1
|
Ma R, Briggs JM. The tilting motion of the central core reveals the transport mechanism of the sarco/endoplasmic reticulum Ca 2+-ATPase. Int J Biol Macromol 2024; 269:132000. [PMID: 38697445 DOI: 10.1016/j.ijbiomac.2024.132000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
The sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) transports two Ca2+ ions per ATP hydrolyzed from the cytoplasm to the lumen. However, how the ATP hydrolysis remotely drives the Ca2+ transport is unclear. In the SERCA1a crystal structures, the ATP hydrolysis is accompanied by the notably increasing tilting angle of the central core (CC) and the Ca2+ transport, and the CC tilting angle dramatically decreases in the E2 to E1 transition. We demonstrated that the significantly increasing tilting motion of the CC drove the Ca2+ release in the molecular dynamics simulation of the R836A variant, and the dramatic spontaneous decrease in the CC tilting angle of the E2 state triggers the restart of the SERCA1a's transport cycle. The repulsion between the phosphorylated D351 and the phosphate groups in ADP triggers the release of ADP from the SERCA1a headpiece. We proposed a novel SERCA transport mechanism in which ATP hydrolysis drives a significant tilting motion of the CC, which drives Ca2+ transport and the A domain rotational motion in the E1P-ADP-2Ca2+ to E2P transition. The dramatic spontaneous decrease in the CC tilting angle of the E2 state drives the restart of the transport cycle.
Collapse
Affiliation(s)
- Rulong Ma
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States of America
| | - James M Briggs
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States of America.
| |
Collapse
|
2
|
Dasgupta B, Tiwari SP. Explicit versus implicit consideration of binding partners in protein-protein complex to elucidate intrinsic dynamics. Biophys Rev 2022; 14:1379-1392. [PMID: 36659985 PMCID: PMC9842844 DOI: 10.1007/s12551-022-01026-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/27/2022] [Indexed: 12/23/2022] Open
Abstract
The binding of many proteins to their protein partners is tightly regulated via control of their relative intrinsic dynamics during the binding process, a phenomenon which can in turn be modulated. Therefore, investigating the intrinsic dynamics of proteins is necessary to understand function in a comprehensive way. By intrinsic dynamics herein, we principally refer to the vibrational signature of a protein molecule popularly obtained from normal modes or essential modes. For normal modes, one often considers that the molecule under investigation is a collection of springs in a solvent-free or implicit-solvent medium. In the context of a protein-binding partner, the analysis of vibration of the target protein is often complicated due to molecular interaction within the complex. Generally, it is assumed that the isolated bound conformation of the target protein captures the implicit effect of the binding partner on the intrinsic dynamics, therefore suggesting that any influence of the partner molecule is also already integrated. Such an assumption allows large-scale studies of the conservation of protein flexibility. However, in cases where a partner protein directly influences the vibration of the target via critical contacts at the protein-protein interface, the above assumption falls short of providing a detailed view. In this review article, we discuss the implications of considering the dynamics of a protein in a protein-protein complex, as modelled implicitly and explicitly with methods dependent on elastic network models. We further propose how such an explicit consideration can be applied to understand critical protein-protein contacts that can be targeted in future studies.
Collapse
Affiliation(s)
- Bhaskar Dasgupta
- Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-Ku, Tokyo, 153-8904 Japan
| | - Sandhya P. Tiwari
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima City, 1-3-1 Kagamiyama, Hiroshima, 739-8526 Japan
- Present Address: Institute of Protein Research, Osaka University, 3-2 Yamadaoka, Suita-Shi, Osaka, 565-0871 Japan
| |
Collapse
|
3
|
Bauer JA, Bauerová-Hlinková V. Extracting the Dynamic Motion of Proteins Using Normal Mode Analysis. Methods Mol Biol 2022; 2449:213-231. [PMID: 35507265 DOI: 10.1007/978-1-0716-2095-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Normal mode analysis (NMA) is a technique for describing the conformational states accessible to a protein in a minimum energy conformation. NMA gives results similar to those produced by principal components analysis of a molecular dynamics simulation, but with only a fraction of the computational effort. Here, we provide a brief overview of the theory and describe three methods for carrying out NMA, including the use of one of the on-line services, the use of off-line software for calculating the projection of the modes calculated from one conformation onto another, and an all-atom NMA calculated using GROMACS. For all three methods, we will use the E1·2Ca2+ form of the Ca2+-ATPase as a concrete example.
Collapse
Affiliation(s)
- Jacob A Bauer
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia.
| | | |
Collapse
|
4
|
Structural and energetic analysis of metastable intermediate states in the E1P-E2P transition of Ca 2+-ATPase. Proc Natl Acad Sci U S A 2021; 118:2105507118. [PMID: 34593638 PMCID: PMC8501872 DOI: 10.1073/pnas.2105507118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2021] [Indexed: 01/05/2023] Open
Abstract
Ion pumps (or P-type ATPases) are membrane proteins, which transport ions through biological membranes against a concentration gradient, a function essential for many biological processes, such as muscle contraction, neurotransmission, and metabolism. Molecular mechanisms underlying active ion transport by ion pumps have been investigated by biochemical experiments and high-resolution structure analyses. Here, the transition of sarcoplasmic reticulum Ca2+-ATPase upon dissociation of Ca2+ is investigated using atomistic molecular dynamics simulations. We find intermediate structures along the pathway are stabilized by transient interactions between A- and P-domains as well as lipid molecules in the transmembrane helices. Sarcoplasmic reticulum (SR) Ca2+-ATPase transports two Ca2+ ions from the cytoplasm to the SR lumen against a large concentration gradient. X-ray crystallography has revealed the atomic structures of the protein before and after the dissociation of Ca2+, while biochemical studies have suggested the existence of intermediate states in the transition between E1P⋅ADP⋅2Ca2+ and E2P. Here, we explore the pathway and free energy profile of the transition using atomistic molecular dynamics simulations with the mean-force string method and umbrella sampling. The simulations suggest that a series of structural changes accompany the ordered dissociation of ADP, the A-domain rotation, and the rearrangement of the transmembrane (TM) helices. The luminal gate then opens to release Ca2+ ions toward the SR lumen. Intermediate structures on the pathway are stabilized by transient sidechain interactions between the A- and P-domains. Lipid molecules between TM helices play a key role in the stabilization. Free energy profiles of the transition assuming different protonation states suggest rapid exchanges between Ca2+ ions and protons when the Ca2+ ions are released toward the SR lumen.
Collapse
|
5
|
Barbot T, Beswick V, Montigny C, Quiniou É, Jamin N, Mouawad L. Deciphering the Mechanism of Inhibition of SERCA1a by Sarcolipin Using Molecular Simulations. Front Mol Biosci 2021; 7:606254. [PMID: 33614704 PMCID: PMC7890198 DOI: 10.3389/fmolb.2020.606254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/06/2020] [Indexed: 12/02/2022] Open
Abstract
SERCA1a is an ATPase calcium pump that transports Ca2+ from the cytoplasm to the sarco/endoplasmic reticulum lumen. Sarcolipin (SLN), a transmembrane peptide, regulates the activity of SERCA1a by decreasing its Ca2+ transport rate, but its mechanism of action is still not well-understood. To decipher this mechanism, we have performed normal mode analysis in the all-atom model, with the SERCA1a-SLN complex, or the isolated SERCA1a, embedded in an explicit membrane. The comparison of the results allowed us to provide an explanation at the atomic level for the action of SLN that is in good agreement with experimental observations. In our analyses, the presence of SLN locally perturbs the TM6 transmembrane helix and as a consequence modifies the position of D800, one of the key metal-chelating residues. Additionally, it reduces the flexibility of the gating residues, V304, and E309 in TM4, at the entrance of the Ca2+ binding sites, which would decrease the affinity for Ca2+. Unexpectedly, SLN has also an effect on the ATP binding site more than 35 Å away, due to the straightening of TM5, a long helix considered as the spine of the protein. The straightening of TM5 modifies the structure of the P-N linker that sits above it, and which comprises the 351DKTG354 conserved motif, resulting in an increase of the distance between ATP and the phosphorylation site. As a consequence, the turn-over rate could be affected. All this gives SERCA1a the propensity to go toward a Ca2+ low-affinity E2-like state in the presence of SLN and toward a Ca2+ high-affinity E1-like state in the absence of SLN. In addition to a general mechanism of inhibition of SERCA1a regulatory peptides, this study also provides an insight into the conformational transition between the E2 and E1 states.
Collapse
Affiliation(s)
- Thomas Barbot
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Veronica Beswick
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France.,Physics Department, Evry-Val-d'Essonne University, Paris-Saclay University, Evry, France
| | - Cédric Montigny
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Éric Quiniou
- CNRS UMR9187 / INSERM U1196, Institut Curie, PSL Research University, Université Paris-Saclay, Orsay, France
| | - Nadège Jamin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Liliane Mouawad
- CNRS UMR9187 / INSERM U1196, Institut Curie, PSL Research University, Université Paris-Saclay, Orsay, France
| |
Collapse
|
6
|
Świątek M, Gudowska-Nowak E. Delineating elastic properties of kinesin linker and their sensitivity to point mutations. Sci Rep 2020; 10:4832. [PMID: 32179821 PMCID: PMC7075872 DOI: 10.1038/s41598-020-61399-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/24/2020] [Indexed: 12/03/2022] Open
Abstract
We analyze free energy estimators from simulation trials mimicking single-molecule pulling experiments on a neck linker of a kinesin motor. For that purpose, we have performed a version of steered molecular dynamics (SMD) calculations. The sample trajectories have been analyzed to derive distribution of work done on the system. In order to induce stretching of the linker, we have applied a constant pulling force to the molecule and allowed for a subsequent relaxation of its structure. The use of fluctuation relations (FR) relevant to non-equilibrium systems subject to thermal fluctuations allows us to assess the difference in free energy between stretched and relaxed conformations. To further understand effects of potential mutations on elastic properties of the linker, we have performed similar in silico studies on a structure formed of a polyalanine sequence (Ala-only) and on three other structures, created by substituting selected types of amino acid residues in the linker’s sequence with alanine (Ala) ones. The results of SMD simulations indicate a crucial role played by the Asparagine (Asn) and Lysine (Lys) residues in controlling stretching and relaxation properties of the linker domain of the motor.
Collapse
Affiliation(s)
- Michał Świątek
- Department of Pharmaceutical Biophysics, Jagiellonian University Medical College, ul. Medyczna 9, 30-688, Kraków, Poland. .,Jagiellonian University, Marian Smoluchowski Institute of Physics, ul. Prof. S.Łojasiewicza 11, Kraków, 30-348, Poland.
| | - Ewa Gudowska-Nowak
- Jagiellonian University, Marian Smoluchowski Institute of Physics and Mark Kac Center for Complex Systems Research, ul. Prof. S.Łojasiewicza 11, Kraków, 30-348, Poland
| |
Collapse
|
7
|
Abboud A, Bédoucha P, Byška J, Arnesen T, Reuter N. Dynamics-function relationship in the catalytic domains of N-terminal acetyltransferases. Comput Struct Biotechnol J 2020; 18:532-547. [PMID: 32206212 PMCID: PMC7078549 DOI: 10.1016/j.csbj.2020.02.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/14/2020] [Accepted: 02/25/2020] [Indexed: 12/15/2022] Open
Abstract
N-terminal acetyltransferases (NATs) belong to the superfamily of acetyltransferases. They are enzymes catalysing the transfer of an acetyl group from acetyl coenzyme A to the N-terminus of polypeptide chains. N-terminal acetylation is one of the most common protein modifications. To date, not much is known on the molecular basis for the exclusive substrate specificity of NATs. All NATs share a common fold called GNAT. A characteristic of NATs is the β6β7 hairpin loop covering the active site and forming with the α1α2 loop a narrow tunnel surrounding the catalytic site in which cofactor and polypeptide meet and exchange an acetyl group. We investigated the dynamics-function relationships of all available structures of NATs covering the three domains of Life. Using an elastic network model and normal mode analysis, we found a common dynamics pattern conserved through the GNAT fold; a rigid V-shaped groove formed by the β4 and β5 strands and splitting the fold in two dynamical subdomains. Loops α1α2, β3β4 and β6β7 all show clear displacements in the low frequency normal modes. We characterized the mobility of the loops and show that even limited conformational changes of the loops along the low-frequency modes are able to significantly change the size and shape of the ligand binding sites. Based on the fact that these movements are present in most low-frequency modes, and common to all NATs, we suggest that the α1α2 and β6β7 loops may regulate ligand uptake and the release of the acetylated polypeptide.
Collapse
Affiliation(s)
- Angèle Abboud
- Department of Informatics, University of Bergen, Bergen, Norway
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Pierre Bédoucha
- Department of Informatics, University of Bergen, Bergen, Norway
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Jan Byška
- Department of Informatics, University of Bergen, Bergen, Norway
- Faculty of Informatics, Masaryk University, Brno, Czech Republic
| | - Thomas Arnesen
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Surgery, Haukeland University Hospital, Bergen, Norway
| | - Nathalie Reuter
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
- Department of Chemistry, University of Bergen, Bergen, Norway
| |
Collapse
|
8
|
Abstract
A general formulation for constructing addressable atomic clusters is introduced, based on one or more reference structures. By modifying the well depths in a given interatomic potential in favour of nearest-neighbour interactions that are defined in the reference(s), the potential energy landscape can be biased to make a particular permutational isomer the global minimum. The magnitude of the bias changes the resulting potential energy landscape systematically, providing a framework to produce clusters that should self-organise efficiently into the target structure. These features are illustrated for small systems, where all the relevant local minima and transition states can be identified, and for the low-energy regions of the landscape for larger clusters. For a 55-particle cluster, it is possible to design a target structure from a transition state of the original potential and to retain this structure in a doubly addressable landscape. Disconnectivity graphs based on local minima that have no direct connections to a lower minimum provide a helpful way to visualise the larger databases. These minima correspond to the termini of monotonic sequences, which always proceed downhill in terms of potential energy, and we identify them as a class of biminimum. Multiple copies of the target cluster are treated by adding a repulsive term between particles with the same address to maintain distinguishable targets upon aggregation. By tuning the magnitude of this term, it is possible to create assemblies of the target cluster corresponding to a variety of structures, including rings and chains.
Collapse
Affiliation(s)
- David J Wales
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
9
|
Tiwari SP, Reuter N. Conservation of intrinsic dynamics in proteins — what have computational models taught us? Curr Opin Struct Biol 2018; 50:75-81. [DOI: 10.1016/j.sbi.2017.12.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/24/2017] [Accepted: 12/08/2017] [Indexed: 12/12/2022]
|
10
|
Wako H, Endo S. Normal mode analysis as a method to derive protein dynamics information from the Protein Data Bank. Biophys Rev 2017; 9:877-893. [PMID: 29103094 DOI: 10.1007/s12551-017-0330-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/04/2017] [Indexed: 11/30/2022] Open
Abstract
Normal mode analysis (NMA) can facilitate quick and systematic investigation of protein dynamics using data from the Protein Data Bank (PDB). We developed an elastic network model-based NMA program using dihedral angles as independent variables. Compared to the NMA programs that use Cartesian coordinates as independent variables, key attributes of the proposed program are as follows: (1) chain connectivity related to the folding pattern of a polypeptide chain is naturally embedded in the model; (2) the full-atom system is acceptable, and owing to a considerably smaller number of independent variables, the PDB data can be used without further manipulation; (3) the number of variables can be easily reduced by some of the rotatable dihedral angles; (4) the PDB data for any molecule besides proteins can be considered without coarse-graining; and (5) individual motions of constituent subunits and ligand molecules can be easily decomposed into external and internal motions to examine their mutual and intrinsic motions. Its performance is illustrated with an example of a DNA-binding allosteric protein, a catabolite activator protein. In particular, the focus is on the conformational change upon cAMP and DNA binding, and on the communication between their binding sites remotely located from each other. In this illustration, NMA creates a vivid picture of the protein dynamics at various levels of the structures, i.e., atoms, residues, secondary structures, domains, subunits, and the complete system, including DNA and cAMP. Comparative studies of the specific protein in different states, e.g., apo- and holo-conformations, and free and complexed configurations, provide useful information for studying structurally and functionally important aspects of the protein.
Collapse
Affiliation(s)
- Hiroshi Wako
- School of Social Sciences, Waseda University, Tokyo, 169-8050, Japan.
| | - Shigeru Endo
- Department of Physics, School of Science, Kitasato University, Sagamihara, 252-0373, Japan
| |
Collapse
|
11
|
Thirumuruganandham SP, Gómez EA, Lakshmanan S, Hamblin MR. Terahertz Frequency Spectroscopy to Determine Cold Shock Protein Stability upon Solvation and Evaporation - A Molecular Dynamics Study. IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY 2017; 7:131-143. [PMID: 30881732 PMCID: PMC6419770 DOI: 10.1109/tthz.2016.2637380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Infrared (IR) and Terahertz (THz) spectroscopy simulations were carried out using CHARMM35b2 to determine protein stability. The stabilities of three bacterial cold shock proteins (Csps) originating from mesophiles, thermophiles and hyper- thermophiles respectively were investigated in this study. The three different Csps were investigated by Normal-Mode analysis and Molecular Dynamics simulation of THz spectra using the Hessian matrix for solvated systems, interpreted in the harmonic approximation at optimum near-melting temperatures of each homologue, by incorporating differences in the hydrous and anhydrous states of the Csps. The results show slight variations in the large scale protein motion. However, the IR spectra of Csps observed at the low frequency saddle surface region, clearly distinguishes the thermophilic and mesophilic proteins based on their stability. Further studies on protein stability employing low-frequency collective modes have the potential to reveal functionally important conformational changes that are biologically significant.
Collapse
Affiliation(s)
| | - Edgar A Gómez
- Programa de Física, Universidad del Quindío, Armenia, Colombia
| | - Shanmugamurthy Lakshmanan
- Department of Dermatology, Harvard Medical School, Boston, MA 02114, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Michael R Hamblin
- Department of Dermatology, Harvard Medical School, Boston, MA 02114, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
12
|
Maximova T, Moffatt R, Ma B, Nussinov R, Shehu A. Principles and Overview of Sampling Methods for Modeling Macromolecular Structure and Dynamics. PLoS Comput Biol 2016; 12:e1004619. [PMID: 27124275 PMCID: PMC4849799 DOI: 10.1371/journal.pcbi.1004619] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Investigation of macromolecular structure and dynamics is fundamental to understanding how macromolecules carry out their functions in the cell. Significant advances have been made toward this end in silico, with a growing number of computational methods proposed yearly to study and simulate various aspects of macromolecular structure and dynamics. This review aims to provide an overview of recent advances, focusing primarily on methods proposed for exploring the structure space of macromolecules in isolation and in assemblies for the purpose of characterizing equilibrium structure and dynamics. In addition to surveying recent applications that showcase current capabilities of computational methods, this review highlights state-of-the-art algorithmic techniques proposed to overcome challenges posed in silico by the disparate spatial and time scales accessed by dynamic macromolecules. This review is not meant to be exhaustive, as such an endeavor is impossible, but rather aims to balance breadth and depth of strategies for modeling macromolecular structure and dynamics for a broad audience of novices and experts.
Collapse
Affiliation(s)
- Tatiana Maximova
- Department of Computer Science, George Mason University, Fairfax, Virginia, United States of America
| | - Ryan Moffatt
- Department of Computer Science, George Mason University, Fairfax, Virginia, United States of America
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland, United States of America
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland, United States of America
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amarda Shehu
- Department of Computer Science, George Mason University, Fairfax, Virginia, United States of America
- Department of Biongineering, George Mason University, Fairfax, Virginia, United States of America
- School of Systems Biology, George Mason University, Manassas, Virginia, United States of America
| |
Collapse
|
13
|
Tiwari SP, Reuter N. Similarity in Shape Dictates Signature Intrinsic Dynamics Despite No Functional Conservation in TIM Barrel Enzymes. PLoS Comput Biol 2016; 12:e1004834. [PMID: 27015412 PMCID: PMC4807811 DOI: 10.1371/journal.pcbi.1004834] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 02/25/2016] [Indexed: 11/19/2022] Open
Abstract
The conservation of the intrinsic dynamics of proteins emerges as we attempt to understand the relationship between sequence, structure and functional conservation. We characterise the conservation of such dynamics in a case where the structure is conserved but function differs greatly. The triosephosphate isomerase barrel fold (TBF), renowned for its 8 β-strand-α-helix repeats that close to form a barrel, is one of the most diverse and abundant folds found in known protein structures. Proteins with this fold have diverse enzymatic functions spanning five of six Enzyme Commission classes, and we have picked five different superfamily candidates for our analysis using elastic network models. We find that the overall shape is a large determinant in the similarity of the intrinsic dynamics, regardless of function. In particular, the β-barrel core is highly rigid, while the α-helices that flank the β-strands have greater relative mobility, allowing for the many possibilities for placement of catalytic residues. We find that these elements correlate with each other via the loops that link them, as opposed to being directly correlated. We are also able to analyse the types of motions encoded by the normal mode vectors of the α-helices. We suggest that the global conservation of the intrinsic dynamics in the TBF contributes greatly to its success as an enzymatic scaffold both through evolution and enzyme design.
Collapse
Affiliation(s)
- Sandhya P. Tiwari
- Department of Molecular Biology, University of Bergen, Pb. 7803, Bergen, Norway
- Computational Biology Unit, Department of Informatics, University of Bergen, Pb. 7803, Bergen, Norway
| | - Nathalie Reuter
- Department of Molecular Biology, University of Bergen, Pb. 7803, Bergen, Norway
- Computational Biology Unit, Department of Informatics, University of Bergen, Pb. 7803, Bergen, Norway
- * E-mail:
| |
Collapse
|
14
|
Komuro Y, Re S, Kobayashi C, Muneyuki E, Sugita Y. CHARMM Force-Fields with Modified Polyphosphate Parameters Allow Stable Simulation of the ATP-Bound Structure of Ca(2+)-ATPase. J Chem Theory Comput 2015; 10:4133-42. [PMID: 26588553 DOI: 10.1021/ct5004143] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Adenosine triphosphate (ATP) is an indispensable energy source in cells. In a wide variety of biological phenomena like glycolysis, muscle contraction/relaxation, and active ion transport, chemical energy released from ATP hydrolysis is converted to mechanical forces to bring about large-scale conformational changes in proteins. Investigation of structure-function relationships in these proteins by molecular dynamics (MD) simulations requires modeling of ATP in solution and ATP bound to proteins with accurate force-field parameters. In this study, we derived new force-field parameters for the triphosphate moiety of ATP based on the high-precision quantum calculations of methyl triphosphate. We tested our new parameters on membrane-embedded sarcoplasmic reticulum Ca(2+)-ATPase and four soluble proteins. The ATP-bound structure of Ca(2+)-ATPase remains stable during MD simulations, contrary to the outcome in shorter simulations using original parameters. Similar results were obtained with the four ATP-bound soluble proteins. The new force-field parameters were also tested by investigating the range of conformations sampled during replica-exchange MD simulations of ATP in explicit water. Modified parameters allowed a much wider range of conformational sampling compared with the bias toward extended forms with original parameters. A diverse range of structures agrees with the broad distribution of ATP conformations in proteins deposited in the Protein Data Bank. These simulations suggest that the modified parameters will be useful in studies of ATP in solution and of the many ATP-utilizing proteins.
Collapse
Affiliation(s)
- Yasuaki Komuro
- Graduate School of Science and Engineering, Chuo University , 1-13-27, Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan.,RIKEN Theoretical Molecular Science Laboratory , 2-1, Hirosawa, Wako-shi, Saitama 351-0198, Japan.,RIKEN Advanced Institute for Computational Science, International Medical Device Alliance (IMDA) 6F , 1-6-5 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Suyong Re
- RIKEN Theoretical Molecular Science Laboratory , 2-1, Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Chigusa Kobayashi
- RIKEN Advanced Institute for Computational Science, International Medical Device Alliance (IMDA) 6F , 1-6-5 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Eiro Muneyuki
- Graduate School of Science and Engineering, Chuo University , 1-13-27, Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Yuji Sugita
- RIKEN Theoretical Molecular Science Laboratory , 2-1, Hirosawa, Wako-shi, Saitama 351-0198, Japan.,RIKEN Advanced Institute for Computational Science, International Medical Device Alliance (IMDA) 6F , 1-6-5 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Quantitative Biology Center, International Medical Device Alliance (IMDA) 6F , 1-6-5 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN iTHES , 2-1, Hirosawa, Wako-shi, Saitama 351-0198, Japan
| |
Collapse
|
15
|
Ribeiro AA, Ortiz V. Local elastic constants of LacI and implications for allostery. J Mol Graph Model 2015; 57:106-13. [DOI: 10.1016/j.jmgm.2015.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 01/28/2015] [Accepted: 01/29/2015] [Indexed: 11/28/2022]
|
16
|
Tiwari SP, Fuglebakk E, Hollup SM, Skjærven L, Cragnolini T, Grindhaug SH, Tekle KM, Reuter N. WEBnm@ v2.0: Web server and services for comparing protein flexibility. BMC Bioinformatics 2014; 15:427. [PMID: 25547242 PMCID: PMC4339738 DOI: 10.1186/s12859-014-0427-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 12/11/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Normal mode analysis (NMA) using elastic network models is a reliable and cost-effective computational method to characterise protein flexibility and by extension, their dynamics. Further insight into the dynamics-function relationship can be gained by comparing protein motions between protein homologs and functional classifications. This can be achieved by comparing normal modes obtained from sets of evolutionary related proteins. RESULTS We have developed an automated tool for comparative NMA of a set of pre-aligned protein structures. The user can submit a sequence alignment in the FASTA format and the corresponding coordinate files in the Protein Data Bank (PDB) format. The computed normalised squared atomic fluctuations and atomic deformation energies of the submitted structures can be easily compared on graphs provided by the web user interface. The web server provides pairwise comparison of the dynamics of all proteins included in the submitted set using two measures: the Root Mean Squared Inner Product and the Bhattacharyya Coefficient. The Comparative Analysis has been implemented on our web server for NMA, WEBnm@, which also provides recently upgraded functionality for NMA of single protein structures. This includes new visualisations of protein motion, visualisation of inter-residue correlations and the analysis of conformational change using the overlap analysis. In addition, programmatic access to WEBnm@ is now available through a SOAP-based web service. Webnm@ is available at http://apps.cbu.uib.no/webnma . CONCLUSION WEBnm@ v2.0 is an online tool offering unique capability for comparative NMA on multiple protein structures. Along with a convenient web interface, powerful computing resources, and several methods for mode analyses, WEBnm@ facilitates the assessment of protein flexibility within protein families and superfamilies. These analyses can give a good view of how the structures move and how the flexibility is conserved over the different structures.
Collapse
Affiliation(s)
- Sandhya P Tiwari
- Department of Molecular Biology, University of Bergen, Bergen, Norway.
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway.
| | - Edvin Fuglebakk
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway.
| | - Siv M Hollup
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway.
| | - Lars Skjærven
- Department of Biomedicine, University of Bergen, Bergen, Norway.
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway.
| | - Tristan Cragnolini
- Department of Molecular Biology, University of Bergen, Bergen, Norway.
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway.
- Present address: University Chemical Laboratories, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Svenn H Grindhaug
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway.
| | - Kidane M Tekle
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway.
| | - Nathalie Reuter
- Department of Molecular Biology, University of Bergen, Bergen, Norway.
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway.
| |
Collapse
|
17
|
Perica T, Kondo Y, Tiwari SP, McLaughlin SH, Kemplen KR, Zhang X, Steward A, Reuter N, Clarke J, Teichmann SA. Evolution of oligomeric state through allosteric pathways that mimic ligand binding. Science 2014; 346:1254346. [PMID: 25525255 PMCID: PMC4337988 DOI: 10.1126/science.1254346] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Evolution and design of protein complexes are almost always viewed through the lens of amino acid mutations at protein interfaces. We showed previously that residues not involved in the physical interaction between proteins make important contributions to oligomerization by acting indirectly or allosterically. In this work, we sought to investigate the mechanism by which allosteric mutations act, using the example of the PyrR family of pyrimidine operon attenuators. In this family, a perfectly sequence-conserved helix that forms a tetrameric interface is exposed as solvent-accessible surface in dimeric orthologs. This means that mutations must be acting from a distance to destabilize the interface. We identified 11 key mutations controlling oligomeric state, all distant from the interfaces and outside ligand-binding pockets. Finally, we show that the key mutations introduce conformational changes equivalent to the conformational shift between the free versus nucleotide-bound conformations of the proteins.
Collapse
Affiliation(s)
- Tina Perica
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK. Medical Research Council (MRC) Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Yasushi Kondo
- Medical Research Council (MRC) Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Sandhya P Tiwari
- Department of Molecular Biology, University of Bergen University of Bergen, P.O. Box 7803, N-5020 Bergen, Norway. Computational Biology Unit, Department of Informatics, University of Bergen, P.O. Box 7803, N-5020 Bergen, Norway
| | - Stephen H McLaughlin
- Medical Research Council (MRC) Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Katherine R Kemplen
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Xiuwei Zhang
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Annette Steward
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Nathalie Reuter
- Department of Molecular Biology, University of Bergen University of Bergen, P.O. Box 7803, N-5020 Bergen, Norway. Computational Biology Unit, Department of Informatics, University of Bergen, P.O. Box 7803, N-5020 Bergen, Norway
| | - Jane Clarke
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Sarah A Teichmann
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK.
| |
Collapse
|
18
|
Fuglebakk E, Tiwari SP, Reuter N. Comparing the intrinsic dynamics of multiple protein structures using elastic network models. Biochim Biophys Acta Gen Subj 2014; 1850:911-922. [PMID: 25267310 DOI: 10.1016/j.bbagen.2014.09.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/15/2014] [Accepted: 09/16/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND Elastic network models (ENMs) are based on the simple idea that a protein can be described as a set of particles connected by springs, which can then be used to describe its intrinsic flexibility using, for example, normal mode analysis. Since the introduction of the first ENM by Monique Tirion in 1996, several variants using coarser protein models have been proposed and their reliability for the description of protein intrinsic dynamics has been widely demonstrated. Lately an increasing number of studies have focused on the meaning of slow dynamics for protein function and its potential conservation through evolution. This leads naturally to comparisons of the intrinsic dynamics of multiple protein structures with varying levels of similarity. SCOPE OF REVIEW We describe computational strategies for calculating and comparing intrinsic dynamics of multiple proteins using elastic network models, as well as a selection of examples from the recent literature. MAJOR CONCLUSIONS The increasing interest for comparing dynamics across protein structures with various levels of similarity, has led to the establishment and validation of reliable computational strategies using ENMs. Comparing dynamics has been shown to be a viable way for gaining greater understanding for the mechanisms employed by proteins for their function. Choices of ENM parameters, structure alignment or similarity measures will likely influence the interpretation of the comparative analysis of protein motion. GENERAL SIGNIFICANCE Understanding the relation between protein function and dynamics is relevant to the fundamental understanding of protein structure-dynamics-function relationship. This article is part of a Special Issue entitled Recent developments of molecular dynamics.
Collapse
Affiliation(s)
- Edvin Fuglebakk
- Department of Molecular Biology, University of Bergen, Pb. 7803, N-5020 Bergen, Norway; Computational Biology Unit, Department of Informatics, University of Bergen, Pb. 7803, N-5020 Bergen, Norway.
| | - Sandhya P Tiwari
- Department of Molecular Biology, University of Bergen, Pb. 7803, N-5020 Bergen, Norway; Computational Biology Unit, Department of Informatics, University of Bergen, Pb. 7803, N-5020 Bergen, Norway.
| | - Nathalie Reuter
- Department of Molecular Biology, University of Bergen, Pb. 7803, N-5020 Bergen, Norway; Computational Biology Unit, Department of Informatics, University of Bergen, Pb. 7803, N-5020 Bergen, Norway.
| |
Collapse
|
19
|
López-Blanco JR, Aliaga JI, Quintana-Ortí ES, Chacón P. iMODS: internal coordinates normal mode analysis server. Nucleic Acids Res 2014; 42:W271-6. [PMID: 24771341 PMCID: PMC4086069 DOI: 10.1093/nar/gku339] [Citation(s) in RCA: 424] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Normal mode analysis (NMA) in internal (dihedral) coordinates naturally reproduces the collective functional motions of biological macromolecules. iMODS facilitates the exploration of such modes and generates feasible transition pathways between two homologous structures, even with large macromolecules. The distinctive internal coordinate formulation improves the efficiency of NMA and extends its applicability while implicitly maintaining stereochemistry. Vibrational analysis, motion animations and morphing trajectories can be easily carried out at different resolution scales almost interactively. The server is versatile; non-specialists can rapidly characterize potential conformational changes, whereas advanced users can customize the model resolution with multiple coarse-grained atomic representations and elastic network potentials. iMODS supports advanced visualization capabilities for illustrating collective motions, including an improved affine-model-based arrow representation of domain dynamics. The generated all-heavy-atoms conformations can be used to introduce flexibility for more advanced modeling or sampling strategies. The server is free and open to all users with no login requirement at http://imods.chaconlab.org.
Collapse
Affiliation(s)
- José Ramón López-Blanco
- Department of Biological Chemical Physics, Rocasolano Physical Chemistry Institute C.S.I.C., Serrano 119, 28006 Madrid, Spain
| | - José I Aliaga
- Department of Computer Science and Engineering, University Jaume I, 12071 Castellón, Spain
| | | | - Pablo Chacón
- Department of Biological Chemical Physics, Rocasolano Physical Chemistry Institute C.S.I.C., Serrano 119, 28006 Madrid, Spain
| |
Collapse
|
20
|
Das A, Gur M, Cheng MH, Jo S, Bahar I, Roux B. Exploring the conformational transitions of biomolecular systems using a simple two-state anisotropic network model. PLoS Comput Biol 2014; 10:e1003521. [PMID: 24699246 PMCID: PMC3974643 DOI: 10.1371/journal.pcbi.1003521] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 02/01/2014] [Indexed: 11/19/2022] Open
Abstract
Biomolecular conformational transitions are essential to biological functions. Most experimental methods report on the long-lived functional states of biomolecules, but information about the transition pathways between these stable states is generally scarce. Such transitions involve short-lived conformational states that are difficult to detect experimentally. For this reason, computational methods are needed to produce plausible hypothetical transition pathways that can then be probed experimentally. Here we propose a simple and computationally efficient method, called ANMPathway, for constructing a physically reasonable pathway between two endpoints of a conformational transition. We adopt a coarse-grained representation of the protein and construct a two-state potential by combining two elastic network models (ENMs) representative of the experimental structures resolved for the endpoints. The two-state potential has a cusp hypersurface in the configuration space where the energies from both the ENMs are equal. We first search for the minimum energy structure on the cusp hypersurface and then treat it as the transition state. The continuous pathway is subsequently constructed by following the steepest descent energy minimization trajectories starting from the transition state on each side of the cusp hypersurface. Application to several systems of broad biological interest such as adenylate kinase, ATP-driven calcium pump SERCA, leucine transporter and glutamate transporter shows that ANMPathway yields results in good agreement with those from other similar methods and with data obtained from all-atom molecular dynamics simulations, in support of the utility of this simple and efficient approach. Notably the method provides experimentally testable predictions, including the formation of non-native contacts during the transition which we were able to detect in two of the systems we studied. An open-access web server has been created to deliver ANMPathway results. Many biomolecules are like tiny molecular machines that need to change their shapes and visit many states to perform their biological functions. For a complete molecular understanding of a biological process, one needs to have information on the relevant stable states of the system in question, as well as the pathways by which the system travels from one state to another. We report here an efficient computational method that uses the knowledge of experimental structures of a pair of stable states in order to construct an energetically favoravle pathway between them. We adopt a simple representation of the molecular system by replacing the atoms with beads connected by springs and constructing an energy function with two minima around the end-states. We searched for the structure with highest energy that the system is most likely to visit during the transition and created two paths starting from this structure and proceeding toward the end-states. The combined result of these two paths is the minimum energy pathway between the two stable states. We apply this method to study important structural changes in one enzyme and three large proteins that transport small molecules and ions across the cell membrane.
Collapse
Affiliation(s)
- Avisek Das
- Department of Biochemistry and Molecular Biology, Gordon Center for Integrative Science, University of Chicago, Chicago, Illinois, United States of America
| | - Mert Gur
- Department of Computational & Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Mary Hongying Cheng
- Department of Computational & Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Sunhwan Jo
- Department of Biochemistry and Molecular Biology, Gordon Center for Integrative Science, University of Chicago, Chicago, Illinois, United States of America
| | - Ivet Bahar
- Department of Computational & Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, Gordon Center for Integrative Science, University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
21
|
Fuglebakk E, Reuter N, Hinsen K. Evaluation of Protein Elastic Network Models Based on an Analysis of Collective Motions. J Chem Theory Comput 2013; 9:5618-28. [PMID: 26592296 DOI: 10.1021/ct400399x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Elastic network models (ENMs) are valuable tools for investigating collective motions of proteins, and a rich variety of simple models have been proposed over the past decade. A good representation of the collective motions requires a good approximation of the covariances between the fluctuations of the individual atoms. Nevertheless, most studies have validated such models only by the magnitudes of the single-atom fluctuations they predict. In the present study, we have quantified the agreement between the covariance structure predicted by molecular dynamics (MD) simulations and those predicted by a representative selection of proposed coarse-grained ENMs. We then contrast this approach with the comparison to MD-predicted atomic fluctuations and comparison to crystallographic B-factors. While all the ENMs yield approximations to the MD-predicted covariance structure, we report large and consistent differences between proposed models. We also find that the ability of the ENMs to predict atomic fluctuations is correlated with their ability to capture the covariance structure. In contrast, we find that the models that agree best with B-factors model collective motions less reliably and recommend against using B-factors as a benchmark.
Collapse
Affiliation(s)
- Edvin Fuglebakk
- Computational Biology Unit, UniResearch , 5020 Bergen, Norway
| | - Nathalie Reuter
- Computational Biology Unit, UniResearch , 5020 Bergen, Norway
| | - Konrad Hinsen
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique , 45071 Orléans, France.,Division Expériences, Synchrotron SOLEIL , 91190 Saint Aubin, France
| |
Collapse
|
22
|
Smejtek P, Word RC, Satterfield LE. Electrophoretic mobility of sarcoplasmic reticulum vesicles - analytical model includes amino acid residues of A+P+N domain of Ca(2+)-ATPase and charged lipids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:766-75. [PMID: 24099739 DOI: 10.1016/j.bbamem.2013.09.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/23/2013] [Accepted: 09/25/2013] [Indexed: 11/28/2022]
Abstract
This work is an experimental and theoretical study of electrostatic and hydrodynamic properties of the surface of sarcoplasmic reticulum (SR) membrane using particle electrophoresis. The essential structural components of SR membrane include a lipid matrix and a dense layer of Ca(2+)-ATPases embedded in the matrix. The Ca(2+)-ATPase layer both drives and impedes vesicle mobility. To analyze the experimental mobility data, obtained at pH4.0, 4.7, 5.0, 6.0, 7.5, and 9.0 in 0.1M monovalent (1:1) electrolyte, an analytical solution for the vesicle mobility and electroosmotic flow velocity distribution was obtained by solving the Poisson-Boltzmann and the Navier-Stokes-Brinkman equations. The electrophoretic mobility model includes two sets of charges that represent: (a) charged lipids of the lipid matrix of the vesicle core, and (b) charged amino acid residues of APN domains of Ca(2+)-ATPases. APN domains are assumed to form a charged plane displaced from the surface of lipid matrix. The charged plane is embedded in a frictional layer that represents the surface layer of calcium pumps. Electrophoretic mobility is driven by the charged APN domain and by lipid matrix while the surface layer provides hydrodynamic friction. The charge of APN domain is determined by ionized amino acid residues obtained from the amino acid composition of SERCA1a Ca(2+)-ATPase. Agreement between the measured and the predicted mobility is evaluated by the weighted sum of mobility deviation squared. This model reproduces the experimental dependence of mobility on pH and predicts that APN domains are located in the upper half of the SR vesicle surface layer.
Collapse
Affiliation(s)
- Pavel Smejtek
- Department of Physics and Molecular Biosciences Group, Portland State University, Portland, OR 97207-0751, USA.
| | - Robert C Word
- Department of Physics and Molecular Biosciences Group, Portland State University, Portland, OR 97207-0751, USA
| | - Laura E Satterfield
- Department of Physics and Molecular Biosciences Group, Portland State University, Portland, OR 97207-0751, USA
| |
Collapse
|
23
|
Rodgers TL, Burnell D, Townsend PD, Pohl E, Cann MJ, Wilson MR, McLeish TCB. ΔΔPT: a comprehensive toolbox for the analysis of protein motion. BMC Bioinformatics 2013; 14:183. [PMID: 23758746 PMCID: PMC3689072 DOI: 10.1186/1471-2105-14-183] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 05/24/2013] [Indexed: 11/30/2022] Open
Abstract
Background Normal Mode Analysis is one of the most successful techniques for studying motions in proteins and macromolecules. It can provide information on the mechanism of protein functions, used to aid crystallography and NMR data reconstruction, and calculate protein free energies. Results ΔΔPT is a toolbox allowing calculation of elastic network models and principle component analysis. It allows the analysis of pdb files or trajectories taken from; Gromacs, Amber, and DL_POLY. As well as calculation of the normal modes it also allows comparison of the modes with experimental protein motion, variation of modes with mutation or ligand binding, and calculation of molecular dynamic entropies. Conclusions This toolbox makes the respective tools available to a wide community of potential NMA users, and allows them unrivalled ability to analyse normal modes using a variety of techniques and current software.
Collapse
|
24
|
Novikov GV, Sivozhelezov VS, Shaitan KV. Functionally relevant conformational dynamics of water-soluble proteins. Mol Biol 2013. [DOI: 10.1134/s0026893313010111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Murgiano L, Sacchetto R, Testoni S, Dorotea T, Mascarello F, Liguori R, Gentile A, Drögemüller C. Pseudomyotonia in Romagnola cattle caused by novel ATP2A1 mutations. BMC Vet Res 2012; 8:186. [PMID: 23046865 PMCID: PMC3545862 DOI: 10.1186/1746-6148-8-186] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 09/25/2012] [Indexed: 11/10/2022] Open
Abstract
Background Bovine congenital pseudomyotonia (PMT) is an impairment of muscle relaxation induced by exercise preventing animals from performing rapid movements. Forms of recessively inherited PMT have been described in different cattle breeds caused by two independent mutations in ATP2A1 encoding a skeletal-muscle Ca2+-ATPase (SERCA1). We observed symptoms of congenital PMT in four related Romagnola beef cattle from Italy and evaluated SERCA1 activity and scanned ATP2A1 for possible causative mutations. Results We obtained four PMT affected Romagnola cattle and noted striking clinical similarities to the previously described PMT cases in other cattle breeds. The affected animals had a reduced SERCA1 activity in the sarcoplasmic reticulum. A single affected animal was homozygous for a novel complex variant in ATP2A1 exon 8 (c.[632 G>T; 857 G>T]). Three out of four cases were compound heterozygous for the newly identified exon 8 variant and the exon 6 variant c.491 G>A(p. Arg146Gly), which has previously been shown to cause PMT in Chianina cattle. Pedigree analysis showed that the exon 8 double mutation event dates back to at least 1978. Both nucleotide substitutions are predicted to alter the SERCA1 amino acid sequence (p.[(Gly211Val; Gly284Val)]), affect highly conserved residues, in particular the actuator domain of SERCA1. Conclusion Clinical, biochemical and DNA analyses confirmed the initial hypothesis. We provide functional and genetic evidence that one novel and one previously described ATP2A1 mutation lead to a reduced SERCA1 activity in skeletal muscles and pseudomyotonia in affected Romagnola cattle. Selection against these mutations can now be used to eliminate the mutant alleles from the Romagnola breed.
Collapse
Affiliation(s)
- Leonardo Murgiano
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, 3001, Bern, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Wales DJ, Carr JM. Quasi-Continuous Interpolation Scheme for Pathways between Distant Configurations. J Chem Theory Comput 2012; 8:5020-34. [PMID: 26593194 DOI: 10.1021/ct3004832] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A quasi-continuous interpolation (QCI) scheme is introduced for characterizing physically realistic initial pathways from which to initiate transition state searches and construct kinetic transition networks. Applications are presented for peptides, proteins, and a morphological transformation in an atomic cluster. The first step in each case involves end point alignment, and we describe the use of a shortest augmenting path algorithm for optimizing permutational isomers. The QCI procedure then employs an interpolating potential, which preserves the covalent bonding framework for the biomolecules and includes repulsive terms between unconstrained atoms. This potential is used to identify an interpolating path by minimizing contributions from a connected set of images, including terms corresponding to minima in the interatomic distances between them. This procedure detects unphysical geometries in the line segments between images. The most difficult cases, where linear interpolation would involve chain crossings, are treated by growing the structure an atom at a time using the interpolating potential. To test the QCI procedure, we carry through a series of benchmark calculations where the initial interpolation is coupled to explicit transition state searches to produce complete pathways between specified local minima.
Collapse
Affiliation(s)
- David J Wales
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Joanne M Carr
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
27
|
Fuchigami S, Fujisaki H, Matsunaga Y, Kidera A. Protein Functional Motions: Basic Concepts and Computational Methodologies. ADVANCING THEORY FOR KINETICS AND DYNAMICS OF COMPLEX, MANY-DIMENSIONAL SYSTEMS: CLUSTERS AND PROTEINS 2011. [DOI: 10.1002/9781118087817.ch2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Hollup SM, Fuglebakk E, Taylor WR, Reuter N. Exploring the factors determining the dynamics of different protein folds. Protein Sci 2011; 20:197-209. [PMID: 21086444 DOI: 10.1002/pro.558] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Normal mode analyses of homologous proteins at the family and superfamily level show that slow dynamics are similar and are preserved through evolution. This study investigates how the slow dynamics of proteins is affected by variation in the protein architecture and fold. For this purpose, we have used computer-generated protein models based on idealized protein structures with varying folds. These are shown to be protein-like in their behavior, and they are used to investigate the influence of architecture and fold on the slow dynamics. We compared the dynamics of models having different folds but similar architecture and found the architecture to be the dominant factor for the slow dynamics.
Collapse
Affiliation(s)
- S M Hollup
- Department of Informatics, University of Bergen, N-5020 Bergen, Norway
| | | | | | | |
Collapse
|
29
|
Deriu MA, Soncini M, Orsi M, Patel M, Essex JW, Montevecchi FM, Redaelli A. Anisotropic elastic network modeling of entire microtubules. Biophys J 2011; 99:2190-9. [PMID: 20923653 DOI: 10.1016/j.bpj.2010.06.070] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 06/19/2010] [Accepted: 06/22/2010] [Indexed: 01/03/2023] Open
Abstract
Microtubules are supramolecular structures that make up the cytoskeleton and strongly affect the mechanical properties of the cell. Within the cytoskeleton filaments, the microtubule (MT) exhibits by far the highest bending stiffness. Bending stiffness depends on the mechanical properties and intermolecular interactions of the tubulin dimers (the MT building blocks). Computational molecular modeling has the potential for obtaining quantitative insights into this area. However, to our knowledge, standard molecular modeling techniques, such as molecular dynamics (MD) and normal mode analysis (NMA), are not yet able to simulate large molecular structures like the MTs; in fact, their possibilities are normally limited to much smaller protein complexes. In this work, we developed a multiscale approach by merging the modeling contribution from MD and NMA. In particular, MD simulations were used to refine the molecular conformation and arrangement of the tubulin dimers inside the MT lattice. Subsequently, NMA was used to investigate the vibrational properties of MTs modeled as an elastic network. The coarse-grain model here developed can describe systems of hundreds of interacting tubulin monomers (corresponding to up to 1,000,000 atoms). In particular, we were able to simulate coarse-grain models of entire MTs, with lengths up to 350 nm. A quantitative mechanical investigation was performed; from the bending and stretching modes, we estimated MT macroscopic properties such as bending stiffness, Young modulus, and persistence length, thus allowing a direct comparison with experimental data.
Collapse
Affiliation(s)
- Marco A Deriu
- Department of Mechanics, Politecnico di Torino, Turin, Italy.
| | | | | | | | | | | | | |
Collapse
|
30
|
Smejtek P, Satterfield LE, Word RC, Abramson JJ. Electrophoretic mobility of sarcoplasmic reticulum vesicles is determined by amino acids of A + P + N domains of Ca2+–ATPase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1689-97. [DOI: 10.1016/j.bbamem.2010.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 04/19/2010] [Accepted: 05/04/2010] [Indexed: 11/25/2022]
|
31
|
Phan G, Benabdelhak H, Lascombe MB, Benas P, Rety S, Picard M, Ducruix A, Etchebest C, Broutin I. Structural and dynamical insights into the opening mechanism of P. aeruginosa OprM channel. Structure 2010; 18:507-17. [PMID: 20399187 DOI: 10.1016/j.str.2010.01.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 01/22/2010] [Accepted: 01/26/2010] [Indexed: 11/18/2022]
Abstract
Originally described in bacteria, drug transporters are now recognized as major determinants in antibiotics resistance. For Gram-negative bacteria, the reversible assembly consisting of an inner membrane protein responsible for the active transport, a periplasmic protein, and an exit outer membrane channel achieves transport. The opening of the outer membrane protein OprM from Pseudomonas aeruginosa was modeled through normal mode analysis starting from a new X-ray structure solved at 2.4 A resolution in P2(1)2(1)2(1) space group. The three monomers are not linked by internal crystallographic symmetries highlighting the possible functional differences. This structure is closed at both ends, but modeling allowed for an opening that is not reduced to the classically proposed "iris-like mechanism."
Collapse
Affiliation(s)
- Gilles Phan
- Laboratoire de Cristallographie et RMN Biologiques, Université Paris Descartes, UMR 8015 CNRS, Faculté des Sciences Pharmaceutiques et Biologiques, 4 Avenue de l'Observatoire, 75270 Paris Cedex 06, France
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
It was recently found that the lowest-energy collective normal modes dominate the evolutionary divergence of protein structures. This was attributed to a presumed functional importance of such motions, i.e., to natural selection. In contrast to this selectionist explanation, we proposed that the observed behavior could be just the expected physical response of proteins to random mutations. This proposal was based on the success of a linearly forced elastic network model (LFENM) of mutational effects on structure to account for the observed pattern of structural divergence. Here, to further test the mutational explanation and the LFENM, we analyze the structural differences observed not only in homologous (globin-like) proteins but also in unselected experimentally engineered myoglobin mutants and in wild-type variants subject to other perturbations such as ligand-binding and pH changes. We show that the lowest normal modes dominate structural change in all the cases considered and that the LFENM reproduces this behavior quantitatively. The collective nature of the lowest normal modes results in global conformational changes that depend little on the exact nature or location of the perturbation. Significantly, the evolutionarily conserved structural core matches the regions observed to be more robust with respect to mutations, so that the core would be more conserved even under unselected random mutations. In a word, the observed patterns of structural variation can be seen as the natural response of proteins to perturbations and can be adequately modeled using the LFENM, which serves as a common framework to relate a priori different phenomena.
Collapse
Affiliation(s)
- Julián Echave
- Instituto Nacional de Investigaciones Fisicoquímicas Teóricas y Aplicadas, Consejo Nacional de Investigación Científica y Técnicas & Universidad Nacional de La Plata, La Plata, Argentina.
| | | |
Collapse
|
33
|
Hinsen K, Beaumont E, Fournier B, Lacapère JJ. From electron microscopy maps to atomic structures using normal mode-based fitting. Methods Mol Biol 2010; 654:237-258. [PMID: 20665270 DOI: 10.1007/978-1-60761-762-4_13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Electron microscopy (EM) has made possible to solve the structure of many proteins. However, the resolution of some of the EM maps is too low for interpretation at the atomic level, which is particularly important to describe function. We describe methods that combine low-resolution EM data with atomic structures for different conformations of the same protein in order to produce atomic models compatible with the EM map.We illustrate these methods with EM data from decavanadate-induced tubular crystals of a pseudo-phosphorylated intermediate of Ca-ATPase and the various atomic structures of other intermediates available in the Protein Data Bank (PDB). Determination of atomic structure permits not only to analyse protein-protein interactions in the crystals, but also to localize residues in the proximity of the crystallizing agent both within Ca-ATPase and between Ca-ATPase molecules.
Collapse
Affiliation(s)
- Konrad Hinsen
- Centre de Biophysique Moléculaire (CNRS), Orléans, France.
| | | | | | | |
Collapse
|
34
|
Abstract
The Duffy Antigen/Receptor for Chemokine (DARC) is a seven segment transmembrane protein. It was firstly discovered as a blood group antigen and was the first specific gene locus assigned to a specific autosome in man. It became more famous as an erythrocyte receptor for malaria parasites (Plasmodium vivax and Plasmodium knowlesi), and finally for chemokines. DARC is an unorthodox chemokine receptor as (i) it binds chemokines of both CC and CXC classes and (ii) it lacks the Asp-Arg-Tyr consensus motif in its second cytoplasmic loop hence cannot couple to G proteins and activate their signaling pathways. DARC had also been associated to cancer progression, numerous inflammatory diseases, and possibly to AIDS. In this review, we will summarize important biological data on DARC. Then we shall focus on recent development of the elaboration and analyzes of structural models of DARC. We underline the difficulty to propose pertinent structural models of transmembrane protein using comparative modeling process, and other dedicated approaches as the Protein Blocks. The chosen structural models encompass most of the biochemical data known to date. Finally, we present recent development of protein-protein docking between DARC structural models and CXCL-8 structures. We propose a hierarchical search based on separated rigid and flexible docking.
Collapse
Affiliation(s)
- Alexandre G de Brevern
- INSERM UMR-S 665, Université Paris Diderot-Paris 7, Institut National de la Transfusion Sanguine, 6, rue Alexandre Cabanel, 75739 Paris 15, France.
| | | | | | | | | |
Collapse
|
35
|
Ion transport and energy transduction of P-type ATPases: Implications from electrostatic calculations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:721-9. [DOI: 10.1016/j.bbabio.2009.02.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 02/13/2009] [Accepted: 02/17/2009] [Indexed: 12/12/2022]
|
36
|
|
37
|
Thirumuruganandham SP, Urbassek HM. Low-frequency vibrational modes and infrared absorbance of red, blue and green opsin. J Mol Model 2009; 15:959-69. [DOI: 10.1007/s00894-008-0446-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 12/23/2008] [Indexed: 11/25/2022]
|
38
|
Daae Lampe O, Viola I, Reuter N, Hauser H. Two-level approach to efficient visualization of protein dynamics. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2007; 13:1616-1623. [PMID: 17968117 DOI: 10.1109/tvcg.2007.70517] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Proteins are highly flexible and large amplitude deformations of their structure, also called slow dynamics, are often decisive to their function. We present a two-level rendering approach that enables visualization of slow dynamics of large protein assemblies. Our approach is aligned with a hierarchical model of large scale molecules. Instead of constantly updating positions of large amounts of atoms, we update the position and rotation of residues, i.e., higher level building blocks of a protein. Residues are represented by one vertex only indicating its position and additional information defining the rotation. The atoms in the residues are generated on-the-fly on the GPU, exploiting the new graphics hardware geometry shader capabilities. Moreover, we represent the atoms by billboards instead of tessellated spheres. Our representation is then significantly faster and pixel precise. We demonstrate the usefulness of our new approach in the context of our collaborative bioinformatics project.
Collapse
|
39
|
Karjalainen EL, Hauser K, Barth A. Proton paths in the sarcoplasmic reticulum Ca(2+) -ATPase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:1310-8. [PMID: 17904096 DOI: 10.1016/j.bbabio.2007.07.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Revised: 07/23/2007] [Accepted: 07/27/2007] [Indexed: 10/22/2022]
Abstract
The sarcoplasmic reticulum Ca(2+)-ATPase (SERCA1a) pumps Ca(2+) and countertransport protons. Proton pathways in the Ca(2+) bound and Ca(2+)-free states are suggested based on an analysis of crystal structures to which water molecules were added. The pathways are indicated by chains of water molecules that interact favorably with the protein. In the Ca(2+) bound state Ca(2)E1, one of the proposed Ca(2+) entry paths is suggested to operate additionally or alternatively as proton pathway. In analogs of the ADP-insensitive phosphoenzyme E2P and in the Ca(2+)-free state E2, the proton path leads between transmembrane helices M5 to M8 from the lumenal side of the protein to the Ca(2+) binding residues Glu-771, Asp-800 and Glu-908. The proton path is different from suggested Ca(2+) dissociation pathways. We suggest that separate proton and Ca(2+) pathways enable rapid (partial) neutralization of the empty cation binding sites. For this reason, transient protonation of empty cation binding sites and separate pathways for different ions are advantageous for P-type ATPases in general.
Collapse
Affiliation(s)
- Eeva-Liisa Karjalainen
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, Svante Arrhenius väg 12, SE-106 91, Stockholm, Sweden
| | | | | |
Collapse
|
40
|
Gaillard T, Martin E, San Sebastian E, Cossío FP, Lopez X, Dejaegere A, Stote RH. Comparative normal mode analysis of LFA-1 integrin I-domains. J Mol Biol 2007; 374:231-49. [PMID: 17919656 DOI: 10.1016/j.jmb.2007.07.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 07/02/2007] [Accepted: 07/02/2007] [Indexed: 11/29/2022]
Abstract
The conformational dynamics of the Inserted domain (I-domain) from the lymphocyte function-associated antigen-1 (LFA-1) was investigated by normal mode analysis of multiple structures of the low, intermediate, and high affinity states. LFA-1 is an integrin expressed on leukocytes and is of critical importance in adhesion reactions, like antigen-specific responses, homing, and diapedesis. The main ligand binding site of LFA-1 is the I-domain, which recognizes intercellular adhesion molecules (ICAMs), members of the immunoglobulin superfamily. From experimental crystal structures, a large-scale conformational change of, among others, the alpha7 helix of the I-domain has been observed leading to the proposal that these structural changes are linked to the conformational regulation of LFA-1. The results from the present calculations show that structural changes of the alpha7 helix consistent with those observed in the crystal structures are significantly sampled by the low frequency modes. This was found to be particularly true for the low affinity state of the I-domain, indicating that low frequency motions favor the conformational transition implicated in activation. However, beyond the simple downward shift of the helix implied by the crystal structures, the calculations further show that there is a noticeable swinging-out motion of the helix. The consequences of this motion are discussed in the context of integrin activation and inhibition. Moreover, significant changes in the atomic-level dynamics and in long-range correlated motions of the I-domain were found to occur upon binding of the natural ligand ICAM. These changes were more local upon binding of an allosteric inhibitor. The present study opens the question of how changes in dynamics may contribute to the long-range transmission of signal upon ICAM binding by the LFA-1 I-domain.
Collapse
Affiliation(s)
- Thomas Gaillard
- Laboratoire de Biophysicochimie Moléculaire, Institut de Chimie de Strasbourg, Université Louis Pasteur, BP 1032, Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
41
|
TMM@: a web application for the analysis of transmembrane helix mobility. BMC Bioinformatics 2007; 8:232. [PMID: 17601351 PMCID: PMC1949839 DOI: 10.1186/1471-2105-8-232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Accepted: 07/02/2007] [Indexed: 11/26/2022] Open
Abstract
Background To understand the mechanism by which a protein transmits a signal through the cell membrane, an understanding of the flexibility of its transmembrane (TM) region is essential. Normal Mode Analysis (NMA) has become the method of choice to investigate the slowest motions in macromolecular systems. It has been widely used to study transmembrane channels and pumps. It relies on the hypothesis that the vibrational normal modes having the lowest frequencies (also named soft modes) describe the largest movements in a protein and are the ones that are functionally relevant. In particular NMA can be used to study dynamics of TM regions, but no tool making this approach available for non-experts, has been available so far. Results We developed the web-application TMM@ (TransMembrane α-helical Mobility analyzer). It uses NMA to characterize the propensity of transmembrane α-helices to be displaced. Starting from a structure file at the PDB format, the server computes the normal modes of the protein and identifies which helices in the bundle are the most mobile. Each analysis is performed independently from the others and results can be visualized using only a web browser. No additional plug-in or software is required. For users who would like to further analyze the output data with their favourite software, raw results can also be downloaded. Conclusion We built a novel and unique tool, TMM@, to study the mobility of transmembrane α-helices. The tool can be applied to for example membrane transporters and provides biologists studying transmembrane proteins with an approach to investigate which α-helices are likely to undergo the largest displacements, and hence which helices are most likely to be involved in the transportation of molecules in and out of the cell.
Collapse
|
42
|
Almeida WI, Martins OB, Carvalho-Alves PC. Self-association of isolated large cytoplasmic domain of plasma membrane H+ -ATPase from Saccharomyces cerevisiae: role of the phosphorylation domain in a general dimeric model for P-ATPases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:1768-76. [PMID: 17026955 DOI: 10.1016/j.bbamem.2006.08.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Revised: 08/21/2006] [Accepted: 08/22/2006] [Indexed: 10/24/2022]
Abstract
Large cytoplasmic domain (LCD) plasma membrane H+ -ATPase from S. cerevisiae was expressed as two fusion polypeptides in E. coli: a DNA sequence coding for Leu353-Ileu674 (LCDh), comprising both nucleotide (N) and phosphorylation (P) domains, and a DNA sequence coding for Leu353-Thr543 (LCDDeltah, lacking the C-terminus of P domain), were inserted in expression vectors pDEST-17, yielding the respective recombinant plasmids. Overexpressed fusion polypeptides were solubilized with 6 M urea and purified on affinity columns, and urea was removed by dialysis. Their predicted secondary structure contents were confirmed by CD spectra. In addition, both recombinant polypeptides exhibited high-affinity 2',3'-O-(2,4,6-trinitrophenyl)adenosine-5'-triphosphate (TNP-ATP) binding (Kd = 1.9 microM and 2.9 microM for LCDh and LCDDeltah, respectively), suggesting that they have native-like folding. The gel filtration profile (HPLC) of purified LCDh showed two main peaks, with molecular weights of 95 kDa and 39 kDa, compatible with dimeric and monomeric forms, respectively. However, a single elution peak was observed for purified LCDDeltah, with an estimated molecular weight of 29 kDa, as expected for a monomer. Together, these data suggest that LCDh exist in monomer-dimer equilibrium, and that the C-terminus of P domain is necessary for self-association. We propose that such association is due to interaction between vicinal P domains, which may be of functional relevance for H+ -ATPase in native membranes. We discuss a general dimeric model for P-ATPases with interacting P domains, based on published crystallography and cryo-electron microscopy evidence.
Collapse
Affiliation(s)
- W I Almeida
- Instituto de Bioquímica Médica, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-590, Brazil.
| | | | | |
Collapse
|
43
|
Laberge M, Kovesi I, Yonetani T, Fidy J. Normal mode analysis of the horseradish peroxidase collective motions: Correlation with spectroscopically observed heme distortions. Biopolymers 2006; 82:425-9. [PMID: 16453307 DOI: 10.1002/bip.20463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Horseradish peroxidase C is a class III peroxidase whose structure is stabilized by the presence of two endogenous calcium atoms. Calcium removal has been shown to decrease the enzymatic activity of the enzyme and significantly affect the spectroscopically detectable properties of the heme, such as the spin state of the iron, heme normal modes, and distortions from planarity. In this work, we report on normal mode analysis (NMA) performed on models subjected to 2 ns of molecular dynamics simulations to describe the effect of calcium removal on protein collective motions and to investigate the correlation between active site (heme) and protein matrix fluctuations. We show that in the native peroxidase model, heme fluctuations are correlated to matrix fluctuations while they are not in the calcium-depleted model.
Collapse
Affiliation(s)
- Monique Laberge
- Department of Biophysics and Radiation Biology, Semmelweis University and Biophysics Research Group, MTA-TKI, Puskin u. 9, Budapest 1088, Hungary.
| | | | | | | |
Collapse
|
44
|
Stoica I. Characterization of protein matrix motions in the Rb. sphaeroides photosynthetic reaction center. J Mol Model 2005; 12:468-80. [PMID: 16369794 DOI: 10.1007/s00894-005-0074-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Accepted: 10/17/2005] [Indexed: 10/25/2022]
Abstract
We use Normal Mode Analysis to investigate motions in the photosynthetic reaction center (RC) protein. We identify the regions involved in concerted fluctuations of the protein matrix and analyze the normalized amplitudes and the directionality of the first few dominant modes. We also seek to quantify the coupling of normal modes to long-range electron transfer (ET). We find that a quasi-continuous spectrum of protein motions rather than one individual mode contributes to light-driven electron transfer. This is consistent with existing theoretical models (e.g. the spin-boson/dispersed polaron model) for the coupling of the protein and solvent "bath" to charge separation events. [Figure: see text].
Collapse
Affiliation(s)
- Ileana Stoica
- National Research Council of Canada, 6100 Royalmount Ave., Montréal, H4P 2R2, Canada.
| |
Collapse
|
45
|
Maragakis P, Karplus M. Large amplitude conformational change in proteins explored with a plastic network model: adenylate kinase. J Mol Biol 2005; 352:807-22. [PMID: 16139299 DOI: 10.1016/j.jmb.2005.07.031] [Citation(s) in RCA: 251] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Revised: 06/06/2005] [Accepted: 07/12/2005] [Indexed: 10/25/2022]
Abstract
The plastic network model (PNM) is used to generate a conformational change pathway for Escherichia coli adenylate kinase based on two crystal structures, namely that of an open and a closed conformer. In this model, the energy basins corresponding to known conformers are connected at their lowest common energies. The results are used to evaluate and analyze the minimal energy pathways between these basins. The open to closed transition analysis provides an identification of hinges that is in agreement with the existing definitions based on the available X-ray structures. The elastic energy distribution and the C(alpha) pseudo-dihedral variation provide similar information on these hinges. The ensemble of the 45 published structures for this protein and closely related proteins is shown to always be within 3.0 A of the pathway, which corresponds to a conformational change between two end structures that differ by a C(alpha)-atom root-mean-squared deviation of 7.1A.
Collapse
Affiliation(s)
- Paul Maragakis
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge MA 02138, USA.
| | | |
Collapse
|
46
|
Schuyler AD, Chirikjian GS. Efficient determination of low-frequency normal modes of large protein structures by cluster-NMA. J Mol Graph Model 2005; 24:46-58. [PMID: 15990344 DOI: 10.1016/j.jmgm.2005.05.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Revised: 03/18/2005] [Accepted: 03/18/2005] [Indexed: 11/28/2022]
Abstract
The structure-function relationship is critical to understanding the biologically relevant functions of protein structures. Various experimental techniques and numerical modeling methods, normal mode analysis (NMA) in particular, have been employed to gain insight into this relationship. Experimental methods are often unable to provide all the desired information and comprehensive modeling techniques are often too computationally expensive. The authors build upon and optimize their cluster normal mode analysis (cNMA) tool, which uses embedded rigid-bodies and harmonic potentials to capture the biologically significant, low-frequency, oscillations of protein structures. cNMA represents atomic details with a scalable number of degrees-of-freedom, which can be chosen independent of structure size. This representation overcomes the otherwise quadratic order memory requirements and cubic order computational complexity associated with traditional all-atom NMA. cNMA is two orders of magnitude faster than traditional all-atom NMA when clustering by residue (very high resolution) and in the more traditional application using a fixed number of clusters, cNMA computationally scales as O(n), which is two orders of complexity faster than all-atom NMA. cNMA is presented and very large example structures with up to 10(6) atoms are analyzed on a notebook PC in the time scale of minutes/hours. The resulting mode shapes help identify biologically significant, conformational pathways.
Collapse
Affiliation(s)
- Adam D Schuyler
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
| | | |
Collapse
|
47
|
Hollup SM, Salensminde G, Reuter N. WEBnm@: a web application for normal mode analyses of proteins. BMC Bioinformatics 2005; 6:52. [PMID: 15762993 PMCID: PMC1274249 DOI: 10.1186/1471-2105-6-52] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Accepted: 03/11/2005] [Indexed: 11/30/2022] Open
Abstract
Background Normal mode analysis (NMA) has become the method of choice to investigate the slowest motions in macromolecular systems. NMA is especially useful for large biomolecular assemblies, such as transmembrane channels or virus capsids. NMA relies on the hypothesis that the vibrational normal modes having the lowest frequencies (also named soft modes) describe the largest movements in a protein and are the ones that are functionally relevant. Results We developed a web-based server to perform normal modes calculations and different types of analyses. Starting from a structure file provided by the user in the PDB format, the server calculates the normal modes and subsequently offers the user a series of automated calculations; normalized squared atomic displacements, vector field representation and animation of the first six vibrational modes. Each analysis is performed independently from the others and results can be visualized using only a web browser. No additional plug-in or software is required. For users who would like to analyze the results with their favorite software, raw results can also be downloaded. The application is available on . We present here the underlying theory, the application architecture and an illustration of its features using a large transmembrane protein as an example. Conclusion We built an efficient and modular web application for normal mode analysis of proteins. Non specialists can easily and rapidly evaluate the degree of flexibility of multi-domain protein assemblies and characterize the large amplitude movements of their domains.
Collapse
Affiliation(s)
- Siv Midtun Hollup
- Computational Biology Unit, Bergen Center for Computational Science, University of Bergen, Thormøhlensgt.55, N-5008 Bergen, Norway
| | - Gisle Salensminde
- Computational Biology Unit, Bergen Center for Computational Science, University of Bergen, Thormøhlensgt.55, N-5008 Bergen, Norway
| | - Nathalie Reuter
- Computational Biology Unit, Bergen Center for Computational Science, University of Bergen, Thormøhlensgt.55, N-5008 Bergen, Norway
| |
Collapse
|
48
|
Hinsen K, Reuter N, Navaza J, Stokes DL, Lacapère JJ. Normal mode-based fitting of atomic structure into electron density maps: application to sarcoplasmic reticulum Ca-ATPase. Biophys J 2004; 88:818-27. [PMID: 15542555 PMCID: PMC1305158 DOI: 10.1529/biophysj.104.050716] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A method for the flexible docking of high-resolution atomic structures into lower resolution densities derived from electron microscopy is presented. The atomic structure is deformed by an iterative process using combinations of normal modes to obtain the best fit of the electron microscopical density. The quality of the computed structures has been evaluated by several techniques borrowed from crystallography. Two atomic structures of the SERCA1 Ca-ATPase corresponding to different conformations were used as a starting point to fit the electron density corresponding to a different conformation. The fitted models have been compared to published models obtained by rigid domain docking, and their relation to the known crystallographic structures are explored by normal mode analysis. We find that only a few number of modes contribute significantly to the transition. The associated motions involve almost exclusively rotation and translation of the cytoplasmic domains as well as displacement of cytoplasmic loops. We suggest that the movements of the cytoplasmic domains are driven by the conformational change that occurs between nonphosphorylated and phosphorylated intermediate, the latter being mimicked by the presence of vanadate at the phosphorylation site in the electron microscopy structure.
Collapse
Affiliation(s)
- Konrad Hinsen
- Laboratoire Léon Brillouin (CEA-CNRS), 91191 Gif sur Yvette, France.
| | | | | | | | | |
Collapse
|
49
|
Liu M, Barth A. Phosphorylation of the sarcoplasmic reticulum Ca(2+)-ATPase from ATP and ATP analogs studied by infrared spectroscopy. J Biol Chem 2004; 279:49902-9. [PMID: 15381702 DOI: 10.1074/jbc.m408062200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphorylation of the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA1a) was studied with time-resolved Fourier transform infrared spectroscopy. ATP and ATP analogs (ITP, 2'- and 3'-dATP) were used to study the effect of the adenine ring and the ribose hydroxyl groups on ATPase phosphorylation. All modifications of ATP altered conformational changes and phosphorylation kinetics. The differences compared with ATP increased in the following order: 3'-dATP > ITP > 2'-dATP. Enzyme phosphorylation with ITP results in larger absorbance changes in the amide I region, indicating larger conformational changes of the Ca(2+)-ATPase. The respective absorbance changes obtained with 3'-dATP are significantly different from the others with different band positions and amplitudes in the amide I region, indicating different conformational changes of the protein backbone. ATPase phosphorylation with 3'-dATP is also much ( approximately 30 times) slower than with ATP. Our results indicate that modifications to functional groups of ATP (the ribose 2'- and 3'-OH and the amino group in the adenine ring) affect gamma-phosphate transfer to the phosphorylation site of the Ca(2+)-ATPase by changing the extent of conformational change and the phosphorylation rate. ADP binding to the ADP-sensitive phosphoenzyme (Ca(2)E1P) stabilizes the closed conformation of Ca(2)E1P.
Collapse
Affiliation(s)
- Man Liu
- Institut für Biophysik, Johann Wolfgang Goethe-Universität, 60596 Frankfurt am Main, Germany.
| | | |
Collapse
|
50
|
Cao ZW, Xue Y, Han LY, Xie B, Zhou H, Zheng CJ, Lin HH, Chen YZ. MoViES: molecular vibrations evaluation server for analysis of fluctuational dynamics of proteins and nucleic acids. Nucleic Acids Res 2004; 32:W679-85. [PMID: 15215475 PMCID: PMC441522 DOI: 10.1093/nar/gkh384] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Analysis of vibrational motions and thermal fluctuational dynamics is a widely used approach for studying structural, dynamic and functional properties of proteins and nucleic acids. Development of a freely accessible web server for computation of vibrational and thermal fluctuational dynamics of biomolecules is thus useful for facilitating the relevant studies. We have developed a computer program for computing vibrational normal modes and thermal fluctuational properties of proteins and nucleic acids and applied it in several studies. In our program, vibrational normal modes are computed by using modified AMBER molecular mechanics force fields, and thermal fluctuational properties are computed by means of a self-consistent harmonic approximation method. A web version of our program, MoViES (Molecular Vibrations Evaluation Server), was set up to facilitate the use of our program to study vibrational dynamics of proteins and nucleic acids. This software was tested on selected proteins, which show that the computed normal modes and thermal fluctuational bond disruption probabilities are consistent with experimental findings and other normal mode computations. MoViES can be accessed at http://ang.cz3.nus.edu.sg/cgi-bin/prog/norm.pl.
Collapse
Affiliation(s)
- Z W Cao
- Department of Computational Science, National University of Singapore, Blk SOC1, Level 7, 3 Science Drive 2, Singapore 117543, Singapore
| | | | | | | | | | | | | | | |
Collapse
|