1
|
Kwarteng DO, Gangoda M, Kooijman EE. The effect of methylated phosphatidylethanolamine derivatives on the ionization properties of signaling phosphatidic acid. Biophys Chem 2023; 296:107005. [PMID: 36934676 DOI: 10.1016/j.bpc.2023.107005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023]
Abstract
Phosphatidylethanolamine (PE) and Phosphatidylcholine (PC) are the most abundant glycerophospholipids in eukaryotic membranes. The differences in the physicochemical properties of their headgroups have contrasting modulatory effects on their interaction with intracellular macromolecules. As such, their overall impact on membrane structure and function differs significantly. Enzymatic methylation of PE's amine headgroup produces two methylated derivatives namely monomethyl PE (MMPE) and dimethyl PE (DMPE) which have physicochemical properties that generally range between that of PE and PC. Additionally, their influence on membrane properties differs from both PE and PC. Although variations in headgroup methylation have been reported to affect signaling pathways, the direct influence that these differences exert on the ionization properties of signaling phospholipids have not been investigated. Here, we briefly review membrane function and structure that are mediated by the differences in headgroup methylation between PE, MMPE, DMPE and PC. In addition, using 31P MAS NMR, we investigate the effect of these four phospholipids on the ionization properties of the ubiquitous signaling anionic lipid phosphatidic acid (PA). Our results show that PA's ionization properties are differentially affected by changes in phospholipid headgroup methylation. This could have important implications for PA-protein binding and hence physiological functions in cells where signaling events lead to changes in abundance of methylated PE derivatives in the membrane.
Collapse
Affiliation(s)
- Desmond Owusu Kwarteng
- Department of Biological Sciences, Kent State University, P.O. Box 5190, Kent, OH 44242, USA.
| | - Mahinda Gangoda
- Department of Chemistry & Biochemistry, Kent State University, P.O. Box 5190, Kent, OH 44242, USA
| | - Edgar E Kooijman
- Department of Biological Sciences, Kent State University, P.O. Box 5190, Kent, OH 44242, USA.
| |
Collapse
|
2
|
Guéguen N, Maréchal E. Origin of cyanobacterial thylakoids via a non-vesicular glycolipid phase transition and their impact on the Great Oxygenation Event. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2721-2734. [PMID: 35560194 DOI: 10.1093/jxb/erab429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/16/2021] [Indexed: 06/15/2023]
Abstract
The appearance of oxygenic photosynthesis in cyanobacteria is a major event in evolution. It had an irreversible impact on the Earth, promoting the Great Oxygenation Event (GOE) ~2.4 billion years ago. Ancient cyanobacteria predating the GOE were Gloeobacter-type cells lacking thylakoids, which hosted photosystems in their cytoplasmic membrane. The driver of the GOE was proposed to be the transition from unicellular to filamentous cyanobacteria. However, the appearance of thylakoids expanded the photosynthetic surface to such an extent that it introduced a multiplier effect, which would be more coherent with an impact on the atmosphere. Primitive thylakoids self-organize as concentric parietal uninterrupted multilayers. There is no robust evidence for an origin of thylakoids via a vesicular-based scenario. This review reports studies supporting that hexagonal II-forming glucolipids and galactolipids at the periphery of the cytosolic membrane could be turned, within nanoseconds and without any external source of energy, into membrane multilayers. Comparison of lipid biosynthetic pathways shows that ancient cyanobacteria contained only one anionic lamellar-forming lipid, phosphatidylglycerol. The acquisition of sulfoquinovosyldiacylglycerol biosynthesis correlates with thylakoid emergence, possibly enabling sufficient provision of anionic lipids to trigger a hexagonal II-to-lamellar phase transition. With this non-vesicular lipid-phase transition, a framework is also available to re-examine the role of companion proteins in thylakoid biogenesis.
Collapse
Affiliation(s)
- Nolwenn Guéguen
- Laboratoire de Physiologie Cellulaire et Végétale; INRAE, CNRS, CEA, Université Grenoble Alpes; IRIG; CEA Grenoble, 17 rue des Martyrs, 38000 Grenoble, France
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire et Végétale; INRAE, CNRS, CEA, Université Grenoble Alpes; IRIG; CEA Grenoble, 17 rue des Martyrs, 38000 Grenoble, France
| |
Collapse
|
3
|
Vieira AM, Silvestre OF, Silva BF, Ferreira CJ, Lopes I, Gomes AC, Espiña B, Sárria MP. pH-sensitive nanoliposomes for passive and CXCR-4-mediated marine yessotoxin delivery for cancer therapy. Nanomedicine (Lond) 2022; 17:717-739. [PMID: 35481356 DOI: 10.2217/nnm-2022-0010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: Yessotoxin (YTX), a marine-derived drug, was encapsulated in PEGylated pH-sensitive nanoliposomes, covalently functionalized (strategy I) with SDF-1α and by nonspecific adsorption (strategy II), to actively target chemokine receptor CXCR-4. Methods: Cytotoxicity to normal human epithelial cells (HK-2) and prostate (PC-3) and breast (MCF-7) adenocarcinoma models, with different expression levels of CXCR-4, were tested. Results: Strategy II exerted the highest cytotoxicity toward cancer cells while protecting normal epithelia. Acid pH-induced fusion of nanoliposomes seemed to serve as a primary route of entry into MCF-7 cells but PC-3 data support an endocytic pathway for their internalization. Conclusion: This work describes an innovative hallmark in the current marine drug clinical pipeline, as the developed nanoliposomes are promising candidates in the design of groundbreaking marine flora-derived anticancer nanoagents.
Collapse
Affiliation(s)
- Ana Mg Vieira
- International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga, Braga, 4715-330, Portugal.,Centre of Molecular & Environmental Biology (CBMA), University of Minho, Braga, 4710-057, Portugal
| | - Oscar F Silvestre
- International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga, Braga, 4715-330, Portugal
| | - Bruno Fb Silva
- International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga, Braga, 4715-330, Portugal
| | - Celso Jo Ferreira
- International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga, Braga, 4715-330, Portugal.,Centro de Física das Universidades do Minho e do Porto (CF-UM-UP), University of Minho, Braga, 4710-057, Portugal
| | - Ivo Lopes
- Centre of Molecular & Environmental Biology (CBMA), University of Minho, Braga, 4710-057, Portugal
| | - Andreia C Gomes
- Centre of Molecular & Environmental Biology (CBMA), University of Minho, Braga, 4710-057, Portugal.,Institute of Science & Innovation for Biosustainability (IB-S), University of Minho, Braga, 4710-057, Portugal
| | - Begoña Espiña
- International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga, Braga, 4715-330, Portugal
| | - Marisa P Sárria
- International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga, Braga, 4715-330, Portugal
| |
Collapse
|
4
|
Siegel DP. Bicontinuous inverted cubic phase stabilization as an index of antimicrobial and membrane fusion peptide activity. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183815. [PMID: 34748744 DOI: 10.1016/j.bbamem.2021.183815] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/06/2021] [Accepted: 10/29/2021] [Indexed: 02/07/2023]
Abstract
Some antimicrobial peptides (AMPs) and membrane fusion-catalyzing peptides (FPs) stabilize bicontinuous inverted cubic (QII) phases. Previous authors proposed a topological rationale: since AMP-induced pores, fusion intermediates, and QII phases all have negative Gaussian curvature (NGC), peptides which produce NGC in one structure also do it in another. This assumes that peptides change the curvature energy of the lipid membranes. Here I test this with a Helfrich curvature energy model. First, experimentally, I show that lipid systems often used to study peptide NGC have NGC without peptides at higher temperatures. To determine the net effect of an AMP on NGC, the equilibrium phase behavior of the host lipids must be determined. Second, the model shows that AMPs must make large changes in the curvature energy to stabilize AMP-induced pores. Peptide-induced changes in elastic constants affect pores and QII phase differently. Changes in spontaneous curvature affect them in opposite ways. The observed correlation between QII phase stabilization and AMP activity doesn't show that AMPs act by lowering pore curvature energy. A different rationale is proposed. In theory, AMPs could simultaneously stabilize QII phase and pores by drastically changing two particular elastic constants. This could be tested by measuring AMP effects on the individual constants. I propose experiments to do that. Unlike AMPs, FPs must make only small changes in the curvature energy to catalyze fusion. It they act in this way, their fusion activity should correlate with their ability to stabilize QII phases.
Collapse
Affiliation(s)
- D P Siegel
- Givaudan Inc., 1199 Edison Drive, Cincinnati, OH 45216, United States of America.
| |
Collapse
|
5
|
Winnikoff JR, Haddock SHD, Budin I. Depth- and temperature-specific fatty acid adaptations in ctenophores from extreme habitats. J Exp Biol 2021; 224:jeb242800. [PMID: 34676421 PMCID: PMC8627573 DOI: 10.1242/jeb.242800] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 10/13/2021] [Indexed: 11/20/2022]
Abstract
Animals are known to regulate the composition of their cell membranes to maintain key biophysical properties in response to changes in temperature. For deep-sea marine organisms, high hydrostatic pressure represents an additional, yet much more poorly understood, perturbant of cell membrane structure. Previous studies in fish and marine microbes have reported correlations with temperature and depth of membrane-fluidizing lipid components, such as polyunsaturated fatty acids. Because little has been done to isolate the separate effects of temperature and pressure on the lipid pool, it is still not understood whether these two environmental factors elicit independent or overlapping biochemical adaptive responses. Here, we use the taxonomic and habitat diversity of the phylum Ctenophora to test whether distinct low-temperature and high-pressure signatures can be detected in fatty acid profiles. We measured the fatty acid composition of 105 individual ctenophores, representing 21 species, from deep and shallow Arctic, temperate, and tropical sampling locales (sea surface temperature, -2° to 28°C). In tropical and temperate regions, remotely operated submersibles (ROVs) enabled sampling down to 4000 m. We found that among specimens with body temperatures 7.5°C or colder, depth predicted fatty acid unsaturation levels. In contrast, in the upper 200 m of the water column, temperature predicted fatty acid chain lengths. Taken together, our findings suggest that lipid metabolism may be specialized with respect to multiple physical variables in diverse marine environments. Largely distinct modes of adaptation to depth and cold imply that polar marine invertebrates may not find a ready refugium from climate change in the deep.
Collapse
Affiliation(s)
- Jacob R. Winnikoff
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd., Moss Landing, CA 95039, USA
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, 1156 High St., Santa Cruz, CA 95064, USA
| | - Steven H. D. Haddock
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Rd., Moss Landing, CA 95039, USA
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, 1156 High St., Santa Cruz, CA 95064, USA
| | - Itay Budin
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| |
Collapse
|
6
|
Ramirez RER, Orth ES, Pires C, Zawadzki SF, de Freitas RA. DODAB-DOPE liposome surface coating using in-situ acrylic acid polymerization. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
7
|
Bouraoui A, Ghanem R, Berchel M, Deschamps L, Vié V, Paboeuf G, Le Gall T, Montier T, Jaffrès PA. Branched lipid chains to prepare cationic amphiphiles producing hexagonal aggregates: supramolecular behavior and application to gene delivery. Org Biomol Chem 2020; 18:337-345. [DOI: 10.1039/c9ob02381j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cationic amphiphiles featuring ramified lipid chains self-organized in water as inverted hexagonal aggregates. They demonstrated high gene delivery efficiencies.
Collapse
Affiliation(s)
| | - Rosy Ghanem
- Univ Brest
- INSERM
- groupe “Transfert de gènes et thérapie génique”
- UMR 1078
- CHRU de Brest
| | | | | | | | | | - Tony Le Gall
- Univ Brest
- INSERM
- groupe “Transfert de gènes et thérapie génique”
- UMR 1078
- CHRU de Brest
| | - Tristan Montier
- Univ Brest
- INSERM
- groupe “Transfert de gènes et thérapie génique”
- UMR 1078
- CHRU de Brest
| | | |
Collapse
|
8
|
Seper BC, Ko A, Abma AF, Folkerts AD, Tristram-Nagle S, Harper PE. Methylene volumes in monoglyceride bilayers are larger than in liquid alkanes. Chem Phys Lipids 2019; 226:104833. [PMID: 31738879 DOI: 10.1016/j.chemphyslip.2019.104833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/26/2019] [Accepted: 10/09/2019] [Indexed: 11/26/2022]
Abstract
The densities as a function of temperature of four fully hydrated saturated monoglycerides with even chain lengths ranging from eight to fourteen were determined by vibrating tube densitometry and their phase transition temperatures were determined by differential scanning calorimetry (DSC). We find the volume of a methylene group in a monoglyceride bilayer is 2% larger than in liquid alkanes at physiological temperatures, similar to the methylene group volumes found in phosphatidylcholine (PC) bilayers. Additionally, we carefully consider the traditional method of calculating component volumes from experimental data and note potential difficulties in this approach. In the literature, the ratio of terminal methyl volume (CH3) to methylene (CH2) volumes is typically assumed to be 2. By analysis of literature alkane data, we find this ratio actually ranges from 1.9 to 2.3 for temperatures ranging from 0 °C to 100 °C. For a rough sense of scale, we note that to effect a 2% reduction in volume requires of order 200 atmospheres of pressure, and pressures of this magnitude are biologically relevant. For instance, this amount of pressure is sufficient to reverse the effect of anesthesia. The component volumes obtained are an important parameter used for determining the structure of lipid bilayers and for molecular dynamics simulations.
Collapse
Affiliation(s)
- Brian C Seper
- Department of Physics and Astronomy, Calvin University, Grand Rapids, MI 49546, USA
| | - Anthony Ko
- Biological Physics Group, Physics Department, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
| | - Aaron F Abma
- Department of Physics and Astronomy, Calvin University, Grand Rapids, MI 49546, USA
| | - Andrew D Folkerts
- Department of Physics and Astronomy, Calvin University, Grand Rapids, MI 49546, USA
| | - Stephanie Tristram-Nagle
- Biological Physics Group, Physics Department, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
| | - Paul E Harper
- Department of Physics and Astronomy, Calvin University, Grand Rapids, MI 49546, USA.
| |
Collapse
|
9
|
Bose D, Chakrabarti A. Chaperone potential of erythroid spectrin: Effects of hemoglobin interaction, macromolecular crowders, phosphorylation and glycation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:140267. [PMID: 31470132 DOI: 10.1016/j.bbapap.2019.140267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/09/2019] [Accepted: 08/24/2019] [Indexed: 10/26/2022]
Abstract
Spectrin, the major protein component of the erythrocyte membrane skeleton has chaperone like activity and is known to bind membrane phospholipids and hemoglobin. We have probed the chaperone activity of spectrin in presence of hemoglobin and phospholipid SUVs of different compositions to elucidate the effect of phospholipid/hemoglobin binding on chaperone function. It is seen that spectrin displays a preference for hemoglobin over other substrates leading to a decrease in chaperone activity in presence of hemoglobin. A competition is seen to exist between phospholipid binding and chaperone function of spectrin, in a dose dependent manner with the greatest extent of decrease being seen in case of phospholipid vesicles containing aminophospholipids e.g. PS and PE which may have implications in diseases like hereditary spherocytosis where mutation in spectrin is implicated in its detachment from cell membrane. To gain a clearer understanding of the chaperone like activity of spectrin under in-vivo like conditions we have investigated the effect of macromolecular crowders as well as phosphorylation and glycation states on chaperone activity. It is seen that the presence of non-specific, protein and non-protein macromolecular crowders do not appreciably affect chaperone function. Phosphorylation also does not affect the chaperone function unlike glycation which progressively diminishes chaperone activity. We propose a model where chaperone clients adsorb onto spectrin's surface and processes that bind to and occlude these surfaces decrease chaperone activity.
Collapse
Affiliation(s)
- Dipayan Bose
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhabha National Institute, Mumbai 400094, India
| | - Abhijit Chakrabarti
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhabha National Institute, Mumbai 400094, India.
| |
Collapse
|
10
|
Membrane-Active Properties of an Amphitropic Peptide from the CyaA Toxin Translocation Region. Toxins (Basel) 2017; 9:toxins9110369. [PMID: 29135925 PMCID: PMC5705984 DOI: 10.3390/toxins9110369] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 12/28/2022] Open
Abstract
The adenylate cyclase toxin CyaA is involved in the early stages of infection by Bordetella pertussis, the causative agent of whooping cough. CyaA intoxicates target cells by a direct translocation of its catalytic domain (AC) across the plasma membrane and produces supraphysiological levels of cAMP, leading to cell death. The molecular process of AC translocation remains largely unknown, however. We have previously shown that deletion of residues 375–485 of CyaA selectively abrogates AC translocation into eukaryotic cells. We further identified within this “translocation region” (TR), P454 (residues 454–484), a peptide that exhibits membrane-active properties, i.e., is able to bind and permeabilize lipid vesicles. Here, we analyze various sequences from CyaA predicted to be amphipatic and show that although several of these peptides can bind membranes and adopt a helical conformation, only the P454 peptide is able to permeabilize membranes. We further characterize the contributions of the two arginine residues of P454 to membrane partitioning and permeabilization by analyzing the peptide variants in which these residues are substituted by different amino acids (e.g., A, K, Q, and E). Our data shows that both arginine residues significantly contribute, although diversely, to the membrane-active properties of P454, i.e., interactions with both neutral and anionic lipids, helix formation in membranes, and disruption of lipid bilayer integrity. These results are discussed in the context of the translocation process of the full-length CyaA toxin.
Collapse
|
11
|
Matsuki H, Endo S, Sueyoshi R, Goto M, Tamai N, Kaneshina S. Thermotropic and barotropic phase transitions on diacylphosphatidylethanolamine bilayer membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1222-1232. [DOI: 10.1016/j.bbamem.2017.03.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/03/2017] [Accepted: 03/29/2017] [Indexed: 11/30/2022]
|
12
|
Hou S, Harper PE, Bardin N, Zhao M. The outcome of ELISA for antiphosphatidylethanolamine antibodies is dependent on the composition of phosphatidylethanolamine. J Immunol Methods 2016; 440:27-34. [PMID: 27784626 DOI: 10.1016/j.jim.2016.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/07/2016] [Accepted: 10/21/2016] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The presence of circulating autoantibodies against phosphatidylethanolamine (PE) has been shown to be positively associated with symptoms of antiphospholipid syndromes (APS). However, the current ELISA-based tests for antiphosphatidylethanolamine (aPE) antibodies remain inconsistent and controversial. The term PE refers to a collection of phospholipids that have phosphorylethanolamine head group as a common structural feature, but can vary in fatty acids with diverse physicochemical properties. The present study was to investigate, using synthetic positionally symmetrical PE species as a model system, the impact of PE structural variations on aPE ELISA. METHODS Single and combinations of synthetic PE species, including 16:0 (fatty acid length:degree of unsaturation), 18:0, 18:1, 20:4 and 22:6, were screened with ELISA using serum samples from aPE patients and compared with chicken egg PE. There were a total of 37 aPE patient serum samples, including 11 cofactor-independent IgM, 14 ABP-independent IgG and 12 ABP-dependent aPE serum samples (3 IgM, 8 IgG and 1 IgA). The ELISA conditions were investigated for different isotypes and cofactor dependence. Based on the initial screening, adjustments in phospholipid compositions were made for achieving optimal OD readings. Finally, we isolated total IgG from aPE sera to validate different antigenic preferences. RESULTS The antigenic preference was different among immunoglobulin isotypes and between cofactor-dependent versus cofactor-independent aPE antibodies. More specifically, 18:1 PE was a preferred antigen for cofactor-dependent aPE, whereas 20:4 PE was the preferred antigen for cofactor-independent IgG aPE. In contrast, cofactor-independent IgM aPE appeared to have a general preference for a more complex PE combination with longer fatty acids and a higher degree of unsaturation. CONCLUSION The present data indicated that the outcome of aPE ELISA was dependent on the composition and physicochemical properties of PE antigens. The discovery that aPE antibodies may have different antigenic preferences could shed light on the nature of their binding interactions.
Collapse
Affiliation(s)
- Songwang Hou
- Feinberg Cardiovascular Research Institute, Department of Medicine, Northwestern University, Chicago, IL, United States
| | - Paul E Harper
- Department of Physics & Astronomy, Calvin College, Grand Rapids, MI, United States
| | - Nathalie Bardin
- Laboratoire d'Immunologie, Hôpital de la Conception, 147 boulevard Baille, 13005 Marseille, France, INSERM UMRS 1076, UFR Pharmacie, Université Aix-Marseille, 127 boulevard Jean Moulin, 13005 Marseille, France
| | - Ming Zhao
- Feinberg Cardiovascular Research Institute, Department of Medicine, Northwestern University, Chicago, IL, United States.
| |
Collapse
|
13
|
Ke K, Strango ZI, Harper PE, Zhao M. Influence of Phosphatidylethanolamine Concentration and Composition on the Detection of Antiphosphatidylethanolamine Antibodies by ELISA. J Clin Lab Anal 2016; 30:689-96. [PMID: 27061173 DOI: 10.1002/jcla.21923] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 11/13/2015] [Accepted: 12/09/2015] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Accumulating evidence supports a positive correlation between the presence of antiphosphatidylethanolamine (aPE) autoantibodies and clinical symptoms of antiphospholipid syndrome (APS). However, there is a lack of standardized ELISA-based method for detecting aPE. The current study was conducted to investigate the dependence of aPE ELISA on lipid concentration and composition of PE antigens. METHODS A range of ELISA conditions were examined by varying the concentrations of egg PE and by substituting egg PE with combinations of synthetic DOPE and DSPE. The physical properties of the synthetic PE species were also characterized. RESULTS Our data indicated that there are different optimal PE concentrations for conducting ELISA assays for cofactor-dependent and cofactor-independent aPEs. In addition, using a two-component synthetic lipid system, we demonstrated aPE ELISA readouts can be modulated to approach the performance level of egg PE, which is currently the most commonly used PE antigen. CONCLUSION These data raised the possibility of ultimately replacing natural PE antigens with a blend of defined synthetic lipid species, thus overcoming a known variable factor in aPE detection. The outcome of this study will help pave the way to developing a standardized aPE test.
Collapse
Affiliation(s)
- Ke Ke
- Department of Medicine, Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, Illinois
| | | | - Paul E Harper
- Department of Physics & Astronomy, Calvin College, Grand Rapids, Michigan
| | - Ming Zhao
- Department of Medicine, Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, Illinois.
| |
Collapse
|
14
|
Reese CW, Strango ZI, Dell ZR, Tristram-Nagle S, Harper PE. Structural insights into the cubic-hexagonal phase transition kinetics of monoolein modulated by sucrose solutions. Phys Chem Chem Phys 2015; 17:9194-204. [PMID: 25758637 PMCID: PMC4381959 DOI: 10.1039/c5cp00175g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using DSC (differential scanning calorimetry), we measure the kinetics of the cubic-HII phase transition of monoolein in bulk sucrose solutions. We find that the transition temperature is dramatically lowered, with each 1 mol kg(-1) of sucrose concentration dropping the transition by 20 °C. The kinetics of this transition also slow greatly with increasing sucrose concentration. For low sucrose concentrations, the kinetics are asymmetric, with the cooling (HII-cubic) transition taking twice as long as the heating (cubic-HII) transition. This asymmetry in transition times is reduced for higher sucrose concentrations. The cooling transition exhibits Avrami exponents in the range of 2 to 2.5 and the heating transition shows Avrami exponents ranging from 1 to 3. A classical Avrami interpretation would be that these processes occur via a one or two dimensional pathway with variable nucleation rates. A non-classical perspective would suggest that these exponents reflect the time dependence of pore formation (cooling) and destruction (heating). New density measurements of monoolein show that the currently accepted value is about 5% too low; this has substantial implications for electron density modeling. Structural calculations indicate that the head group area and lipid length in the cubic-HII transition shrink by about 12% and 4% respectively; this reduction is practically the same as that seen in a lipid with a very different molecular structure (rac-di-12:0 β-GlcDAG) that makes the same transition. Thermodynamic considerations suggest there is a hydration shell about one water molecule thick in front of the lipid head groups in both the cubic and HII phases.
Collapse
Affiliation(s)
- Caleb W Reese
- Department of Physics and Astronomy, Calvin College, 1734 Knollcrest Circle SE, Grand Rapids, MI, USA.
| | | | | | | | | |
Collapse
|
15
|
Fong WK, Hanley TL, Thierry B, Tilley A, Kirby N, Waddington LJ, Boyd BJ. Understanding the photothermal heating effect in non-lamellar liquid crystalline systems, and the design of new mixed lipid systems for photothermal on-demand drug delivery. Phys Chem Chem Phys 2014; 16:24936-53. [DOI: 10.1039/c4cp03635b] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
16
|
Klacsová M, Karlovská J, Uhríková D, Funari SS, Balgavý P. Phase behavior of the DOPE + DOPC + alkanol system. SOFT MATTER 2014; 10:5842-5848. [PMID: 24980804 DOI: 10.1039/c4sm00530a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Small- and wide-angle X-ray diffraction was used to study the effect of 1-alkanols, as simple models of general anesthetics, (abbreviation CnOH, n = 8-18 is the even number of carbons in the aliphatic chain) on the lamellar to hexagonal Lα→ H(II) phase transition in the dioleoylphosphatidylethanolamine-dioleoylphosphatidylcholine = 3 : 1 mol/mol (DOPE + DOPC) system. All studied CnOHs were found to decrease the phase transition temperature of the DOPE + DOPC system in a CnOH chain length and concentration dependent manner and thus promote the formation of the HII phase. Anesthetically active C8OH and C10OH were found to decrease the lattice parameter d of the Lα phase, however longer non-anesthetic CnOHs increased the parameter d; this effect being more pronounced with increasing CnOH concentration. The lattice parameter of the HII phase was decreased in the presence of all CnOHs, even at the lowest concentrations studied. In the scope of the indirect mechanism of general anesthesia observed changes in the lattice parameter d (reflecting changes in the bilayer thickness) due to the intercalation of C8OH and C10OH might induce changes in the activity of integral membrane proteins engaged in neuronal pathways.
Collapse
Affiliation(s)
- Mária Klacsová
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University, Odbojárov 10, SK-832 32 Bratislava, Slovakia.
| | | | | | | | | |
Collapse
|
17
|
Montis C, Sostegni S, Milani S, Baglioni P, Berti D. Biocompatible cationic lipids for the formulation of liposomal DNA vectors. SOFT MATTER 2014; 10:4287-4297. [PMID: 24788854 DOI: 10.1039/c4sm00142g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Ethylphosphocholine lipids are highly biocompatible cationic amphiphiles that can be used for the formulation of liposomal DNA vectors, with negligible toxic effects on cells and organisms. Here we report the characterization of EDPPC (1,2-dipalmitoyl-sn-glycero-O-ethyl-3-phosphocholine chloride) liposomes, containing two different zwitterionic helper lipids, POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) and DOPE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine). Depending on the nature of the helper lipid, a phase separation in the bilayer is found at room temperature, where domains enriched in the cationic component coexist in a relatively large temperature range with regions where the zwitterionic lipids are predominant. We studied DNA complexation, the internal structure of lipoplexes and their docking and fusogenic ability with model target bilayers. The structural and functional modifications caused by DNA binding were studied using Dynamic Light Scattering (DLS), zeta potential, and small and wide angle X-ray scattering (SAXS-WAXS) measurements, while the interaction with membranes was assessed by using Giant Unilamellar Vesicles (GUVs) as model target bilayers. The results presented establish a connection between the physicochemical properties of lipid bilayers, and in particular of lipid demixing, with the phase state of the complexes and their ability to interact with model membranes.
Collapse
Affiliation(s)
- Costanza Montis
- CSGI and Department of Chemistry, University of Florence, via della Lastruccia 3, 50019, Sesto Fiorentino, Firenze, Italy.
| | | | | | | | | |
Collapse
|
18
|
Cook PL, Vanderhill JL, Cook AE, Van Norstrand DW, Gordon MT, Harper PE. Light scattering measurement and Avrami analysis of the lamellar to inverse hexagonal phase transition kinetics of the lipid DEPE. Chem Phys Lipids 2012; 165:270-6. [DOI: 10.1016/j.chemphyslip.2012.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 01/28/2012] [Accepted: 01/30/2012] [Indexed: 10/14/2022]
|
19
|
A thermodynamic framework for understanding temperature sensing by transient receptor potential (TRP) channels. Proc Natl Acad Sci U S A 2011; 108:19492-7. [PMID: 22109551 DOI: 10.1073/pnas.1117485108] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The exceptionally high temperature sensitivity of certain transient receptor potential (TRP) family ion channels is the molecular basis of hot and cold sensation in sensory neurons. The laws of thermodynamics dictate that opening of these specialized TRP channels must involve an unusually large conformational standard-state enthalpy, ΔH(o): positive ΔH(o) for heat-activated and negative ΔH(o) for cold-activated TRPs. However, the molecular source of such high-enthalpy changes has eluded neurobiologists and biophysicists. Here we offer a general, unifying mechanism for both hot and cold activation that recalls long-appreciated principles of protein folding. We suggest that TRP channel gating is accompanied by large changes in molar heat capacity, ΔC(P). This postulate, along with the laws of thermodynamics and independent of mechanistic detail, leads to the conclusion that hot- and cold-sensing TRPs operate by identical conformational changes.
Collapse
|
20
|
Surface miscibility of EPC/DOTAP/DOPE in binary and ternary mixed monolayers. Colloids Surf B Biointerfaces 2011; 83:260-9. [DOI: 10.1016/j.colsurfb.2010.11.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 10/17/2010] [Accepted: 11/22/2010] [Indexed: 11/22/2022]
|
21
|
Zhou J, Yang J, Chen X, Luo W, Zhang W, Yang K, Zhang B. Phase transformation of tetraethyleneglycol dodecyl ether solution studied by light scattering spectra: Micelle aggregation, vesicle and lamellar phase. J Mol Struct 2011. [DOI: 10.1016/j.molstruc.2010.11.065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Dong YD, Tilley AJ, Larson I, Lawrence MJ, Amenitsch H, Rappolt M, Hanley T, Boyd BJ. Nonequilibrium effects in self-assembled mesophase materials: unexpected supercooling effects for cubosomes and hexosomes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:9000-9010. [PMID: 20364857 DOI: 10.1021/la904803c] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Polar lipids often exhibit equilibrium liquid crystalline structures in excess water, such as the bicontinuous cubic phases (Q(II)) at low temperatures and inverse hexagonal phase (H(II)) at higher temperatures. In this study, the equilibrium and nonequilibrium phase behavior of glyceryl monooleate (GMO) and phytantriol (PHYT) systems in excess water were investigated using both continuous heating and cooling cycles, and rapid temperature changes. Evolution of the phase structure was followed using small-angle X-ray scattering (SAXS). During cooling, not only was supercooling of the liquid crystalline systems by up to 25 degrees C observed, but evidence for nonequilibrium phase structures (not present on heating; such as the gyroid cubic phase only present at low water content in equilibrium) was also apparent. The nonequilibrium phases were surprisingly stable, with return to equilibrium structure for dispersed submicrometer sized particle systems taking more than 13 h in some cases. Inhibition of phase nucleation was the key to greater supercooling effects observed for the dispersed particles compared to the bulk systems. These findings highlight the need for continued study into the nonequilibrium phase structures for these types of systems, as this may influence performance in applications such as drug delivery.
Collapse
Affiliation(s)
- Yao-Da Dong
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Pde, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Pereira G, Abreu AS, Castanheira EMS, Coutinho PJG, Ferreira PMT, Queiroz MJRP. Synthesis and Photophysical Studies of a Pyrenylindole and a Phenalenoindole Obtained from Dehydroamino Acid Derivatives - Application as Fluorescent Probes for Biological Systems. European J Org Chem 2009. [DOI: 10.1002/ejoc.200900351] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Castanheira EM, Abreu AS, Queiroz MJR, Ferreira PM, Coutinho PJ, Nazareth N, Nascimento MSJ. Fluorescence properties of a potential antitumoral benzothieno[3,2-b]pyrrole in solution and lipid membranes. J Photochem Photobiol A Chem 2009. [DOI: 10.1016/j.jphotochem.2009.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Mares T, Daniel M, Perutkova S, Perne A, Dolinar G, Iglic A, Rappolt M, Kralj-Iglic V. Role of phospholipid asymmetry in the stability of inverted hexagonal mesoscopic phases. J Phys Chem B 2009; 112:16575-84. [PMID: 19367813 DOI: 10.1021/jp805715r] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The role of phospholipid asymmetry in the transition from the lamellar (L(alpha)) to the inverted hexagonal (H(II)) phase upon the temperature increase was considered. The equilibrium configuration of the system was determined by the minimum of the free energy including the contribution of the isotropic and deviatoric bending and the interstitial energy of phospholipid monolayers. The shape and local interactions of a single lipid molecule were taken into account. The minimization with respect to the configuration of the lipid layers was performed by a numerical solution of the system of the Euler-Lagrange differential equations and by the Monte Carlo simulated annealing method. At high enough temperature, the lipid molecules attain a shape exhibiting higher intrinsic mean and deviatoric curvatures, which fits better into the H(II) phase than into the L(alpha) phase. Furthermore, the orientational ordering of lipid molecules in the curvature field expressed as the deviatoric bending provides a considerable negative contribution to the free energy, which stabilizes the nonlamellar H(II) phase. The nucleation configuration for the L(alpha)-H(II) phase transition is tuned by the isotropic and deviatoric bending energies and the interstitial energy.
Collapse
Affiliation(s)
- Tomas Mares
- Laboratory of Biomechanics, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technická 4, CZ-166 07, Prague 6, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Perutková Š, Daniel M, Dolinar G, Rappolt M, Kralj‐Iglič V, Iglič A. Chapter 9 Stability of the Inverted Hexagonal Phase. ADVANCES IN PLANAR LIPID BILAYERS AND LIPOSOMES 2009. [DOI: 10.1016/s1554-4516(09)09009-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
27
|
Fluorescence studies on potential antitumoral heteroaryl and heteroannulated indoles in solution and in lipid membranes. J Fluoresc 2008; 19:501-9. [PMID: 19043780 DOI: 10.1007/s10895-008-0439-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Accepted: 11/03/2008] [Indexed: 10/21/2022]
Abstract
Fluorescence properties of three potential antitumoral compounds, a 3-(dibenzothien-4-yl)indole 1, a phenylbenzothienoindole 2 and a 3-(dibenzofur-4-yl)indole 3, were studied in solution and in lipid aggregates of dipalmitoyl phosphatidylcholine (DPPC), dioleoyl phosphatidylethanolamine (DOPE) and egg yolk phosphatidylcholine (Egg-PC). The 3-(dibenzofur-4-yl)indole 3 exhibits the higher fluorescence quantum yields in all solvents studied (0.32 <or= Phi(F) <or= 0.51). All the compounds present a solvent sensitive emission, with significant red shifts in alcohols. The results point to an ICT character of the excited state, more pronounced for compound 1. Fluorescence (steady-state) anisotropy measurements of the compounds incorporated in lipid aggregates of DPPC, DOPE and Egg-PC indicate that the three compounds are deeply located in the lipid bilayer, feeling the difference between the rigid gel phase and fluid phases.
Collapse
|
28
|
Krumova SB, Koehorst RBM, Bóta A, Páli T, van Hoek A, Garab G, van Amerongen H. Temperature dependence of the lipid packing in thylakoid membranes studied by time- and spectrally resolved fluorescence of Merocyanine 540. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:2823-33. [PMID: 18929531 DOI: 10.1016/j.bbamem.2008.09.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 09/18/2008] [Accepted: 09/18/2008] [Indexed: 11/26/2022]
Abstract
The lipid packing of thylakoid membranes is an important factor for photosynthetic performance. However, surprisingly little is known about it and it is generally accepted that the bulk thylakoid lipids adopt the liquid-crystalline phase above -30 degrees C and that a phase transition occurs only above 45 degrees C. In order to obtain information on the nature of the lipid microenvironment and its temperature dependence, steady-state and time-resolved fluorescence measurements were performed on the fluorescence probe Merocyanine 540 (MC540) incorporated in isolated spinach thylakoids and in model lipid systems (dipalmitoyl phosphatidylcholine and dioleoyl phosphatidylethanolamine) adopting different phases. It is demonstrated that the degree and way of incorporation differs for most lipid phases--upon selective excitation at 570 nm, the amplitude of the fluorescence component that corresponds to membrane-incorporated MC540 is about 20% in gel-, 60% in rippled gel-, and 90% in liquid-crystalline and inverted hexagonal phase, respectively. For thylakoids, the data reveal hindered incorporation of MC540 (amplitude about 30% at 7 degrees C) and marked spectral heterogeneity at all temperatures. The incorporation of MC540 in thylakoids strongly depends on temperature. Remarkably, above 25 degrees C MC540 becomes almost completely extruded from the lipid environment, indicating major rearrangements in the membrane.
Collapse
Affiliation(s)
- Sashka B Krumova
- Wageningen University, Laboratory of Biophysics, P.O. Box 8128, 6700 ET Wageningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
The Gaussian curvature elastic energy contribution to the energy of membrane fusion intermediates has usually been neglected because the Gaussian curvature elastic modulus, kappa, was unknown. It is now possible to measure kappa for phospholipids that form bicontinuous inverted cubic (Q(II)) phases. Here, it is shown that one can estimate kappa for lipids that do not form Q(II) phases by studying the phase behavior of lipid mixtures. The method is used to estimate kappa for several lipid compositions in excess water. The values of kappa are used to compute the curvature elastic energies of stalks and catenoidal fusion pores according to recent models. The Gaussian curvature elastic contribution is positive and similar in magnitude to the bending energy contribution: it increases the total curvature energy of all the fusion intermediates by 100 units of k(B)T or more. It is important to note that this contribution makes the predicted intermediate energies compatible with observed lipid phase behavior in excess water. An order-of-magnitude fusion rate equation is used to estimate whether the predicted stalk energies are consistent with the observed rates of stalk-mediated processes in pure lipid systems. The current theory predicts a stalk energy that is slightly too large, by approximately 30 k(B)T, to rationalize the observed rates of stalk-mediated processes in phosphatidylethanolamine or N-monomethylated dioleoylphosphatidylethanolamine systems. Despite this discrepancy, the results show that models of fusion intermediate energy are accurate enough to make semiquantitative predictions about how proteins mediate biomembrane fusion. The same rate model shows that for proteins to drive biomembrane fusion at observed rates, they have to perform mediating functions corresponding to a reduction in the energy of a purely lipidic stalk by several tens of k(B)T. By binding particular peptide sequences to the monolayer surface, proteins could lower fusion intermediate energies by altering the elastic constants of the patches of lipid monolayer that form the stalk. Here, it is shown that if peptide binding changes kappa or some other combinations of local elastic constants by only tens of percents, the stalk energy and the energy of catenoidal fusion pores would decrease by tens of k(B)T relative to the pure lipid value. This is comparable to the required mediating effect. The curvature energies of stalks and catenoidal fusion pores have almost the same dependence on monolayer elastic constants as the curvature energies of the rhombohedral and Q(II) phases; respectively. The effects of isolated fusion-relevant peptides on the energies of these intermediates can be determined by studying the effects of the peptides on the stability of rhombohedral and Q(II) phases.
Collapse
|
30
|
Hickel A, Danner-Pongratz S, Amenitsch H, Degovics G, Rappolt M, Lohner K, Pabst G. Influence of antimicrobial peptides on the formation of nonlamellar lipid mesophases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:2325-33. [PMID: 18582435 DOI: 10.1016/j.bbamem.2008.05.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 05/30/2008] [Accepted: 05/30/2008] [Indexed: 10/22/2022]
Abstract
We have studied the influence of four antimicrobial peptides of different secondary and ternary structure--melittin (Mel), protegrin-1 (PG-1), peptidyl-glycylleucine-carboxyamide (PGLa), and gramicidin S (GS)--on the lamellar-to-nonlamellar transition of palmitoyloleoyl phosphatidylethanolamine (POPE) applying differential scanning calorimetry and small-angle X-ray diffraction. None of the peptides studied led to the formation of an inverted hexagonal phase observed for pure POPE at high temperatures. Instead either cubic or lamellar phases were stabilized to different degrees. GS was most effective in inducing a cubic phase, whereas Mel fully stabilized the lamellar phase. The behavior of POPE in the presence of PG-1 and PGLa was intermediate to GS and Mel. In addition to the known role of membrane elasticity we propose two mechanisms, which cause stabilization of the lamellar phase: electrostatic repulsion and lipid/peptide pore formation. Both mechanisms prevent transmembrane contact required to form either an inverted hexagonal phase or fusion pores, as precursors of the cubic phase.
Collapse
Affiliation(s)
- Andrea Hickel
- Institute of Biophysics and Nanosystems Research, Austrian Academy of Sciences, Schmiedlstrasse 6, A 8042 Graz, Austria
| | | | | | | | | | | | | |
Collapse
|
31
|
Rappolt M, Hodzic A, Sartori B, Ollivon M, Laggner P. Conformational and hydrational properties during the L(beta)- to L(alpha)- and L(alpha)- to H(II)-phase transition in phosphatidylethanolamine. Chem Phys Lipids 2008; 154:46-55. [PMID: 18339315 DOI: 10.1016/j.chemphyslip.2008.02.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 01/08/2008] [Accepted: 02/17/2008] [Indexed: 10/22/2022]
Abstract
Differential scanning calorimetry (DSC) measurements have been carried out simultaneously with small- and wide-angle X-ray scattering recordings on liposomal dispersions of stearoyl-oleoyl-phosphatidylethanolamine (PE) in a temperature range from 20 to 80 degrees C. The main transition temperature, T(m), was determined at 30.9 degrees C with an enthalpy of 28.5 kJ/mol and the lamellar-to-inverse hexagonal phase transition temperature, T(hex), at 61.6 degrees C with an enthalpy of 3.8 kJ/mol. Additionally highly resolved small angle X-ray diffraction experiments performed at equilibrium conditions allowed a reliable decomposition of the lattice spacings into hydrophobic and hydrophilic structure elements as well as the determination of the lipid interface area of the lamellar gel-phase (L(beta)), the fluid lamellar phase (L(alpha)) and of the inverse hexagonal phase (H(II)). The rearrangement of the lipid matrix and the coincident change of free water per lipid is illustrated for both transitions. Last, possible transition mechanisms are discussed on a molecular level.
Collapse
Affiliation(s)
- Michael Rappolt
- Institute of Biophysics and Nanosystems Research, Austrian Academy of Sciences, Graz, Austria.
| | | | | | | | | |
Collapse
|
32
|
Paasonen L, Romberg B, Storm G, Yliperttula M, Urtti A, Hennink WE. Temperature-sensitive poly(N-(2-hydroxypropyl)methacrylamide mono/dilactate)-coated liposomes for triggered contents release. Bioconjug Chem 2007; 18:2131-6. [PMID: 17963354 DOI: 10.1021/bc700245p] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We prepared thermosensitive poly( N-(2-hydroxypropyl)methacrylamide mono/dilactate) (pHPMA mono/dilactate) polymer and studied temperature-triggered contents release from polymer-coated liposomes. HPMA mono/dilactate polymer was synthesized with a cholesterol anchor suitable for incorporation in the liposomal bilayers and with a cloud point (CP) temperature of the polymer slightly above normal body temperature (42 degrees C). Dynamic light scattering (DLS) measurements showed that whereas the size of noncoated liposomes remained stable upon raising the temperature from 25 to 46 degrees C, polymer-coated liposomes aggregated around 43 degrees C. Also, noncoated liposomes loaded with calcein showed hardly any leakage of the fluorescent marker when heated to 46 degrees C. However, polymer-coated liposomes showed a high degree of temperature-triggered calcein release above the CP of the polymer. Likely, liposome aggregation and bilayer destabilization are triggered because of the precipitation of the thermosensitive polymer above its CP onto the liposomal bilayers, followed by permeabilization of the liposomal membrane. This study demonstrates that liposomes surface-modified with HPMA mono/dilactate copolymer are attractive systems for achieving temperature-triggered contents release.
Collapse
Affiliation(s)
- Lauri Paasonen
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Sorbonnelaan 16, 3584 CA, Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
33
|
Schuy S, Janshoff A. Thermal expansion of microstructured DMPC bilayers quantified by temperature-controlled atomic force microscopy. Chemphyschem 2007; 7:1207-10. [PMID: 16676368 DOI: 10.1002/cphc.200600013] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Steffen Schuy
- Institute of Physical Chemistry, University of Mainz, Welder Weg 11, 55128 Mainz, Germany
| | | |
Collapse
|
34
|
Tenchov BG, MacDonald RC, Siegel DP. Cubic phases in phosphatidylcholine-cholesterol mixtures: cholesterol as membrane "fusogen". Biophys J 2006; 91:2508-16. [PMID: 16829556 PMCID: PMC1562400 DOI: 10.1529/biophysj.106.083766] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
X-ray diffraction reveals that mixtures of some unsaturated phosphatidylcholines (PCs) with cholesterol (Chol) readily form inverted bicontinuous cubic phases that are stable under physiological conditions. This effect was studied in most detail for dioleoyl PC/Chol mixtures with molar ratios of 1:1 and 3:7. Facile formation of Im3m and Pn3m phases with lattice constants of 30-50 nm and 25-30 nm, respectively, took place in phosphate-buffered saline, in sucrose solution, and in water near the temperature of the Lalpha-HII transition of the mixtures, as well as during cooling of the HII phase. Once formed, the cubic phases displayed an ability to supercool and replace the initial Lalpha phase over a broad range of physiological temperatures. Conversion into stable cubic phases was also observed for mixtures of Chol with dilinoleoyl PC but not for mixtures with palmitoyl-linoleoyl PC or palmitoyl-oleoyl PC, for which only transient cubic traces were recorded at elevated temperatures. A saturated, branched-chain PC, diphytanoyl PC, also displayed a cubic phase in mixture with Chol. Unlike the PEs, the membrane PCs are intrinsically nonfusogenic lipids: in excess water they only form lamellar phases and not any of the inverted phases on their own. Thus, the finding that Chol induces cubic phases in mixtures with unsaturated PCs may have important implications for its role in fusion. In ternary mixtures, saturated PCs and sphingomyelin are known to separate into liquid-ordered domains along with Chol. Our results thus suggest that unsaturated PCs, which are excluded from these domains, could form fusogenic domains with Chol. Such a dual role of Chol may explain the seemingly paradoxical ability of cell membranes to simultaneously form rigid, low-curvature raft-like patches while still being able to undergo facile membrane fusion.
Collapse
Affiliation(s)
- Boris G Tenchov
- Northwestern University, Department of Biochemistry, Molecular Biology and Cell Biology, Evanston, Illinois 60208, USA.
| | | | | |
Collapse
|
35
|
Sueyoshi R, Tada K, Goto M, Tamai N, Matsuki H, Kaneshina S. Barotropic phase transition between the lamellar liquid crystal phase and the inverted hexagonal phase of dioleoylphosphatidylethanolamine. Colloids Surf B Biointerfaces 2006; 50:85-8. [PMID: 16697154 DOI: 10.1016/j.colsurfb.2006.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Revised: 03/20/2006] [Accepted: 04/06/2006] [Indexed: 11/20/2022]
Abstract
The phase transition between the lamellar liquid crystal (Lalpha) phase and the inverted hexagonal (H(II)) phase of dioleoylphosphatidylethanolamine (DOPE) in aqueous NaCl solutions was observed by means of differential scanning calorimetry (DSC) under ambient pressure and light-transmittance technique under high pressure. The pressure dependence of the transition temperature (dT/dp) and the thermodynamic quantities for the Lalpha/H(II) transition were compared with those of another phase transition found in the DOPE bilayer membrane, which is the transition from the lamellar crystal (Lc) phase to the Lalpha phase. The dT/dp value of the Lalpha/H(II) transition was about 3.5 times as large as that of the Lc/Lalpha transition while the thermodynamic quantities were significantly smaller than those of the latter to the contrary. Comparing the enthalpy and volume behavior of the Lalpha/H(II) transition with that of the Lc/Lalpha transition, we concluded that the Lalpha/H(II) transition can be regarded as the volume-controlled transition for the reconstruction of molecular packing.
Collapse
Affiliation(s)
- Ryosuke Sueyoshi
- Department of Biological Science and Technology, Faculty of Engineering, The University of Tokushima, Tokushima 770-8506, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Michel N, Fabiano AS, Polidori A, Jack R, Pucci B. Determination of phase transition temperatures of lipids by light scattering. Chem Phys Lipids 2006; 139:11-9. [PMID: 16253216 DOI: 10.1016/j.chemphyslip.2005.09.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Revised: 09/05/2005] [Accepted: 09/16/2005] [Indexed: 11/29/2022]
Abstract
Various techniques have been proposed to specify the phase transition temperatures of surfactant molecules. The work reported herein deals with a new general method of T(c) determination based on the optical properties' modifications of aqueous surfactant solutions when the phase transitions occur in the phospholipid membrane. The shape alteration of supramolecular systems induced by the phase transition was correlated with the refraction and absorption coefficients of their aqueous dispersion. The mean count rate (average number of photons detected per second) measured with a Zetasizer Nano-S model ZEN1600 Dynamic Light Scattering Instrument, is representative of an emerging macroscopic phenomenon, but not directly size dependent and has been adapted to our expectations. Changes in the measured scattering intensity reflect changes in the optical properties of the material during temperature variations. Thus, this method allowed to specify the phase transition temperature of many natural or synthetic surfactants independently of their polar head or hydrophobic part.
Collapse
Affiliation(s)
- Nicolas Michel
- Laboratoire de Chimie Bioorganique et des Systèmes Moléculaires Vectoriels, Faculté des Sciences, 33 Rue Louis Pasteur, 84000 Avignon, France
| | | | | | | | | |
Collapse
|
37
|
Kooijman EE, Carter KM, van Laar EG, Chupin V, Burger KNJ, de Kruijff B. What Makes the Bioactive Lipids Phosphatidic Acid and Lysophosphatidic Acid So Special? Biochemistry 2005; 44:17007-15. [PMID: 16363814 DOI: 10.1021/bi0518794] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phosphatidic acid and lysophosphatidic acid are minor but important anionic bioactive lipids involved in a number of key cellular processes, yet these molecules have a simple phosphate headgroup. To find out what is so special about these lipids, we determined the ionization behavior of phosphatidic acid (PA) and lysophosphatidic acid (LPA) in extended (flat) mixed lipid bilayers using magic angle spinning 31P NMR. Our data show two surprising results. First, despite identical phosphomonoester headgroups, LPA carries more negative charge than PA when present in a phosphatidylcholine bilayer. Dehydroxy-LPA [1-oleoyl-3-(phosphoryl)propanediol] behaves in a manner identical to that of PA, indicating that the difference in negative charge between LPA and PA is caused by the hydroxyl on the glycerol backbone of LPA and its interaction with the phosphomonoester headgroup. Second, deprotonation of phosphatidic acid and lysophosphatidic acid was found to be strongly stimulated by the inclusion of phosphatidylethanolamine in the bilayer, indicating that lipid headgroup charge depends on local lipid composition and will vary between the different subcellular locations of (L)PA. Our findings can be understood in terms of a hydrogen bond formed within the phosphomonoester headgroup of (L)PA and its destabilization by competing intra- or intermolecular hydrogen bonds. We propose that this hydrogen bonding property of (L)PA is involved in the various cellular functions of these lipids.
Collapse
Affiliation(s)
- Edgar E Kooijman
- Department of Biochemistry of Membranes, Bijvoet Center, Institute of Biomembranes, Utrecht University, Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
38
|
Metso AJ, Zhao H, Tuunainen I, Kinnunen PKJ. Observation of the main phase transition of dinervonoylphosphocholine giant liposomes by fluorescence microscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1713:83-91. [PMID: 15979562 DOI: 10.1016/j.bbamem.2005.04.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2004] [Revised: 04/22/2005] [Accepted: 04/22/2005] [Indexed: 11/20/2022]
Abstract
The phase heterogeneity of giant unilamellar dinervonoylphosphocholine (DNPC) vesicles in the course of the main phase transition was investigated by confocal fluorescence microscopy observing the fluorescence from the membrane incorporated lipid analog, 1-palmitoyl-2-(N-4-nitrobenz-2-oxa-1,3-diazol)aminocaproyl-sn-glycero-3-phosphocholine (NBDPC). These data were supplemented by differential scanning calorimetry (DSC) of DNPC large unilamellar vesicles (LUV, diameter approximately 0.1 and 0.2 microm) and multilamellar vesicles (MLV). The present data collected upon cooling reveal a lack of micron-scale gel and fluid phase coexistence in DNPC GUVs above the temperature of 20.5 degrees C, this temperature corresponding closely to the heat capacity maxima (T(em)) of DNPC MLVs and LUVs (T(em) approximately 21 degrees C), measured upon DSC cooling scans. This is in keeping with the model for phospholipid main transition inferred from our previous fluorescence spectroscopy data for DMPC, DPPC, and DNPC LUVs. More specifically, the current experiments provide further support for the phospholipid main transition involving a first-order process, with the characteristic two-phase coexistence converting into an intermediate phase in the proximity of T(em). This at least macroscopically homogenous intermediate phase would then transform into the liquid crystalline state by a second-order process, with further increase in acyl chain trans-->gauche isomerization.
Collapse
Affiliation(s)
- Antti J Metso
- Helsinki Biophysics and Biomembrane Group, Institute of Biomedicine, University of Helsinki, Finland
| | | | | | | |
Collapse
|
39
|
Li SJ, Yamazaki M. Low concentration of dioleoylphosphatidic acid induces an inverted hexagonal (H II) phase transition in dipalmitoleoylphosphatidylethanolamine membranes. Biophys Chem 2004; 109:149-55. [PMID: 15059667 DOI: 10.1016/j.bpc.2003.10.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2003] [Revised: 10/13/2003] [Accepted: 10/16/2003] [Indexed: 10/26/2022]
Abstract
We have investigated the effects of anionic dioleoylphosphatidic acid (DOPA) on the structure and phase behavior of dipalmitoleoylphosphatidylethanolamine (DPOPE) membranes by small-angle X-ray scattering. The results of X-ray diffraction experiments indicate that an L(alpha) to H(II) phase transition in DPOPE membranes occurred at 2.5 mol% DOPA, and above 4.0 mol% they were completely in the H(II) phase. And in the presence of 0.5 M KCl, the critical concentration of DOPA was decreased to 0.6 mol%. These results show that low concentrations of DOPA stabilize the H(II) phase rather than the L(alpha) phase in DPOPE membranes. The absolute spontaneous curvature of DPOPE membrane was gradually decreased with an increase in DOPA concentrations. On the basis of these results, the H(II) phase stability in DPOPE membranes due to low DOPA concentrations is discussed by the spontaneous curvature of monolayer membrane, the packing energy of alkyl chains of the membrane and lipid packing parameter.
Collapse
Affiliation(s)
- Shu Jie Li
- Department of Physics, Dalian University, Dalian Economic and Technical Development Zone, Dalian 116622, PR China.
| | | |
Collapse
|
40
|
|
41
|
García DA, Perillo MA. Effects of flunitrazepam on the Lα-HII phase transition of phosphatidylethanolamine using merocyanine 540 as a fluorescent indicator. Colloids Surf B Biointerfaces 2004; 37:61-9. [PMID: 15450310 DOI: 10.1016/j.colsurfb.2004.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2004] [Revised: 01/29/2004] [Accepted: 04/05/2004] [Indexed: 11/25/2022]
Abstract
Previous studies of our group demonstrated that flunitrazepam is a lipophilic drug capable of interacting with membranes through a partition equilibrium phenomenon. Its localization at the phospholipid polar head region could explain the decrease in the size of dipalmitoylphosphatidylcholine (dpPC) vesicles, through a mechanism that involves the increment in the relative volume of this region with a subsequent increase in the vesicle's surface curvature. In the present work, we investigated if flunitrazepam can affect the L(alpha)-H(II) phase transition of phosphatidylethanolamine through a similar mechanism. This study was approached by using merocyanine 540, a dye sensitive to the molecular packing of membrane lipids. A detailed analysis of merocyanine absorption and fluorescence emission and excitation spectra was performed. The results indicated that the fluorescence emitted came mainly from the monomeric form of merocyanine and that it resulted a good indicator of this phase transition, as was previously described. Flunitrazepam did not affect significantly the onset of the phase transition but showed a tendency to diminish the dye fluorescence emission intensity, which could involve a lower partition of merocyanine in the vesicles. Moreover, the results suggest that this drug produced a delay in the completeness of the phase transition and a decrement in the cooperativity of this phenomenon.
Collapse
Affiliation(s)
- Daniel A García
- Departamento de Química, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Av. Velez Sarsfield 1611, Córdoba 5016, Argentina
| | | |
Collapse
|
42
|
Siegel DP, Kozlov MM. The gaussian curvature elastic modulus of N-monomethylated dioleoylphosphatidylethanolamine: relevance to membrane fusion and lipid phase behavior. Biophys J 2004; 87:366-74. [PMID: 15240471 PMCID: PMC1304357 DOI: 10.1529/biophysj.104.040782] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2004] [Accepted: 03/12/2004] [Indexed: 11/18/2022] Open
Abstract
The energy of intermediates in fusion of phospholipid bilayers is sensitive to kappa(m), the saddle splay (Gaussian curvature) elastic modulus of the lipid monolayers. The value kappa(m) is also important in understanding the stability of inverted cubic (Q(II)) and rhombohedral (R) phases relative to the lamellar (L(alpha)) and inverted hexagonal (H(II)) phases in phospholipids. However, kappa(m) cannot be measured directly. It was previously measured by observing changes in Q(II) phase lattice dimensions as a function of water content. Here we use observations of the phase behavior of N-mono-methylated dioleoylphosphatidylethanolamine (DOPE-Me) to determine kappa(m). At the temperature of the L(alpha)/Q(II) phase transition, T(Q), the partial energies of the two phases are equal, and we can express kappa(m) in terms of known lipid monolayer parameters: the spontaneous curvature of DOPE-Me, the monolayer bending modulus kappa(m), and the distance of the monolayer neutral surface from the bilayer midplane, delta. The calculated ratio kappa(m)/kappa(m) is -0.83 +/- 0.08 at T(Q) approximately 55 degrees C. The uncertainty is due primarily to uncertainty in the value of delta for the L(alpha) phase. This value of kappa(m)/kappa(m) is in accord with theoretical expectations, including recent estimates of the value required to rationalize observations of rhombohedral (R) phase stability in phospholipids. The value kappa(m) substantially affects the free energy of formation of fusion intermediates: more energy (tens of k(B)T) is required to form stalks and fusion pores (ILAs) than estimated solely on the basis of the bending elastic energy. In particular, ILAs are much higher in energy than previously estimated. This rationalizes the action of fusion-catalyzing proteins in stabilizing nascent fusion pores in biomembranes; a function inferred from recent experiments in viral systems. These results change predictions of earlier work on ILA and Q(II) phase stability and L(alpha)/Q(II) phase transition mechanisms. To our knowledge, this is the first determination of the saddle splay (Gaussian) modulus in a lipid system consisting only of phospholipids.
Collapse
Affiliation(s)
- D P Siegel
- Givaudan, Inc., Cincinnati, Ohio 45216, USA.
| | | |
Collapse
|
43
|
Milhaud J. New insights into water–phospholipid model membrane interactions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1663:19-51. [PMID: 15157606 DOI: 10.1016/j.bbamem.2004.02.003] [Citation(s) in RCA: 180] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2003] [Revised: 01/22/2004] [Accepted: 02/04/2004] [Indexed: 11/18/2022]
Abstract
Modulating the relative humidity (RH) of the ambient gas phase of a phospholipid/water sample for modifying the activity of phospholipid-sorbed water [humidity-controlled osmotic stress methods, J. Chem. Phys. 92 (1990) 4519 and J. Phys. Chem. 96 (1992) 446] has opened a new field of research of paramount importance. New types of phase transitions, occurring at specific values of this activity, have been then disclosed. Hence, it is become recognized that this activity, like the temperature T, is an intensive parameter of the thermodynamical state of these samples. This state can be therefore changed (phase transition) either, by modulating T at a given water activity (a given hydration level), or, by modulating the water activity, at a given T. The underlying mechanisms of these two types of transition differ, especially when they appear as disorderings of fatty chains. In lyotropic transitions, this disordering follows from two thermodynamical laws. First, acting on the activity (the chemical potential) of water external to a phospholipid/water sample, a transbilayer gradient of water chemical potential is created, leading to a transbilayer flux of water (Fick's law). Second, water molecules present within the hydrocarbon region of this phospholipid bilayer interact with phospholipid molecules through their chemical potential (Gibbs-Duhem relation): the conformational state of fatty chains (the thermodynamical state of the phospholipid molecules) changes. This process is slow, as revealed by osmotic stress time-resolved experiments. In thermal chain-melting transitions, the first rapid step is the disordering of fatty chains of a fraction of phospholipid molecules. It occurs a few degrees before the main transition temperature, T(m), during the pretransition and the sub-main transition. The second step, less rapid, is the redistribution of water molecules between the different parts of the sample, as revealed by T-jump time-resolved experiments. Finally, in lyotropic and thermal transitions, hydration and conformation are linked but the order of anteriority of their change, in each case, is probably not the same. In this review, first, the interactions of phospholipid submolecular fragments and water molecules, in the interfacial and hydrocarbon regions of phospholipid/water multibilayer stacks, will be described. Second, the coupling of the conformational states of phospholipid and water molecules, during thermal and lyotropic transitions, will be demonstrated through examples.
Collapse
Affiliation(s)
- Jeannine Milhaud
- Laboratoire de Physico-chimie Biomoléculaire et Cellulaire/Chimie et Spectroscopie Structurale Biomoléculaire (LPBC/CSSB), UMR CNRS 7033 (Box 138), Université Pierre et Marie Curie, 4 Place Jussieu 75252, Paris Cedex 05, France.
| |
Collapse
|
44
|
Yildiz S, Pekcan O, Berker AN, Ozbek H. Scaling of thermal hysteresis at nematic-smectic-A phase transition in a binary mixture. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2004; 69:031705. [PMID: 15089308 DOI: 10.1103/physreve.69.031705] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2003] [Indexed: 05/24/2023]
Abstract
The photon transmission method was applied to study the scaling of thermal hysteresis at the nematic-smectic-A transition in a binary mixture of 4-ethoxy-4(')-(6-vinyloxyhexyloxyl) azobenzene monomer, smectogen, and 4-hexoxy-3(')-methly-4(')-(6-acryloyloxyhexyloxy) azobenzene. The thermal hysteresis loops were obtained under linearly varying temperature. It has been found that the area A of the hysteresis loops scales with the temperature scanning rate R as A=A(0)+bR(n) with the exponent n equal to 0.692, which is consistent with the (Phi(2))(3) field theoretical model value within the experimental resolution.
Collapse
Affiliation(s)
- Sevtap Yildiz
- Department of Physics, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | | | | | | |
Collapse
|
45
|
Low pH Stabilizes the Inverted Hexagonal II Phase in Dipalmitoleoylphosphatidylethanolamine Membrane. J Biol Phys 2004; 30:377-86. [PMID: 23345879 DOI: 10.1007/s10867-004-7894-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Dipalmitoleoylphosphatidylethanolamine (DPOPE) membrane is in the L(α) phase in neutral pH at 20 °C. The results of small-angle X-ray scattering (SAXS) indicate that an L(α) to H(II) phase transition in DPOPE membranes occurred at pH 1.9 in the absence of salt, and at pH 2.8 in the presence of 0.5 M KCl, at fully hydrated condition at 20 °C. The spontaneous curvature of DPOPE monolayer membrane did not change with a decrease in pH values. To elucidate the mechanism, we have investigated the effect of the cationic dioctadecyldimethylammonium (DODMA) on the structure and phase behavior of DPOPE membrane. The result shows that DODMA stabilizes the H(II) phase rather than the L(α) phase in DPOPE membrane at its low concentrations. Based on these results, the H(II) phase stability of DPOPE membrane due to low pH is discussed in terms of the spontaneous curvature of the monolayer membrane and the packing energy of acyl chains in the membrane.
Collapse
|
46
|
Rappolt M, Hickel A, Bringezu F, Lohner K. Mechanism of the lamellar/inverse hexagonal phase transition examined by high resolution x-ray diffraction. Biophys J 2003; 84:3111-22. [PMID: 12719241 PMCID: PMC1302872 DOI: 10.1016/s0006-3495(03)70036-8] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
For the first time the electron density of the lamellar liquid crystalline as well as of the inverted hexagonal phase could be retrieved at the transition temperature. A reliable decomposition of the d-spacings into hydrophobic and hydrophilic structure elements could be performed owing to the presence of a sufficient number of reflections. While the hydrocarbon chain length, d(C), in the lamellar phase with a value of 14.5 A lies within the extreme limits of the estimated chain length of the inverse hexagonal phase 10 A < d(C) < 16 A, the changes in the hydrophilic region vary strongly. During the lamellar-to-inverse hexagonal phase transition the area per lipid molecule reduces by approximately 25%, and the number of water molecules per lipid increases from 14 to 18. On the basis of the analysis of the structural components of each phase, the interface between the coexisting mesophases between 66 and 84 degrees C has been examined in detail, and a model for the formation of the first rods in the matrix of the lamellar phospholipid stack is discussed. Judging from the structural relations between the inverse hexagonal and the lamellar phase, we suggest a cooperative chain reaction of rod formation at the transition midpoint, which is mainly driven by minimizing the interstitial region.
Collapse
Affiliation(s)
- Michael Rappolt
- Institute of Biophysics and X-Ray Structure Research, Austrian Academy of Sciences, c/o Sincrotrone Trieste, 34012 Basovizza, Italy.
| | | | | | | |
Collapse
|
47
|
Kooijman EE, Chupin V, de Kruijff B, Burger KNJ. Modulation of membrane curvature by phosphatidic acid and lysophosphatidic acid. Traffic 2003; 4:162-74. [PMID: 12656989 DOI: 10.1034/j.1600-0854.2003.00086.x] [Citation(s) in RCA: 279] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The local generation of phosphatidic acid plays a key role in the regulation of intracellular membrane transport through mechanisms which are largely unknown. Phosphatidic acid may recruit and activate downstream effectors, or change the biophysical properties of the membrane and directly induce membrane bending and/or destabilization. To evaluate these possibilities, we determined the phase properties of phosphatidic acid and lysophosphatidic acid at physiological conditions of pH and ion concentrations. In single-lipid systems, unsaturated phosphatidic acid behaved as a cylindrical, bilayer-preferring lipid at cytosolic conditions (37 degrees C, pH 7.2, 0.5 mM free Mg2+), but acquired a type-II shape at typical intra-Golgi conditions, a mildly acidic pH and submillimolar free Ca2+ (pH 6.6-5.9, 0.3 mM Ca2+). Lysophosphatidic acid formed type-I lipid micelles in the absence of divalent cations, but anhydrous cation-lysophosphatidic acid bilayer complexes in their presence. These data suggest a similar molecular shape for phosphatidic acid and lysophosphatidic acid at cytosolic conditions; however, experiments in mixed-lipid systems indicate that their shape is not identical. Lysophosphatidic acid stabilized the bilayer phase of unsaturated phosphatidylethanolamine, while the opposite effect was observed in the presence of phosphatidic acid. These results support the hypothesis that a conversion of lysophosphatidic acid into phosphatidic acid by endophilin or BARS (50 kDa brefeldin A ribosylated substrate) may induce negative spontaneous monolayer curvature and regulate endocytic and Golgi membrane fission. Alternative models for the regulation of membrane fission based on the strong dependence of the molecular shape of (lyso)phosphatidic acid on pH and divalent cations are also discussed.
Collapse
Affiliation(s)
- Edgar E Kooijman
- Department of Biochemistry of Membranes, Center for Biomembranes and Lipid Enzymology, Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, the Netherlands.
| | | | | | | |
Collapse
|