1
|
Timpmann K, Linnanto JM, Yadav D, Kangur L, Freiberg A. Hydrostatic High-Pressure-Induced Denaturation of LH2 Membrane Proteins. J Phys Chem B 2021; 125:9979-9989. [PMID: 34460261 DOI: 10.1021/acs.jpcb.1c05789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The denaturation of globular proteins by high pressure is frequently associated with the release of internal voids and/or the exposure of the hydrophobic protein interior to a polar aqueous solvent. Similar evidence with respect to membrane proteins is not available. Here, we investigate the impact of hydrostatic pressures reaching 12 kbar on light-harvesting 2 integral membrane complexes of purple photosynthetic bacteria using two types of innate chromophores in separate strategic locations: bacteriochlorophyll-a in the hydrophobic interior and tryptophan at both protein-solvent interfacial gateways to internal voids. The complexes from mutant Rhodobacter sphaeroides with low resilience against pressure were considered in parallel with the naturally robust complexes of Thermochromatium tepidum. In the former case, a firm correlation was established between the abrupt blue shift of the bacteriochlorophyll-a exciton absorption, a known indicator of the breakage of tertiary structure pigment-protein hydrogen bonds, and the quenching of tryptophan fluorescence, a supposed result of further protein solvation. No such effects were observed in the reference complex. While these data may be naively taken as supporting evidence of the governing role of hydration, the analysis of atomistic model structures of the complexes confirmed the critical part of the structure in the pressure-induced denaturation of the membrane proteins studied.
Collapse
Affiliation(s)
- Kõu Timpmann
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, Tartu 50411, Estonia
| | - Juha Matti Linnanto
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, Tartu 50411, Estonia
| | - Dheerendra Yadav
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, Tartu 50411, Estonia
| | - Liina Kangur
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, Tartu 50411, Estonia
| | - Arvi Freiberg
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, Tartu 50411, Estonia.,Estonian Academy of Sciences, Kohtu Str. 6, Tallinn 10130, Estonia
| |
Collapse
|
2
|
Schay G, Kaposi AD, Smeller L, Szigeti K, Fidy J, Herenyi L. Dissimilar flexibility of α and β subunits of human adult hemoglobin influences the protein dynamics and its alteration induced by allosteric effectors. PLoS One 2018; 13:e0194994. [PMID: 29584765 PMCID: PMC5871000 DOI: 10.1371/journal.pone.0194994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/14/2018] [Indexed: 12/19/2022] Open
Abstract
The general question by what mechanism an "effector" molecule and the hemes of hemoglobin interact over widely separated intramolecular distances to change the oxygen affinity has been extensively investigated, and still has remained of central interest. In the present work we were interested in clarifying the general role of the protein matrix and its dynamics in the regulation of human adult hemoglobin (HbA). We used a spectroscopy approach that yields the compressibility (κ) of the protein matrix around the hemes of the subunits in HbA and studied how the binding of heterotropic allosteric effectors modify this parameter. κ is directly related to the variance of volume fluctuation, therefore it characterizes the molecular dynamics of the protein structure. For the experiments the heme groups either in the α or in the β subunits of HbA were replaced by fluorescent Zn-protoporphyrinIX, and series of fluorescence line narrowed spectra were measured at varied pressures. The evaluation of the spectra yielded the compressibility that showed significant dynamic asymmetry between the subunits: κ of the α subunit was 0.17±0.05/GPa, while for the β subunit it was much higher, 0.36±0.07/GPa. The heterotropic effectors, chloride ions, inositol hexaphosphate and bezafibrate did not cause significant changes in κ of the α subunits, while in the β subunits the effectors lead to a significant reduction down to 0.15±0.04/GPa. We relate our results to structural data, to results of recent functional studies and to those of molecular dynamics simulations, and find good agreements. The observed asymmetry in the flexibility suggests a distinct role of the subunits in the regulation of Hb that results in the observed changes of the oxygen binding capability.
Collapse
Affiliation(s)
- Gusztáv Schay
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - András D. Kaposi
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - László Smeller
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Krisztián Szigeti
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Judit Fidy
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Levente Herenyi
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
- * E-mail:
| |
Collapse
|
3
|
Cox CD, Bae C, Ziegler L, Hartley S, Nikolova-Krstevski V, Rohde PR, Ng CA, Sachs F, Gottlieb PA, Martinac B. Removal of the mechanoprotective influence of the cytoskeleton reveals PIEZO1 is gated by bilayer tension. Nat Commun 2016; 7:10366. [PMID: 26785635 PMCID: PMC4735864 DOI: 10.1038/ncomms10366] [Citation(s) in RCA: 349] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 12/04/2015] [Indexed: 12/18/2022] Open
Abstract
Mechanosensitive ion channels are force-transducing enzymes that couple mechanical stimuli to ion flux. Understanding the gating mechanism of mechanosensitive channels is challenging because the stimulus seen by the channel reflects forces shared between the membrane, cytoskeleton and extracellular matrix. Here we examine whether the mechanosensitive channel PIEZO1 is activated by force-transmission through the bilayer. To achieve this, we generate HEK293 cell membrane blebs largely free of cytoskeleton. Using the bacterial channel MscL, we calibrate the bilayer tension demonstrating that activation of MscL in blebs is identical to that in reconstituted bilayers. Utilizing a novel PIEZO1-GFP fusion, we then show PIEZO1 is activated by bilayer tension in bleb membranes, gating at lower pressures indicative of removal of the cortical cytoskeleton and the mechanoprotection it provides. Thus, PIEZO1 channels must sense force directly transmitted through the bilayer.
Collapse
Affiliation(s)
- Charles D. Cox
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
| | - Chilman Bae
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | - Lynn Ziegler
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | - Silas Hartley
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | | | - Paul R. Rohde
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
| | - Chai-Ann Ng
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
- St Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales 2010, Australia
| | - Frederick Sachs
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York 14214, USA
- The Centre for Single Molecule Biophysics, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | - Philip A. Gottlieb
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York 14214, USA
- The Centre for Single Molecule Biophysics, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | - Boris Martinac
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
- St Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales 2010, Australia
| |
Collapse
|
4
|
Sarma R, Paul S. Crucial Importance of Water Structure Modification on Trimethylamine N-Oxide Counteracting Effect at High Pressure. J Phys Chem B 2013; 117:677-89. [DOI: 10.1021/jp311102v] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rahul Sarma
- Department of Chemistry, Indian Institute of Technology, Guwahati Assam, India-781039
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati Assam, India-781039
| |
Collapse
|
5
|
Sarma R, Paul S. The effect of pressure on the hydration structure around hydrophobic solute: A molecular dynamics simulation study. J Chem Phys 2012; 136:114510. [DOI: 10.1063/1.3694834] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
6
|
Freiberg A, Rätsep M, Timpmann K. A comparative spectroscopic and kinetic study of photoexcitations in detergent-isolated and membrane-embedded LH2 light-harvesting complexes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:1471-82. [PMID: 22172735 DOI: 10.1016/j.bbabio.2011.11.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 11/18/2011] [Accepted: 11/22/2011] [Indexed: 10/14/2022]
Abstract
Integral membrane proteins constitute more than third of the total number of proteins present in organisms. Solubilization with mild detergents is a common technique to study the structure, dynamics, and catalytic activity of these proteins in purified form. However beneficial the use of detergents may be for protein extraction, the membrane proteins are often denatured by detergent solubilization as a result of native lipid membrane interactions having been modified. Versatile investigations of the properties of membrane-embedded and detergent-isolated proteins are, therefore, required to evaluate the consequences of the solubilization procedure. Herein, the spectroscopic and kinetic fingerprints have been established that distinguish excitons in individual detergent-solubilized LH2 light-harvesting pigment-protein complexes from them in the membrane-embedded complexes of purple photosynthetic bacteria Rhodobacter sphaeroides. A wide arsenal of spectroscopic techniques in visible optical range that include conventional broadband absorption-fluorescence, fluorescence anisotropy excitation, spectrally selective hole burning and fluorescence line-narrowing, and transient absorption-fluorescence have been applied over broad temperature range between physiological and liquid He temperatures. Significant changes in energetics and dynamics of the antenna excitons upon self-assembly of the proteins into intracytoplasmic membranes are observed, analyzed, and discussed. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.
Collapse
Affiliation(s)
- Arvi Freiberg
- Institute of Physics, University of Tartu, Tartu, Estonia.
| | | | | |
Collapse
|
7
|
Leu BM, Sage JT, Silvernail NJ, Scheidt WR, Alatas A, Alp EE, Sturhahn W. Bulk Modulus of a Protein Active-Site Mimic. J Phys Chem B 2011; 115:4469-73. [DOI: 10.1021/jp112007z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bogdan M. Leu
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, United States
| | - J. Timothy Sage
- Department of Physics, Northeastern University, Boston, Massachusetts, United States
| | - Nathan J. Silvernail
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States
| | - W. Robert Scheidt
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States
| | - Ahmet Alatas
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, United States
| | - Ercan E. Alp
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, United States
| | - Wolfgang Sturhahn
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, United States
| |
Collapse
|
8
|
General Framework of Pressure Effects on Structures Formed by Entropically Driven Self-Assembly. ENTROPY 2010. [DOI: 10.3390/e12061632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
9
|
Leu BM, Alatas A, Sinn H, Alp EE, Said AH, Yavaş H, Zhao J, Sage JT, Sturhahn W. Protein elasticity probed with two synchrotron-based techniques. J Chem Phys 2010; 132:085103. [DOI: 10.1063/1.3332585] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
10
|
|
11
|
Furse KE, Corcelli SA. Effects of Long-Range Electrostatics on Time-Dependent Stokes Shift Calculations. J Chem Theory Comput 2009; 5:1959-67. [DOI: 10.1021/ct9001416] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kristina E. Furse
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana 46556
| | - Steven A. Corcelli
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana 46556
| |
Collapse
|
12
|
Furse KE, Corcelli SA. The Dynamics of Water at DNA Interfaces: Computational Studies of Hoechst 33258 Bound to DNA. J Am Chem Soc 2008; 130:13103-9. [DOI: 10.1021/ja803728g] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kristina E. Furse
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Steven A. Corcelli
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| |
Collapse
|
13
|
Furse KE, Lindquist BA, Corcelli SA. Solvation Dynamics of Hoechst 33258 in Water: An Equilibrium and Nonequilibrium Molecular Dynamics Study. J Phys Chem B 2008; 112:3231-9. [DOI: 10.1021/jp711100f] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Somoza MM, Wiedersich J, Friedrich J. Protein elasticity determined by pressure tuning of the tyrosine residue of ubiquitin. J Chem Phys 2007; 127:095102. [PMID: 17824766 DOI: 10.1063/1.2768352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We determined the isotropic, isothermal compressibility of ubiquitin by pressure tuning spectral holes burnt into the red edge of the absorption spectrum of the single tyrosine residue. The pressure shift is perfectly linear with burn frequency. From these data, a compressibility of 0.086 GPa(-1) in the local environment of the tyrosine residue could be determined. This value fits nicely into the range known for proteins. Although the elastic behavior at low temperatures does not show any unusual features, the pressure tuning behavior at room temperature is quite surprising: the pressure-induced spectral shift is close to zero, even up to very high pressure levels of 0.88 GPa, well beyond the denaturation point. The reason for this behavior is attributed to equally strong blue as well as red spectral pressure shifts resulting in an average pressure-induced solvent shift that is close to zero.
Collapse
Affiliation(s)
- Mark M Somoza
- Physik-Department E14 and Lehrstuhl für Physik Weihenstephan, Technische Universität München, 85350 Freising, Germany
| | | | | |
Collapse
|
15
|
Kupka M, Scheer H. Unfolding of C-phycocyanin followed by loss of non-covalent chromophore-protein interactions 1. Equilibrium experiments. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1777:94-103. [PMID: 18036334 DOI: 10.1016/j.bbabio.2007.10.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 10/19/2007] [Accepted: 10/25/2007] [Indexed: 12/27/2022]
Abstract
Optical spectroscopic properties of the covalently linked chromophores of biliproteins are profoundly influenced by the state of the protein. This has been used to monitor the urea-induced denaturation of C-phycocyanin (CPC) from Mastigocladus laminosus and its subunits. Under equilibrium conditions, absorption, fluorescence and circular dichroism of the chromophores were monitored, as well as the circular dichroism of the polypeptide. Treatment of CPC trimers (alphabeta)3 resulted first in monomerization (alphabeta), which was followed by a complex unfolding process of the protein. Loss of chromophore fluorescence is the next process at increasing urea concentrations; it indicates increased flexibility of the chromophore while maintaining the native, extended conformation, and a less compact but still native-like packing of the protein in the regions sampled by the chromophores. This was followed by relaxation of the chromophores from the energetically unfavorable extended to a cyclic-helical conformation, as reported by absorption and CD in the visible range, indicating local loss of protein structure. Only then is the protein secondary structure lost, as reported by the far-UV CD. Sequential processes were also seen in the subunits, where again the chromophore-protein interactions were reduced before the unfolding of the protein. It is concluded that the bilin chromophores are intrinsic probes suitable to differentiate among different processes involved in protein denaturation.
Collapse
Affiliation(s)
- Michaela Kupka
- Department Biologie 1 - Botanik, Ludwig-Maximilians Universität, München, Germany
| | | |
Collapse
|
16
|
Imai T, Ohyama S, Kovalenko A, Hirata F. Theoretical study of the partial molar volume change associated with the pressure-induced structural transition of ubiquitin. Protein Sci 2007; 16:1927-33. [PMID: 17660257 PMCID: PMC2206979 DOI: 10.1110/ps.072909007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The partial molar volume (PMV) change associated with the pressure-induced structural transition of ubiquitin is analyzed by the three-dimensional reference interaction site model (3D-RISM) theory of molecular solvation. The theory predicts that the PMV decreases upon the structural transition, which is consistent with the experimental observation. The volume decomposition analysis demonstrates that the PMV reduction is primarily caused by the decrease in the volume of structural voids in the protein, which is partially canceled by the volume expansion due to the hydration effects. It is found from further analysis that the PMV reduction is ascribed substantially to the penetration of water molecules into a specific part of the protein. Based on the thermodynamic relation, this result implies that the water penetration causes the pressure-induced structural transition. It supports the water penetration model of pressure denaturation of proteins proposed earlier.
Collapse
Affiliation(s)
- Takashi Imai
- Department of Bioscience and Bioinformatics, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.
| | | | | | | |
Collapse
|
17
|
Renge I, van Grondelle R, Dekker JP. Pigment spectra and intermolecular interaction potentials in glasses and proteins. Biophys J 2007; 93:2491-503. [PMID: 17557783 PMCID: PMC1965442 DOI: 10.1529/biophysj.107.104273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A model is proposed for chromophore optical spectra in solids over a wide range of temperatures and pressures. Inhomogeneous band shapes and their pressure dependence, as well as baric shift coefficients of spectral lines, selected by the frequency, were derived using Lennard-Jones potentials of the ground and excited states. Quadratic electron-phonon coupling constants, describing the thermal shift and broadening of zero-phonon lines, were also calculated. Experimentally, thermal shift and broadening of spectral holes were studied between 5 and 40 K for a synthetic pigment, chlorin, embedded in polymer hosts. The baric effects on holes were determined by applying hydrostatic He gas pressure up to 200 bar, at 6 K. Absorption spectra of pheophytin a, chlorophyll a, and beta-carotene in polymers and plant photosystem II CP47 complex were measured between 5 (or 77) and 300 K, and subject to Voigtian deconvolution. A narrowing of inhomogeneous bandwidth with increasing temperature, predicted on the basis of hole behavior, was observed as the shrinking of Gaussian spectral component. The Lorentzian broadening was ascribed to optical dephasing up to 300 K in transitions with weak to moderate linear electron-phonon coupling strength. The thermal broadening is purely Gaussian in multiphonon transitions (S(2) band of beta-carotene, Soret bands of tetrapyrrolic pigments), and the Lorentz process appears to be suppressed, indicating a lack of exponential dephasing. Density, polarity, polarizability, compressibility, and other local parameters of the pigment binding sites in biologically relevant systems can be deduced from spectroscopic data, provided that sufficient background information is available.
Collapse
Affiliation(s)
- I Renge
- Institute of Physics, University of Tartu, Tartu, Estonia.
| | | | | |
Collapse
|
18
|
Ponkratov VV, Wiedersich J, Friedrich J, Vanderkooi JM. Experiments with proteins at low temperature: What do we learn on properties in their functional state? J Chem Phys 2007; 126:165104. [PMID: 17477636 DOI: 10.1063/1.2723731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The authors compared the spectral response of Zn-substituted horseradish peroxidase in a glycerol/water solvent to hydrostatic pressure at 2 K and ambient temperature. The low temperature experiments clearly demonstrate the presence of at least three different conformations with drastically different elastic properties. However, the main conformation, which determines the fluorescence spectrum at ambient temperature, did not show any significant difference between low and high temperature and pressure. The authors conclude that the local compressibility of the heme pocket of the protein depends only very weakly on temperature.
Collapse
Affiliation(s)
- V V Ponkratov
- Physik-Department E14, Technische Universität München, 85354 Freising, Germany
| | | | | | | |
Collapse
|
19
|
Marković D, Pröll S, Bubenzer C, Scheer H. Myoglobin with chlorophyllous chromophores: influence on protein stability. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:897-904. [PMID: 17490605 DOI: 10.1016/j.bbabio.2007.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Revised: 03/15/2007] [Accepted: 03/19/2007] [Indexed: 11/24/2022]
Abstract
The stabilities of myoglobin, apo-myoglobin, and of two myoglobins with chlorophyllous chromophores (Zn-pheophorbide a and Zn-bacteriopheophorbide a), have been studied by thermal and chemical denaturation. With guanidinium chloride, the stability order is myoglobin>Zn-pheophorbide-myoglobin>Zn-bacteriopheophorbide-myoglobin approximately apo-myoglobin. The thermal behavior is more complex. The transition temperature of thermal unfolding of the apoprotein (62.4 degrees C) is increased by Zn-pheophorbide a (83.9 degrees C) and Zn-bacteriopheophorbide a (82.6 degrees C) to a similar degree as by the native chromophore, heme (83.5 degrees C). The recovery with Zn-pheophorbide (92-98%) is even higher than with heme (74-76%), while with Zn-bacteriopheophorbide (40%) it is as low as with the apoprotein (42%). Recovery also depends on the rates of heating, and in particular the time spent at high temperatures. It is concluded that irreversibility of unfolding is related to loss of the chromophores, which are required for proper re-folding.
Collapse
Affiliation(s)
- Dejan Marković
- Department of Biologie I, Botanik, Menzinger Str. 67, D-80638 München, Germany
| | | | | | | |
Collapse
|
20
|
Golosov AA, Karplus M. Probing Polar Solvation Dynamics in Proteins: A Molecular Dynamics Simulation Analysis. J Phys Chem B 2007; 111:1482-90. [PMID: 17249715 DOI: 10.1021/jp065493u] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Measurements of time-resolved Stokes shifts on picosecond to nanosecond time scales have been used to probe the polar solvation dynamics of biological systems. Since it is difficult to decompose the measurements into protein and solvent contributions, computer simulations are useful to aid in understanding the details of the molecular behavior. Here we report the analysis of simulations of the electrostatic interactions of the rest of the protein and the solvent with 11 residues of the immunoglobulin binding domain B1 of protein G. It is shown that the polar solvation dynamics are position-dependent and highly heterogeneous. The contributions due to interactions with the protein and with the solvent are determined. The solvent contributions are found to vary from negligible after a few picoseconds to dominant on a scale of hundreds of picoseconds. The origin for the latter is found to involve coupled hydration and protein conformational dynamics. The resulting microscopic picture demonstrates that a wide range of possibilities have to be considered in the interpretation of time-resolved Stokes shift measurements.
Collapse
Affiliation(s)
- Andrei A Golosov
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
21
|
Brecht M, Studier H, Elli AF, Jelezko F, Bittl R. Assignment of Red Antenna States in Photosystem I from Thermosynechoccocus elongatus by Single-Molecule Spectroscopy. Biochemistry 2006; 46:799-806. [PMID: 17223701 DOI: 10.1021/bi061975k] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Single-molecule spectroscopy at cryogenic temperatures was used to elucidate spectral properties, heterogeneities, and dynamics of the chlorophyll a (Chla) molecules responsible for the fluorescence in photosystem I (PSI) from the cyanobacteria Thermosynechococcus elongatus. Absorption and hole burning data suggest the presence of three pools absorbing at wavelengths greater than 700 nm with their absorption maxima at 708, 715, and 719 nm. The responsible Chla molecules are termed C708, C715, and C719. In the emission spectra of single PSI complexes, zero-phonon lines (ZPLs) were observed over the whole red emission range of PSI. The spectral region of the C708 pool is dominated by intense ZPLs; on the other hand, the broad emission of C715/C719 is unstructured and ZPLs are seen in this region much less frequently. Spectral jumps of ZPLs were observed. The dynamics as well as the spectral range covered by such jumps differ for C708 and C715/C719. This heterogeneity is likely caused by differences in the close environment of the chromophores. A tentative assignment of C708 and C715/C719 to Chla dimers and a Chla trimer is discussed, which is based on the remarkable structural differences in the environment of the most probable candidates for the red-most fluorescence.
Collapse
Affiliation(s)
- Marc Brecht
- Fachbereich Physik, Freie Universität Berlin, Arnimalle 14, 14195 Berlin, Germany
| | | | | | | | | |
Collapse
|
22
|
Berlin Y, Burin A, Friedrich J, Köhler J. Spectroscopy of proteins at low temperature. Part I: Experiments with molecular ensembles. Phys Life Rev 2006. [DOI: 10.1016/j.plrev.2006.09.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Somoza MM, Ponkratov VV, Friedrich J. Investigation of spectral diffusion in ribonuclease by photolabeling of intrinsic aromatic amino acids. J Chem Phys 2006; 125:194713. [PMID: 17129156 DOI: 10.1063/1.2395938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Spectral diffusion dynamics in ribonuclease A was observed via the broadening of photochemical holes burned into the absorption spectrum of intrinsic tyrosine residues. Unlike previous results based on hole burning of chromophores in the pockets of heme proteins, where spectral diffusion develops according to a power law in time, the dynamics in ribonuclease follow a logarithmic law. The results suggest that the experiment preferentially labels the tyrosines located on the surface of the protein where the two-level system dynamics of the glass host matrix exert a strong influence.
Collapse
Affiliation(s)
- Mark M Somoza
- E14 and Lehrstuhl für Physik Weihenstephan, Physics Department, Technische Universität München, 85350 Freising, Germany.
| | | | | |
Collapse
|
24
|
Renge I. Influence of Temperature and Pressure on Shape and Shift of Impurity Optical Bands in Polymer Glasses. J Phys Chem A 2006; 110:3533-45. [PMID: 16526633 DOI: 10.1021/jp056714j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The shape, broadening, and shift of optical absorption spectra of molecular impurity centers in polymer glasses are considered in terms of inhomogeneous energy distributions and coupling of electronic transitions to vibrations. Persistent spectral hole burning was applied for frequency-selective probing of zero-phonon lines. The shift and broadening of spectral holes were studied between 5 and 50 K and by applying a hydrostatic He gas pressure up to 200 bar. Broadband absorption spectra were recorded between 5 and 300 K in poly(methyl methacrylate) and polyethylene. In addition to "normal" thermal broadening, due to the first- and second-order electron phonon coupling, several narrowing components were predicted on the basis of frequency dependent hole behavior. Thermal expansion of the matrix and the relaxation of local strains, previously accumulated on cooling below the glass temperature can lead to shrinking of the inhomogeneous width. A Voigt treatment of absorption band shapes reveals that the Gaussian component can indeed suffer remarkable narrowing. Inhomogeneous band shapes and the frequency-dependent thermal and baric line shifts were rationalized with the aid of a pair of two-body Lennard-Jones potentials. The shift of potential well minima is a crucial factor influencing solvent shifts, inhomogeneous band shapes, pressure shift coefficients, and quadratic electron phonon coupling constants.
Collapse
Affiliation(s)
- Indrek Renge
- Institute of Physics, University of Tartu, Riia Str. 142, EE51014 Tartu, Estonia.
| |
Collapse
|
25
|
Meersman F, Dobson CM, Heremans K. Protein unfolding, amyloid fibril formation and configurational energy landscapes under high pressure conditions. Chem Soc Rev 2006; 35:908-17. [PMID: 17003897 DOI: 10.1039/b517761h] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High hydrostatic pressure induces conformational changes in proteins ranging from compression of the molecules to loss of native structure. In this tutorial review we describe how the interplay between the volume change and the compressibility leads to pressure-induced unfolding of proteins and dissociation of amyloid fibrils. We also discuss the effect of pressure on protein folding and free energy landscapes. From a molecular viewpoint, pressure effects can be rationalised in terms of packing and hydration of proteins.
Collapse
Affiliation(s)
- Filip Meersman
- Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.
| | | | | |
Collapse
|
26
|
Schnell C, Scharnagl C, Friedrich J. Hole burning spectroscopy of ribonuclease A. Phys Chem Chem Phys 2006; 8:1315-20. [PMID: 16633612 DOI: 10.1039/b516878c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present pressure tuning hole burning experiments with the enzyme ribonuclease A using the UV-absorbing amino acid tyrosine as a probe. We show that, at 2 K, the protein is intact, and that at least four different regions which we associate with different tyrosine sites can be distinguished through their specific response to pressure. For one site we could determine the compressibility to 0.15 GPa(-1). Upon denaturing the protein with guanidine hydrochloride, one of the tyrosine sites is preserved to a large extent. Reducing the sulfur bonds has a more drastic effect: the tyrosine sites lose most of their individual features and their compressibilities come close to that of tyrosine in solution.
Collapse
Affiliation(s)
- Christoph Schnell
- Physik-Department E14 and Lehrstuhl für Physik Weihenstephan, Technische Universität München, 85350 Freising, Germany
| | | | | |
Collapse
|
27
|
Thionin in a cyclodextrin nanocavity: Measuring local compressibilities by pressure tuning hole burning spectroscopy. Chem Phys Lett 2005. [DOI: 10.1016/j.cplett.2005.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Qiu W, Zhang L, Kao YT, Lu W, Li T, Kim J, Sollenberger GM, Wang L, Zhong D. Ultrafast Hydration Dynamics in Melittin Folding and Aggregation: Helix Formation and Tetramer Self-Assembly. J Phys Chem B 2005; 109:16901-10. [PMID: 16853151 DOI: 10.1021/jp0511754] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Melittin, an amphipathic peptide from honeybee venom, consists of 26 amino acid residues and adopts different conformations from a random coil, to an alpha-helix, and to a self-assembled tetramer under certain aqueous environments. We report here our systematic studies of the hydration dynamics in these conformations using single intrinsic tryptophan (W19) as a molecular probe. With femtosecond resolution, we observed the solvation dynamics occurring in 0.62 and 14.7 ps in a random-coiled primary structure. The former represents bulklike water motion, and the latter reflects surface-type hydration dynamics of proteins. As a comparison, a model tripeptide (KWK) was also studied. At a membrane-water interface, melittin folds into a secondary alpha-helical structure, and the interfacial water motion was found to take as long as 114 ps, indicating a well-ordered water structure along the membrane surface. In high-salt aqueous solution, the dielectric screening and ionic solvation promote the hydrophobic core collapse in melittin aggregation and facilitate the tetramer formation. This self-assembled tertiary structure is also stabilized by the strong hydrophilic interactions of charged C-terminal residues and associated ions with water molecules in the two assembled regions. The hydration dynamics was observed to occur in 87 ps, significantly slower than typical water relaxation at protein surfaces but similar to water motion at membrane interfaces. Thus, the observed time scale of approximately 100 ps probably implies appropriate water mobility for mediating the formation of high-order structures of melittin in an alpha-helix and a self-assembled tetramer. These results elucidate the critical role of hydration dynamics in peptide conformational transitions and protein structural stability and integrity.
Collapse
Affiliation(s)
- Weihong Qiu
- Departmens of Physics, OSU Biophysics, Chemical Physics, and Biochemistry Programs, 191 West Woodruff Avenue, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Scharnagl C, Reif M, Friedrich J. Local compressibilities of proteins: comparison of optical experiments and simulations for horse heart cytochrome-c. Biophys J 2005; 89:64-75. [PMID: 15834001 PMCID: PMC1366563 DOI: 10.1529/biophysj.104.057265] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Accepted: 04/01/2005] [Indexed: 11/18/2022] Open
Abstract
Spectroscopy with probe molecules yields local information on the environment of the probe. In this article we compare local compressibilities of cytochrome-c as obtained from molecular dynamics simulations with experimental results as obtained from spectroscopic measurements. The simulations show that the protein-core around the heme is much less compressible in a glycerol/water solvent than in pure water. The pocket is also much less compressible than the protein as a whole, although the compressibility of the water inside the rather incompressible protein-core is almost liquidlike. We show that the local compressibility values capture the collective correlations of local volume fluctuations with volume fluctuations in the surrounding protein-solvent system. The decoupling of the volume fluctuations of the core from the solvent shell explains the reduction of the heme-core-compressibility in glycerol/water solvent. This decoupling could be traced back to the suppression of the exchange between pocket-water and hydration-shell-water upon addition of glycerol as co-solvent.
Collapse
Affiliation(s)
- Christina Scharnagl
- Physik-Department E14, Lehrstuhl für Physik Weihenstephan, Technische Universität München, Freising, Germany.
| | | | | |
Collapse
|
30
|
Scharnagl C, Reif M, Friedrich J. Stability of proteins: Temperature, pressure and the role of the solvent. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1749:187-213. [PMID: 15893966 DOI: 10.1016/j.bbapap.2005.03.002] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Revised: 02/23/2005] [Accepted: 03/02/2005] [Indexed: 10/25/2022]
Abstract
We focus on the various aspects of the physics related to the stability of proteins. We review the pure thermodynamic aspects of the response of a protein to pressure and temperature variations and discuss the respective stability phase diagram. We relate the experimentally observed shape of this diagram to the low degree of correlation between the fluctuations of enthalpy and volume changes associated with the folding-denaturing transition and draw attention to the fact that one order parameter is not enough to characterize the transition. We discuss in detail microscopic aspects of the various contributions to the free energy gap of proteins and put emphasis on how a cosolvent may either enlarge or diminish this gap. We review briefly the various experimental approaches to measure changes in protein stability induced by cosolvents, denaturants, but also by pressure and temperature. Finally, we discuss in detail our own molecular dynamics simulations on cytochrome c and show what happens under high pressure, how glycerol influences structure and volume fluctuations, and how all this compares with experiments.
Collapse
|
31
|
Schnell C, Reif M, Scharnagl C, Friedrich J. Local compressibilities in insulin as determined from pressure tuning hole burning experiments and MD simulations. Phys Chem Chem Phys 2005; 7:2217-24. [DOI: 10.1039/b502056p] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|