged molecules bearing dipole moments which generate local non-homogeneous electric fields. When subjected to such fields, the molecules experience net forces that can modify the lipid and protein organization, thus modulating cell activities and influencing (or even dominating) the biological functions. The energetics of electrostatic interactions in membranes is a long-range effect which can vary over distance within r-1 to r-3. In the case of a dipole interacting with a plane of dipoles, e.g. a protein interacting with a lipid domain, the interaction is stronger than two punctual dipoles and depends on the size of the domain. In this article, we review several contributions on how electrostatic interactions in the membrane plane can modulate the phase behavior, surface topography and mechanical properties in monolayers and bilayers.
Collapse
Affiliation(s)
- Natalia Wilke
- Centro de Investigaciones de Química Bológica de Córdoba (CIQUIBIC-CONICET), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina. .,CIQUIBIC, Dpto. de Química Biológica, Fac. de Cs. Químicas, UNC, Pabellón Argentina, Ciudad Universitaria, X5000HUA, Córdoba, Argentina.
| | - Bruno Maggio
- Centro de Investigaciones de Química Bológica de Córdoba (CIQUIBIC-CONICET), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
45
|
Rusakov DA, Savtchenko LP, Zheng K, Henley JM. Shaping the synaptic signal: molecular mobility inside and outside the cleft. Trends Neurosci 2011; 34:359-69. [PMID: 21470699 PMCID: PMC3133640 DOI: 10.1016/j.tins.2011.03.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 03/01/2011] [Accepted: 03/02/2011] [Indexed: 02/06/2023]
Abstract
Rapid communication in the brain relies on the release and diffusion of small transmitter molecules across the synaptic cleft. How these diffuse signals are transformed into cellular responses is determined by the scatter of target postsynaptic receptors, which in turn depends on receptor movement in cell membranes. Thus, by shaping information transfer in neural circuits, mechanisms that regulate molecular mobility affect nearly every aspect of brain function and dysfunction. Here we review two facets of molecular mobility that have traditionally been considered separately, namely extracellular and intra-membrane diffusion. By focusing on the interplay between these processes we illustrate the remarkable versatility of signal formation in synapses and highlight areas of emerging understanding in the molecular physiology and biophysics of synaptic transmission.
Collapse
Affiliation(s)
- Dmitri A Rusakov
- Institute of Neurology, University College London, Queen Square, London WC1 3BG, UK
| | | | | | | |
Collapse
|
46
|
Macháň R, Hof M. Lipid diffusion in planar membranes investigated by fluorescence correlation spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1377-91. [DOI: 10.1016/j.bbamem.2010.02.014] [Citation(s) in RCA: 197] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 02/10/2010] [Accepted: 02/10/2010] [Indexed: 11/25/2022]
|
47
|
Imaging cerebroside-rich domains for phase and shape characterization in binary and ternary mixtures. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1357-67. [DOI: 10.1016/j.bbamem.2009.11.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2009] [Revised: 11/19/2009] [Accepted: 11/20/2009] [Indexed: 12/18/2022]
|
48
|
Ocampo J, Afanador N, Vives MJ, Moreno JC, Leidy C. The antibacterial activity of phospholipase A2 type IIA is regulated by the cooperative lipid chain melting behavior in Staphylococcus aureus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1021-8. [DOI: 10.1016/j.bbamem.2009.11.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 10/31/2009] [Accepted: 11/24/2009] [Indexed: 11/29/2022]
|
49
|
Howland MC, Parikh AN. Model Studies of Membrane Disruption by Photogenerated Oxidative Assault. J Phys Chem B 2010; 114:6377-85. [DOI: 10.1021/jp102861v] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michael C. Howland
- Department of Chemical Engineering & Materials Science and of Applied Science, University of California—Davis, Davis, California 95616
| | - Atul N. Parikh
- Department of Chemical Engineering & Materials Science and of Applied Science, University of California—Davis, Davis, California 95616
| |
Collapse
|
50
|
Goksu EI, Hoopes MI, Nellis BA, Xing C, Faller R, Frank CW, Risbud SH, Satcher JH, Longo ML. Silica xerogel/aerogel-supported lipid bilayers: Consequences of surface corrugation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:719-29. [DOI: 10.1016/j.bbamem.2009.09.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 09/02/2009] [Accepted: 09/07/2009] [Indexed: 01/09/2023]
|