1
|
Soleimani A, Risselada HJ. SMARTINI3 parametrization of multi-scale membrane models via unsupervised learning methods. Sci Rep 2024; 14:25714. [PMID: 39468134 PMCID: PMC11519956 DOI: 10.1038/s41598-024-75490-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/07/2024] [Indexed: 10/30/2024] Open
Abstract
In this study, we utilize genetic algorithms to develop a realistic implicit solvent ultra-coarse-grained (ultra-CG) membrane model comprising only three interaction sites. The key philosophy of the ultra-CG membrane model SMARTINI3 is its compatibility with realistic membrane proteins, for example, modeled within the Martini coarse-grained (CG) model, as well as with the widely used GROMACS software for molecular simulations. Our objective is to parameterize this ultra-CG model to accurately reproduce the experimentally observed structural and thermodynamic properties of Phosphatidylcholine (PC) membranes in real units, including properties such as area per lipid, area compressibility, bending modulus, line tension, phase transition temperature, density profile, and radial distribution function. In our example, we specifically focus on the properties of a POPC membrane, although the developed membrane model could be perceived as a generic model of lipid membranes. To optimize the performance of the model (the fitness), we conduct a series of evolutionary runs with diverse random initial population sizes (ranging from 96 to 384). We demonstrate that the ultra-CG membrane model we developed exhibits authentic lipid membrane behaviors, including self-assembly into bilayers, vesicle formation, membrane fusion, and gel phase formation. Moreover, we demonstrate compatibility with the Martini coarse-grained model by successfully reproducing the behavior of a transmembrane domain embedded within a lipid bilayer. This facilitates the simulation of realistic membrane proteins within an ultra-CG bilayer membrane, enhancing the accuracy and applicability of our model in biophysical studies.
Collapse
Affiliation(s)
- Alireza Soleimani
- Institute for Theoretical Physics, Georg-August-University Göttingen, 37077, Göttingen, Germany
- Department of Physics, Technical University Dortmund, 44221, Dortmund, Germany
| | - Herre Jelger Risselada
- Institute for Theoretical Physics, Georg-August-University Göttingen, 37077, Göttingen, Germany.
- Department of Physics, Technical University Dortmund, 44221, Dortmund, Germany.
| |
Collapse
|
2
|
Nie RZ, Luo HM, Chen JY, Sun LH, Wang ZB, Zhang ZP, Bao YR. Molecular insights into the interactions of theaflavin and epicatechin with different lipid bilayer membranes by molecular dynamics simulation. Chem Phys Lipids 2024; 262:105405. [PMID: 38795837 DOI: 10.1016/j.chemphyslip.2024.105405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
At present, consumers increasingly favored the natural food preservatives with fewer side-effects on health. The green tea catechins and black tea theaflavins attracted considerable interest, and their antibacterial effects were extensively reported in the literature. Epicatechin (EC), a green tea catechin without a gallate moiety, showed no bactericidal activity, whereas the theaflavin (TF), also lacking a gallate moiety, exhibited potent bactericidal activity, and the antibacterial effects of green tea catechins and black tea theaflavins were closely correlated with their abilities to disrupt the bacterial cell membrane. In our present study, the mechanisms of membrane interaction modes and behaviors of TF and EC were explored by molecular dynamics simulations. It was demonstrated that TF exhibited markedly stronger affinity for the POPG bilayer compared to EC. Additionally, the hydrophobic interactions of tropolone/catechol rings with the acyl chain part could significantly contribute to the penetration of TF into the POPG bilayer. It was also found that the resorcinol/pyran rings were the key functional groups in TF for forming hydrogen bonds with the POPG bilayer. We believed that the findings from our current study could offer useful insights to better understand the stronger antibacterial effects of TF compared to EC.
Collapse
Affiliation(s)
- Rong-Zu Nie
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Huo-Min Luo
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Jing-Yu Chen
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Li-Heng Sun
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Zi-Bo Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Zhen-Ping Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Ya-Ru Bao
- Science and Technology Division, Zhengzhou University of Light Industry, Zhengzhou 450001, China.
| |
Collapse
|
3
|
Chng CP, Dowd A, Mechler A, Hsia KJ. Molecular dynamics simulations reliably identify vibrational modes in far-IR spectra of phospholipids. Phys Chem Chem Phys 2024; 26:18715-18726. [PMID: 38932689 DOI: 10.1039/d4cp00521j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
The properties of self-assembled phospholipid membranes are of essential importance in biochemistry and physical chemistry, providing a platform for many cellular life functions. Far-infrared (far-IR) vibrational spectroscopy, on the other hand, is a highly information-rich method to characterize intermolecular interactions and collective behaviour of lipids that can help explain, e.g., chain packing, thermodynamic phase behaviour, and sequestration. However, reliable interpretation of the far-IR spectra is still lacking. Here we present a molecular dynamics (MD) based approach to simulate vibrational modes of individual lipids and in an ensemble. The results are a good match to synchrotron far-IR measurements and enable identification of the molecular motions corresponding to each vibrational mode, thus allowing the correct interpretation of membrane spectra with high accuracy and resolving the longstanding ambiguities in the literature in this regard. Our results demonstrate the feasibility of using MD simulations for interpreting far-IR spectra broadly, opening new avenues for practical use of this powerful method.
Collapse
Affiliation(s)
- Choon-Peng Chng
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore.
| | - Annette Dowd
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Adam Mechler
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia.
| | - K Jimmy Hsia
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore.
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Republic of Singapore
| |
Collapse
|
4
|
Bonfrate S, Ferré N, Huix-Rotllant M. Analytic Gradients for the Electrostatic Embedding QM/MM Model in Periodic Boundary Conditions Using Particle-Mesh Ewald Sums and Electrostatic Potential Fitted Charge Operators. J Chem Theory Comput 2024; 20:4338-4349. [PMID: 38712506 DOI: 10.1021/acs.jctc.4c00201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Long-range electrostatic effects are fundamental for describing chemical reactivity in the condensed phase. Here, we present the methodology of an efficient quantum mechanical/molecular mechanical (QM/MM) model in periodic boundary conditions (PBC) compatible with QM/MM boundaries at chemical bonds. The method combines electrostatic potential fitted charge operators and electrostatic potentials derived from the smooth particle-mesh Ewald (PME) sum approach. The total energy and its analytic first derivatives with respect to QM, MM, and lattice vectors allow QM/MM molecular dynamics (MD) in the most common thermodynamic ensembles. We demonstrate the robustness of the method by performing a QM/MM MD equilibration of methanol in water. We simulate the cis/trans isomerization free-energy profiles in water of proline amino acid and a proline-containing oligopeptide, showing a correct description of the reaction barrier. Our PBC-compatible QM/MM model can efficiently be used to study the chemical reactivity in the condensed phase and enzymatic catalysis.
Collapse
Affiliation(s)
| | - Nicolas Ferré
- Aix-Marseille Univ, CNRS, ICR, Marseille 13013, France
| | | |
Collapse
|
5
|
Yonetani Y. Unsolved problem of long-range interactions: dipolar spin-ice study. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:175401. [PMID: 38270229 DOI: 10.1088/1361-648x/ad1ca6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/09/2024] [Indexed: 01/26/2024]
Abstract
Long-range interactions derive various strange phenomena. As illustrated by cutoff simulations of water, increasing cutoff length does not improve the simulation result necessarily; on the contrary, it makes the result worse. In the extreme situation, the structure of water transforms into a layer structure. In this study, to explore the underlying mechanism of this phenomenon, we performed Monte Carlo simulations on dipolar spins arranged on a pyrochlore spin-ice lattice. Like the water case, the present dipolar spin system also showed cutoff-induced dipole ordering and layer formation. The width of the layers depended on the cutoff length; and longer cutoff length led to a broader layer. These features are certainly consistent with the previous water case. This indicates that layer formation is the general behavior of dipolar systems whose interactions are truncated within a finite distance. The result is important for future exploration of the relationship between long-range interactions and resulting structures. In addition, it emphasizes the necessity of rigorous treatment of long-range interactions because increasing the cutoff length prevents convergence and provides an entirely different result from the rigorous Ewald calculation.
Collapse
Affiliation(s)
- Yoshiteru Yonetani
- Kansai Institute for Photon Science and Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), 8-1-7 Umemidai, Kizugawa, Kyoto, 619-0215, Japan
| |
Collapse
|
6
|
Nie RZ, Zhang SS, Yan XK, Feng K, Lao YJ, Bao YR. Molecular insights into the structure destabilization effects of ECG and EC on the Aβ protofilament: An all-atom molecular dynamics simulation study. Int J Biol Macromol 2023; 253:127002. [PMID: 37729983 DOI: 10.1016/j.ijbiomac.2023.127002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 09/22/2023]
Abstract
The formation of Aβ into amyloid fibrils was closely connected to AD, therefore, the Aβ aggregates were the primary therapeutic targets against AD. Previous studies demonstrated that epicatechin-3-gallate (ECG), which possessed a gallate moiety, exhibited a greater ability to disrupt the preformed Aβ amyloid fibrils than epicatechin (EC), indicating that the gallate moiety was crucial. In the present study, the molecular mechanisms were investigated. Our results demonstrated that ECG had more potent disruptive impacts on the β-sheet structure and K28-A42 salt bridges than EC. We found that ECG significantly interfered the interactions between Peptide-4 and Peptide-5. However, EC could not. The disruption of K28-A42 salt bridges by ECG was mainly due to the interactions between ECG and the hydrophobic residues located at C-terminus. Interestingly, EC disrupted the K28-A42 salt bridges by the interactions with C-terminal hydrophobic residues and the cation-π interactions with K28. Moreover, our results indicated that hydrophobic interactions, H-bonds, π-π interactions and cation-π interactions between ECG and the bend of L-shaped region caused the disaggregation of interactions between Peptide-4 and Peptide-5. Significantly, gallate moiety in ECG had contributed tremendously to the disaggregation. We believed that our findings could be useful for designing prospective drug candidates targeting AD.
Collapse
Affiliation(s)
- Rong-Zu Nie
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China; Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Shan-Shuo Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Xiao-Ke Yan
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Kun Feng
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China; Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Yan-Jing Lao
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Ya-Ru Bao
- Science and Technology Division, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
| |
Collapse
|
7
|
Islam MM, Nawagamuwage SU, Parshin IV, Richard MC, Burin AL, Rubtsov IV. Probing the Hydrophobic Region of a Lipid Bilayer at Specific Depths Using Vibrational Spectroscopy. J Am Chem Soc 2023; 145:26363-26373. [PMID: 37982703 DOI: 10.1021/jacs.3c10178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
A novel spectroscopic approach for studying the flexibility and mobility in the hydrophobic interior of lipid bilayers at specific depths is proposed. A set of test compounds featuring an azido moiety and a cyano or carboxylic acid moiety, connected by an alkyl chain of different lengths, was synthesized. FTIR data and molecular dynamics calculations indicated that the test compounds in a bilayer are oriented so that the cyano or carboxylic acid moiety is located in the lipid head-group region, while the azido group stays inside the bilayer at the depth determined by its alkyl chain length. We found that the asymmetric stretching mode of the azido group (νN3) can serve as a reporter of the membrane interior dynamics. FTIR and two-dimensional infrared (2DIR) studies were performed at different temperatures, ranging from 22 to 45 °C, covering the Lβ-Lα phase transition temperature of dipalmitoylphosphatidylcholine (∼41 °C). The width of the νN3 peak was found to be very sensitive to the phase transition and to the temperature in general. We introduced an order parameter, SN3, which characterizes restrictions to motion inside the bilayer. 2DIR spectra of νN3 showed different extents of inhomogeneity at different depths in the bilayer, with the smallest inhomogeneity in the middle of the leaflet. The spectral diffusion dynamics of the N3 peak was found to be dependent on the depth of the N3 group location in the bilayer. The obtained results enhance our understanding of the bilayer dynamics and can be extended to investigate membranes with more complex compositions.
Collapse
Affiliation(s)
- Md Muhaiminul Islam
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | | | - Igor V Parshin
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Margaret C Richard
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Alexander L Burin
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Igor V Rubtsov
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
8
|
de Bruyn E, Dorn AE, Zimmermann O, Rossetti G. SPEADI: Accelerated Analysis of IDP-Ion Interactions from MD-Trajectories. BIOLOGY 2023; 12:581. [PMID: 37106781 PMCID: PMC10135740 DOI: 10.3390/biology12040581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023]
Abstract
The disordered nature of Intrinsically Disordered Proteins (IDPs) makes their structural ensembles particularly susceptible to changes in chemical environmental conditions, often leading to an alteration of their normal functions. A Radial Distribution Function (RDF) is considered a standard method for characterizing the chemical environment surrounding particles during atomistic simulations, commonly averaged over an entire or part of a trajectory. Given their high structural variability, such averaged information might not be reliable for IDPs. We introduce the Time-Resolved Radial Distribution Function (TRRDF), implemented in our open-source Python package SPEADI, which is able to characterize dynamic environments around IDPs. We use SPEADI to characterize the dynamic distribution of ions around the IDPs Alpha-Synuclein (AS) and Humanin (HN) from Molecular Dynamics (MD) simulations, and some of their selected mutants, showing that local ion-residue interactions play an important role in the structures and behaviors of IDPs.
Collapse
Affiliation(s)
- Emile de Bruyn
- Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425 Jülich, Germany
- Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen University, 52062 Aachen, Germany
| | - Anton Emil Dorn
- Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen University, 52062 Aachen, Germany
| | - Olav Zimmermann
- Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Giulia Rossetti
- Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425 Jülich, Germany
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, 52425 Jülich, Germany
- Department of Neurology, RWTH Aachen University, 52062 Aachen, Germany
| |
Collapse
|
9
|
Das D, Mattaparthi VSK. Conformational dynamics of A30G α-synuclein that causes familial Parkinson disease. J Biomol Struct Dyn 2023; 41:14702-14714. [PMID: 36961209 DOI: 10.1080/07391102.2023.2193997] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/25/2023] [Indexed: 03/25/2023]
Abstract
The first gene shown to be responsible for autosomal-dominant Parkinson's disease (PD) is the SNCA gene, which encodes for alpha synuclein (α-Syn). Recently, a novel heterozygous A30G mutation of the SNCA gene associated with familial PD has been reported. However, little research has been done on how the A30G mutation affects the structure of α-Syn. So, using atomistic molecular dynamics (MD) simulation, we demonstrate here the key structural characteristics of A30G α-Syn in the free monomer form and membrane associated state. From the MD trajectory analysis, the structure of A30G α-Syn was noticed to exhibit rapid conformational change, increase in backbone flexibility near the site of mutation and decrease in α-helical propensity. The typical torsion angles in residues (Val26 and Glu28) near the mutation site were observed to deviate significantly in A30G α-Syn. In the case of membrane bound A30G α-Syn, the regions that were submerged in the lipid bilayer (N-helix (3-37) and turn region (38-44)) found to contain higher helical content than the elevated region above the lipid surface. The bending angle in the helix-N and helix-C regions were noticed to be relatively higher in the free form of A30G α-Syn (38.50) than in the membrane bound form (370). The A30G mutation in α-Syn was predicted to have an impact on the stability and function of the protein based on ΔΔG values obtained from the online servers. Our results demonstrate that the A30G mutation in α-Syn altered the protein's α-helical structure and slightly altered the membrane binding.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Dorothy Das
- Molecular Modelling and Simulation Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Venkata Satish Kumar Mattaparthi
- Molecular Modelling and Simulation Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| |
Collapse
|
10
|
Kern M, Jaeger-Honz S, Schreiber F, Sommer B. APL@voro-interactive visualization and analysis of cell membrane simulations. Bioinformatics 2023; 39:7031239. [PMID: 36752505 PMCID: PMC9969824 DOI: 10.1093/bioinformatics/btad083] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/11/2022] [Accepted: 02/07/2023] [Indexed: 02/09/2023] Open
Abstract
SUMMARY Molecular dynamics (MD) simulations of cell membranes allow for a better understanding of complex processes such as changing membrane dynamics, lipid rafts and the incorporation/passing of macromolecules into/through membranes. To explore and understand cell membrane compositions, dynamics and processes, visual analytics can help to interpret MD simulation data. APL@Voro is a software for the interactive visualization and analysis of cell membrane simulations. Here, we present the new APL@Voro, which has been continuously developed since its initial release in 2013. We discuss newly implemented algorithms, methodologies and features, such as the interactive comparison of related simulations and methods to assign lipids to either the upper or lower leaflet. AVAILABILITY AND IMPLEMENTATION The current open-source version of APL@Voro can be downloaded from http://aplvoro.com.
Collapse
Affiliation(s)
- Martin Kern
- Department of Computer and Information Science, University of Konstanz, Konstanz 76484, Germany
| | - Sabrina Jaeger-Honz
- Department of Computer and Information Science, University of Konstanz, Konstanz 76484, Germany
| | - Falk Schreiber
- Department of Computer and Information Science, University of Konstanz, Konstanz 76484, Germany.,Faculty of Information Technology, Monash University, Clayton, VIC 3800, Australia
| | - Bjorn Sommer
- Royal College of Art, School of Design, London SW7 2EU, UK
| |
Collapse
|
11
|
Pirhadi E, Vanegas JM, Farin M, Schertzer JW, Yong X. Effect of Local Stress on Accurate Modeling of Bacterial Outer Membranes Using All-Atom Molecular Dynamics. J Chem Theory Comput 2023; 19:363-372. [PMID: 36579901 PMCID: PMC11521388 DOI: 10.1021/acs.jctc.2c01026] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Biological membranes are fundamental components of living organisms that play an undeniable role in their survival. Molecular dynamics (MD) serves as an essential computational tool for studying biomembranes on molecular and atomistic scales. The status quo of MD simulations of biomembranes studies a nanometer-sized membrane patch periodically extended under periodic boundary conditions (PBCs). In nature, membranes are usually composed of different lipids in their two layers (referred to as leaflets). This compositional asymmetry imposes a fixed ratio of lipid numbers between the two leaflets in a periodically constrained membrane, which needs to be set appropriately. The widely adopted methods of defining a leaflet lipid ratio suffer from the lack of control over the mechanical tension of each leaflet, which could significantly influence research findings. In this study, we investigate the role of membrane-building protocol and the resulting initial stress state on the interaction between small molecules and asymmetric membranes. We model the outer membrane of Pseudomonas aeruginosa bacteria using two different building protocols and probe their interactions with the Pseudomonas quinolone signal (PQS). Our results show that differential stress could shift the position of free energy minimum for the PQS molecule between the two leaflets of the asymmetric membrane. This work provides critical insights into the relationship between the initial per-leaflet tension and the spontaneous intercalation of PQS.
Collapse
Affiliation(s)
- Emad Pirhadi
- Department of Mechanical Engineering, Binghamton University, Binghamton, New York
| | - Juan M. Vanegas
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon
| | - Mithila Farin
- Department of Mechanical Engineering, Binghamton University, Binghamton, New York
| | | | - Xin Yong
- Department of Mechanical Engineering, Binghamton University, Binghamton, New York
| |
Collapse
|
12
|
Pašalić L, Pem B, Bakarić D. Lamellarity-Driven Differences in Surface Structural Features of DPPS Lipids: Spectroscopic, Calorimetric and Computational Study. MEMBRANES 2023; 13:83. [PMID: 36676890 PMCID: PMC9865892 DOI: 10.3390/membranes13010083] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/27/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Although single-lipid bilayers are usually considered models of eukaryotic plasma membranes, their research drops drastically when it comes to exclusively anionic lipid membranes. Being a major anionic phospholipid in the inner leaflet of eukaryote membranes, phosphatidylserine-constituted lipid membranes were occasionally explored in the form of multilamellar liposomes (MLV), but their inherent instability caused a serious lack of efforts undertaken on large unilamellar liposomes (LUVs) as more realistic model membrane systems. In order to compensate the existing shortcomings, we performed a comprehensive calorimetric, spectroscopic and MD simulation study of time-varying structural features of LUV made from 1,2-dipalmitoyl-sn-glycero-3-phospho-L-serine (DPPS), whereas the corresponding MLV were examined as a reference. A substantial uncertainty of UV/Vis data of LUV from which only Tm was unambiguously determined (53.9 ± 0.8 °C), along with rather high uncertainty on the high-temperature range of DPPS melting profile obtained from DSC (≈50-59 °C), presumably reflect distinguished surface structural features in LUV. The FTIR signatures of glycerol moiety and those originated from carboxyl group serve as a strong support that in LUV, unlike in MLV, highly curved surfaces occur continuously, whereas the details on the attenuation of surface features in MLV were unraveled by molecular dynamics.
Collapse
|
13
|
Villalaín J. Bergamottin: location, aggregation and interaction with the plasma membrane. J Biomol Struct Dyn 2023; 41:12026-12037. [PMID: 36602143 DOI: 10.1080/07391102.2022.2164521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023]
Abstract
Bioactive furanocoumarins, a group of natural secondary metabolites common in higher plants, are recognized for their benefits to human health and have been shown to have numerous biological properties. However, the knowledge of its biomolecular mechanism is not known. One of the main furanocoumarins is bergamottin (BGM), which is characterized by a planar three-ringed structure and a hydrocarbon chain, which give BGM its high lipid/water partition coefficient. Because of that, and although the biological mechanism of BGM is not known, BGM bioactive properties could be ascribed to its potential to interact with the biological membrane, modulating its structure, changing its dynamics and at the same time that it might interact with lipids. For our goal, we have applied molecular dynamics to determine the position of BGM in a complex membrane and discern the possibility of certain interactions with membrane lipids. Our findings establish that BGM tends to locate in the middle of the hydrocarbon layer of the membrane, inserts in between the hydrocarbon chains of the phospholipids in an oblique position with respect to the membrane plane, increasing the fluidity of the membrane. Significantly, BGM tends to be surrounded by POPC molecules but exclude the molecule of CHOL. Outstandingly, BGM molecules associate spontaneously creating aggregates, which does not preclude them from interacting with and inserting into the membrane. The bioactive properties of BGM could be ascribed to its membranotropic effects and support the improvement of these molecules as therapeutic molecules, giving place to new opportunities for potential medical improvements.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- José Villalaín
- Institute of Research, Development, and Innovation in Healthcare Biotechnology (IDiBE), Universidad "Miguel Hernández", Elche-Alicante, Spain
| |
Collapse
|
14
|
Contreras-Torres E, Marrero-Ponce Y, Terán JE, Agüero-Chapin G, Antunes A, García-Jacas CR. Fuzzy spherical truncation-based multi-linear protein descriptors: From their definition to application in structural-related predictions. Front Chem 2022; 10:959143. [PMID: 36277354 PMCID: PMC9585278 DOI: 10.3389/fchem.2022.959143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
This study introduces a set of fuzzy spherically truncated three-dimensional (3D) multi-linear descriptors for proteins. These indices codify geometric structural information from kth spherically truncated spatial-(dis)similarity two-tuple and three-tuple tensors. The coefficients of these truncated tensors are calculated by applying a smoothing value to the 3D structural encoding based on the relationships between two and three amino acids of a protein embedded into a sphere. At considering, the geometrical center of the protein matches with center of the sphere, the distance between each amino acid involved in any specific interaction and the geometrical center of the protein can be computed. Then, the fuzzy membership degree of each amino acid from an spherical region of interest is computed by fuzzy membership functions (FMFs). The truncation value is finally a combination of the membership degrees from interacting amino acids, by applying the arithmetic mean as fusion rule. Several fuzzy membership functions with diverse biases on the calculation of amino acids memberships (e.g., Z-shaped (close to the center), PI-shaped (middle region), and A-Gaussian (far from the center)) were considered as well as traditional truncation functions (e.g., Switching). Such truncation functions were comparatively evaluated by exploring: 1) the frequency of membership degrees, 2) the variability and orthogonality analyses among them based on the Shannon Entropy’s and Principal Component’s methods, respectively, and 3) the prediction performance of alignment-free prediction of protein folding rates and structural classes. These analyses unraveled the singularity of the proposed fuzzy spherically truncated MDs with respect to the classical (non-truncated) ones and respect to the MDs truncated with traditional functions. They also showed an improved prediction power by attaining an external correlation coefficient of 95.82% in the folding rate modelling and an accuracy of 100% in distinguishing structural protein classes. These outcomes are better than the ones attained by existing approaches, justifying the theoretical contribution of this report. Thus, the fuzzy spherically truncated-based protein descriptors from MuLiMs-MCoMPAs (http://tomocomd.com/mulims-mcompas) are promising alignment-free predictors for modeling protein functions and properties.
Collapse
Affiliation(s)
- Ernesto Contreras-Torres
- Grupo de Medicina Molecular y Traslacional (MeM&T), Colegio de Ciencias de la Salud (COCSA), Escuela de Medicina, Universidad San Francisco de Quito (USFQ), Quito, Pichincha, Ecuador
- Instituto de Simulación Computacional (ISC-USFQ), Quito, Pichincha, Ecuador
- BCAM—Basque Center for Applied Mathematics, Bilbao, Spain
| | - Yovani Marrero-Ponce
- Grupo de Medicina Molecular y Traslacional (MeM&T), Colegio de Ciencias de la Salud (COCSA), Escuela de Medicina, Universidad San Francisco de Quito (USFQ), Quito, Pichincha, Ecuador
- Instituto de Simulación Computacional (ISC-USFQ), Quito, Pichincha, Ecuador
- Computer-Aided Molecular “Biosilico” Discovery and Bioinformatics Research International Network (CAMD-BIR IN), Quito, Ecuador
- *Correspondence: Yovani Marrero-Ponce, , , César R. García-Jacas, , ,
| | - Julio E. Terán
- Grupo de Medicina Molecular y Traslacional (MeM&T), Colegio de Ciencias de la Salud (COCSA), Escuela de Medicina, Universidad San Francisco de Quito (USFQ), Quito, Pichincha, Ecuador
- Instituto de Simulación Computacional (ISC-USFQ), Quito, Pichincha, Ecuador
- Department of Textile Engineering, Chemistry and Science, College of Textiles, North Carolina State University, Raleigh, NC, United States
| | - Guillermin Agüero-Chapin
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Porto, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Agostinho Antunes
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Porto, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - César R. García-Jacas
- Cátedras Conacyt—Departamento de Ciencias de la Computación, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California, Mexico
- *Correspondence: Yovani Marrero-Ponce, , , César R. García-Jacas, , ,
| |
Collapse
|
15
|
Kulke M, Vermaas JV. Reversible Unwrapping Algorithm for Constant-Pressure Molecular Dynamics Simulations. J Chem Theory Comput 2022; 18:6161-6171. [PMID: 36129782 DOI: 10.1021/acs.jctc.2c00327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Molecular simulation technologies have afforded researchers a unique look into the nanoscale interactions driving physical processes. However, a limitation for molecular dynamics (MD) simulations is that they must be performed on finite-sized systems in order to map onto computational resources. To minimize artifacts arising from finite-sized simulation systems, it is common practice for MD simulations to be performed with periodic boundary conditions (PBCs). However, in order to calculate specific physical properties, such as mean square displacements to calculate diffusion coefficients, continuous particle trajectories where the atomic movements are continuous and do not jump between cell faces are required. In these cases, modifying atomic coordinates through unwrapping schemes is an essential post-processing tool to remove these jumps. Here, two established trajectory unwrapping schemes are applied to 1 μs wrapped trajectories for a small water box and lysozyme in water. The existing schemes can result in spurious diffusion coefficients, long bonds within unwrapped molecules, and inconsistent atomic coordinates when coordinates are rewrapped after unwrapping. We determine that prior unwrapping schemes do not account for changing periodic box dimensions and introduce an additional correction term to the existing displacement unwrapping scheme to correct for these artifacts. We also demonstrate that the resulting algorithm is a hybrid between the existing heuristic and displacement unwrapping schemes. After treatment using this new unwrapping scheme, molecular geometries are correct even after long simulations. In anticipation for longer MD trajectories, we develop implementations for this new scheme in multiple PBC handling tools.
Collapse
Affiliation(s)
- Martin Kulke
- MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, 612 Wilson Rd, East Lansing, Michigan 48824, United States
| | - Josh V Vermaas
- MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, 612 Wilson Rd, East Lansing, Michigan 48824, United States
| |
Collapse
|
16
|
George A, Mondal S, Purnaprajna M, Athri P. Review of Electrostatic Force Calculation Methods and Their Acceleration in Molecular Dynamics Packages Using Graphics Processors. ACS OMEGA 2022; 7:32877-32896. [PMID: 36157750 PMCID: PMC9494432 DOI: 10.1021/acsomega.2c03189] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
Molecular dynamics (MD) simulations probe the conformational repertoire of macromolecular systems using Newtonian dynamic equations. The time scales of MD simulations allow the exploration of biologically relevant phenomena and can elucidate spatial and temporal properties of the building blocks of life, such as deoxyribonucleic acid (DNA) and protein, across microsecond (μs) time scales using femtosecond (fs) time steps. A principal bottleneck toward extending MD calculations to larger time scales is the long-range electrostatic force measuring component of the naive nonbonded force computation algorithm, which scales with a complexity of (N, number of atoms). In this review, we present various methods to determine electrostatic interactions in often-used open-source MD packages as well as the implementation details that facilitate acceleration of the electrostatic interaction calculation.
Collapse
Affiliation(s)
- Anu George
- Department
of Computer Science and Engineering, Amrita
School of Engineering, Bengaluru 560035, Amrita Vishwa Vidyapeetham, India
| | | | - Madhura Purnaprajna
- Department
of Computer Science and Engineering, PES
University, Bengaluru 560085, India
| | - Prashanth Athri
- Department
of Computer Science and Engineering, Amrita
School of Engineering, Bengaluru 560035, Amrita Vishwa Vidyapeetham, India
| |
Collapse
|
17
|
Nie RZ, Cai S, Yu B, Fan WY, Li HH, Tang SW, Huo YQ. Molecular insights into the very early steps of Aβ1-42 pentameric protofibril disassembly by PGG: A molecular dynamics simulation study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Williams A, Zhan CG. Fast Prediction of Binding Affinities of SARS-CoV-2 Spike Protein and Its Mutants with Antibodies through Intermolecular Interaction Modeling-Based Machine Learning. J Phys Chem B 2022; 126:5194-5206. [PMID: 35817617 PMCID: PMC9301770 DOI: 10.1021/acs.jpcb.2c02123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/28/2022] [Indexed: 11/30/2022]
Abstract
Since the introduction of the novel SARS-CoV-2 virus (COVID-19) in late 2019, various new variants have appeared with mutations that confer resistance to the vaccines and monoclonal antibodies that were developed in response to the wild-type virus. As we continue through the pandemic, an accurate and efficient methodology is needed to help predict the effects certain mutations will have on both our currently produced therapeutics and those that are in development. Using published cryo-electron microscopy and X-ray crystallography structures of the spike receptor binding domain region with currently known antibodies, in the present study, we created and cross-validated an intermolecular interaction modeling-based multi-layer perceptron machine learning approach that can accurately predict the mutation-caused shifts in the binding affinity between the spike protein (wild-type or mutant) and various antibodies. This validated artificial intelligence (AI) model was used to predict the binding affinity (Kd) of reported SARS-CoV-2 antibodies with various variants of concern, including the most recently identified "Deltamicron" (or "Deltacron") variant. This AI model may be employed in the future to predict the Kd of developed novel antibody therapeutics to overcome the challenging antibody resistance issue and develop structural bases for the effects of both current and new mutants of the spike protein. In addition, the similar AI strategy and approach based on modeling of the intermolecular interactions may be useful in development of machine learning models predicting binding affinities for other protein-protein binding systems, including other antibodies binding with their antigens.
Collapse
Affiliation(s)
- Alexander
H. Williams
- Molecular
Modeling and Biopharmaceutical Center, University
of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
| | - Chang-Guo Zhan
- Molecular
Modeling and Biopharmaceutical Center, University
of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
| |
Collapse
|
19
|
Müser MH. Improved cutoff functions for short-range potentials and the Wolf summation. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2094430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Martin H. Müser
- Department of Materials Science and Engineering, Saarland University, Saarbrücken, Germany
| |
Collapse
|
20
|
Sosso GC, Sudera P, Backes AT, Whale TF, Fröhlich-Nowoisky J, Bonn M, Michaelides A, Backus EHG. The role of structural order in heterogeneous ice nucleation. Chem Sci 2022; 13:5014-5026. [PMID: 35655890 PMCID: PMC9067566 DOI: 10.1039/d1sc06338c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/07/2022] [Indexed: 01/10/2023] Open
Abstract
The freezing of water into ice is a key process that is still not fully understood. It generally requires an impurity of some description to initiate the heterogeneous nucleation of the ice crystals. The molecular structure, as well as the extent of structural order within the impurity in question, both play an essential role in determining its effectiveness. However, disentangling these two contributions is a challenge for both experiments and simulations. In this work, we have systematically investigated the ice-nucleating ability of the very same compound, cholesterol, from the crystalline (and thus ordered) form to disordered self-assembled monolayers. Leveraging a combination of experiments and simulations, we identify a “sweet spot” in terms of the surface coverage of the monolayers, whereby cholesterol maximises its ability to nucleate ice (which remains inferior to that of crystalline cholesterol) by enhancing the structural order of the interfacial water molecules. These findings have practical implications for the rational design of synthetic ice-nucleating agents. The freezing of water into ice is still not fully understood. Here, we investigate the role of structural disorder within the biologically relevant impurities that facilitate this fundamental phase transition.![]()
Collapse
Affiliation(s)
- Gabriele C Sosso
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Prerna Sudera
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Anna T Backes
- Max Planck Institute for Chemistry Hahn-Meitner-Weg 1 55128 Mainz Germany
| | - Thomas F Whale
- Department of Chemistry, University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | | | - Mischa Bonn
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Angelos Michaelides
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Ellen H G Backus
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany.,Department of Physical Chemistry, University of Vienna Währingerstrasse 42 1090 Wien Austria
| |
Collapse
|
21
|
Villalaín J. Envelope E protein of dengue virus and phospholipid binding to the late endosomal membrane. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183889. [PMID: 35167815 DOI: 10.1016/j.bbamem.2022.183889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/11/2022] [Accepted: 02/07/2022] [Indexed: 02/06/2023]
Abstract
Flaviviruses include many significant human pathogens, comprising dengue, West Nile, Yellow fever, Japanese encephalitis, Zika and tick-borne encephalitis viruses and many others, affecting millions of people in the world. These viruses have produced important epidemics in the past, they continue to do it and they will undoubtedly continue to do so in the future. Flaviviruses enter into the cells via receptor-mediated endocytosis by fusing its membrane with the endosomal membrane in a pH-dependent manner with the help of the envelope E protein, a prototypical class II membrane fusion protein. The envelope E protein has a conserved fusion peptide at its distal end, which is responsible in the first instance of inserting the protein into the host membrane. Since the participation of other segments of the E protein in the fusion process should not be ruled out, we have used atomistic molecular dynamics to study the binding of the distal end of domain II of the envelope E protein from Dengue virus (DENV) with a complex membrane similar to the late-endosome one. Our work shows that not only the fusion peptide participates directly in the fusion, but also two other sequences of the protein, next to the fusion peptide it in the three-dimensional structure, are jointly wrapped in the fusion process. Overall, these three sequences represent a new target that would make it possible to obtain effective antivirals against DENV in particular and Flaviviruses in general.
Collapse
Affiliation(s)
- José Villalaín
- Institute of Research, Development, and Innovation in Healthcare Biotechnology (IDiBE), Universitas "Miguel Hernández", E-03202 Elche-Alicante, Spain.
| |
Collapse
|
22
|
Are all-atom any better than united-atom force fields for the description of liquid properties of alkanes? 2. A systematic study considering different chain lengths. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118829] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Williams AH, Zhan CG. Generalized Methodology for the Quick Prediction of Variant SARS-CoV-2 Spike Protein Binding Affinities with Human Angiotensin-Converting Enzyme II. J Phys Chem B 2022; 126:2353-2360. [PMID: 35315274 PMCID: PMC8982491 DOI: 10.1021/acs.jpcb.1c10718] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/24/2022] [Indexed: 12/25/2022]
Abstract
Variants of the SARS-CoV-2 virus continue to remain a threat 2 years from the beginning of the pandemic. As more variants arise, and the B.1.1.529 (Omicron) variant threatens to create another wave of infections, a method is needed to predict the binding affinity of the spike protein quickly and accurately with human angiotensin-converting enzyme II (ACE2). We present an accurate and convenient energy minimization/molecular mechanics Poisson-Boltzmann surface area methodology previously used with engineered ACE2 therapeutics to predict the binding affinity of the Omicron variant. Without any additional data from the variants discovered after the publication of our first model, the methodology can accurately predict the binding of the spike/ACE2 variant complexes. From this methodology, we predicted that the Omicron variant spike has a Kd of ∼22.69 nM (which is very close to the experimental Kd of 20.63 nM published during the review process of the current report) and that spike protein of the new "Stealth" Omicron variant (BA.2) will display a Kd of ∼12.9 nM with the wild-type ACE2 protein. This methodology can be used with as-yet discovered variants, allowing for quick determinations regarding the variant's infectivity versus either the wild-type virus or its variants.
Collapse
Affiliation(s)
- Alexander H. Williams
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536
| | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536
| |
Collapse
|
24
|
Zimmermann MT. Molecular Modeling is an Enabling Approach to Complement and Enhance Channelopathy Research. Compr Physiol 2022; 12:3141-3166. [PMID: 35578963 DOI: 10.1002/cphy.c190047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hundreds of human membrane proteins form channels that transport necessary ions and compounds, including drugs and metabolites, yet details of their normal function or how function is altered by genetic variants to cause diseases are often unknown. Without this knowledge, researchers are less equipped to develop approaches to diagnose and treat channelopathies. High-resolution computational approaches such as molecular modeling enable researchers to investigate channelopathy protein function, facilitate detailed hypothesis generation, and produce data that is difficult to gather experimentally. Molecular modeling can be tailored to each physiologic context that a protein may act within, some of which may currently be difficult or impossible to assay experimentally. Because many genomic variants are observed in channelopathy proteins from high-throughput sequencing studies, methods with mechanistic value are needed to interpret their effects. The eminent field of structural bioinformatics integrates techniques from multiple disciplines including molecular modeling, computational chemistry, biophysics, and biochemistry, to develop mechanistic hypotheses and enhance the information available for understanding function. Molecular modeling and simulation access 3D and time-dependent information, not currently predictable from sequence. Thus, molecular modeling is valuable for increasing the resolution with which the natural function of protein channels can be investigated, and for interpreting how genomic variants alter them to produce physiologic changes that manifest as channelopathies. © 2022 American Physiological Society. Compr Physiol 12:3141-3166, 2022.
Collapse
Affiliation(s)
- Michael T Zimmermann
- Bioinformatics Research and Development Laboratory, Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Clinical and Translational Sciences Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
25
|
Zhang L, Wang H, Muniz MC, Panagiotopoulos AZ, Car R, E W. A deep potential model with long-range electrostatic interactions. J Chem Phys 2022; 156:124107. [DOI: 10.1063/5.0083669] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Machine learning models for the potential energy of multi-atomic systems, such as the deep potential (DP) model, make molecular simulations with the accuracy of quantum mechanical density functional theory possible at a cost only moderately higher than that of empirical force fields. However, the majority of these models lack explicit long-range interactions and fail to describe properties that derive from the Coulombic tail of the forces. To overcome this limitation, we extend the DP model by approximating the long-range electrostatic interaction between ions (nuclei + core electrons) and valence electrons with that of distributions of spherical Gaussian charges located at ionic and electronic sites. The latter are rigorously defined in terms of the centers of the maximally localized Wannier distributions, whose dependence on the local atomic environment is modeled accurately by a deep neural network. In the DP long-range (DPLR) model, the electrostatic energy of the Gaussian charge system is added to short-range interactions that are represented as in the standard DP model. The resulting potential energy surface is smooth and possesses analytical forces and virial. Missing effects in the standard DP scheme are recovered, improving on accuracy and predictive power. By including long-range electrostatics, DPLR correctly extrapolates to large systems the potential energy surface learned from quantum mechanical calculations on smaller systems. We illustrate the approach with three examples: the potential energy profile of the water dimer, the free energy of interaction of a water molecule with a liquid water slab, and the phonon dispersion curves of the NaCl crystal.
Collapse
Affiliation(s)
| | - Han Wang
- Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Fenghao East Road 2, Beijing 100094, People’s Republic of China
- HEDPS, CAPT, College of Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Maria Carolina Muniz
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | | | - Roberto Car
- Department of Chemistry, Department of Physics, Program in Applied and Computational Mathematics, Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, USA
| | - Weinan E
- School of Mathematical Sciences, Peking University, Beijing 100871, People’s Republic of China
- AI for Science Institute, Beijing, People’s Republic of China
- Department of Mathematics and Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
26
|
Williams AH, Zhan CG. Fast Prediction of Binding Affinities of the SARS-CoV-2 Spike Protein Mutant N501Y (UK Variant) with ACE2 and Miniprotein Drug Candidates. J Phys Chem B 2021; 125:4330-4336. [PMID: 33881861 PMCID: PMC8084269 DOI: 10.1021/acs.jpcb.1c00869] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/30/2021] [Indexed: 12/28/2022]
Abstract
A recently identified variant of SARS-CoV-2 virus, known as the United Kingdom (UK) variant (lineage B.1.1.7), has an N501Y mutation on its spike protein. SARS-CoV-2 spike protein binds with angiotensin-converting enzyme 2 (ACE2), a key protein for the viral entry into the host cells. Here, we report an efficient computational approach, including the simple energy minimizations and binding free energy calculations, starting from an experimental structure of the binding complex along with experimental calibration of the calculated binding free energies, to rapidly and reliably predict the binding affinities of the N501Y mutant with human ACE2 (hACE2) and recently reported miniprotein and hACE2 decoy (CTC-445.2) drug candidates. It has been demonstrated that the N501Y mutation markedly increases the ACE2-spike protein binding affinity (Kd) from 22 to 0.44 nM, which could partially explain why the UK variant is more infectious. The miniproteins are predicted to have ∼10,000- to 100,000-fold diminished binding affinities with the N501Y mutant, creating a need for design of novel therapeutic candidates to overcome the N501Y mutation-induced drug resistance. The N501Y mutation is also predicted to decrease the binding affinity of a hACE2 decoy (CTC-445.2) binding with the spike protein by ∼200-fold. This convenient computational approach along with experimental calibration may be similarly used in the future to predict the binding affinities of potential new variants of the spike protein.
Collapse
Affiliation(s)
- Alexander H. Williams
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536
| | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536
| |
Collapse
|
27
|
Nie RZ, Dang MZ, Ge ZZ, Huo YQ, Yu B, Tang SW. Influence of the gallate moiety on the interactions between green tea polyphenols and lipid membranes elucidated by molecular dynamics simulations. Biophys Chem 2021; 274:106592. [PMID: 33887572 DOI: 10.1016/j.bpc.2021.106592] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 02/09/2023]
Abstract
Previous studies suggested that naturally occurring EGCG primarily acted on the bacterial cell membrane then damaged the membrane and the gallate moiety in EGCG was very important to its anti-bacterial activity. However, the detailed mechanisms were still poorly understood. In this paper, EGCG and EGC were selected to study the great contribution of gallate moiety on the anti-bacterial activities of polyphenols. The results indicated that EGCG could penetrate deeper into the POPG lipid bilayer and possess more potent structure-perturbing potency on the POPG lipid bilayer than EGC. We also found that EGCG had the ability to form hydrogen bonds with the deeper inside oxygen atoms in the POPG lipid bilayer and the gallate moiety was the key functional group for EGCG forming hydrogen bonds with the POPG lipid bilayer. Moreover, results from the binding free energy analysis demonstrated that the gallate moiety made great contribution to the high affinity between EGCG and the POPG lipid bilayer. We believed that these findings could yield useful insights into the influence mechanisms of gallate moiety on the anti-bacterial activities of polyphenols.
Collapse
Affiliation(s)
- Rong-Zu Nie
- School of Food Science and Technology, School of Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China; Food Ingredients Engineering Technology Research Center of Hubei, Xiangyang 441053, China
| | - Mei-Zhu Dang
- School of Energy and Intelligence Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450002, China
| | - Zhen-Zhen Ge
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yin-Qiang Huo
- School of Food Science and Technology, School of Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China; Food Ingredients Engineering Technology Research Center of Hubei, Xiangyang 441053, China
| | - Bo Yu
- School of Food Science and Technology, School of Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China; Food Ingredients Engineering Technology Research Center of Hubei, Xiangyang 441053, China
| | - Shang-Wen Tang
- School of Food Science and Technology, School of Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China; Food Ingredients Engineering Technology Research Center of Hubei, Xiangyang 441053, China.
| |
Collapse
|
28
|
Casalini T. Not only in silico drug discovery: Molecular modeling towards in silico drug delivery formulations. J Control Release 2021; 332:390-417. [PMID: 33675875 DOI: 10.1016/j.jconrel.2021.03.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 12/18/2022]
Abstract
The use of methods at molecular scale for the discovery of new potential active ligands, as well as previously unknown binding sites for target proteins, is now an established reality. Literature offers many successful stories of active compounds developed starting from insights obtained in silico and approved by Food and Drug Administration (FDA). One of the most famous examples is raltegravir, a HIV integrase inhibitor, which was developed after the discovery of a previously unknown transient binding area thanks to molecular dynamics simulations. Molecular simulations have the potential to also improve the design and engineering of drug delivery devices, which are still largely based on fundamental conservation equations. Although they can highlight the dominant release mechanism and quantitatively link the release rate to design parameters (size, drug loading, et cetera), their spatial resolution does not allow to fully capture how phenomena at molecular scale influence system behavior. In this scenario, the "computational microscope" offered by simulations at atomic scale can shed light on the impact of molecular interactions on crucial parameters such as release rate and the response of the drug delivery device to external stimuli, providing insights that are difficult or impossible to obtain experimentally. Moreover, the new paradigm brought by nanomedicine further underlined the importance of such computational microscope to study the interactions between nanoparticles and biological components with an unprecedented level of detail. Such knowledge is a fundamental pillar to perform device engineering and to achieve efficient and safe formulations. After a brief theoretical background, this review aims at discussing the potential of molecular simulations for the rational design of drug delivery systems.
Collapse
Affiliation(s)
- Tommaso Casalini
- Department of Chemistry and Applied Bioscience, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, Zürich 8093, Switzerland; Polymer Engineering Laboratory, Institute for Mechanical Engineering and Materials Technology, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Via la Santa 1, Lugano 6962, Switzerland.
| |
Collapse
|
29
|
Yonetani Y. Dielectric continuum model examination of real-space electrostatic treatments. J Chem Phys 2021; 154:044103. [PMID: 33514106 DOI: 10.1063/5.0033053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Electrostatic interaction is long ranged; thus, the accurate calculation is not an easy task in molecular dynamics or Monte Carlo simulations. Though the rigorous Ewald method based on the reciprocal space has been established, real-space treatments have recently become an attractive alternative because of the efficient calculation. However, the construction is not yet completed and is now a challenging subject. In an earlier theoretical study, Neumann and Steinhauser employed the Onsager dielectric continuum model to explain how simple real-space cutoff produces artificial dipolar orientation. In the present study, we employ this continuum model to explore the fundamental properties of the recently developed real-space treatments of three shifting schemes. The result of the distance-dependent Kirkwood function GK(R) showed that the simple bare cutoff produces a well-known hole-shaped artifact, whereas the shift treatments do not. Two-dimensional mapping of electric field well explained how these shift treatments remove the hole-shaped artifact. Still, the shift treatments are not sufficient because they do not produce a flat GK(R) profile unlike ideal no-cutoff treatment. To test the continuum model results, we also performed Monte Carlo simulations of dipolar particles. The results found that the continuum model could predict the qualitative tendency as to whether each electrostatic treatment produces the hole-shaped artifact of GK(R) or not. We expect that the present study using the continuum model offers a stringent criterion to judge whether the primitive electrostatic behavior is correctly described or not, which will be useful for future construction of electrostatic treatments.
Collapse
Affiliation(s)
- Yoshiteru Yonetani
- Quantum Beam Science Research Directorate and Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215, Japan
| |
Collapse
|
30
|
Nie RZ, Huo YQ, Yu B, Liu CJ, Zhou R, Bao HH, Tang SW. Molecular insights into the inhibitory mechanisms of gallate moiety on the Aβ 1-40 amyloid aggregation: A molecular dynamics simulation study. Int J Biol Macromol 2020; 156:40-50. [PMID: 32275992 DOI: 10.1016/j.ijbiomac.2020.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease is the most common form of neurodegenerative disease and the formation of Aβ amyloid aggregates has been widely demonstrated to be the principal cause of Alzheimer's disease. Our previous study and other studies suggested that the gallate moiety played an obligatory role in the inhibition process of naturally occurring polyphenols on Aβ amyloid fibrils formation. However, the detailed mechanisms were still unknown. Thus, in the present study, the gallic acid (GA) was specially selected and the molecular recognition mechanisms between GA molecules and Aβ1-40 monomer were examined and analyzed by molecular dynamics simulation. The in silico experiments revealed that GA significantly prevented the conformational changes of Aβ1-40 monomer with no β-sheet structure during the whole 100 ns. By analyzing the binding sites of GA molecules to Aβ1-40 monomer, we found that both hydrophilic and hydrophobic amino acid residues were participated in the binding of GA molecules to Aβ1-40 monomer. Moreover, results from the binding free energy analysis further demonstrated that the strength of polar interactions was significantly stronger than that of nonpolar interactions. We believed that our results could help to elucidate the underlying mechanisms of gallate moiety on the anti-amyloidogenic effects of polyphenols at the atomic level.
Collapse
Affiliation(s)
- Rong-Zu Nie
- School of Food Science and Technology, School of Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China; Food Ingredients Engineering Technology Research Center of Hubei, China
| | - Yin-Qiang Huo
- School of Food Science and Technology, School of Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China; Food Ingredients Engineering Technology Research Center of Hubei, China
| | - Bo Yu
- School of Food Science and Technology, School of Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China; Food Ingredients Engineering Technology Research Center of Hubei, China
| | - Chuan-Ju Liu
- School of Food Science and Technology, School of Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China; Food Ingredients Engineering Technology Research Center of Hubei, China
| | - Rui Zhou
- School of Food Science and Technology, School of Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China; Food Ingredients Engineering Technology Research Center of Hubei, China
| | - Hong-Hui Bao
- School of Food Science and Technology, School of Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China; Food Ingredients Engineering Technology Research Center of Hubei, China
| | - Shang-Wen Tang
- School of Food Science and Technology, School of Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China; Food Ingredients Engineering Technology Research Center of Hubei, China.
| |
Collapse
|
31
|
Predescu C, Lerer AK, Lippert RA, Towles B, Grossman J, Dirks RM, Shaw DE. The u-series: A separable decomposition for electrostatics computation with improved accuracy. J Chem Phys 2020; 152:084113. [DOI: 10.1063/1.5129393] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | | | | | - Brian Towles
- D. E. Shaw Research, New York, New York 10036, USA
| | | | | | - David E. Shaw
- D. E. Shaw Research, New York, New York 10036, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
| |
Collapse
|
32
|
Carpio LE, Villalaín J. Identification of the phospholipid binding regions of the envelope E protein of flaviviruses by molecular dynamics. J Biomol Struct Dyn 2019; 38:5136-5147. [PMID: 31779533 DOI: 10.1080/07391102.2019.1697368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Flavivirus genus comprise several important human pathogens, including dengue, West Nile, Yellow fever, Japanese encephalitis, Zika, and tick-borne encephalitis viruses. These enveloped viruses affect more than 2 billion people in the world, mainly in less developed countries. Although some vaccines exist for some flaviviruses, these vaccines are not universally available due to many factors and since their infections are a world-wide public health issue, the development of antiviral molecules is fundamental. Flavivirus membranes, through the help of the envelope E glycoprotein, fuse with endosomal compartments in a pH-dependent way to release their genome into the cytoplasm and require specific lipids, such as bis(monoacylglycero)phosphate (BMP), for efficient fusion. The fundamental role the envelope E protein has on viral entry and membrane fusion suggest that it is an essential antiviral target. In this work, we have used atomistic molecular dynamics simulations to study the binding of the head-group of BMP to the tip of the envelope E proteins of ZIKV, DENV, TBEV and JEV viruses whose three-dimensional structures are known. Our results indicate that, apart from the fusion loop, there are different amino acid residues in different regions of the envelope E proteins of flaviviruses capable of binding the head-group of BMP. These regions should work together to accomplish the binding and fusion of the envelope and endosomal membranes and represent a new target to develop and design potent and effective antiviral agents capable of blocking flavivirus-endosome membrane fusion. [Formula: see text].
Collapse
Affiliation(s)
- Laureano E Carpio
- Molecular and Cellular Biology Institute (IBMC) and Institute of Research, Development, and Innovation in Healthcare Biotechnology (IDiBE), Universidad 'Miguel Hernández', Elche-Alicante, Spain
| | - José Villalaín
- Molecular and Cellular Biology Institute (IBMC) and Institute of Research, Development, and Innovation in Healthcare Biotechnology (IDiBE), Universidad 'Miguel Hernández', Elche-Alicante, Spain
| |
Collapse
|
33
|
Tolmachev DA, Boyko OS, Lukasheva NV, Martinez-Seara H, Karttunen M. Overbinding and Qualitative and Quantitative Changes Caused by Simple Na+ and K+ Ions in Polyelectrolyte Simulations: Comparison of Force Fields with and without NBFIX and ECC Corrections. J Chem Theory Comput 2019; 16:677-687. [DOI: 10.1021/acs.jctc.9b00813] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- D. A. Tolmachev
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, St. Petersburg 199004, Russia
| | - O. S. Boyko
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, St. Petersburg 199004, Russia
| | - N. V. Lukasheva
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, St. Petersburg 199004, Russia
| | - H. Martinez-Seara
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 542/2, Prague 6 CZ166 10, Czech Republic
| | - Mikko Karttunen
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, St. Petersburg 199004, Russia
| |
Collapse
|
34
|
García-Jacas CR, Marrero-Ponce Y, Brizuela CA, Suárez-Lezcano J, Martinez-Rios F. Smoothed Spherical Truncation based on Fuzzy Membership Functions: Application to the Molecular Encoding. J Comput Chem 2019; 41:203-217. [PMID: 31647589 DOI: 10.1002/jcc.26089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/26/2019] [Accepted: 10/02/2019] [Indexed: 11/09/2022]
Abstract
A novel spherical truncation method, based on fuzzy membership functions, is introduced to truncate interatomic (or interaminoacid) relations according to smoothing values computed from fuzzy membership degrees. In this method, the molecules are circumscribed into a sphere, so that the geometric centers of the molecules are the centers of the spheres. The fuzzy membership degree of each atom (or aminoacid) is computed from its distance with respect to the geometric center of the molecule, by using a fuzzy membership function. So, the smoothing value to be applied in the truncation of a relation (or interaction) is computed by averaging the fuzzy membership degrees of the atoms (or aminoacids) involved in the relation. This truncation method is rather different from the existing ones, at considering the geometric center for the whole molecule and not only for atom-groups, as well as for using fuzzy membership functions to compute the smoothing values. A variability study on a set comprised of 20,469 compounds (15,050 drug-like compounds, 2994 drugs approved, 880 natural products from African sources, and 1545 plant-derived natural compounds exhibiting anti-cancerous activity) demonstrated that the truncation method proposed allows to determine molecular encodings with better ability for discriminating among structurally different molecules than the encodings obtained without applying truncation or applying non-fuzzy truncation functions. Moreover, a principal component analysis revealed that orthogonal chemical information of the molecules is encoded by using the method proposed. Lastly, a modeling study proved that the truncation method improves the modeling ability of existing geometric molecular descriptors, at allowing to develop more robust models than the ones built only using non-truncated descriptors. In this sense, a comparison and statistical assessment were performed on eight chemical datasets. As a result, the models based on the truncated molecular encodings yielded statistically better results than 12 procedures considered from the literature. It can thus be stated that the proposed truncation method is a relevant strategy for obtaining better molecular encodings, which will be ultimately useful in enhancing the modeling ability of existing encodings both on small-to-medium size molecules and biomacromolecules. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- César R García-Jacas
- Cátedras CONACYT-Departamento de Ciencias de la Computación, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California, Mexico
| | - Yovani Marrero-Ponce
- Universidad San Francisco de Quito (USFQ), Grupo de Medicina Molecular y Traslacional (MeM&T), Colegio de Ciencias de la Salud (COCSA), Escuela de Medicina, Edificio de Especialidades Médicas; and Instituto de Simulación Computacional (ISC-USFQ), Quito, Pichincha, Ecuador.,Grupo GINUMED, Corporacion Universitaria Rafael Nuñez. Facultad de Salud, Programa de Medicina, Cartagena, Colombia.,Unidad de Investigación de Diseño de Fármacos y Conectividad Molecular, Departamento de Química Física, Facultad de Farmacia, Universitat de València, Spain
| | - Carlos A Brizuela
- Departamento de Ciencias de la Computación, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California, Mexico
| | - José Suárez-Lezcano
- Pontificia Universidad Católica del Ecuador Sede Esmeraldas (PUCESE), Esmeraldas, Ecuador
| | | |
Collapse
|
35
|
Vierros S, Sammalkorpi M. Hybrid Atomistic and Coarse-Grained Model for Surfactants in Apolar Solvents. ACS OMEGA 2019; 4:15581-15592. [PMID: 31572859 PMCID: PMC6761742 DOI: 10.1021/acsomega.9b01959] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Here, we develop and verify the performance of a hybrid molecular modeling approach that combines coarse-grained apolar solvent and atomistic solute or polar solvent description, for example, for description of reverse micellar systems. The coarse-grained solvent model is directly applicable to organic solvents encompassing alkane, alkene, and fatty acid ester functional groups and connects directly to both standard united-atom GROMOS 53A6 and all-atom CHARMM27 force fields, as well as the atomistic detail water models compatible with these force fields. The different levels of description are coupled via explicit, unscaled electrostatics, and scaled mixing rules for dispersive interactions. The hybrid model is in near-quantitative agreement with fully atomistic simulations when combined with the CHARMM27 model but underestimates modestly surfactant aggregation when using GROMOS 53A6 united-atom description. The use of truncated electrostatics affords up to a 9-fold increase in computational speed without significant loss of accuracy. However, long-range electrostatic calculations and load imbalance at high core counts can significantly degrade the performance. We demonstrate the usability of the hybrid model by assessing the reverse micelle formation of a homologous series of nonionic glycerolipids via large-scale self-assembly simulations. The presented model is demonstrated here for accurate description of surfactant systems in apolar solvents, with and without also polar solvent (water) in the system. The formulation can be expected to describe well also other solute species or interfaces with an apolar solvent in an apolar environment.
Collapse
Affiliation(s)
- Sampsa Vierros
- Department
of Chemistry and Materials Science and Department of Biomaterials and
Bioproducts, Aalto University, P. O. Box 16100, 00076 Aalto, Finland
| | - Maria Sammalkorpi
- Department
of Chemistry and Materials Science and Department of Biomaterials and
Bioproducts, Aalto University, P. O. Box 16100, 00076 Aalto, Finland
| |
Collapse
|
36
|
Chen G, Zhu H, Hang Y, Liu Q, Liu G, Jin W. Simultaneously enhancing interfacial adhesion and pervaporation separation performance of PDMS/ceramic composite membrane via a facile substrate surface grafting approach. AIChE J 2019. [DOI: 10.1002/aic.16773] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Guining Chen
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering, Nanjing Tech University Nanjing China
| | - Haipeng Zhu
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering, Nanjing Tech University Nanjing China
| | - Yingting Hang
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering, Nanjing Tech University Nanjing China
| | - Quan Liu
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering, Nanjing Tech University Nanjing China
| | - Gongping Liu
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering, Nanjing Tech University Nanjing China
| | - Wanqin Jin
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering, Nanjing Tech University Nanjing China
| |
Collapse
|
37
|
Zaki AM, Carbone P. Amphiphilic copolymers change the nature of the ordered-to-disordered phase transition of lipid membranes from discontinuous to continuous. Phys Chem Chem Phys 2019; 21:13746-13757. [PMID: 31209450 DOI: 10.1039/c9cp01293a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The phase behaviour as a function of temperature is explored for pure phospholipid (DPPC) and hybrid lipid-polymer (DPPC/Pluronic L64) bilayers with the aid of atomistic MD simulations. The range of the fixed-temperature simulations includes temperatures below and above the known melting temperature (Tm) for DPPC membranes. For the pure lipid bilayer, the main phase transition is discontinuous, as verified by the abrupt changes observed in the membrane structure, elasticity and the lipid diffusivity near the critical temperature Tm, which lies in the region 298.15-303.15 K. A pre-transition step is detected at 298.15 K which has been identified as the ripple phase (Pβ'), where ordered and disordered lipids coexist, causing thickness fluctuations. In the ordered gel phase, the positional ordering as assessed by the lipid radial distribution functions is long-range and some degree of hexagonal packing is measured. The hybrid bilayers on the other hand, transform from a more ordered to a disordered phase in a continuous manner, without finite jumps in their properties. No signs of the ripple phase are identified and the ordered phase exhibits very limited hexagonal packing and some positional ordering that decays fast. The effect of the inserted polymers in the two phases is reversed; at low temperatures, they render the membrane thinner, less cohesive and less ordered compared to the pure one, with the lipids assuming faster diffusion rates, whereas at high temperatures, the polymer interaction with the lipids acts reducing their diffusivity, but also increasing the lipid tail ordering and the membrane stiffness. The ability of the amphiphilic L64 copolymers to change the nature of the main phase transition of lipid membranes and their properties both in the ordered and the disordered phase is of vital importance for the prediction of both the efficacy of hybrid lipid/polymer nanoparticles as drug delivery vehicles as well as their potential adverse implications during interactions with healthy cell membranes.
Collapse
Affiliation(s)
- Afroditi Maria Zaki
- School of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | | |
Collapse
|
38
|
Marrink SJ, Corradi V, Souza PC, Ingólfsson HI, Tieleman DP, Sansom MS. Computational Modeling of Realistic Cell Membranes. Chem Rev 2019; 119:6184-6226. [PMID: 30623647 PMCID: PMC6509646 DOI: 10.1021/acs.chemrev.8b00460] [Citation(s) in RCA: 435] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Indexed: 12/15/2022]
Abstract
Cell membranes contain a large variety of lipid types and are crowded with proteins, endowing them with the plasticity needed to fulfill their key roles in cell functioning. The compositional complexity of cellular membranes gives rise to a heterogeneous lateral organization, which is still poorly understood. Computational models, in particular molecular dynamics simulations and related techniques, have provided important insight into the organizational principles of cell membranes over the past decades. Now, we are witnessing a transition from simulations of simpler membrane models to multicomponent systems, culminating in realistic models of an increasing variety of cell types and organelles. Here, we review the state of the art in the field of realistic membrane simulations and discuss the current limitations and challenges ahead.
Collapse
Affiliation(s)
- Siewert J. Marrink
- Groningen
Biomolecular Sciences and Biotechnology Institute & Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Valentina Corradi
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Paulo C.T. Souza
- Groningen
Biomolecular Sciences and Biotechnology Institute & Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Helgi I. Ingólfsson
- Biosciences
and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - D. Peter Tieleman
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Mark S.P. Sansom
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| |
Collapse
|
39
|
Moradi S, Nowroozi A, Shahlaei M. Shedding light on the structural properties of lipid bilayers using molecular dynamics simulation: a review study. RSC Adv 2019; 9:4644-4658. [PMID: 35520151 PMCID: PMC9060685 DOI: 10.1039/c8ra08441f] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 03/12/2019] [Accepted: 01/16/2019] [Indexed: 12/20/2022] Open
Abstract
In recent years, a massive increase has been observed in the number of published articles describing accurate and reliable molecular dynamics simulations of lipid bilayers. This is due to several reasons, including the development of fast and efficient methods for treating long-range electrostatic interactions, significant progress in computer hardware, progress in atomistic simulation algorithms and the development of well-validated empirical molecular mechanical force fields. Although molecular dynamics is an effective approach for investigating different aspects of lipid bilayers, to the best of our knowledge, there is no review in the literature that explains the different analyses that can be carried out with membrane simulation. This review gives an overview about the some of the most important possible analyses, technical challenges, and existing protocols that can be performed on the biological membrane by molecular dynamics simulation. The reviewed analyses include the degree of membrane disruption, average area per lipid, probability distributions for the area per lipid molecule, membrane thickness, membrane area compressibility, lateral diffusion, rotational diffusion, order parameters, head group tilt, electron density profile, mass density profile, electrostatic potential profile, ordering of vicinity waters, number of hydrogen bonds, and radial distribution function.
Collapse
Affiliation(s)
- Sajad Moradi
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Amin Nowroozi
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Mohsen Shahlaei
- Medical Biology Research Center, Kermanshah University of Medical Sciences Kermanshah Iran
| |
Collapse
|
40
|
Gonçalves YMH, Senac C, Fuchs PFJ, Hünenberger PH, Horta BAC. Influence of the Treatment of Nonbonded Interactions on the Thermodynamic and Transport Properties of Pure Liquids Calculated Using the 2016H66 Force Field. J Chem Theory Comput 2019; 15:1806-1826. [DOI: 10.1021/acs.jctc.8b00425] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Yan M. H. Gonçalves
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Caroline Senac
- Sorbonne
Université,
CNRS, INSERM, Laboratoire d’Imagerie Biomédicale (LIB), F-75006 Paris, France
| | - Patrick F. J. Fuchs
- Sorbonne Université,
École normale supérieure, PSL University, CNRS, Laboratoire
des biomolécules, LBM, 75005 Paris, France
- Université
Paris Diderot, 75013 Paris, France
| | | | - Bruno A. C. Horta
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| |
Collapse
|
41
|
Huber RG, Carpenter TS, Dube N, Holdbrook DA, Ingólfsson HI, Irvine WA, Marzinek JK, Samsudin F, Allison JR, Khalid S, Bond PJ. Multiscale Modeling and Simulation Approaches to Lipid-Protein Interactions. Methods Mol Biol 2019; 2003:1-30. [PMID: 31218611 DOI: 10.1007/978-1-4939-9512-7_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Lipid membranes play a crucial role in living systems by compartmentalizing biological processes and forming a barrier between these processes and the environment. Naturally, a large apparatus of biomolecules is responsible for construction, maintenance, transport, and degradation of these lipid barriers. Additional classes of biomolecules are tasked with transport of specific substances or transduction of signals from the environment across lipid membranes. In this article, we intend to describe a set of techniques that enable one to build accurate models of lipid systems and their associated proteins, and to simulate their dynamics over a variety of time and length scales. We discuss the methods and challenges that allow us to derive structural, mechanistic, and thermodynamic information from these models. We also show how these models have recently been applied in research to study some of the most complex lipid-protein systems to date, including bacterial and viral envelopes, neuronal membranes, and mammalian signaling systems.
Collapse
Affiliation(s)
- Roland G Huber
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Timothy S Carpenter
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Namita Dube
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Daniel A Holdbrook
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Helgi I Ingólfsson
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - William A Irvine
- Centre for Theoretical Chemistry and Physics, Institute of Natural and Mathematical Sciences, Massey University, Auckland, New Zealand
| | - Jan K Marzinek
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | | | - Jane R Allison
- School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
| | - Syma Khalid
- School of Chemistry, University of Southampton, Southampton, UK
| | - Peter J Bond
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
42
|
Angelescu DG. Coarse-grained simulation studies on the adsorption of polyelectrolyte complexes upon lipid membranes. Phys Chem Chem Phys 2019; 21:12446-12459. [DOI: 10.1039/c9cp01448a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Conformations of a polyelectrolyte complex irreversibly bound to a zwitterionic lipid bilayer.
Collapse
Affiliation(s)
- Daniel G. Angelescu
- Romanian Academy
- “Ilie Murgulescu” Institute of Physical Chemistry
- 060021 Bucharest
- Romania
| |
Collapse
|
43
|
Effect of truncating electrostatic interactions on predicting thermodynamic properties of water–methanol systems. MOLECULAR SIMULATION 2018. [DOI: 10.1080/08927022.2018.1547824] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
44
|
Villalaín J. Epigallocatechin-3-gallate location and interaction with late endosomal and plasma membrane model membranes by molecular dynamics. J Biomol Struct Dyn 2018; 37:3122-3134. [PMID: 30081748 DOI: 10.1080/07391102.2018.1508372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Epigallocatechin-3-gallate (EGCG) is the most abundant polyphenol in green tea and it has been reported to have many beneficial properties against many different types of illnesses and infections. However, the exact mechanism/s underlying its biological effects are unknown. It has been previously shown that EGCG is capable of binding to and disrupting the membrane, so that some of its effects on biological systems could be ascribed to its capacity to incorporate into the biological membrane and modulate its structure. In this work, we have used atomistic molecular dynamics (MD) to discern the location and orientation of EGCG in model membranes and the possible existence of specific interactions with membrane lipids. For that goal, we have used in our simulation two complex model membranes, one resembling the plasma membrane (PM) and the other one the late endosome (LE) membrane. Our results support that EGCG tends to associate with the membrane and exists inside it in a relatively stable and steady location with a low propensity to be associated with other EGCG molecules. Interestingly, EGCG forms hydrogen bonds with POPC and POPE in the PM system but POPC and BMP and no POPE in the LE. These data suggest that the broad beneficial effects of EGCG could be mediated, at least in part, through its membranotropic effects and therefore membrane functioning. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- José Villalaín
- a Molecular and Cellular Biology Institute (IBMC) and Institute for Biotechnological Research, Development and Innovation (IDiBE) , Universitas "Miguel Hernández" , Alicante , Spain
| |
Collapse
|
45
|
Merz PT, Shirts MR. Testing for physical validity in molecular simulations. PLoS One 2018; 13:e0202764. [PMID: 30188933 PMCID: PMC6126824 DOI: 10.1371/journal.pone.0202764] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/07/2018] [Indexed: 11/18/2022] Open
Abstract
Advances in recent years have made molecular dynamics (MD) and Monte Carlo (MC) simulations powerful tools in molecular-level research, allowing the prediction of experimental observables in the study of systems such as proteins, membranes, and polymeric materials. However, the quality of any prediction based on molecular dynamics results will strongly depend on the validity of underlying physical assumptions. Unphysical behavior of simulations can have significant influence on the results and reproducibility of these simulations, such as folding of proteins and DNA or properties of lipid bilayers determined by cutoff treatment, dynamics of peptides and polymers affected by the choice of thermostat, or liquid properties depending on the simulation time step. Motivated by such examples, we propose a two-fold approach to increase the robustness of molecular simulations. The first part of this approach involves tests which can be performed by the users of MD programs on their respective systems and setups. We present a number of tests of different complexity, ranging from simple post-processing analysis to more involved tests requiring additional simulations. These tests are shown to significantly increase the reliability of MD simulations by catching a number of common simulation errors violating physical assumptions, such as non-conservative integrators, deviations from the Boltzmann ensemble, and lack of ergodicity between degrees of freedom. To make the usage as easy as possible, we have developed an open-source and platform-independent Python library (https://physical-validation.readthedocs.io) implementing these tests. The second part of the approach involves testing for code correctness. While unphysical behavior can be due to poor or incompatible choices of parameters by the user, it can just as well originate in coding errors within the program. We therefore propose to include physical validation tests in the code-checking mechanism of MD software packages. We have implemented such a validation for the GROMACS software package, ensuring that every major release passes a number of physical sanity checks performed on selected representative systems before shipping. It is, to our knowledge, the first major molecular mechanics software package to run such validation routinely. The tests are, as the rest of the package, open source software, and can be adapted for other software packages.
Collapse
Affiliation(s)
- Pascal T. Merz
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, United States of America
| | - Michael R. Shirts
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, United States of America
- * E-mail:
| |
Collapse
|
46
|
Qian Z, Zou Y, Zhang Q, Chen P, Ma B, Wei G, Nussinov R. Atomistic-level study of the interactions between hIAPP protofibrils and membranes: Influence of pH and lipid composition. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2018; 1860:1818-1825. [PMID: 29428499 PMCID: PMC6408309 DOI: 10.1016/j.bbamem.2018.02.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/01/2018] [Accepted: 02/03/2018] [Indexed: 01/25/2023]
Abstract
The pathology of type 2 diabetes mellitus is associated with the aggregation of human islet amyloid polypeptide (hIAPP) and aggregation-mediated membrane disruption. The interactions of hIAPP aggregates with lipid membrane, as well as the effects of pH and lipid composition at the atomic level, remain elusive. Herein, using molecular dynamics simulations, we investigate the interactions of hIAPP protofibrillar oligomers with lipids, and the membrane perturbation that they induce, when they are partially inserted in an anionic dipalmitoyl-phosphatidylglycerol (DPPG) membrane or a mixed dipalmitoyl-phosphatidylcholine (DPPC)/DPPG (7:3) lipid bilayer under acidic/neutral pH conditions. We observed that the tilt angles and insertion depths of the hIAPP protofibril are strongly correlated with the pH and lipid composition. At neutral pH, the tilt angle and insertion depth of hIAPP protofibrils at a DPPG bilayer reach ~52° and ~1.62 nm with respect to the membrane surface, while they become ~77° and ~1.75 nm at a mixed DPPC/DPPG membrane. The calculated tilt angle of hIAPP at DPPG membrane is consistent with a recent chiral sum frequency generation spectroscopic study. The acidic pH induces a smaller tilt angle of ~40° and a shallower insertion depth (~1.24 nm) of hIAPP at the DPPG membrane surface, mainly due to protonation of His18 near the turn region. These differences mainly result from a combination of distinct electrostatic, van der Waals, hydrogen bonding and salt-bridge interactions between hIAPP and lipid bilayers. The hIAPP-membrane interaction energy analysis reveals that besides charged residues K1, R11 and H18, aromatic residues Phe15 and Phe23 also exhibit strong interactions with lipid bilayers, revealing the crucial role of aromatic residues in stabilizing the membrane-bound hIAPP protofibrils. hIAPP-membrane interactions disturb the lipid ordering and the local bilayer thickness around the peptides. Our results provide atomic-level information of membrane interaction of hIAPP protofibrils, revealing pH-dependent and membrane-modulated hIAPP aggregation at the early stage.
Collapse
Affiliation(s)
- Zhenyu Qian
- Key Laboratory of Exercise and Health Sciences (Ministry of Education) and School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China; Department of Physics, State Key Laboratory of Surface physics, Key Laboratory for Computational Physical Science (Ministry of Education), and Collaborative Innovation Center of Advanced Microstructures (Nanjing), Fudan University, Shanghai 200433, China
| | - Yu Zou
- College of Physical Education and Training, Shanghai University of Sport, Shanghai 200438, China
| | - Qingwen Zhang
- College of Physical Education and Training, Shanghai University of Sport, Shanghai 200438, China
| | - Peijie Chen
- Key Laboratory of Exercise and Health Sciences (Ministry of Education) and School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, United States
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface physics, Key Laboratory for Computational Physical Science (Ministry of Education), and Collaborative Innovation Center of Advanced Microstructures (Nanjing), Fudan University, Shanghai 200433, China.
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, United States; Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Sackler Institute of Molecular Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
47
|
Capozza R, Caprettini V, Gonano CA, Bosca A, Moia F, Santoro F, De Angelis F. Cell Membrane Disruption by Vertical Micro-/Nanopillars: Role of Membrane Bending and Traction Forces. ACS APPLIED MATERIALS & INTERFACES 2018; 10:29107-29114. [PMID: 30081625 PMCID: PMC6117743 DOI: 10.1021/acsami.8b08218] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Gaining access to the cell interior is fundamental for many applications, such as electrical recording and drug and biomolecular delivery. A very promising technique consists of culturing cells on micro-/nanopillars. The tight adhesion and high local deformation of cells in contact with nanostructures can promote the permeabilization of lipids at the plasma membrane, providing access to the internal compartment. However, there is still much experimental controversy regarding when and how the intracellular environment is targeted and the role of the geometry and interactions with surfaces. Consequently, we investigated, by coarse-grained molecular dynamics simulations of the cell membrane, the mechanical properties of the lipid bilayer under high strain and bending conditions. We found out that a high curvature of the lipid bilayer dramatically lowers the traction force necessary to achieve membrane rupture. Afterward, we experimentally studied the permeabilization rate of the cell membrane by pillars with comparable aspect ratios but different sharpness values at the edges. The experimental data support the simulation results: even pillars with diameters in the micron range may cause local membrane disruption when their edges are sufficiently sharp. Therefore, the permeabilization likelihood is connected to the local geometric features of the pillars rather than diameter or aspect ratio. The present study can also provide significant contributions to the design of three-dimensional biointerfaces for tissue engineering and cellular growth.
Collapse
Affiliation(s)
- Rosario Capozza
- Istituto
Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Valeria Caprettini
- Istituto
Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
- Università
degli studi di Genova, Genova 16126, Italy
| | - Carlo A. Gonano
- Istituto
Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Alessandro Bosca
- Istituto
Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Fabio Moia
- Istituto
Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Francesca Santoro
- Center
for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, 80125 Napoli, Italy
| | | |
Collapse
|
48
|
Takahashi KZ, Nozawa T, Yasuoka K. A fast and accurate computational method for the linear-combination-based isotropic periodic sum. Sci Rep 2018; 8:11880. [PMID: 30089878 PMCID: PMC6082916 DOI: 10.1038/s41598-018-30364-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/16/2018] [Indexed: 12/13/2022] Open
Abstract
An isotropic periodic sum (IPS) is a powerful technique to reasonably calculate intermolecular interactions for wide range of molecular systems under periodic boundary conditions. A linear-combination-based IPS (LIPS) has been developed to attain computational accuracy close to an exact lattice sum, such as the Ewald sum. The algorithm of the original LIPS method has a high computational cost because it needs long-range interaction calculations in real space. This becomes a performance bottleneck for long-time molecular simulations. In this work, the combination of an LIPS and fast Fourier transform (FFT) was developed, and evaluated on homogeneous and heterogeneous molecular systems. This combinational approach of LIPS/FFT attained computational efficiency close to that of a smooth particle mesh Ewald while maintaining the same high accuracy as the original LIPS. We concluded that LIPS/FFT has great potential to extend the capability of IPS techniques for the fast and accurate computation of many types of molecular systems.
Collapse
Affiliation(s)
- Kazuaki Z Takahashi
- Research Center for Computational Design of Advanced Functional Materials, National Institute of Advanced Industrial Science and Technology (AIST), Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8568, Japan.
| | - Takuma Nozawa
- Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Kenji Yasuoka
- Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| |
Collapse
|
49
|
Khakbaz P, Klauda JB. Investigation of phase transitions of saturated phosphocholine lipid bilayers via molecular dynamics simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1489-1501. [DOI: 10.1016/j.bbamem.2018.04.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/26/2018] [Accepted: 04/26/2018] [Indexed: 12/01/2022]
|
50
|
Elola MD, Rodriguez J. Influence of Cholesterol on the Dynamics of Hydration in Phospholipid Bilayers. J Phys Chem B 2018; 122:5897-5907. [PMID: 29742895 DOI: 10.1021/acs.jpcb.8b00360] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We investigate the dynamics of interfacial waters in dipalmitoylphosphatidylcholine (DPPC) bilayers upon the addition of cholesterol, by molecular dynamics simulations. Our data reveal that the inclusion of cholesterol modifies the membrane aqueous interfacial dynamics: waters diffuse faster, their rotational decay time is shorter, and the DPPC/water hydrogen bond dynamics relaxes faster than in the pure DPPC membrane. The observed acceleration of the translational water dynamics agrees with recent experimental results, in which, by means of NMR techniques, an increment of the surface water diffusivity is measured upon the addition of cholesterol. A microscopic analysis of the lipid/water hydrogen bond network at the interfacial region suggests that the mechanism underlying the observed water mobility enhancement is given by the rupture of a fraction of interlipid water bridge hydrogen bonds connecting two different DPPC molecules, concomitant to the formation of new lipid/solvent bonds, whose dynamics is faster than that of the former. The consideration of a simple two-state model for the decay of the hydrogen bond correlation function yielded excellent results, obtaining two well-separated characteristic time scales: a slow one (∼250 ps) associated with bonds linking two DPPC molecules, and a fast one (∼15 ps), related to DPPC/solvent bonds.
Collapse
Affiliation(s)
- M Dolores Elola
- Departamento de Física , Comisión Nacional de Energía Atómica , Av Libertador 8250, 1429 Buenos Aires , Argentina
| | - Javier Rodriguez
- Departamento de Física , Comisión Nacional de Energía Atómica , Av Libertador 8250, 1429 Buenos Aires , Argentina.,ECyT , UNSAM , Martín de Irigoyen 3100, 1650 San Martín, Provincia de Buenos Aires , Argentina
| |
Collapse
|