1
|
Bucci A, Tortarolo G, Held MO, Bega L, Perego E, Castagnetti F, Bozzoni I, Slenders E, Vicidomini G. 4D Single-particle tracking with asynchronous read-out single-photon avalanche diode array detector. Nat Commun 2024; 15:6188. [PMID: 39043637 PMCID: PMC11266502 DOI: 10.1038/s41467-024-50512-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 07/14/2024] [Indexed: 07/25/2024] Open
Abstract
Single-particle tracking techniques enable investigation of the complex functions and interactions of individual particles in biological environments. Many such techniques exist, each demonstrating trade-offs between spatiotemporal resolution, spatial and temporal range, technical complexity, and information content. To mitigate these trade-offs, we enhanced a confocal laser scanning microscope with an asynchronous read-out single-photon avalanche diode array detector. This detector provides an image of the particle's emission, precisely reflecting its position within the excitation volume. This localization is utilized in a real-time feedback system to drive the microscope scanning mechanism and ensure the particle remains centered inside the excitation volume. As each pixel is an independent single-photon detector, single-particle tracking is combined with fluorescence lifetime measurement. Our system achieves 40 nm lateral and 60 nm axial localization precision with 100 photons and sub-millisecond temporal sampling for real-time tracking. Offline tracking can refine this precision to the microsecond scale. We validated the system's spatiotemporal resolution by tracking fluorescent beads with diffusion coefficients up to 10 μm2/s. Additionally, we investigated the movement of lysosomes in living SK-N-BE cells and measured the fluorescence lifetime of the marker expressed on a membrane protein. We expect that this implementation will open other correlative imaging and tracking studies.
Collapse
Affiliation(s)
- Andrea Bucci
- Molecular Microscopy and Spectroscopy, Istituto Italiano di Tecnologia, Genoa, Italy
- Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi, University of Genoa, Genoa, Italy
| | - Giorgio Tortarolo
- Molecular Microscopy and Spectroscopy, Istituto Italiano di Tecnologia, Genoa, Italy
- Laboratory of Experimental Biophysics, EPFL, Lausanne, Switzerland
| | - Marcus Oliver Held
- Molecular Microscopy and Spectroscopy, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Luca Bega
- Molecular Microscopy and Spectroscopy, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Eleonora Perego
- Molecular Microscopy and Spectroscopy, Istituto Italiano di Tecnologia, Genoa, Italy
- Centre for Integrative Genomics, Université de Lausanne, Lausanne, Switzerland
| | - Francesco Castagnetti
- Non coding RNAs in Physiology and Pathology, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Irene Bozzoni
- Non coding RNAs in Physiology and Pathology, Istituto Italiano di Tecnologia, Genoa, Italy
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
| | - Eli Slenders
- Molecular Microscopy and Spectroscopy, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Giuseppe Vicidomini
- Molecular Microscopy and Spectroscopy, Istituto Italiano di Tecnologia, Genoa, Italy.
| |
Collapse
|
2
|
Khoroshyy P, Martinez-Seara H, Myšková J, Lazar J. Dynamics of transition dipole moment orientation in representative fluorescent proteins. Phys Chem Chem Phys 2023; 25:22117-22123. [PMID: 37560975 DOI: 10.1039/d3cp01242e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Molecules of fluorescent proteins (FPs) exhibit distinct optical directionality. This optical directionality is characterized by transition dipole moments (TDMs), and their orientation with respect to the molecular structures. Although our recent observations of FP crystals allowed us to determine the mean TDM directions with respect to the framework of representative FP molecules, the dynamics of TDM orientations within FP molecules remain to be ascertained. Here we describe the results of our investigations of the dynamics of TDM directions in the fluorescent proteins eGFP, mTurquoise2 and mCherry, through time-resolved fluorescence polarization measurements and microsecond time scale all-atom molecular dynamics (MD) simulations. The investigated FPs exhibit initial fluorescence anisotropies (r0) consistent with significant differences in the orientation of the excitation and emission TDMs. However, based on MD data, we largely attribute this observation to rapid (sub-nanosecond) fluorophore motions within the FP molecular framework. Our results allow improved determinations of orientational distributions of FP molecules by polarization microscopy, as well as more accurate interpretations of fluorescence resonance energy transfer (FRET) observations.
Collapse
Affiliation(s)
- Petro Khoroshyy
- Inst. of Organic Chemistry and Biochemistry CAS, Flemingovo nám. 2, 160 00, Prague 6, Czech Republic
- 1st Faculty of Medicine, Charles University, Albertov 4, 128 00, Prague 2, Czech Republic.
| | - Hector Martinez-Seara
- Inst. of Organic Chemistry and Biochemistry CAS, Flemingovo nám. 2, 160 00, Prague 6, Czech Republic
| | - Jitka Myšková
- 1st Faculty of Medicine, Charles University, Albertov 4, 128 00, Prague 2, Czech Republic.
| | - Josef Lazar
- Inst. of Organic Chemistry and Biochemistry CAS, Flemingovo nám. 2, 160 00, Prague 6, Czech Republic
- 1st Faculty of Medicine, Charles University, Albertov 4, 128 00, Prague 2, Czech Republic.
| |
Collapse
|
3
|
Sánchez-Pedreño Jiménez A, Puhl HL, Vogel SS, Kim Y. Ultrafast fluorescence depolarisation in green fluorescence protein tandem dimers as hydrophobic environment sensitive probes. Phys Chem Chem Phys 2023; 25:19532-19539. [PMID: 37351579 PMCID: PMC10370368 DOI: 10.1039/d3cp01765f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/17/2023] [Indexed: 06/24/2023]
Abstract
Advances in ultra-fast photonics have enabled monitoring of biochemical interactions on a sub nano-second time scale. In addition, picosecond dynamics of intermolecular energy transfer in fluorescent proteins has been observed. Here, we present the development of a genetically encoded fluorescent sensor that can detect changes in hydrophobicity by monitoring ultrafast fluorescence depolarisation. Our sensor is composed of a pair of dimeric enhanced green fluorescent proteins (dEGFPs) linked by a flexible amino-acid linker. We show dimerisation is perturbed by the addition of glycerol which interferes with the hydrophobic interaction of the two proteins. Time-resolved fluorescence anisotropy revealed a systematic attenuation of ultrafast fluorescence depolarisation when the sensor was exposed to increasing glycerol concentrations. This suggests that as hydrophobicity increases, dEGFP pairing decreases within a tandem dimer. Un-pairing of the protein fluorophores dramatically alters the rate of energy transfer between the proteins, resulting in an increase in the limiting anisotropy of the sensor.
Collapse
Affiliation(s)
- Alejandro Sánchez-Pedreño Jiménez
- Leverhulme Quantum Biology Doctoral Training Centre, University of Surrey, Guildford GU2 7XH, UK.
- Department of Microbial Sciences, School of Biosciences, University of Surrey, Guilford GU2 7XH, UK
- Advanced Technology Institute, University of Surrey, Guildford, GU2 7XH, UK
| | - Henry L Puhl
- Laboratory of Biophotonics and Quantum Biology, NIAAA, NIH, Bethesda, USA.
| | - Steven S Vogel
- Laboratory of Biophotonics and Quantum Biology, NIAAA, NIH, Bethesda, USA.
| | - Youngchan Kim
- Leverhulme Quantum Biology Doctoral Training Centre, University of Surrey, Guildford GU2 7XH, UK.
- Department of Microbial Sciences, School of Biosciences, University of Surrey, Guilford GU2 7XH, UK
- Advanced Technology Institute, University of Surrey, Guildford, GU2 7XH, UK
| |
Collapse
|
4
|
Pulin M, Stockhausen KE, Masseck OA, Kubitschke M, Busse B, Wiegert JS, Oertner TG. Orthogonally-polarized excitation for improved two-photon and second-harmonic-generation microscopy, applied to neurotransmitter imaging with GPCR-based sensors. BIOMEDICAL OPTICS EXPRESS 2022; 13:777-790. [PMID: 35284188 PMCID: PMC8884218 DOI: 10.1364/boe.448760] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Fluorescent proteins are excited by light that is polarized parallel to the dipole axis of the chromophore. In two-photon microscopy, polarized light is used for excitation. Here we reveal surprisingly strong polarization sensitivity in a class of genetically encoded, GPCR-based neurotransmitter sensors. In tubular structures such as dendrites, this effect led to a complete loss of membrane signal in dendrites running parallel to the polarization direction of the excitation beam. To reduce the sensitivity to dendritic orientation, we designed an optical device that generates interleaved pulse trains of orthogonal polarization. The passive device, which we inserted in the beam path of an existing two-photon microscope, removed the strong direction bias from fluorescence and second-harmonic (SHG) images. We conclude that for optical measurements of transmitter concentration with GPCR-based sensors, orthogonally polarized excitation is essential.
Collapse
Affiliation(s)
- Mauro Pulin
- Institute for Synaptic Physiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
- Research Group Synaptic Wiring and Information Processing, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Kilian E. Stockhausen
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Olivia A. Masseck
- Synthetic Biology, University of Bremen, Leobener Str. 5, 28359 Bremen, Germany
| | - Martin Kubitschke
- Synthetic Biology, University of Bremen, Leobener Str. 5, 28359 Bremen, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
- Interdisciplinary Competence Center for Interface Research (ICCIR), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - J. Simon Wiegert
- Research Group Synaptic Wiring and Information Processing, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Thomas G. Oertner
- Institute for Synaptic Physiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| |
Collapse
|
5
|
Kay TM, Aplin CP, Simonet R, Beenken J, Miller RC, Libal C, Boersma AJ, Sheets ED, Heikal AA. Molecular Brightness Approach for FRET Analysis of Donor-Linker-Acceptor Constructs at the Single Molecule Level: A Concept. Front Mol Biosci 2021; 8:730394. [PMID: 34595208 PMCID: PMC8476790 DOI: 10.3389/fmolb.2021.730394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
In this report, we have developed a simple approach using single-detector fluorescence autocorrelation spectroscopy (FCS) to investigate the Förster resonance energy transfer (FRET) of genetically encoded, freely diffusing crTC2.1 (mTurquoise2.1-linker-mCitrine) at the single molecule level. We hypothesize that the molecular brightness of the freely diffusing donor (mTurquoise2.1) in the presence of the acceptor (mCitrine) is lower than that of the donor alone due to FRET. To test this hypothesis, the fluorescence fluctuation signal and number of molecules of freely diffusing construct were measured using FCS to calculate the molecular brightness of the donor, excited at 405 nm and detected at 475/50 nm, in the presence and absence of the acceptor. Our results indicate that the molecular brightness of cleaved crTC2.1 in a buffer is larger than that of the intact counterpart under 405-nm excitation. The energy transfer efficiency at the single molecule level is larger and more spread in values as compared with the ensemble-averaging time-resolved fluorescence measurements. In contrast, the molecular brightness of the intact crTC2.1, under 488 nm excitation of the acceptor (531/40 nm detection), is the same or slightly larger than that of the cleaved counterpart. These FCS-FRET measurements on freely diffusing donor-acceptor pairs are independent of the precise time constants associated with autocorrelation curves due to the presence of potential photophysical processes. Ultimately, when used in living cells, the proposed approach would only require a low expression level of these genetically encoded constructs, helping to limit potential interference with the cell machinery.
Collapse
Affiliation(s)
- Taryn M Kay
- Department of Physics and Astronomy, University of Minnesota Duluth, Duluth, MN, United States
| | - Cody P Aplin
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, United States
| | - Rowan Simonet
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, United States
| | - Julie Beenken
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, United States
| | - Robert C Miller
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, United States
| | - Christin Libal
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, United States
| | - Arnold J Boersma
- DWI-Leibniz Institute for Interactive Materials, Aachen, Germany
| | - Erin D Sheets
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, United States
| | - Ahmed A Heikal
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, United States
| |
Collapse
|
6
|
Devos O, Ghaffari M, Vitale R, de Juan A, Sliwa M, Ruckebusch C. Multivariate Curve Resolution Slicing of Multiexponential Time-Resolved Spectroscopy Fluorescence Data. Anal Chem 2021; 93:12504-12513. [PMID: 34494422 DOI: 10.1021/acs.analchem.1c01284] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Time-resolved fluorescence spectroscopy (TRFS), i.e., measurement of fluorescence decay curves for different excitation and/or emission wavelengths, provides specific and sensitive local information on molecules and on their environment. However, TRFS relies on multiexponential data fitting to derive fluorescence lifetimes from the measured decay curves and the time resolution of the technique is limited by the instrumental response function (IRF). We propose here a multivariate curve resolution (MCR) approach based on data slicing to perform tailored and fit-free analysis of multiexponential fluorescence decay curves. MCR slicing, taking as a basic framework the multivariate curve resolution-alternating least-squares (MCR-ALS) soft-modeling algorithm, relies on a hybrid bilinear/trilinear data decomposition. A key feature of the method is that it enables the recovery of individual components characterized by decay profiles that are only partially describable by monoexponential functions. For TRFS data, not only pure multiexponential tail information but also shorter time delay information can be decomposed, where the signal deviates from the ideal exponential behavior due to the limited time resolution. The accuracy of the proposed approach is validated by analyzing mixtures of three commercial dyes and characterizing the mixture composition, lifetimes, and associated contributions, even in situations where only ternary mixture samples are available. MCR slicing is also applied to the analysis of TRFS data obtained on a photoswitchable fluorescent protein (rsEGFP2). Three fluorescence lifetimes are extracted, along with the profile of the IRF, highlighting that decomposition of complex systems, for which individual isomers are characterized by different exponential decays, can also be achieved.
Collapse
Affiliation(s)
- Olivier Devos
- Univ. Lille, CNRS, UMR 8516 - LASIRE - Laboratory of advanced spectroscopy, interactions, reactivity and environment, Cité scientifique, Bâtiment C5, 59000 Lille, France
| | - Mahdiyeh Ghaffari
- Univ. Lille, CNRS, UMR 8516 - LASIRE - Laboratory of advanced spectroscopy, interactions, reactivity and environment, Cité scientifique, Bâtiment C5, 59000 Lille, France
| | - Raffaele Vitale
- Univ. Lille, CNRS, UMR 8516 - LASIRE - Laboratory of advanced spectroscopy, interactions, reactivity and environment, Cité scientifique, Bâtiment C5, 59000 Lille, France
| | - Anna de Juan
- Chemometrics Group, Dept. of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí I Franquès, 1, 08028 Barcelona, Spain
| | - Michel Sliwa
- Univ. Lille, CNRS, UMR 8516 - LASIRE - Laboratory of advanced spectroscopy, interactions, reactivity and environment, Cité scientifique, Bâtiment C5, 59000 Lille, France
| | - Cyril Ruckebusch
- Univ. Lille, CNRS, UMR 8516 - LASIRE - Laboratory of advanced spectroscopy, interactions, reactivity and environment, Cité scientifique, Bâtiment C5, 59000 Lille, France
| |
Collapse
|
7
|
|
8
|
Time-Resolved Fluorescence Anisotropy and Molecular Dynamics Analysis of a Novel GFP Homo-FRET Dimer. Biophys J 2020; 120:254-269. [PMID: 33345902 PMCID: PMC7840444 DOI: 10.1016/j.bpj.2020.11.2275] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/06/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Förster resonance energy transfer (FRET) is a powerful tool to investigate the interaction between proteins in living cells. Fluorescence proteins, such as the green fluorescent protein (GFP) and its derivatives, are coexpressed in cells linked to proteins of interest. Time-resolved fluorescence anisotropy is a popular tool to study homo-FRET of fluorescent proteins as an indicator of dimerization, in which its signature consists of a very short component at the beginning of the anisotropy decay. In this work, we present an approach to study GFP homo-FRET via a combination of time-resolved fluorescence anisotropy, the stretched exponential decay model, and molecular dynamics simulations. We characterize a new, to our knowledge, FRET standard formed by two enhanced GFPs (eGFPs) and a flexible linker of 15 aminoacids (eGFP15eGFP) with this protocol, which is validated by using an eGFP monomer as a reference. An excellent agreement is found between the FRET efficiency calculated from the fit of the eGFP15eGFP fluorescence anisotropy decays with a stretched exponential decay model (〈EFRETexp〉 = 0.25 ± 0.05) and those calculated from the molecular dynamics simulations (〈EFRETMD〉 = 0.18 ± 0.14). The relative dipole orientation between the GFPs is best described by the orientation factors 〈κ2〉 = 0.17 ± 0.16 and 〈|κ|〉 = 0.35 ± 0.20, contextualized within a static framework in which the linker hinders the free rotation of the fluorophores and excludes certain configurations. The combination of time- and polarization-resolved fluorescence spectroscopy with molecular dynamics simulations is shown to be a powerful tool for the study and interpretation of homo-FRET.
Collapse
|
9
|
Bag N, Holowka DA, Baird BA. Imaging FCS delineates subtle heterogeneity in plasma membranes of resting mast cells. Mol Biol Cell 2020; 31:709-723. [PMID: 31895009 PMCID: PMC7202073 DOI: 10.1091/mbc.e19-10-0559] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A myriad of transient, nanoscopic lipid- and protein-based interactions confer a steady-state organization of the plasma membrane in resting cells that is poised to orchestrate assembly of key signaling components upon reception of an extracellular stimulus. Although difficult to observe directly in live cells, these subtle interactions can be discerned by their impact on the diffusion of membrane constituents. Here, we quantified the diffusion properties of a panel of structurally distinct lipid, lipid-anchored, and transmembrane (TM) probes in RBL mast cells by imaging fluorescence correlation spectroscopy (ImFCS). We developed a statistical analysis of data combined from many pixels over multiple cells to characterize differences in diffusion coefficients as small as 10%, which reflect differences in underlying interactions. We found that the distinctive diffusion properties of lipid probes can be explained by their dynamic partitioning into Lo-like proteolipid nanodomains, which encompass a major fraction of the membrane and whose physical properties are influenced by actin polymerization. Effects on diffusion of functional protein modules in both lipid-anchored and TM probes reflect additional complexity in steady state membrane organization. The contrast we observe between different probes diffusing through the same membrane milieu represents the dynamic resting steady state, which serves as a baseline for monitoring plasma membrane remodeling that occurs upon stimulation.
Collapse
Affiliation(s)
- Nirmalya Bag
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
| | - David A Holowka
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
| | - Barbara A Baird
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
10
|
Mystek P, Rysiewicz B, Gregrowicz J, Dziedzicka-Wasylewska M, Polit A. Gγ and Gα Identity Dictate a G-Protein Heterotrimer Plasma Membrane Targeting. Cells 2019; 8:E1246. [PMID: 31614907 PMCID: PMC6829862 DOI: 10.3390/cells8101246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/18/2022] Open
Abstract
Heterotrimeric G-proteins along with G-protein-coupled receptors (GPCRs) regulate many biochemical functions by relaying the information from the plasma membrane to the inside of the cell. The lipid modifications of Gα and Gγ subunits, together with the charged regions on the membrane interaction surface, provide a peculiar pattern for various heterotrimeric complexes. In a previous study, we found that Gαs and Gαi3 prefer different types of membrane-anchor and subclass-specific lipid domains. In the present report, we examine the role of distinct Gγ subunits in the membrane localization and spatiotemporal dynamics of Gαs and Gαi3 heterotrimers. We characterized lateral diffusion and G-protein subunit interactions in living cells using fluorescence recovery after photobleaching (FRAP) microscopy and fluorescence resonance energy transfer (FRET) detected by fluorescence lifetime imaging microscopy (FLIM), respectively. The interaction of Gγ subunits with specific lipids was confirmed, and thus the modulation of heterotrimeric G-protein localization. However, the Gα subunit also modulates trimer localization, and so the membrane distribution of heterotrimeric G-proteins is not dependent on Gγ only.
Collapse
Affiliation(s)
- Paweł Mystek
- Department of Physical Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Beata Rysiewicz
- Department of Physical Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Jan Gregrowicz
- Department of Physical Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Marta Dziedzicka-Wasylewska
- Department of Physical Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Agnieszka Polit
- Department of Physical Biochemistry, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| |
Collapse
|
11
|
York EM, Weilinger NL, LeDue JM, MacVicar BA. Green fluorescent protein emission obscures metabolic fluorescent lifetime imaging of NAD(P)H. BIOMEDICAL OPTICS EXPRESS 2019; 10:4381-4394. [PMID: 31565496 PMCID: PMC6757450 DOI: 10.1364/boe.10.004381] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/10/2019] [Accepted: 05/17/2019] [Indexed: 05/23/2023]
Abstract
Autofluorescence of endogenous molecules can provide valuable insights in both basic research and clinical applications. One such technique is fluorescence lifetime imaging (FLIM) of NAD(P)H, which serves as a correlate of glycolysis and electron transport chain rates in metabolically active tissue. A powerful advantage of NAD(P)H-FLIM is the ability to measure cell-specific metabolism within heterogeneous tissues. Cell-type specific identification is most commonly achieved with directed green fluorescent protein (GFP) expression. However, we demonstrate that NAD(P)H-FLIM should not be analyzed in GFP-expressing cells, as GFP molecules themselves emit photons in the blue spectrum with short fluorescence lifetimes when imaged using two-photon excitation at 750 nm. This is substantially different from the reported GFP emission wavelength and lifetime after two-photon excitation at 910 nm. These blue GFP photons are indistinguishable from free NAD(P)H by both emission spectra and fluorescence lifetime. Therefore, NAD(P)H-FLIM in GFP-expressing cells will lead to incorrect interpretations of metabolic rates, and thus, these techniques should not be combined.
Collapse
Affiliation(s)
- Elisa M York
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, British Columbia, Canada
| | - Nicholas L Weilinger
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, British Columbia, Canada
| | - Jeffrey M LeDue
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, British Columbia, Canada
| | - Brian A MacVicar
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, British Columbia, Canada
| |
Collapse
|
12
|
Böhm I, Gehrke S, Kleb B, Hungerbühler M, Müller R, Klose KJ, Alfke H. Monitoring of tumor burden in vivo by optical imaging in a xenograft SCID mouse model: evaluation of two fluorescent proteins of the GFP-superfamily. Acta Radiol 2019; 60:315-326. [PMID: 29890843 DOI: 10.1177/0284185118780896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Mouse models of human-malignant-melanoma (MM) are important tools to study tumor dynamics. The enhanced green fluorescent protein (EGFP) is widely used in molecular imaging approaches, together with optical scanners, and fluorescence imaging. PURPOSE Currently, there are no data available as to whether other fluorescent proteins are more suitable. The goal of this preclinical study was to analyze two fluorescent proteins of the GFP superfamily under real-time in vivo conditions using fluorescence reflectance imaging (FRI). MATERIAL AND METHODS The human melanoma cell line MeWo was stable transfected with one plasmid: pEGFP-C1 or pDsRed1-N1. We investigated two severe combined immunodeficiency (SCID)-mice groups: A (solid xenografts) and B (xenografts as metastases). After three weeks, the animals were weekly imaged by FRI. Afterwards the mice were euthanized and metastases were imaged in situ: to quantify the cutis-dependent reduction of emitted light, we compared signal intensities obtained by metastases in vivo with signal intensities obtained by in situ liver parenchyma preparations. RESULTS More than 90% of cells were stable transfected. EGFP-/DsRed-xenograft tumors had identical growth kinetics. In vivo the emitted light by DsRed tumors/metastases was much brighter than by EGFP. DsRed metastases were earlier (3 vs. 5 weeks) and much more sensitive detectable than EGFP metastases. Cutis-dependent reduction of emitted light was greater in EGFP than in DsRed mice (tenfold). Autofluorescence of DsRed was lower than of EGFP. CONCLUSION We established an in vivo xenograft mouse model (DsRed-MeWo) that is reliable, reproducible, and superior to the EGFP model as a preclinical tool to study innovative therapies by FRI under real-time in vivo conditions.
Collapse
Affiliation(s)
- Ingrid Böhm
- Department of Diagnostic, Interventional, and Pediatric Radiology, Inselspital, University of Bern, Bern, Switzerland
- Radiology Laboratory, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Stephan Gehrke
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Beate Kleb
- Department of Experimental Ophthalmology, Philipps University of Marburg, Marburg, Germany
| | - Martin Hungerbühler
- Department of Diagnostic, Interventional, and Pediatric Radiology, Inselspital, University of Bern, Bern, Switzerland
- Radiology Laboratory, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Rolf Müller
- Institute of Molecular Tumor Biology and Cancer Gene Therapy (IMT), Philipps University of Marburg, Marburg, Germany
| | - Klaus J Klose
- Deans Office, Faculty of Medicine, Philipps University of Marburg, Marburg, Germany
| | - Heiko Alfke
- Department of Diagnostic Radiology and Interventional Radiology, Klinikum Lüdenscheid, Lüdenscheid, Germany
| |
Collapse
|
13
|
Mitrea DM, Chandra B, Ferrolino MC, Gibbs EB, Tolbert M, White MR, Kriwacki RW. Methods for Physical Characterization of Phase-Separated Bodies and Membrane-less Organelles. J Mol Biol 2018; 430:4773-4805. [PMID: 30017918 PMCID: PMC6503534 DOI: 10.1016/j.jmb.2018.07.006] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/04/2018] [Accepted: 07/09/2018] [Indexed: 12/17/2022]
Abstract
Membrane-less organelles are cellular structures which arise through the phenomenon of phase separation. This process enables compartmentalization of specific sets of macromolecules (e.g., proteins, nucleic acids), thereby regulating cellular processes by increasing local concentration, and modulating the structure and dynamics of their constituents. Understanding the connection between structure, material properties and function of membrane-less organelles requires inter-disciplinary approaches, which address length and timescales that span several orders of magnitude (e.g., Ångstroms to micrometer, picoseconds to hours). In this review, we discuss the wide variety of methods that have been applied to characterize the morphology, rheology, structure and dynamics of membrane-less organelles and their components, in vitro and in live cells.
Collapse
Affiliation(s)
- Diana M Mitrea
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Bappaditya Chandra
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Mylene C Ferrolino
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Eric B Gibbs
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Michele Tolbert
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Michael R White
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Richard W Kriwacki
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA.
| |
Collapse
|
14
|
Masters TA, Marsh RJ, Blacker TS, Armoogum DA, Larijani B, Bain AJ. Polarized two-photon photoselection in EGFP: Theory and experiment. J Chem Phys 2018; 148:134311. [PMID: 29626864 DOI: 10.1063/1.5011642] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In this work, we present a complete theoretical description of the excited state order created by two-photon photoselection from an isotropic ground state; this encompasses both the conventionally measured quadrupolar (K = 2) and the "hidden" degree of hexadecapolar (K = 4) transition dipole alignment, their dependence on the two-photon transition tensor and emission transition dipole moment orientation. Linearly and circularly polarized two-photon absorption (TPA) and time-resolved single- and two-photon fluorescence anisotropy measurements are used to determine the structure of the transition tensor in the deprotonated form of enhanced green fluorescent protein. For excitation wavelengths between 800 nm and 900 nm, TPA is best described by a single element, almost completely diagonal, two-dimensional (planar) transition tensor whose principal axis is collinear to that of the single-photon S0 → S1 transition moment. These observations are in accordance with assignments of the near-infrared two-photon absorption band in fluorescent proteins to a vibronically enhanced S0 → S1 transition.
Collapse
Affiliation(s)
- T A Masters
- Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
| | - R J Marsh
- Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
| | - T S Blacker
- Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
| | - D A Armoogum
- Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
| | - B Larijani
- Cell Biophysics Laboratory, Ikerbasque, Basque Foundation for Science and Unidad de Biofisica (CSIC-UPV/EHU), Bilbao, Spain
| | - A J Bain
- Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
15
|
Ghosh A, Karedla N, Thiele JC, Gregor I, Enderlein J. Fluorescence lifetime correlation spectroscopy: Basics and applications. Methods 2018; 140-141:32-39. [DOI: 10.1016/j.ymeth.2018.02.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/09/2018] [Accepted: 02/10/2018] [Indexed: 10/18/2022] Open
|
16
|
Masters TA, Robinson NA, Marsh RJ, Blacker TS, Armoogum DA, Larijani B, Bain AJ. Time-resolved stimulated emission depletion and energy transfer dynamics in two-photon excited EGFP. J Chem Phys 2018; 148:134312. [DOI: 10.1063/1.5011643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- T. A. Masters
- Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
- CoMPLEX, University College London, London WC1E 6BT, United Kingdom
| | - N. A. Robinson
- Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
| | - R. J. Marsh
- Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
| | - T. S. Blacker
- Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
- CoMPLEX, University College London, London WC1E 6BT, United Kingdom
| | - D. A. Armoogum
- Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
| | - B. Larijani
- Cell Biophysics Laboratory, Ikerbasque, Basque Foundation for Science and Unidad de Biofisica (CSIC-UPV/EHU), Bilbao, Spain
| | - A. J. Bain
- Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
- CoMPLEX, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
17
|
de Las Heras-Martínez G, Andrieu J, Larijani B, Requejo-Isidro J. Quantifying intracellular equilibrium dissociation constants using single-channel time-resolved FRET. JOURNAL OF BIOPHOTONICS 2018; 11:e201600272. [PMID: 28485056 DOI: 10.1002/jbio.201600272] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 02/20/2017] [Accepted: 02/23/2017] [Indexed: 06/07/2023]
Abstract
Quantification of the intracellular equilibrium dissociation constant of the interaction, Kd , is challenging due to the variability of the relative concentrations of the interacting proteins in the cell. Fluorescence lifetime imaging microscopy (FLIM) of the donor provides an accurate measurement of the molecular fraction of donor involved in FRET, but the fraction of bound acceptor is also needed to reliably estimate Kd . We present a method that exploits the spectroscopic properties of the widely used eGFP - mCherry FRET pair to rigorously determine the intracellular Kd based on imaging the fluorescence lifetime of only the donor (single-channel FLIM). We have assessed the effect of incomplete labelling and determined its range of application for different Kd using Monte Carlo simulations. We have demonstrated this method estimating the intracellular Kd for the homodimerisaton of the oncogenic protein 3-phosphoinositide-dependent kinase 1 (PDK1) in different cell lines and conditions, revealing a competitive mechanism for its regulation. The measured intracellular Kd was validated against in-vitro data. This method provides an accurate and generic tool to quantify protein interactions in situ.
Collapse
Affiliation(s)
| | - Josu Andrieu
- Instituto Biofisika (CSIC, UPV/EHU), Barrio de Sarriena s/n, 48940, Leioa, Spain
| | - Banafshé Larijani
- Instituto Biofisika (CSIC, UPV/EHU), Barrio de Sarriena s/n, 48940, Leioa, Spain
- Cell Biophysics Laboratory, Ikerbasque Basque Foundation for Science, Instituto Biofisika (CSIC, UPV/EHU) and Research Centre for Experimental Marine Biology and Biotechnology (PiE), University of the Basque Country (UPV/EHU), Leioa, 48940, Spain
| | - Jose Requejo-Isidro
- Instituto Biofisika (CSIC, UPV/EHU), Barrio de Sarriena s/n, 48940, Leioa, Spain
| |
Collapse
|
18
|
Lee HB, Cong A, Leopold H, Currie M, Boersma AJ, Sheets ED, Heikal AA. Rotational and translational diffusion of size-dependent fluorescent probes in homogeneous and heterogeneous environments. Phys Chem Chem Phys 2018; 20:24045-24057. [DOI: 10.1039/c8cp03873b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Macromolecular crowding effects on diffusion depend on the fluorophore structure, the concentration of crowding agents, and the technique employed.
Collapse
Affiliation(s)
- Hong Bok Lee
- Department of Chemistry and Biochemistry
- Swenson College of Science and Engineering
- University of Minnesota Duluth
- Duluth
- USA
| | - Anh Cong
- Department of Chemistry and Biochemistry
- Swenson College of Science and Engineering
- University of Minnesota Duluth
- Duluth
- USA
| | - Hannah Leopold
- Department of Chemistry and Biochemistry
- Swenson College of Science and Engineering
- University of Minnesota Duluth
- Duluth
- USA
| | - Megan Currie
- Department of Chemistry and Biochemistry
- Swenson College of Science and Engineering
- University of Minnesota Duluth
- Duluth
- USA
| | | | - Erin D. Sheets
- Department of Chemistry and Biochemistry
- Swenson College of Science and Engineering
- University of Minnesota Duluth
- Duluth
- USA
| | - Ahmed A. Heikal
- Department of Chemistry and Biochemistry
- Swenson College of Science and Engineering
- University of Minnesota Duluth
- Duluth
- USA
| |
Collapse
|
19
|
Ghosh A, Isbaner S, Veiga-Gutiérrez M, Gregor I, Enderlein J, Karedla N. Quantifying Microsecond Transition Times Using Fluorescence Lifetime Correlation Spectroscopy. J Phys Chem Lett 2017; 8:6022-6028. [PMID: 29183125 DOI: 10.1021/acs.jpclett.7b02707] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Many complex luminescent emitters such as fluorescent proteins exhibit multiple emitting states that result in rapid fluctuations of their excited-state lifetime. Here, we apply fluorescence lifetime correlation spectroscopy (FLCS) to resolve the photophysical state dynamics of the prototypical fluorescence protein enhanced green fluorescent protein (EGFP). We quantify the microsecond transition rates between its two fluorescent states, which have otherwise highly overlapping emission spectra. We relate these transitions to a room-temperature angstrom-scale rotational isomerism of an amino acid next to its fluorescent center. With this study, we demonstrate the power of FLCS for studying the rapid transition dynamics of a broad range of light-emitting systems with complex multistate photophysics, which cannot be easily done by other methods.
Collapse
Affiliation(s)
- Arindam Ghosh
- III. Institute of Physics, Georg August University , 37077 Göttingen, Germany
| | - Sebastian Isbaner
- III. Institute of Physics, Georg August University , 37077 Göttingen, Germany
| | | | - Ingo Gregor
- III. Institute of Physics, Georg August University , 37077 Göttingen, Germany
| | - Jörg Enderlein
- III. Institute of Physics, Georg August University , 37077 Göttingen, Germany
| | - Narain Karedla
- III. Institute of Physics, Georg August University , 37077 Göttingen, Germany
| |
Collapse
|
20
|
The Role of Probe Photophysics in Localization-Based Superresolution Microscopy. Biophys J 2017; 113:2037-2054. [PMID: 29117527 DOI: 10.1016/j.bpj.2017.08.054] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 08/17/2017] [Accepted: 08/23/2017] [Indexed: 01/03/2023] Open
Abstract
Fluorescent proteins are used extensively for biological imaging applications; photoactivatable and photoconvertible fluorescent proteins (PAFPs) are used widely in superresolution localization microscopy methods such as fluorescence photoactivation localization microscopy and photoactivated localization microscopy. However, their optimal use depends on knowledge of not only their bulk fluorescence properties, but also their photophysical properties at the single molecule level. We have used fluorescence correlation spectroscopy and cross-correlation spectroscopy to quantify the diffusion, photobleaching, fluorescence intermittency, and photoconversion dynamics of Dendra2, a well-known PAFP used in localization microscopy. Numerous dark states of Dendra2 are observed both in inactive (green fluorescent) and active (orange fluorescent) forms; the interconversion rates are both light- and pH-dependent, as observed for other PAFPs. The dark states limit the detected count rate per molecule, which is a crucial parameter for localization microscopy. We then developed, to our knowledge, a new mathematical estimate for the resolution in localization microscopy as a function of the measured photophysical parameters of the probe such as photobleaching quantum yield, count rate per molecule, and intensity of saturation. The model was used to predict the dependence of resolution on acquisition parameters such as illumination intensity and time per frame, demonstrating an optimal set of acquisition parameters for a given probe for a variety of measures of resolution. The best possible resolution was then compared for Dendra2 and other widely used probes, including Alexa dyes and quantum dots. This work establishes a framework for determination of the best possible resolution using a localization microscope to image a particular fluorophore, and suggests that development of probes for use in superresolution localization microscopy must consider the count rate per molecule, the saturation intensity, the photobleaching yield, and, crucially, management of bright/dark state transitions, to optimize image resolution.
Collapse
|
21
|
Currie M, Leopold H, Schwarz J, Boersma AJ, Sheets ED, Heikal AA. Fluorescence Dynamics of a FRET Probe Designed for Crowding Studies. J Phys Chem B 2017; 121:5688-5698. [DOI: 10.1021/acs.jpcb.7b01306] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Megan Currie
- Department
of Chemistry and Biochemistry, Swenson College of Science and Engineering, University of Minnesota Duluth, Duluth, Minnesota 55812, United States
| | - Hannah Leopold
- Department
of Chemistry and Biochemistry, Swenson College of Science and Engineering, University of Minnesota Duluth, Duluth, Minnesota 55812, United States
| | - Jacob Schwarz
- Department
of Chemistry and Biochemistry, Swenson College of Science and Engineering, University of Minnesota Duluth, Duluth, Minnesota 55812, United States
| | - Arnold J. Boersma
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Erin D. Sheets
- Department
of Chemistry and Biochemistry, Swenson College of Science and Engineering, University of Minnesota Duluth, Duluth, Minnesota 55812, United States
| | - Ahmed A. Heikal
- Department
of Chemistry and Biochemistry, Swenson College of Science and Engineering, University of Minnesota Duluth, Duluth, Minnesota 55812, United States
| |
Collapse
|
22
|
Feeks JA, Hunter JJ. Adaptive optics two-photon excited fluorescence lifetime imaging ophthalmoscopy of exogenous fluorophores in mice. BIOMEDICAL OPTICS EXPRESS 2017; 8:2483-2495. [PMID: 28663886 PMCID: PMC5480493 DOI: 10.1364/boe.8.002483] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 04/07/2017] [Accepted: 04/07/2017] [Indexed: 05/05/2023]
Abstract
In vivo cellular scale fluorescence lifetime imaging of the mouse retina has the potential to be a sensitive marker of retinal cell health. In this study, we demonstrate fluorescence lifetime imaging of extrinsic fluorophores using adaptive optics fluorescence lifetime imaging ophthalmoscopy (AOFLIO). We recorded AOFLIO images of inner retinal cells labeled with enhanced green fluorescent protein (EGFP) and capillaries labeled with fluorescein. We demonstrate that AOFLIO can be used to differentiate spectrally overlapping fluorophores in the retina. With further refinements, AOFLIO could be used to assess retinal health in early stages of degeneration by utilizing lifetime-based sensors or even fluorophores native to the retina.
Collapse
Affiliation(s)
- James A. Feeks
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
- The Institute of Optics, University of Rochester, Rochester, NY 14620, USA
| | - Jennifer J. Hunter
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
- Flaum Eye Institute, University of Rochester, NY 14642, USA
- Department of Biomedical Engineering, University of Rochester, NY 14627, USA
| |
Collapse
|
23
|
Blacker T, Chen W, Avezov E, Marsh RJ, Duchen MR, Kaminski CF, Bain AJ. Investigating State Restriction in Fluorescent Protein FRET Using Time-Resolved Fluorescence and Anisotropy. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2017; 121:1507-1514. [PMID: 28217242 PMCID: PMC5309863 DOI: 10.1021/acs.jpcc.6b11235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/23/2016] [Indexed: 05/14/2023]
Abstract
Most fluorescent proteins exhibit multiexponential fluorescence decays, indicating a heterogeneous excited state population. FRET between fluorescent proteins should therefore involve multiple energy transfer pathways. We recently demonstrated the FRET pathways between EGFP and mCherry (mC), upon the dimerization of 3-phosphoinositide dependent protein kinase 1 (PDK1), to be highly restricted. A mechanism for FRET restriction based on a highly unfavorable κ2 orientation factor arising from differences in donor-acceptor transition dipole moment angles in a far from coplanar and near static interaction geometry was proposed. Here this is tested via FRET to mC arising from the association of glutathione (GSH) and glutathione S-transferase (GST) with an intrinsically homogeneous and more mobile donor Oregon Green 488 (OG). A new analysis of the acceptor window intensity, based on the turnover point of the sensitized fluorescence, is combined with donor window intensity and anisotropy measurements which show that unrestricted FRET to mC takes place. However, a long-lived anisotropy decay component in the donor window reveals a GST-GSH population in which FRET does not occur, explaining previous discrepancies between quantitative FRET measurements of GST-GSH association and their accepted values. This reinforces the importance of the local donor-acceptor environment in mediating energy transfer and the need to perform spectrally resolved intensity and anisotropy decay measurements in the accurate quantification of fluorescent protein FRET.
Collapse
Affiliation(s)
- Thomas
S. Blacker
- Department
of Physics & Astronomy, Centre for Mathematics and Physics
in the Life Sciences and Experimental Biology, and Department of Cell & Developmental
Biology, University College London, Gower Street, London WC1E 6BT, United
Kingdom
| | - WeiYue Chen
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA, United Kingdom
| | - Edward Avezov
- Cambridge
Institute for Medical Research, University
of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Richard J. Marsh
- Department
of Physics & Astronomy, Centre for Mathematics and Physics
in the Life Sciences and Experimental Biology, and Department of Cell & Developmental
Biology, University College London, Gower Street, London WC1E 6BT, United
Kingdom
| | - Michael R. Duchen
- Department
of Physics & Astronomy, Centre for Mathematics and Physics
in the Life Sciences and Experimental Biology, and Department of Cell & Developmental
Biology, University College London, Gower Street, London WC1E 6BT, United
Kingdom
| | - Clemens F. Kaminski
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA, United Kingdom
| | - Angus J. Bain
- Department
of Physics & Astronomy, Centre for Mathematics and Physics
in the Life Sciences and Experimental Biology, and Department of Cell & Developmental
Biology, University College London, Gower Street, London WC1E 6BT, United
Kingdom
- E-mail:
| |
Collapse
|
24
|
Mystek P, Tworzydło M, Dziedzicka-Wasylewska M, Polit A. New insights into the model of dopamine D1 receptor and G-proteins interactions. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:594-603. [DOI: 10.1016/j.bbamcr.2014.12.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/03/2014] [Accepted: 12/10/2014] [Indexed: 01/11/2023]
|
25
|
Drobizhev M, Stoltzfus C, Topol I, Collins J, Wicks G, Mikhaylov A, Barnett L, Hughes T, Rebane A. Multiphoton photochemistry of red fluorescent proteins in solution and live cells. J Phys Chem B 2014; 118:9167-79. [PMID: 25004113 PMCID: PMC4126731 DOI: 10.1021/jp502477c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 07/02/2014] [Indexed: 12/13/2022]
Abstract
Genetically encoded fluorescent proteins (FPs), and biosensors based on them, provide new insights into how living cells and tissues function. Ultimately, the goal of the bioimaging community is to use these probes deep in tissues and even in entire organisms, and this will require two-photon laser scanning microscopy (TPLSM), with its greater tissue penetration, lower autofluorescence background, and minimum photodamage in the out-of-focus volume. However, the extremely high instantaneous light intensities of femtosecond pulses in the focal volume dramatically increase the probability of further stepwise resonant photon absorption, leading to highly excited, ionizable and reactive states, often resulting in fast bleaching of fluorescent proteins in TPLSM. Here, we show that the femtosecond multiphoton excitation of red FPs (DsRed2 and mFruits), both in solution and live cells, results in a chain of consecutive, partially reversible reactions, with individual rates driven by a high-order (3-5 photon) absorption. The first step of this process corresponds to a three- (DsRed2) or four-photon (mFruits) induced fast isomerization of the chromophore, yielding intermediate fluorescent forms, which then subsequently transform into nonfluorescent products. Our experimental data and model calculations are consistent with a mechanism in which ultrafast electron transfer from the chromophore to a neighboring positively charged amino acid residue triggers the first step of multiphoton chromophore transformations in DsRed2 and mFruits, consisting of decarboxylation of a nearby deprotonated glutamic acid residue.
Collapse
Affiliation(s)
- Mikhail Drobizhev
- Department of Physics and Department of
Cell Biology and Neuroscience, Montana State
University, Bozeman, Montana 59717, United
States
| | - Caleb Stoltzfus
- Department of Physics and Department of
Cell Biology and Neuroscience, Montana State
University, Bozeman, Montana 59717, United
States
| | - Igor Topol
- Leidos
Biomedical Research, Inc., Frederick National Laboratory for Cancer
Research, Frederick, Maryland 21702-1201, United States
| | - Jack Collins
- Leidos
Biomedical Research, Inc., Frederick National Laboratory for Cancer
Research, Frederick, Maryland 21702-1201, United States
| | - Geoffrey Wicks
- Department of Physics and Department of
Cell Biology and Neuroscience, Montana State
University, Bozeman, Montana 59717, United
States
| | - Alexander Mikhaylov
- Department of Physics and Department of
Cell Biology and Neuroscience, Montana State
University, Bozeman, Montana 59717, United
States
| | - Lauren Barnett
- Department of Physics and Department of
Cell Biology and Neuroscience, Montana State
University, Bozeman, Montana 59717, United
States
| | - Thomas
E. Hughes
- Department of Physics and Department of
Cell Biology and Neuroscience, Montana State
University, Bozeman, Montana 59717, United
States
| | - Aleksander Rebane
- Department of Physics and Department of
Cell Biology and Neuroscience, Montana State
University, Bozeman, Montana 59717, United
States
| |
Collapse
|
26
|
Chattoraj S, Chowdhury R, Dey SK, Jana SS, Bhattacharyya K. Role of Red-Ox Cycle in Structural Oscillations and Solvation Dynamics in the Mitochondria of a Live Cell. J Phys Chem B 2014; 119:8842-51. [DOI: 10.1021/jp503808z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Shyamtanu Chattoraj
- Department of Physical Chemistry and ‡Department of Biological Chemistry, Indian Association For The Cultivation of Science, Jadavpur, Kolkata 700
032, India
| | - Rajdeep Chowdhury
- Department of Physical Chemistry and ‡Department of Biological Chemistry, Indian Association For The Cultivation of Science, Jadavpur, Kolkata 700
032, India
| | - Sumit Kumar Dey
- Department of Physical Chemistry and ‡Department of Biological Chemistry, Indian Association For The Cultivation of Science, Jadavpur, Kolkata 700
032, India
| | - Siddhartha Sankar Jana
- Department of Physical Chemistry and ‡Department of Biological Chemistry, Indian Association For The Cultivation of Science, Jadavpur, Kolkata 700
032, India
| | - Kankan Bhattacharyya
- Department of Physical Chemistry and ‡Department of Biological Chemistry, Indian Association For The Cultivation of Science, Jadavpur, Kolkata 700
032, India
| |
Collapse
|
27
|
Ghosh S, Chattoraj S, Bhattacharyya K. Solvation Dynamics and Intermittent Oscillation of Cell Membrane: Live Chinese Hamster Ovary Cell. J Phys Chem B 2014; 118:2949-56. [DOI: 10.1021/jp412631d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shirsendu Ghosh
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700
032, India
| | - Shyamtanu Chattoraj
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700
032, India
| | - Kankan Bhattacharyya
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700
032, India
| |
Collapse
|
28
|
Digris AV, Novikov EG, Skakun VV, Apanasovich VV. Global analysis of time-resolved fluorescence data. Methods Mol Biol 2014; 1076:257-277. [PMID: 24108629 DOI: 10.1007/978-1-62703-649-8_10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In this chapter, we describe the global analysis approach for processing time-resolved fluorescence spectroscopy data of molecules in the condensed phase. Combining simultaneous analysis of data measured under different experimental conditions (spatial coordinates, temperature, concentration, emission wavelength, excitation intensity, etc.) with the fitting strategy, enabling parameter linkage and thus decreasing the total amount of estimated variables, makes global analysis more robust and more consistent compared to a sequential fit of single experimental data. We consider the main stages of the global analysis approach and provide some details that are important for its practical implementation. The application of the global approach to the analysis of time-resolved fluorescence anisotropy is demonstrated on experimental data of (enhanced) green fluorescent protein in aqueous solution.
Collapse
Affiliation(s)
- Anatoli V Digris
- Department of Systems Analysis and Computer Simulation, Belarusian State University, Minsk, Belarus
| | | | | | | |
Collapse
|
29
|
Carillo M, Bennet M, Faivre D. Interaction of proteins associated with the magnetosome assembly in magnetotactic bacteria as revealed by two-hybrid two-photon excitation fluorescence lifetime imaging microscopy Förster resonance energy transfer. J Phys Chem B 2013; 117:14642-8. [PMID: 24175984 PMCID: PMC3848318 DOI: 10.1021/jp4086987] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/28/2013] [Indexed: 12/02/2022]
Abstract
Bacteria have recently revealed an unexpectedly complex level of intracellular organization. Magnetotactic bacteria represent a unique class of such organization through the presence of their magnetosome organelles, which are organized along the magnetosome filament. Although the role of individual magnetosomes-associated proteins has started to be unraveled, their interaction has not been addressed with current state-of-the-art optical microscopy techniques, effectively leaving models of the magnetotactic bacteria protein assembly arguable. Here we report on the use of FLIM-FRET to assess the interaction of MamK (actin-like protein) and MamJ, two magnetosome membrane associated proteins essential to the assembly of magnetosomes in a chain. We used a host organism (E. coli) to express eGFP_MamJ and MamK_mCherry, the latest expectedly forming a filament. We found that in the presence of MamK the fluorescence of eGFP_MamJ is distributed along the MamK filament. FRET analysis using the fluorescence lifetime of the donor, eGFP, revealed a spatial proximity of MamK_mCherry and eGFP_MamJ typical of a stable physical interaction between two proteins. Our study effectively led to the reconstruction of part of the magnetotactic apparatus in vivo.
Collapse
Affiliation(s)
| | | | - Damien Faivre
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| |
Collapse
|
30
|
Heikal AA. Time-resolved fluorescence anisotropy and fluctuation correlation analysis of major histocompatibility complex class I proteins in fibroblast cells. Methods 2013; 66:283-91. [PMID: 23811298 DOI: 10.1016/j.ymeth.2013.06.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 06/12/2013] [Accepted: 06/18/2013] [Indexed: 11/26/2022] Open
Abstract
Major histocompatibility complex class I proteins, MHC(I), are expressed in almost all nucleated cells and synthesized in the endoplasmic reticulum (ER). The orientation and mobility of these complexes are crucial in their biological function in the immune system, i.e., the cytosolic pathogen peptides loading and their presentation to T-cell receptors at the plasma membrane, where cell destruction is triggered. Here, we investigate the structural flexibility and associations of GFP-encoded MHC(I) alleles (H2L(d)), namely H2L(d)GFPin and H2L(d)GFPout, in cultured mouse fibroblast cells. Time-resolved fluorescence anisotropy of H2L(d)GFPin in the ER indicates a dominant overall tumbling motion of 56±7 ns (ER), with a fast conformational flexibility, as compared with a restricted rotation of H2L(d)GFPout. At the single-molecule level, the diffusion coefficient of H2L(d)GFPin and H2L(d)GFPout in the ER is (1.8±0.5)×10(-9) and (2.1±0.6)×10(-9) cm(2)/s, respectively, as revealed by fluorescence correlation spectroscopy. A complementary immunoblotting of H2L(d)GFP constructs, isolated from mouse fibroblast cells, reveals band at 75 kDa as compared with 29 kDa of the free EGFP. These real-time dynamics provide new insights into the structural flexibility and intracellular associations of GFP-labeled MHC(I) alleles (H2L(d)) in living cells.
Collapse
Affiliation(s)
- Ahmed A Heikal
- Department of Chemistry and Biochemistry, Swenson College of Science and Engineering, University of Minnesota-Duluth, Duluth, MN 55812, USA; Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota-Duluth, Duluth, MN 55812, USA.
| |
Collapse
|
31
|
Ghosh S, Chattoraj S, Mondal T, Bhattacharyya K. Dynamics in cytoplasm, nucleus, and lipid droplet of a live CHO cell: time-resolved confocal microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:7975-7982. [PMID: 23705762 DOI: 10.1021/la400840n] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Different regions of a single live Chinese hamster ovary (CHO) cell are probed by time-resolved confocal microscopy. We used coumarin 153 (C153) as a probe. The dye localizes in the cytoplasm, nucleus, and lipid droplets, as is clearly revealed by the image. The fluorescence correlation spectroscopy (FCS) data shows that the microviscosity of lipid droplets is ~34 ± 3 cP. The microviscosities of nucleus and cytoplasm are found to be 13 ± 1 and 14.5 ± 1 cP, respectively. The average solvation time (<τs>) in the lipid droplets (3600 ± 50 ps) is slower than that in the nucleus (<τs> = 750 ± 50 ps) and cytoplasm (<τs> = 1100 ± 50 ps). From the position of emission maxima of C153, the polarity of the nucleus is estimated to be similar to that of a mixture containing 26% DMSO in triacetin (η ~ 11.2 cP, ε ~ 26.2). The cytoplasm resembles a mixture of 18% DMSO in triacetin (η ∼ 12.6 cP, ε ∼ 21.9). The polarity of lipid droplets is less than that of pure triacetin (η ~ 21.7 cP, ε ~ 7.11).
Collapse
Affiliation(s)
- Shirsendu Ghosh
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | | | | | | |
Collapse
|
32
|
Masters TA, Marsh RJ, Armoogum DA, Nicolaou N, Larijani B, Bain AJ. Restricted State Selection in Fluorescent Protein Förster Resonance Energy Transfer. J Am Chem Soc 2013; 135:7883-90. [DOI: 10.1021/ja312230b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thomas A. Masters
- Department
of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT,
United Kingdom
- Cell Biophysics
Laboratory,
Cancer Research U.K., Lincoln’s Inn Fields Laboratories, London Research Institute, London WC2A 3LY,
United Kingdom
| | - Richard J. Marsh
- Department
of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT,
United Kingdom
| | - Daven A. Armoogum
- Department
of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT,
United Kingdom
| | - Nick Nicolaou
- Department
of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT,
United Kingdom
| | - Banafshé Larijani
- Cell Biophysics
Laboratory,
Cancer Research U.K., Lincoln’s Inn Fields Laboratories, London Research Institute, London WC2A 3LY,
United Kingdom
| | - Angus J. Bain
- Department
of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT,
United Kingdom
| |
Collapse
|
33
|
Sasmal DK, Ghosh S, Das AK, Bhattacharyya K. Solvation dynamics of biological water in a single live cell under a confocal microscope. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:2289-98. [PMID: 23336846 DOI: 10.1021/la3043473] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Time-resolved confocal microscopy has been applied to study the cytoplasm and nucleus region of a single live Chinese hamster ovary (CHO) cell. To select the cytoplasm and the nucleus region, two different fluorescent probes are used. A hydrophobic fluorescent dye, DCM, localizes preferentially in the cytoplasm region of a CHO cell. A DNA binding dye, DAPI, is found to be inside the nucleus of the cell. The locations of the probes are clearly seen in the image. Emission maxima of the dyes (DCM in cytoplasm and DAPI in the nucleus) are compared to those of the same dyes in different solvents. From this, it is concluded that the polarity (dielectric constant, ε) of the microenvironment of DCM in the cytoplasm is ~15. The nucleus is found to be much more polar with ε ≈ 60 (as reported by DAPI). The diffusion coefficient (and hence viscosity) in the cytoplasm and the nucleus was determined using fluorescence correlation spectroscopy (FCS). The diffusion coefficient (D(t)) of the dye (DCM) in the cytoplasm is 2 μm(2) s(-1) and is ~150 times slower than that in bulk water (buffer). D(t) of DAPI in the nucleus (15 μm(2) s(-1)) is 30 times slower than that in bulk water (buffer). The extremely slow diffusion inside the cell has been ascribed to higher viscosity and also to the binding of the probes (DCM and DAPI) to large biological macromolecules. The solvation dynamics of water in the cytoplasm (monitored by DCM) exhibits an average relaxation time [τ(sol)] of 1250 ± 50 ps, which is about 1000 times slower than in bulk water (1 ps). The solvation dynamics inside the nucleus (studied using DAPI) is about 2-fold faster, [τ(sol)] ≈ 775 ps. The higher polarity, faster diffusion, and faster solvation dynamics in the nucleus indicates that it is less crowded and less restricted than the cytoplasm.
Collapse
Affiliation(s)
- Dibyendu Kumar Sasmal
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India
| | | | | | | |
Collapse
|
34
|
Fluorescence Lifetime Microscopy of Tumor Cell Invasion, Drug Delivery, and Cytotoxicity. Methods Enzymol 2012; 504:109-25. [DOI: 10.1016/b978-0-12-391857-4.00005-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
35
|
Nakamuta S, Funahashi Y, Namba T, Arimura N, Picciotto MR, Tokumitsu H, Soderling TR, Sakakibara A, Miyata T, Kamiguchi H, Kaibuchi K. Local Application of Neurotrophins Specifies Axons Through Inositol 1,4,5-Trisphosphate, Calcium, and Ca2+/Calmodulin-Dependent Protein Kinases. Sci Signal 2011; 4:ra76. [DOI: 10.1126/scisignal.2002011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
36
|
Stringari C, Cinquin A, Cinquin O, Digman MA, Donovan PJ, Gratton E. Phasor approach to fluorescence lifetime microscopy distinguishes different metabolic states of germ cells in a live tissue. Proc Natl Acad Sci U S A 2011. [PMID: 21808026 DOI: 10.1073/pnas.1108161108/-/dcsupplemental] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
We describe a label-free imaging method to monitor stem-cell metabolism that discriminates different states of stem cells as they differentiate in living tissues. In this method we use intrinsic fluorescence biomarkers and the phasor approach to fluorescence lifetime imaging microscopy in conjunction with image segmentation, which we use to introduce the concept of the cell phasor. In live tissues we are able to identify intrinsic fluorophores, such as collagen, retinol, retinoic acid, porphyrin, flavins, and free and bound NADH. We have exploited the cell phasor approach to detect a trend in metabolite concentrations along the main axis of the Caenorhabditis elegans germ line. This trend is consistent with known changes in metabolic states during differentiation. The cell phasor approach to lifetime imaging provides a label-free, fit-free, and sensitive method to identify different metabolic states of cells during differentiation, to sense small changes in the redox state of cells, and may identify symmetric and asymmetric divisions and predict cell fate. Our method is a promising noninvasive optical tool for monitoring metabolic pathways during differentiation or disease progression, and for cell sorting in unlabeled tissues.
Collapse
Affiliation(s)
- Chiara Stringari
- Laboratory of Fluorescence Dynamics, Biomedical Engineering Department, University of California, Irvine, CA 92697, USA
| | | | | | | | | | | |
Collapse
|
37
|
Stringari C, Cinquin A, Cinquin O, Digman MA, Donovan PJ, Gratton E. Phasor approach to fluorescence lifetime microscopy distinguishes different metabolic states of germ cells in a live tissue. Proc Natl Acad Sci U S A 2011; 108:13582-7. [PMID: 21808026 PMCID: PMC3158156 DOI: 10.1073/pnas.1108161108] [Citation(s) in RCA: 277] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We describe a label-free imaging method to monitor stem-cell metabolism that discriminates different states of stem cells as they differentiate in living tissues. In this method we use intrinsic fluorescence biomarkers and the phasor approach to fluorescence lifetime imaging microscopy in conjunction with image segmentation, which we use to introduce the concept of the cell phasor. In live tissues we are able to identify intrinsic fluorophores, such as collagen, retinol, retinoic acid, porphyrin, flavins, and free and bound NADH. We have exploited the cell phasor approach to detect a trend in metabolite concentrations along the main axis of the Caenorhabditis elegans germ line. This trend is consistent with known changes in metabolic states during differentiation. The cell phasor approach to lifetime imaging provides a label-free, fit-free, and sensitive method to identify different metabolic states of cells during differentiation, to sense small changes in the redox state of cells, and may identify symmetric and asymmetric divisions and predict cell fate. Our method is a promising noninvasive optical tool for monitoring metabolic pathways during differentiation or disease progression, and for cell sorting in unlabeled tissues.
Collapse
Affiliation(s)
- Chiara Stringari
- Laboratory of Fluorescence Dynamics, Biomedical Engineering Department
| | - Amanda Cinquin
- Department of Developmental and Cell Biology
- Center for Complex Biological Systems, and
| | - Olivier Cinquin
- Department of Developmental and Cell Biology
- Center for Complex Biological Systems, and
| | | | - Peter J. Donovan
- Department of Developmental and Cell Biology
- Department of Biological Chemistry and the Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA 92697
| | - Enrico Gratton
- Laboratory of Fluorescence Dynamics, Biomedical Engineering Department
| |
Collapse
|
38
|
Walther KA, Papke B, Sinn MB, Michel K, Kinkhabwala A. Precise measurement of protein interacting fractions with fluorescence lifetime imaging microscopy. MOLECULAR BIOSYSTEMS 2011; 7:322-36. [PMID: 21221430 DOI: 10.1039/c0mb00132e] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Precise quantification of endogenous protein-protein interactions across live cells would be a major boon to biology. Such precise measurement is theoretically possible with fluorescence lifetime imaging microscopy (FLIM) but requires first properly addressing multiple biological, instrumental, statistical, and photophysical challenges. We present a detailed investigation of the last three FLIM-specific challenges. Using an efficient, highly accurate analysis code for time-domain FLIM data that accounts for all significant instrumental artifacts (in part, through use of a parametrized model for the instrument response function) and is rigorously based on both conventional statistics (full lifetime histogram fitting by χ(2) minimization) and novel statistics (single pixel fitting of lifetime populations using "maximum fidelity"), we address multiple photophysical challenges, including the proper side-by-side statistical comparison of fluorophore monoexponentiality, the precise assessment of fluorophore lifetimes and lifetime photostability, and the determination of acceptor dark state fractions. Finally, we demonstrate the feasibility of precise measurement of the interacting fraction of a protein across live cells with FLIM.
Collapse
Affiliation(s)
- Kirstin A Walther
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | | | | | | | | |
Collapse
|
39
|
Jameson DM, Ross JA. Fluorescence polarization/anisotropy in diagnostics and imaging. Chem Rev 2010; 110:2685-708. [PMID: 20232898 DOI: 10.1021/cr900267p] [Citation(s) in RCA: 398] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- David M Jameson
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, BSB222, Honolulu, Hawaii 96813, USA.
| | | |
Collapse
|
40
|
Vats K, Knutson K, Hinderliter A, Sheets ED. Peripheral protein organization and its influence on lipid diffusion in biomimetic membranes. ACS Chem Biol 2010; 5:393-403. [PMID: 20175560 PMCID: PMC2855781 DOI: 10.1021/cb900303s] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein organization on biomembranes and their dynamics are essential for cellular function. It is not clear, however, how protein binding may influence the assembly of underlying lipids or how the membrane structure leads to functional protein organization. Toward this goal, we investigated the effects of annexin a5 binding to biomimetic membranes using fluorescence imaging and correlation spectroscopy. Annexin a5 (anx a5), a peripheral intracellular protein that plays a membrane remodeling role in addition to other functions, binds specifically and tightly to anionic (e.g., phosphatidylserine)-containing membranes in the presence of calcium ion. Our fluorescence microscopy reveals that annexin likely forms assemblies, along with a more dispersed population, upon binding to anionic biomembranes in the presence of calcium ion, which is reflected in its two-component Brownian motion. To investigate the effects of annexin binding on the underlying lipids, we used specific acyl chain labeled phospholipid analogues, NBD-phosphatidylcholine (NBD-PC) and NBD-phosphatidylserine (NBD-PS). We find that both NBD-labeled lipids cluster under anx a5 assemblies, as compared with when they are found under the dispersed annexin population, and NBD-PS exhibits two-component lateral diffusion under the annexin assemblies. In contrast, NBD-PC diffusion is slower by an order of magnitude under the annexin assemblies in contrast to its diffusion when not localized under anx a5 assemblies. Our results indicate that, upon binding to membranes, the peripheral protein annexin organizes the underlying lipids into domains, which may have functional implications in vivo.
Collapse
Affiliation(s)
- Kanika Vats
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - Kristofer Knutson
- Department of Chemistry & Biochemistry, University of Minnesota, Duluth, MN 55812
| | - Anne Hinderliter
- Department of Chemistry & Biochemistry, University of Minnesota, Duluth, MN 55812
| | - Erin D. Sheets
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
- Department of Pharmacy Practice & Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth, MN 55812
| |
Collapse
|
41
|
Zhang Y, Yu J, Birch DJS, Chen Y. Gold nanorods for fluorescence lifetime imaging in biology. JOURNAL OF BIOMEDICAL OPTICS 2010; 15:020504. [PMID: 20459218 DOI: 10.1117/1.3366646] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Two-photon luminescence (TPL) from gold nanorods shows considerable potential in biological imaging. We study the imaging of gold nanorods in Madin-Darby canine kidney (MDCK) cells using fluorescence lifetime imaging microscopy (FLIM). FLIM provides images with better contrast and sensitivity than intensity imaging. The characteristic fluorescence lifetime of gold nanorods is found to be less than 100 ps, which can be used to distinguish gold nanorods from other fluorescent labels and endogenous fluorophores in lifetime imaging.
Collapse
Affiliation(s)
- Yinan Zhang
- University of Strathclyde, SUPA - Scottish Universities Physics Alliance, Department of Physics, Centre for Molecular Nanometrology, Photophysics Group, John Anderson Building, 107 Rottenrow, Glasgow, G4 0NG United Kingdom
| | | | | | | |
Collapse
|
42
|
Kainz B, Steiner K, Möller M, Pum D, Schäffer C, Sleytr UB, Toca-Herrera JL. Absorption, steady-state fluorescence, fluorescence lifetime, and 2D self-assembly properties of engineered fluorescent S-layer fusion proteins of Geobacillus stearothermophilus NRS 2004/3a. Biomacromolecules 2010; 11:207-14. [PMID: 19954211 DOI: 10.1021/bm901071b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
S-layer fusion protein technology was used to design four different fluorescent fusion proteins with three different GFP mutants and the red fluorescent protein mRFP1. Their absorption spectra, steady-state fluorescence, and fluorescence lifetime were investigated as a function of pH. It was found that fluorescence intensities and lifetime of the GFP mutant S-layer fusion proteins decreased about 50% between pH 6 and pH 5. The spectral properties of the red S-layer fusion protein were minimally affected by pH variations. These results were compared with His-tagged reference fluorescent proteins, demonstrating that the S-layer protein did not change the general spectral properties of the whole fusion protein. In addition, the pK(a) values of the fluorescent S-layer fusion proteins were calculated. Finally, it was shown that the S-layer fusion proteins were able to self-assemble forming 2D nanostructures of oblique p2 symmetry with lattice parameters of about a = 11 nm, b = 14 nm, and gamma = 80 degrees . The fluorescence tag did not hinder the natural self-assembly process of the S-layer protein. The combination of the fluorescence properties and the self-assembly ability of the engineered fusion proteins make them a promising tool to generate biomimetic surfaces for future applications in nanobiotechnology at a wide range of pH.
Collapse
Affiliation(s)
- Birgit Kainz
- Department for NanoBiotechnology, University of Natural Resources and Applied Life Sciences, Muthgasse 11, A-1190 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
43
|
Ghukasyan V, Hsu CC, Liu CR, Kao FJ, Cheng TH. Fluorescence lifetime dynamics of enhanced green fluorescent protein in protein aggregates with expanded polyglutamine. JOURNAL OF BIOMEDICAL OPTICS 2010; 15:016008. [PMID: 20210454 DOI: 10.1117/1.3290821] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Protein aggregation is one of the characteristic steps in a number of neurodegenerative diseases eventually leading to neuronal death and thorough study of aggregation is required for the development of effective therapy. We apply fluorescence lifetime imaging for the characterization of the fluorescence dynamics of the enhanced green fluorescent protein (eGFP) in fusion with the polyQ-expanded polyglutamine stretch. At the expansion of polyQ above 39 residues, it has an inherent propensity to form amyloid-like fibrils and aggregates, and is responsible for Huntington's disease. The results of the experiments show that expression of the eGFP in fusion with the 97Q protein leads to the decrease of the eGFP fluorescence lifetime by approximately 300 ps. This phenomenon does not appear in Hsp104-deficient cells, where the aggregation in polyQ is prevented. We demonstrate that the lifetime decrease observed is related to the aggregation per se and discuss the possible role of refractive index and homo-FRET in these dynamics.
Collapse
Affiliation(s)
- Vladimir Ghukasyan
- National Yang-Ming University, Institute of Biophotonics, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
44
|
Anomalous surplus energy transfer observed with multiple FRET acceptors. PLoS One 2009; 4:e8031. [PMID: 19946626 PMCID: PMC2778011 DOI: 10.1371/journal.pone.0008031] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 11/02/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Förster resonance energy transfer (FRET) is a mechanism where energy is transferred from an excited donor fluorophore to adjacent chromophores via non-radiative dipole-dipole interactions. FRET theory primarily considers the interactions of a single donor-acceptor pair. Unfortunately, it is rarely known if only a single acceptor is present in a molecular complex. Thus, the use of FRET as a tool for measuring protein-protein interactions inside living cells requires an understanding of how FRET changes with multiple acceptors. When multiple FRET acceptors are present it is assumed that a quantum of energy is either released from the donor, or transferred in toto to only one of the acceptors present. The rate of energy transfer between the donor and a specific acceptor (k(D-->A)) can be measured in the absence of other acceptors, and these individual FRET transfer rates can be used to predict the ensemble FRET efficiency using a simple kinetic model where the sum of all FRET transfer rates is divided by the sum of all radiative and non-radiative transfer rates. METHODOLOGY/PRINCIPAL FINDINGS The generality of this approach was tested by measuring the ensemble FRET efficiency in two constructs, each containing a single fluorescent-protein donor (Cerulean) and either two or three FRET acceptors (Venus). FRET transfer rates between individual donor-acceptor pairs within these constructs were calculated from FRET efficiencies measured after systematically introducing point mutations to eliminate all other acceptors. We find that the amount of energy transfer observed in constructs having multiple acceptors is significantly greater than the FRET efficiency predicted from the sum of the individual donor to acceptor transfer rates. CONCLUSIONS/SIGNIFICANCE We conclude that either an additional energy transfer pathway exists when multiple acceptors are present, or that a theoretical assumption on which the kinetic model prediction is based is incorrect.
Collapse
|
45
|
Time-resolved FRET fluorescence spectroscopy of visible fluorescent protein pairs. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 39:241-53. [DOI: 10.1007/s00249-009-0528-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 07/09/2009] [Accepted: 07/22/2009] [Indexed: 10/20/2022]
|
46
|
Ariola FS, Li Z, Cornejo C, Bittman R, Heikal AA. Membrane fluidity and lipid order in ternary giant unilamellar vesicles using a new bodipy-cholesterol derivative. Biophys J 2009; 96:2696-708. [PMID: 19348752 DOI: 10.1016/j.bpj.2008.12.3922] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2008] [Revised: 12/11/2008] [Accepted: 12/17/2008] [Indexed: 11/24/2022] Open
Abstract
Cholesterol-rich, liquid-ordered (L(o)) domains are believed to be biologically relevant, and yet detailed knowledge about them, especially in live cells under physiological conditions, is elusive. Although these domains have been observed in model membranes, understanding cholesterol-lipid interactions at the molecular level, under controlled lipid mixing, remains a challenge. Further, although there are a number of fluorescent lipid analogs that partition into liquid-disordered (L(d)) domains, the number of such analogs with a high affinity for biologically relevant L(o) domains is limited. Here, we use a new Bodipy-labeled cholesterol (Bdp-Chol) derivative to investigate membrane fluidity, lipid order, and partitioning in various lipid phases in giant unilamellar vesicles (GUVs) as a model system. GUVs were prepared from mixtures of various molar fractions of dioleoylphosphatidylcholine, cholesterol, and egg sphingomyelin. The L(d) phase domains were also labeled with 1,1'-didodecyl-3,3,3',3'-tetramethylindocarbocyanine (DiI-C(12)) for comparison. Two-photon fluorescence lifetime and anisotropy imaging of Bdp-Chol are sensitive to lipid phase domains in GUVs. The fluorescence lifetime of Bdp-Chol in liquid-disordered, single-phase GUVs is 5.50 +/- 0.08 ns, compared with 4.1 +/- 0.4 ns in the presence of DiI-C(12). The observed reduction of fluorescence lifetime is attributed to Förster resonance energy transfer between Bdp-Chol (a donor) and DiI-C(12) (an acceptor) with an estimated efficiency of 0.25 and donor-acceptor distance of 2.6 +/- 0.2 nm. These results also indicate preferential partitioning (K(p) = 1.88) of Bdp-Chol into the L(o) phase. One-photon, time-resolved fluorescence anisotropy of Bdp-Chol decays as a triexponential in the lipid bilayer with an average rotational diffusion coefficient, lipid order parameter, and membrane fluidity that are sensitive to phase domains. The translational diffusion coefficient of Bdp-Chol, as measured using fluorescence correlation spectroscopy, is (7.4 +/- 0.3) x 10(-8) cm(2)/s and (5.0 +/- 0.2) x 10(-8) cm(2)/s in the L(d) and L(o) phases, respectively. Experimental translational/rotational diffusion coefficient ratios are compared with theoretical predictions using the hydrodynamic model (Saffman-Delbrück). The results suggest that Bdp-Chol is likely to form a complex with other lipid molecules during its macroscopic diffusion in GUV lipid bilayers at room temperature. Our integrated, multiscale results demonstrate the potential of this cholesterol analog for studying lipid-lipid interactions, lipid order, and membrane fluidity of biologically relevant L(o) domains.
Collapse
Affiliation(s)
- Florly S Ariola
- Department of Bioengineering, The Pennsylvania State University, University Park, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
47
|
Roles for SH2 and SH3 domains in Lyn kinase association with activated FcepsilonRI in RBL mast cells revealed by patterned surface analysis. J Struct Biol 2009; 168:161-7. [PMID: 19427382 DOI: 10.1016/j.jsb.2009.04.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 04/27/2009] [Accepted: 04/28/2009] [Indexed: 11/20/2022]
Abstract
In mast cells, antigen-mediated cross-linking of IgE bound to its high-affinity surface receptor, FcepsilonRI, initiates a signaling cascade that culminates in degranulation and release of allergic mediators. Antigen-patterned surfaces, in which the antigen is deposited in micron-sized features on a silicon substrate, were used to examine the spatial relationship between clustered IgE-FcepsilonRI complexes and Lyn, the signal-initiating tyrosine kinase. RBL mast cells expressing wild-type Lyn-EGFP showed co-redistribution of this protein with clustered IgE receptors on antigen-patterned surfaces, whereas Lyn-EGFP containing an inhibitory point mutation in its SH2 domain did not significantly accumulate with the patterned antigen, and Lyn-EGFP with an inhibitory point mutation in its SH3 domain exhibited reduced interactions. Our results using antigen-patterned surfaces and quantitative cross-correlation image analysis reveal that both the SH2 and SH3 domains contribute to interactions between Lyn kinase and cross-linked IgE receptors in stimulated mast cells.
Collapse
|
48
|
Sarkar P, Koushik SV, Vogel SS, Gryczynski I, Gryczynski Z. Photophysical properties of Cerulean and Venus fluorescent proteins. JOURNAL OF BIOMEDICAL OPTICS 2009; 14:034047. [PMID: 19566339 PMCID: PMC2754229 DOI: 10.1117/1.3156842] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Cerulean and Venus are recently developed fluorescent proteins, often used as a donor-acceptor pair by researchers in Forster resonance energy transfer-based colocalization studies. We characterized the fluorescent properties of these two proteins in a broad spectral range (form ultraviolet to visible region). Excitation spectra, lifetimes, and polarization spectra show significant energy transfer from aromatic amino acids to the fluorescent protein chromophore. High steady-state anisotropy values and the lack of a fast component in anisotropy decays show that the fluorescent protein chromophore is rigidly fixed within the protein structure. Furthermore, we show that the chromophores are not accessible to external quenchers, such as acrylamide or potassium iodide (KI), allowing the removal of "unwanted" background in the environment with external quencher, while leaving the Cerulean/Venus fluorescence unchanged.
Collapse
Affiliation(s)
- Pabak Sarkar
- University of North Texas Health Science Center, Center for Commercialization of Fluorescent Technologies, 3500 Camp Bowie Boulevard, Fort Worth, Texas 76107, USA
| | | | | | | | | |
Collapse
|
49
|
Ito T, Oshita S, Nakabayashi T, Sun F, Kinjo M, Ohta N. Fluorescence lifetime images of green fluorescent protein in HeLa cells during TNF-alpha induced apoptosis. Photochem Photobiol Sci 2009; 8:763-7. [PMID: 19492103 DOI: 10.1039/b902341k] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorescence lifetime images of HeLa cells expressing enhanced green fluorescent protein (EGFP) have been measured as apoptosis is induced by tumor necrosis factor-alpha (TNF-alpha) in combination with cycloheximide. The fluorescence lifetime of EGFP is found to decrease after the induction of apoptosis, indicating that the change in environment occurs around the chromophore of EGFP with the apoptosis process. The fluorescence lifetime imaging technique can be used to perform in vivo observation of cell death processes. Fluorescence lifetime measurements are useful to examine the induction of the apoptosis process, even when a morphological change of each cell cannot be observed because of a low spatial resolution.
Collapse
Affiliation(s)
- Toshiyuki Ito
- Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan
| | | | | | | | | | | |
Collapse
|
50
|
Structural rearrangement of CaMKIIalpha catalytic domains encodes activation. Proc Natl Acad Sci U S A 2009; 106:6369-74. [PMID: 19339497 DOI: 10.1073/pnas.0901913106] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
At its fundamental level, human memory is thought to occur at individual synaptic contact sites and manifest as persistent changes in synaptic efficacy. In digital electronics, the fundamental structure for implementing memory is the flip-flop switch, a circuit that can be triggered to flip between two stable states. Recently, crystals of Ca(2+)/calmodulin-dependent protein kinase IIalpha (CaMKIIalpha) catalytic domains, the enzymatic portion of a dodecameric holoenzyme involved in memory, were found to form dimers [Rosenberg OS, Deindl S, Sung RJ, Nairn AC, Kuriyan J (2005) Structure of the autoinhibited kinase domain of CaMKII and SAXS analysis of the holoenzyme. Cell 123:849-860]. Although the formation of dimers in the intact holoenzyme has not been established, several features of the crystal structure suggest that dimers could act as a synaptic switch. ATP-binding sites were occluded, and the T286 autophosphorylation site responsible for persistent kinase activation was buried. These features would act to stabilize an autoinhibited "paired"-enzyme state. Ca(2+)-calmodulin binding was postulated to trigger the formation of an active state with unpaired catalytic domains. This conformation would allow ATP access and expose T286, autophosphorylation of which would act to maintain the "unpaired" conformation. We used fluorescence anisotropy and FRET imaging of Venus-tagged CaMKIIalpha to test the hypothesis that neuronal CaMKIIalpha can flip between two stable conformations in living cells. Our data support the existence of catalytic domain pairs, and glutamate receptor activation in neurons triggered an increase in anisotropy consistent with a structural transition from a paired to unpaired conformation.
Collapse
|