1
|
Oppermann J, Rozenberg A, Fabrin T, González-Cabrera C, Parker R, Béjà O, Prigge M, Hegemann P. Robust optogenetic inhibition with red-light-sensitive anion-conducting channelrhodopsins. eLife 2024; 12:RP90100. [PMID: 39401075 PMCID: PMC11473104 DOI: 10.7554/elife.90100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
Channelrhodopsins (ChRs) are light-gated ion channels widely used to optically activate or silence selected electrogenic cells, such as individual brain neurons. Here, we describe identifying and characterizing a set of anion-conducting ChRs (ACRs) from diverse taxa and representing various branches of the ChR phylogenetic tree. The Mantoniella squamata ACR (MsACR1) showed high sensitivity to yellow-green light (λmax at 555 nm) and was further engineered for optogenetic applications. A single amino-acid substitution that mimicked red-light-sensitive rhodopsins like Chrimson shifted the photosensitivity 20 nm toward red light and accelerated photocurrent kinetics. Hence, it was named red and accelerated ACR, raACR. Both wild-type and mutant are capable optical silencers at low light intensities in mouse neurons in vitro and in vivo, while raACR offers a higher temporal resolution.
Collapse
Affiliation(s)
- Johannes Oppermann
- Institut für Biologie, Experimentelle Biophysik, Humboldt-Universität zu BerlinBerlinGermany
| | - Andrey Rozenberg
- Faculty of Biology, Technion – Israel Institute of TechnologyHaifaIsrael
| | - Thomaz Fabrin
- Research Group Neuromodulatory Networks, Leibniz Institute for NeurobiologyMagdeburgGermany
| | - Cristian González-Cabrera
- Research Group Neuromodulatory Networks, Leibniz Institute for NeurobiologyMagdeburgGermany
- Aligning Science Across Parkinson's (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| | - Rafael Parker
- Research Group Neuromodulatory Networks, Leibniz Institute for NeurobiologyMagdeburgGermany
- Aligning Science Across Parkinson's (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| | - Oded Béjà
- Faculty of Biology, Technion – Israel Institute of TechnologyHaifaIsrael
| | - Matthias Prigge
- Research Group Neuromodulatory Networks, Leibniz Institute for NeurobiologyMagdeburgGermany
- Aligning Science Across Parkinson's (ASAP) Collaborative Research NetworkChevy ChaseUnited States
- Center for Behavioral Brain Sciences, CBBSMagdeburgGermany
| | - Peter Hegemann
- Institut für Biologie, Experimentelle Biophysik, Humboldt-Universität zu BerlinBerlinGermany
| |
Collapse
|
2
|
Karpova OV, Vinogradova EN, Moisenovich AM, Pustovit OB, Ramonova AA, Abramochkin DV, Lobakova ES. Functional Analysis of the Channelrhodopsin Genes from the Green Algae of the White Sea Basin. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1392-1401. [PMID: 39245452 DOI: 10.1134/s0006297924080030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/31/2024] [Accepted: 06/19/2024] [Indexed: 09/10/2024]
Abstract
Optogenetics, the method of light-controlled regulation of cellular processes is based on the use of the channelrhodopsins that directly generate photoinduced currents. Most of the channelrhodopsin genes have been identified in the green microalgae Chlorophyta, and the demand for increasing the number of functionally characterized channelrhodopsins and the diversity of their photochemical parameters keeps growing. We performed the expression analysis of cation channelrhodopsin (CCR) genes in natural isolates of microalgae of the genera Haematococcus and Bracteacoccus from the unique Arctic Circle region. The identified full-length CCR transcript of H. lacustris is the product of alternative splicing and encodes the Hl98CCR2 protein with no photochemical activity. The 5'-partial fragment of the B. aggregatus CCR transcript encodes the Ba34CCR protein containing a conserved TM1-TM7 membrane domain and a short cytosolic fragment. Upon heterologous expression of the TM1-TM7 fragment in CHO-K1 cell culture, light-dependent current generation was observed with the parameters corresponding to those of the CCR. The first discovered functional channelrhodopsin of Bracteacoccus has no close CCR homologues and may be of interest as a candidate for optogenetics.
Collapse
Affiliation(s)
- Olga V Karpova
- Division of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Elizaveta N Vinogradova
- Division of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Genome Center, National Research Center "Kurchatov Institute", Moscow, 123182, Russia
| | | | - Oksana B Pustovit
- Division of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Alla A Ramonova
- Division of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Denis V Abramochkin
- Division of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Elena S Lobakova
- Division of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
3
|
Govorunova EG, Sineshchekov OA. Channelrhodopsins: From Phototaxis to Optogenetics. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1555-1570. [PMID: 38105024 DOI: 10.1134/s0006297923100115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/09/2023] [Accepted: 07/09/2023] [Indexed: 12/19/2023]
Abstract
Channelrhodopsins stand out among other retinal proteins because of their capacity to generate passive ionic currents following photoactivation. Owing to that, channelrhodopsins are widely used in neuroscience and cardiology as instruments for optogenetic manipulation of the activity of excitable cells. Photocurrents generated by channelrhodopsins were first discovered in the cells of green algae in the 1970s. In this review we describe this discovery and discuss the current state of research in the field.
Collapse
|
4
|
Sanyal SK, Awasthi M, Ranjan P, Sharma S, Pandey GK, Kateriya S. Characterization of Chlamydomonas voltage-gated calcium channel and its interaction with photoreceptor support VGCC modulated photobehavioral response in the green alga. Int J Biol Macromol 2023; 245:125492. [PMID: 37343610 DOI: 10.1016/j.ijbiomac.2023.125492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/09/2023] [Accepted: 06/18/2023] [Indexed: 06/23/2023]
Abstract
Calcium (Ca2+) signaling plays a major role in regulating multiple processes in living cells. The photoreceptor potential in Chlamydomonas triggers the generation of all or no flagellar Ca2+ currents that cause membrane depolarization across the eyespot and flagella. Modulation in membrane potential causes changes in the flagellar waveform, and hence, alters the beating patterns of Chlamydomonas flagella. The rhodopsin-mediated eyespot membrane potential is generated by the photoreceptor Ca2+ current or P-current however, the flagellar Ca2+ currents are mediated by unidentified voltage-gated calcium (VGCC or CaV) and potassium channels (VGKC). The voltage-gated ion channel that associates with ChRs to generate Ca2+ influx across the flagella and its cellular distribution has not yet been identified. Here, we identified putative VGCCs from algae and predicted their novel properties through insilico analysis. We further present experimental evidence on Chlamydomonas reinhardtii VGCCs to predict their novel physiological roles. Our experimental evidences showed that CrVGCC4 localizes to the eyespot and flagella of Chlamydomonas and associates with channelrhodopsins (ChRs). Further in silico interactome analysis of CrVGCCs suggested that they putatively interact with photoreceptor proteins, calcium signaling, and intraflagellar transport components. Expression analysis indicated that these VGCCs and their putative interactors can be perturbed by light stimuli. Collectively, our data suggest that VGCCs in general, and VGCC4 in particular, might be involved in the regulation of the photobehavioral response of Chlamydomonas.
Collapse
Affiliation(s)
- Sibaji K Sanyal
- Laboratory of Optobiotechnology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Mayanka Awasthi
- Department of Biochemistry, the University of Delhi South Campus, New Delhi 110021, India
| | - Peeyush Ranjan
- Department of Biochemistry, the University of Delhi South Campus, New Delhi 110021, India
| | - Sunita Sharma
- Laboratory of Optobiotechnology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, the University of Delhi South Campus, New Delhi 110021, India.
| | - Suneel Kateriya
- Laboratory of Optobiotechnology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India; Department of Biochemistry, the University of Delhi South Campus, New Delhi 110021, India.
| |
Collapse
|
5
|
Gating and ion selectivity of Channelrhodopsins are critical for photo-activated orientation of Chlamydomonas as shown by in vivo point mutation. Nat Commun 2022; 13:7253. [PMID: 36433995 PMCID: PMC9700795 DOI: 10.1038/s41467-022-35018-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/15/2022] [Indexed: 11/26/2022] Open
Abstract
The green unicellular alga Chlamydomonas reinhardtii with two photoreceptors called channelrhodopsins is a model organism that gave birth to a new scientific field of biomedical studies, optogenetics. Although channelrhodopsins are helping to decipher the activity of the human brain, their functionality has never been extensively studied in the organism of origin, mainly due to the difficulties connected to reverse genetic interventions. In this study, we present a CRISPR-Cas9-based technique that enables a precise in vivo exchange of single amino acids in a selected gene. To shed light on the function of channelrhodopsins ChR1 (C1) and ChR2 (C2) in vivo, we deleted both channelrhodopsins independently in the wild-type strain and introduced point mutations in the remaining channel, causing modified photocycle kinetics and ion selectivity. The mutated strains, ΔC1C2-E123T, ΔC1C2-E90R and ΔC1C2-E90Q, showed about 100-fold decrease in photosensitivity, a reduced photophobic response and faster light adaptation rates due to accelerated photocycle kinetics and reduced Ca2+ conductance. Moreover, the ΔC1C2-E90Q with an additionally reduced H+ permeability produced an electrical response only in the presence of Na+ ions, highlighting a contribution and importance of H+ conductance to photocurrents in the wild-type algae. Finally, in the ΔC1C2-E90R strain with the channelrhodopsin selectivity converted to anions, no photo-responses were detected. We conclude that the precise photocycle kinetics and the particular ion selectivity of channelrhodopsins are the key parameters for efficient phototaxis in low light conditions.
Collapse
|
6
|
Kato N, McCuiston C, Szuska KA, Lauersen KJ, Nelson G, Strain A. Chlamydomonas reinhardtii Alternates Peroxisomal Contents in Response to Trophic Conditions. Cells 2022; 11:cells11172724. [PMID: 36078132 PMCID: PMC9454557 DOI: 10.3390/cells11172724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Chlamydomonas reinhardtii is a model green microalga capable of heterotrophic growth on acetic acid but not fatty acids, despite containing a full complement of genes for β-oxidation. Recent reports indicate that the alga preferentially sequesters, rather than breaks down, lipid acyl chains as a means to rebuild its membranes rapidly. Here, we assemble a list of potential Chlamydomonas peroxins (PEXs) required for peroxisomal biogenesis to suggest that C. reinhardtii has a complete set of peroxisome biogenesis factors. To determine involvements of the peroxisomes in the metabolism of exogenously added fatty acids, we examined transgenic C. reinhardtii expressing fluorescent proteins fused to N- or C-terminal peptide of peroxisomal proteins, concomitantly with fluorescently labeled palmitic acid under different trophic conditions. We used confocal microscopy to track the populations of the peroxisomes in illuminated and dark conditions, with and without acetic acid as a carbon source. In the cells, four major populations of compartments were identified, containing: (1) a glyoxylate cycle enzyme marker and a protein containing peroxisomal targeting signal 1 (PTS1) tripeptide but lacking the fatty acid marker, (2) the fatty acid marker alone, (3) the glyoxylate cycle enzyme marker alone, and (4) the PTS1 marker alone. Less than 5% of the compartments contained both fatty acid and peroxisomal markers. Statistical analysis on optically sectioned images found that C. reinhardtii simultaneously carries diverse populations of the peroxisomes in the cell and modulates peroxisomal contents based on light conditions. On the other hand, the ratio of the compartment containing both fatty acid and peroxisomal markers did not change significantly regardless of the culture conditions. The result indicates that β-oxidation may be only a minor occurrence in the peroxisomal population in C. reinhardtii, which supports the idea that lipid biosynthesis and not β-oxidation is the primary metabolic preference of fatty acids in the alga.
Collapse
Affiliation(s)
- Naohiro Kato
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
- Correspondence:
| | - Clayton McCuiston
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Kimberly A. Szuska
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Kyle J. Lauersen
- Bioengineering Program, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Gabela Nelson
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Alexis Strain
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
7
|
Shankar U, Lenka SK, Leigh Ackland M, Callahan DL. Review of the structures and functions of algal photoreceptors to optimize bioproduct production with novel bioreactor designs for strain improvement. Biotechnol Bioeng 2022; 119:2031-2045. [PMID: 35441370 DOI: 10.1002/bit.28116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 11/11/2022]
Abstract
Microalgae are important renewable feedstock to produce biodiesel and high-value chemicals. Different wavelengths of light influence the growth and metabolic activities of algae. Recent research has identified the light-sensing proteins called photoreceptors that respond to blue or red light. Structural elucidations of algal photoreceptors have gained momentum over recent years. These include channelrhodopsins, PHOT proteins, animal-like cryptochromes, blue-light sensors utilizing flavin-adenine dinucleotide (BLUF) proteins. Pulsing light has also been investigated as a means to optimize energy inputs into bioreactors. This review summarizes the current structural and functional basis of photoreceptor modulation to optimize the growth, production of carotenoids and other high-value metabolites from microalgae. The review also encompasses novel photobioreactor designs that implement different light regimes including light wavelengths and time to optimize algal growth and desired metabolite profiles for high-value products. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Uttara Shankar
- TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute, Gurugram, Haryana, 122001, India.,Deakin University, Geelong, Australia. School of Life and Environmental Sciences, (Burwood Campus), Centre for Cellular and Molecular biology. 221 Burwood Highway, Burwood, VIC, 3125, Australia
| | - Sangram K Lenka
- TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute, Gurugram, Haryana, 122001, India.,Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India
| | - M Leigh Ackland
- Deakin University, Geelong, Australia. School of Life and Environmental Sciences, (Burwood Campus), Centre for Cellular and Molecular biology. 221 Burwood Highway, Burwood, VIC, 3125, Australia
| | - Damien L Callahan
- Deakin University, Geelong, Australia. School of Life and Environmental Sciences, (Burwood Campus), Centre for Cellular and Molecular biology. 221 Burwood Highway, Burwood, VIC, 3125, Australia
| |
Collapse
|
8
|
Sineshchekov OA, Govorunova EG, Spudich JL. Probing Channelrhodopsin Electrical Activity in Algal Cell Populations. Methods Mol Biol 2021; 2191:85-96. [PMID: 32865740 PMCID: PMC10641915 DOI: 10.1007/978-1-0716-0830-2_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Photoelectric recording from populations of phototactic flagellate algae provides a means to study channelrhodopsin functions in vivo. Technical simplicity, versatility, high sensitivity, and reproducibility are the advantages of this assay over recording from individual algal cells by the suction pipette technique. Here we describe the principles and procedures of this assay.
Collapse
Affiliation(s)
- Oleg A Sineshchekov
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Elena G Govorunova
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - John L Spudich
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
9
|
Resilience and self-regulation processes of microalgae under UV radiation stress. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2020. [DOI: 10.1016/j.jphotochemrev.2019.100322] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Kaňa R, Kotabová E, Šedivá B, Kuthanová Trsková E. Photoprotective strategies in the motile cryptophyte alga Rhodomonas salina-role of non-photochemical quenching, ions, photoinhibition, and cell motility. Folia Microbiol (Praha) 2019; 64:691-703. [PMID: 31352667 DOI: 10.1007/s12223-019-00742-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 07/15/2019] [Indexed: 12/20/2022]
Abstract
We explored photoprotective strategies in a cryptophyte alga Rhodomonas salina. This cryptophytic alga represents phototrophs where chlorophyll a/c antennas in thylakoids are combined with additional light-harvesting system formed by phycobiliproteins in the chloroplast lumen. The fastest response to excessive irradiation is induction of non-photochemical quenching (NPQ). The maximal NPQ appears already after 20 s of excessive irradiation. This initial phase of NPQ is sensitive to Ca2+ channel inhibitor (diltiazem) and disappears, also, in the presence of non-actin, an ionophore for monovalent cations. The prolonged exposure to high light of R. salina cells causes photoinhibition of photosystem II (PSII) that can be further enhanced when Ca2+ fluxes are inhibited by diltiazem. The light-induced reduction in PSII photochemical activity is smaller when compared with immotile diatom Phaeodactylum tricornutum. We explain this as a result of their different photoprotective strategies. Besides the protective role of NPQ, the motile R. salina also minimizes high light exposure by increased cell velocity by almost 25% percent (25% from 82 to 104 μm/s). We suggest that motility of algal cells might have a photoprotective role at high light because algal cell rotation around longitudinal axes changes continual irradiation to periodically fluctuating light.
Collapse
Affiliation(s)
- Radek Kaňa
- Institute of Microbiology, Centre ALGATECH, Czech Academy of Sciences, Třeboň, Czech Republic.
| | - Eva Kotabová
- Institute of Microbiology, Centre ALGATECH, Czech Academy of Sciences, Třeboň, Czech Republic
| | - Barbora Šedivá
- Institute of Microbiology, Centre ALGATECH, Czech Academy of Sciences, Třeboň, Czech Republic
| | - Eliška Kuthanová Trsková
- Institute of Microbiology, Centre ALGATECH, Czech Academy of Sciences, Třeboň, Czech Republic.,Student of Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, Ceske Budejovice, Czech Republic
| |
Collapse
|
11
|
Critical light-related gene expression varies in two different strains of the dinoflagellate Karlodinium veneficum in response to the light spectrum and light intensity. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 194:76-83. [PMID: 30933874 DOI: 10.1016/j.jphotobiol.2019.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 11/20/2022]
Abstract
The toxic dinoflagellate Karlodinium veneficum is widely distributed in cosmopolitan estuaries and is responsible for massive fish mortality worldwide. Intraspecific biodiversity is important for the spread to various habitats, interspecific competition to dominate a population, and bloom formation and density maintenance. Strategies for light adaptation may help determine the ecological niches of different ecotypes. However, the mechanism of phenotypic biodiversity is still unclear. In this study, intraspecific differences in genetic regulatory mechanisms in response to varied light intensities and qualities were comparatively researched on two different strains isolated from coastal areas of the East China Sea, namely, GM2 and GM3. In GM2, the expression of genes in the Calvin cycle, namely, rbcL and SBPase, and a light-related gene that correlated with cellular motility, rhodopsin, were significantly inhibited under high light intensities. Thus, this strain was adapted to low light. In contrast, the gene expression levels were promoted by high light conditions in GM3. These upregulated genes in the GM3 strain probably compensated for the negative effects on the maximum quantum yields of PSII (Fv/Fm) under high light stress, which inhibited both strains, enabling GM3 to maintain a constant growth rate. Thus, this strain was adapted to high light. Compared with white light, monochromatic blue light had negative effects on Fv/Fm and the relative electron transfer rate (ETR) in both strains. Under blue light, gene expression levels of rbcL and SBPase in GM2 were inhibited; in contrast, the levels of these genes, especially rbcL, were promoted in GM3. rbcL was significantly upregulated in the blue light groups. Monochromatic red light promoted rhodopsin gene expression in the two strains in a similar manner. These intraspecific diverse responses to light play important roles in the motor characteristics, diel vertical migration, interspecific relationships and photosynthetic or phagotrophic activities of K. veneficum and can determine the population distribution, population maintenance and bloom formation.
Collapse
|
12
|
Böhm M, Boness D, Fantisch E, Erhard H, Frauenholz J, Kowalzyk Z, Marcinkowski N, Kateriya S, Hegemann P, Kreimer G. Channelrhodopsin-1 Phosphorylation Changes with Phototactic Behavior and Responds to Physiological Stimuli in Chlamydomonas. THE PLANT CELL 2019; 31:886-910. [PMID: 30862615 PMCID: PMC6501600 DOI: 10.1105/tpc.18.00936] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/25/2019] [Accepted: 03/11/2019] [Indexed: 05/26/2023]
Abstract
The unicellular alga Chlamydomonas (Chlamydomonas reinhardtii) exhibits oriented movement responses (phototaxis) to light over more than three log units of intensity. Phototaxis thus depends on the cell's ability to adjust the sensitivity of its photoreceptors to ambient light conditions. In Chlamydomonas, the photoreceptors for phototaxis are the channelrhodopsins (ChR)1 and ChR2; these light-gated cation channels are located in the plasma membrane. Although ChRs are widely used in optogenetic studies, little is known about ChR signaling in algae. We characterized the in vivo phosphorylation of ChR1. Its reversible phosphorylation occurred within seconds as a graded response to changes in the light intensity and ionic composition of the medium and depended on an elevated cytosolic Ca2+ concentration. Changes in the phototactic sign were accompanied by alterations in the phosphorylation status of ChR1. Furthermore, compared with the wild type, a permanently negative phototactic mutant required higher light intensities to evoke ChR1 phosphorylation. C-terminal truncation of ChR1 disturbed its reversible phosphorylation, whereas it was normal in ChR2-knockout and eyespot-assembly mutants. The identification of phosphosites in regions important for ChR1 function points to their potential regulatory role(s). We propose that multiple ChR1 phosphorylation, regulated via a Ca2+-based feedback loop, is an important component in the adaptation of phototactic sensitivity in Chlamydomonas.
Collapse
Affiliation(s)
- Michaela Böhm
- Department of Biology, Friedrich-Alexander University, 91058 Erlangen, Germany
| | - David Boness
- Department of Biology, Friedrich-Alexander University, 91058 Erlangen, Germany
| | - Elisabeth Fantisch
- Department of Biology, Friedrich-Alexander University, 91058 Erlangen, Germany
| | - Hanna Erhard
- Department of Biology, Friedrich-Alexander University, 91058 Erlangen, Germany
| | - Julia Frauenholz
- Department of Biology, Friedrich-Alexander University, 91058 Erlangen, Germany
| | - Zarah Kowalzyk
- Department of Biology, Friedrich-Alexander University, 91058 Erlangen, Germany
| | - Nadin Marcinkowski
- Department of Biology, Friedrich-Alexander University, 91058 Erlangen, Germany
| | - Suneel Kateriya
- School of Biotechnology, Jawaharlal Nehru University, 110067 New Delhi, India
| | - Peter Hegemann
- Institute for Experimental Biophysics, Humboldt University, 10115 Berlin, Germany
| | - Georg Kreimer
- Department of Biology, Friedrich-Alexander University, 91058 Erlangen, Germany
| |
Collapse
|
13
|
Ozasa K, Won J, Song S, Maeda M. Behavior of Euglena gracilis under simultaneous competing optical and chemical stimuli. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.08.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
14
|
Shen YC, Sasaki T, Matsuyama T, Yamashita T, Shichida Y, Okitsu T, Yamano Y, Wada A, Ishizuka T, Yawo H, Imamoto Y. Red-Tuning of the Channelrhodopsin Spectrum Using Long Conjugated Retinal Analogues. Biochemistry 2018; 57:5544-5556. [DOI: 10.1021/acs.biochem.8b00583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yi-Chung Shen
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Toshikazu Sasaki
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Take Matsuyama
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Takahiro Yamashita
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yoshinori Shichida
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Takashi Okitsu
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Kobe, Hyogo 658-0003, Japan
| | - Yumiko Yamano
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Kobe, Hyogo 658-0003, Japan
| | - Akimori Wada
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Kobe, Hyogo 658-0003, Japan
| | - Toru Ishizuka
- Department of Developmental Biology and Neuroscience, Graduate School of Life Science, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Hiromu Yawo
- Department of Developmental Biology and Neuroscience, Graduate School of Life Science, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Yasushi Imamoto
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
15
|
Sato N, Sato K, Toyoshima M. Analysis and modeling of the inverted bioconvection in Chlamydomonas reinhardtii: emergence of plumes from the layer of accumulated cells. Heliyon 2018; 4:e00586. [PMID: 29862349 PMCID: PMC5968142 DOI: 10.1016/j.heliyon.2018.e00586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 02/28/2018] [Accepted: 03/20/2018] [Indexed: 11/04/2022] Open
Abstract
Bioconvection is a convective flow found in a suspension of motile cells that swim against gravity, and is a primitive form of order formation of cells, which has been studied both experimentally and theoretically. We formulate here an inverted bioconvection occurring in a suspension of phototactic cells in a high-density medium, which is illuminated from the bottom. We used a highly phototactic strain 137c of Chlamydomonas reinhardtii in the experiments. Using a custom-made lateral microscope, we observed a close view of cellular dynamics in the initiation of inverted bioconvection. In conventional bioconvection, convective flows of cells are formed spontaneously with or without formation of the surface cell layer. In inverted convection, a crowded cell layer was initially formed at the bottom, which was a prerequisite for the subsequent emergence of plumes, namely, floating populations of cells. The plume formation was a result of neither uneven initial cell density nor unequal light intensity. Based on detailed analysis of individual cells, we constructed a model of inverted bioconvection, in which each cell experiences a transition between two modes of movement: phototactically swimming cell and non-motile cell aggregate. A simulation using the CompuCell3D software reproduced basic behaviors of the plume formation. The modal transition has not been a subject of basic studies, but provides an interesting target of study of cell-to-cell interactions.
Collapse
Affiliation(s)
- Naoki Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Kaoru Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan.,Department of Social Engineering, Graduate School of Decision Science and Technology, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Masakazu Toyoshima
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
16
|
Kottke T, Oldemeyer S, Wenzel S, Zou Y, Mittag M. Cryptochrome photoreceptors in green algae: Unexpected versatility of mechanisms and functions. JOURNAL OF PLANT PHYSIOLOGY 2017; 217:4-14. [PMID: 28619534 DOI: 10.1016/j.jplph.2017.05.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/29/2017] [Accepted: 05/29/2017] [Indexed: 06/07/2023]
Abstract
Green algae have a highly complex and diverse set of cryptochrome photoreceptor candidates including members of the following subfamilies: plant, plant-like, animal-like, DASH and cryptochrome photolyase family 1 (CPF1). While some green algae encode most or all of them, others lack certain members. Here we present an overview about functional analyses of so far investigated cryptochrome photoreceptors from the green algae Chlamydomonas reinhardtii (plant and animal-like cryptochromes) and Ostreococcus tauri (CPF1) with regard to their biological significance and spectroscopic properties. Cryptochromes of both algae have been demonstrated recently to be involved to various extents in circadian clock regulation and in Chlamydomonas additionally in life cycle control. Moreover, CPF1 even performs light-driven DNA repair. The plant cryptochrome and CPF1 are UVA/blue light receptors, whereas the animal-like cryptochrome responds to almost the whole visible spectrum including red light. Accordingly, plant cryptochrome, animal-like cryptochrome and CPF1 differ fundamentally in their structural response to light as revealed by their visible and infrared spectroscopic signatures, and in the role of the flavin neutral radical acting as dark form or signaling state.
Collapse
Affiliation(s)
- Tilman Kottke
- Physical and Biophysical Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany.
| | - Sabine Oldemeyer
- Physical and Biophysical Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Sandra Wenzel
- Institute of General Botany and Plant Physiology, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Yong Zou
- Institute of General Botany and Plant Physiology, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Maria Mittag
- Institute of General Botany and Plant Physiology, Friedrich Schiller University Jena, 07743 Jena, Germany.
| |
Collapse
|
17
|
Greiner A, Kelterborn S, Evers H, Kreimer G, Sizova I, Hegemann P. Targeting of Photoreceptor Genes in Chlamydomonas reinhardtii via Zinc-Finger Nucleases and CRISPR/Cas9. THE PLANT CELL 2017; 29:2498-2518. [PMID: 28978758 PMCID: PMC5774583 DOI: 10.1105/tpc.17.00659] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/19/2017] [Accepted: 10/04/2017] [Indexed: 05/18/2023]
Abstract
The fast-growing biflagellated single-celled chlorophyte Chlamydomonas reinhardtii is the most widely used alga in basic research. The physiological functions of the 18 sensory photoreceptors are of particular interest with respect to Chlamydomonas development and behavior. Despite the demonstration of gene editing in Chlamydomonas in 1995, the isolation of mutants lacking easily ascertained newly acquired phenotypes remains problematic due to low DNA recombination efficiency. We optimized gene-editing protocols for several Chlamydomonas strains (including wild-type CC-125) using zinc-finger nucleases (ZFNs), genetically encoded CRISPR/associated protein 9 (Cas9) from Staphylococcus aureus and Streptococcus pyogenes, and recombinant Cas9 and developed protocols for rapidly isolating nonselectable gene mutants. Using this technique, we disrupted the photoreceptor genes COP1/2, COP3 (encoding channelrhodopsin 1 [ChR1]), COP4 (encoding ChR2), COP5, PHOT, UVR8, VGCC, MAT3, and aCRY and created the chr1 chr2 and uvr8 phot double mutants. Characterization of the chr1, chr2, and mat3 mutants confirmed the value of photoreceptor mutants for physiological studies. Genes of interest were disrupted in 5 to 15% of preselected clones (∼1 out of 4000 initial cells). Using ZFNs, genes were edited in a reliable, predictable manner via homologous recombination, whereas Cas9 primarily caused gene disruption via the insertion of cotransformed DNA. These methods should be widely applicable to research involving green algae.
Collapse
Affiliation(s)
- Andre Greiner
- Institute of Biology, Experimental Biophysics, Humboldt University of Berlin, 10099 Berlin, Germany
| | - Simon Kelterborn
- Institute of Biology, Experimental Biophysics, Humboldt University of Berlin, 10099 Berlin, Germany
| | - Heide Evers
- Institute of Biology, Experimental Biophysics, Humboldt University of Berlin, 10099 Berlin, Germany
| | - Georg Kreimer
- Department of Biology, Friedrich-Alexander University, 91058 Erlangen, Germany
| | - Irina Sizova
- Institute of Biology, Experimental Biophysics, Humboldt University of Berlin, 10099 Berlin, Germany
| | - Peter Hegemann
- Institute of Biology, Experimental Biophysics, Humboldt University of Berlin, 10099 Berlin, Germany
| |
Collapse
|
18
|
Zou Y, Wenzel S, Müller N, Prager K, Jung EM, Kothe E, Kottke T, Mittag M. An Animal-Like Cryptochrome Controls the Chlamydomonas Sexual Cycle. PLANT PHYSIOLOGY 2017; 174:1334-1347. [PMID: 28468769 PMCID: PMC5490917 DOI: 10.1104/pp.17.00493] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 04/28/2017] [Indexed: 05/26/2023]
Abstract
Cryptochromes are known as flavin-binding blue light receptors in bacteria, fungi, plants, and insects. The animal-like cryptochrome (aCRY) of the green alga Chlamydomonas reinhardtii has extended our view on cryptochromes, because it responds also to other wavelengths of the visible spectrum, including red light. Here, we have investigated if aCRY is involved in the regulation of the sexual life cycle of C. reinhardtii, which is controlled by blue and red light at the steps of gametogenesis along with its restoration and germination. We show that aCRY is differentially expressed not only during the life cycle but also within the cell as part of the soluble and/or membrane-associated protein fraction. Moreover, localization of aCRY within the algal cell body varies between vegetative cells and the different cell types of gametogenesis. aCRY is significantly (early day) or to a small extent (late night) enriched in the nucleus in vegetative cells. In pregametes, gametes and dark-inactivated gametes, aCRY is localized over the cell body. aCRY plays an important role in the sexual life cycle of C. reinhardtii: It controls the germination of the alga, under which the zygote undergoes meiosis, in a positive manner, similar to the regulation by the blue light receptors phototropin and plant cryptochrome (pCRY). However, aCRY acts in combination with pCRY as a negative regulator for mating ability as well as for mating maintenance, opposite to the function of phototropin in these processes.
Collapse
Affiliation(s)
- Yong Zou
- Institute of General Botany and Plant Physiology, Friedrich Schiller University, 07743 Jena, Germany
| | - Sandra Wenzel
- Institute of General Botany and Plant Physiology, Friedrich Schiller University, 07743 Jena, Germany
| | - Nico Müller
- Institute of General Botany and Plant Physiology, Friedrich Schiller University, 07743 Jena, Germany
| | - Katja Prager
- Institute of General Botany and Plant Physiology, Friedrich Schiller University, 07743 Jena, Germany
| | - Elke-Martina Jung
- Institute of Microbiology, Friedrich Schiller University, 07743 Jena, Germany
| | - Erika Kothe
- Institute of Microbiology, Friedrich Schiller University, 07743 Jena, Germany
| | - Tilman Kottke
- Physical and Biophysical Chemistry, Department of Chemistry, Bielefeld University, 33615 Bielefeld, Germany
| | - Maria Mittag
- Institute of General Botany and Plant Physiology, Friedrich Schiller University, 07743 Jena, Germany
| |
Collapse
|
19
|
Govorunova EG, Sineshchekov OA, Li H, Spudich JL. Microbial Rhodopsins: Diversity, Mechanisms, and Optogenetic Applications. Annu Rev Biochem 2017; 86:845-872. [PMID: 28301742 PMCID: PMC5747503 DOI: 10.1146/annurev-biochem-101910-144233] [Citation(s) in RCA: 242] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Microbial rhodopsins are a family of photoactive retinylidene proteins widespread throughout the microbial world. They are notable for their diversity of function, using variations of a shared seven-transmembrane helix design and similar photochemical reactions to carry out distinctly different light-driven energy and sensory transduction processes. Their study has contributed to our understanding of how evolution modifies protein scaffolds to create new protein chemistry, and their use as tools to control membrane potential with light is fundamental to optogenetics for research and clinical applications. We review the currently known functions and present more in-depth assessment of three functionally and structurally distinct types discovered over the past two years: (a) anion channelrhodopsins (ACRs) from cryptophyte algae, which enable efficient optogenetic neural suppression; (b) cryptophyte cation channelrhodopsins (CCRs), structurally distinct from the green algae CCRs used extensively for neural activation and from cryptophyte ACRs; and
Collapse
Affiliation(s)
- Elena G Govorunova
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030; , , ,
| | - Oleg A Sineshchekov
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030; , , ,
| | - Hai Li
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030; , , ,
| | - John L Spudich
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030; , , ,
| |
Collapse
|
20
|
Allorent G, Petroutsos D. Photoreceptor-dependent regulation of photoprotection. CURRENT OPINION IN PLANT BIOLOGY 2017; 37:102-108. [PMID: 28472717 DOI: 10.1016/j.pbi.2017.03.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/26/2017] [Accepted: 03/28/2017] [Indexed: 05/05/2023]
Abstract
In photosynthetic organisms, proteins in the light-harvesting complex (LHC) harvest light energy to fuel photosynthesis, whereas photoreceptor proteins are activated by the different wavelengths of the light spectrum to regulate cellular functions. Under conditions of excess light, blue-light photoreceptors activate chloroplast avoidance movements in sessile plants, and blue- and green-light photoreceptors cause motile algae to swim away from intense light. Simultaneously, LHCs switch from light-harvesting mode to energy-dissipation mode, which was thought to be independent of photoreceptor-signaling up until recently. Recent advances, however, indicate that energy dissipation in green algae is controlled by photoreceptors activated by blue and UV-B light, and new molecular links have been established between photoreception and photoprotection.
Collapse
Affiliation(s)
- Guillaume Allorent
- Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168, Centre National de la Recherche Scientifique (CNRS), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Université Grenoble Alpes, Institut National Recherche Agronomique (INRA), Institut de Biosciences et Biotechnologies de Grenoble, (BIG), CEA Grenoble, 17 rue des Martyrs F-38054 Grenoble Cedex 9, France
| | - Dimitris Petroutsos
- Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168, Centre National de la Recherche Scientifique (CNRS), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Université Grenoble Alpes, Institut National Recherche Agronomique (INRA), Institut de Biosciences et Biotechnologies de Grenoble, (BIG), CEA Grenoble, 17 rue des Martyrs F-38054 Grenoble Cedex 9, France.
| |
Collapse
|
21
|
Müller N, Wenzel S, Zou Y, Künzel S, Sasso S, Weiß D, Prager K, Grossman A, Kottke T, Mittag M. A Plant Cryptochrome Controls Key Features of the Chlamydomonas Circadian Clock and Its Life Cycle. PLANT PHYSIOLOGY 2017; 174:185-201. [PMID: 28360233 PMCID: PMC5411161 DOI: 10.1104/pp.17.00349] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 03/28/2017] [Indexed: 05/25/2023]
Abstract
Cryptochromes are flavin-binding proteins that act as blue light receptors in bacteria, fungi, plants, and insects and are components of the circadian oscillator in mammals. Animal and plant cryptochromes are evolutionarily divergent, although the unicellular alga Chlamydomonas reinhardtii (Chlamydomonas throughout) has both an animal-like cryptochrome and a plant cryptochrome (pCRY; formerly designated CPH1). Here, we show that the pCRY protein accumulates at night as part of a complex. Functional characterization of pCRY was performed based on an insertional mutant that expresses only 11% of the wild-type pCRY level. The pcry mutant is defective for central properties of the circadian clock. In the mutant, the period is lengthened significantly, ultimately resulting in arrhythmicity, while blue light-based phase shifts show large deviations from what is observed in wild-type cells. We also show that pCRY is involved in gametogenesis in Chlamydomonas pCRY is down-regulated in pregametes and gametes, and in the pcry mutant, there is altered transcript accumulation under blue light of the strictly light-dependent, gamete-specific gene GAS28 pCRY acts as a negative regulator for the induction of mating ability in the light and for the loss of mating ability in the dark. Moreover, pCRY is necessary for light-dependent germination, during which the zygote undergoes meiosis that gives rise to four vegetative cells. In sum, our data demonstrate that pCRY is a key blue light receptor in Chlamydomonas that is involved in both circadian timing and life cycle progression.
Collapse
Affiliation(s)
- Nico Müller
- Institute of General Botany and Plant Physiology, Friedrich Schiller University, 07743 Jena, Germany (N.M., S.W., Y.Z., S.K., S.S., D.W., K.P., M.M.)
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305 (A.G.)
- Physical and Biophysical Chemistry, Department of Chemistry, Bielefeld University, 33615 Bielefeld, Germany (T.K.); and
- Leibniz Institute for Natural Product Research and Infection Biology, 07745 Jena, Germany (S.S.)
| | - Sandra Wenzel
- Institute of General Botany and Plant Physiology, Friedrich Schiller University, 07743 Jena, Germany (N.M., S.W., Y.Z., S.K., S.S., D.W., K.P., M.M.)
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305 (A.G.)
- Physical and Biophysical Chemistry, Department of Chemistry, Bielefeld University, 33615 Bielefeld, Germany (T.K.); and
- Leibniz Institute for Natural Product Research and Infection Biology, 07745 Jena, Germany (S.S.)
| | - Yong Zou
- Institute of General Botany and Plant Physiology, Friedrich Schiller University, 07743 Jena, Germany (N.M., S.W., Y.Z., S.K., S.S., D.W., K.P., M.M.)
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305 (A.G.)
- Physical and Biophysical Chemistry, Department of Chemistry, Bielefeld University, 33615 Bielefeld, Germany (T.K.); and
- Leibniz Institute for Natural Product Research and Infection Biology, 07745 Jena, Germany (S.S.)
| | - Sandra Künzel
- Institute of General Botany and Plant Physiology, Friedrich Schiller University, 07743 Jena, Germany (N.M., S.W., Y.Z., S.K., S.S., D.W., K.P., M.M.)
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305 (A.G.)
- Physical and Biophysical Chemistry, Department of Chemistry, Bielefeld University, 33615 Bielefeld, Germany (T.K.); and
- Leibniz Institute for Natural Product Research and Infection Biology, 07745 Jena, Germany (S.S.)
| | - Severin Sasso
- Institute of General Botany and Plant Physiology, Friedrich Schiller University, 07743 Jena, Germany (N.M., S.W., Y.Z., S.K., S.S., D.W., K.P., M.M.)
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305 (A.G.)
- Physical and Biophysical Chemistry, Department of Chemistry, Bielefeld University, 33615 Bielefeld, Germany (T.K.); and
- Leibniz Institute for Natural Product Research and Infection Biology, 07745 Jena, Germany (S.S.)
| | - Daniel Weiß
- Institute of General Botany and Plant Physiology, Friedrich Schiller University, 07743 Jena, Germany (N.M., S.W., Y.Z., S.K., S.S., D.W., K.P., M.M.)
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305 (A.G.)
- Physical and Biophysical Chemistry, Department of Chemistry, Bielefeld University, 33615 Bielefeld, Germany (T.K.); and
- Leibniz Institute for Natural Product Research and Infection Biology, 07745 Jena, Germany (S.S.)
| | - Katja Prager
- Institute of General Botany and Plant Physiology, Friedrich Schiller University, 07743 Jena, Germany (N.M., S.W., Y.Z., S.K., S.S., D.W., K.P., M.M.)
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305 (A.G.)
- Physical and Biophysical Chemistry, Department of Chemistry, Bielefeld University, 33615 Bielefeld, Germany (T.K.); and
- Leibniz Institute for Natural Product Research and Infection Biology, 07745 Jena, Germany (S.S.)
| | - Arthur Grossman
- Institute of General Botany and Plant Physiology, Friedrich Schiller University, 07743 Jena, Germany (N.M., S.W., Y.Z., S.K., S.S., D.W., K.P., M.M.)
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305 (A.G.)
- Physical and Biophysical Chemistry, Department of Chemistry, Bielefeld University, 33615 Bielefeld, Germany (T.K.); and
- Leibniz Institute for Natural Product Research and Infection Biology, 07745 Jena, Germany (S.S.)
| | - Tilman Kottke
- Institute of General Botany and Plant Physiology, Friedrich Schiller University, 07743 Jena, Germany (N.M., S.W., Y.Z., S.K., S.S., D.W., K.P., M.M.)
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305 (A.G.)
- Physical and Biophysical Chemistry, Department of Chemistry, Bielefeld University, 33615 Bielefeld, Germany (T.K.); and
- Leibniz Institute for Natural Product Research and Infection Biology, 07745 Jena, Germany (S.S.)
| | - Maria Mittag
- Institute of General Botany and Plant Physiology, Friedrich Schiller University, 07743 Jena, Germany (N.M., S.W., Y.Z., S.K., S.S., D.W., K.P., M.M.);
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305 (A.G.);
- Physical and Biophysical Chemistry, Department of Chemistry, Bielefeld University, 33615 Bielefeld, Germany (T.K.); and
- Leibniz Institute for Natural Product Research and Infection Biology, 07745 Jena, Germany (S.S.)
| |
Collapse
|
22
|
Häder DP, Iseki M. Photomovement in Euglena. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 979:207-235. [DOI: 10.1007/978-3-319-54910-1_11] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Erickson E, Wakao S, Niyogi KK. Light stress and photoprotection in Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:449-465. [PMID: 25758978 DOI: 10.1111/tpj.12825] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 03/05/2015] [Accepted: 03/06/2015] [Indexed: 05/18/2023]
Abstract
Plants and algae require light for photosynthesis, but absorption of too much light can lead to photo-oxidative damage to the photosynthetic apparatus and sustained decreases in the efficiency and rate of photosynthesis (photoinhibition). Light stress can adversely affect growth and viability, necessitating that photosynthetic organisms acclimate to different environmental conditions in order to alleviate the detrimental effects of excess light. The model unicellular green alga, Chlamydomonas reinhardtii, employs diverse strategies of regulation and photoprotection to avoid, minimize, and repair photo-oxidative damage in stressful light conditions, allowing for acclimation to different and changing environments.
Collapse
Affiliation(s)
- Erika Erickson
- Department of Plant and Microbial Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720-3102, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Setsuko Wakao
- Department of Plant and Microbial Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720-3102, USA
| | - Krishna K Niyogi
- Department of Plant and Microbial Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720-3102, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
24
|
Lee KA, Lee SS, Kim SY, Choi AR, Lee JH, Jung KH. Mistic-fused expression of algal rhodopsins in Escherichia coli and its photochemical properties. Biochim Biophys Acta Gen Subj 2015; 1850:1694-703. [PMID: 25869488 DOI: 10.1016/j.bbagen.2015.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 03/10/2015] [Accepted: 04/03/2015] [Indexed: 01/29/2023]
Abstract
BACKGROUND Since algal rhodopsins, the eukaryotic seven-transmembrane proteins, are generally difficult to express in Escherichia coli, eukaryotic cells have been used for heterologous expression. Mistic, a membrane-associated protein that was originally discovered in Bacillus subtilis, has been shown to improve the expression levels of many foreign integral membrane proteins in E. coli when used as a fusion partner linked to the N-terminus of cargo proteins. METHODS Here, we expressed two algal rhodopsins with N- and C-terminal Mistic domains in E. coli-Acetabularia rhodopsin I (ARI) and Chlamydomonas sensory rhodopsin B (CSRB, channel rhodopsin 2). UV/VIS spectroscopy, pH titration of proton acceptor residue, laser-induced photolysis and electrophysiological measurement were used for investigating important residues in proton transport and spectroscopic characters of the proteins. RESULTS Protein yield of two algal rhodopsins was enhanced, obtaining 0.12mg of Mistic-ARI and 0.04mg of Mistic-CSRB per liter of culture. Spheroplast expression Mistic-ARI had outward proton-pumping activity, indicating protein functionality. Asp89 of ARI changed its protonation state by light absorption, and Asp100 was important for O(600) formation. Electrophysiology revealed that both residues took part in proton transport. The spectroscopic analyses of Mistic-CSRB revealed its characteristics. CONCLUSIONS Fusion to the membrane-integrating protein Mistic can enhance overexpression of eukaryotic type I rhodopsins in E. coli. GENERAL SIGNIFICANCE These findings indicate that Mistic fusion and E. coli expression method could be an effective, low cost technique for studying eukaryotic membrane proteins. This may have useful implications, for example, in studying structural characteristics and optogenetics for rhodopsins.
Collapse
Affiliation(s)
- Keon Ah Lee
- Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University, Shinsu-Dong 1, Mapo-Gu, Seoul 121-742, Republic of Korea
| | - Sang-Soo Lee
- Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University, Shinsu-Dong 1, Mapo-Gu, Seoul 121-742, Republic of Korea
| | - So Young Kim
- Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University, Shinsu-Dong 1, Mapo-Gu, Seoul 121-742, Republic of Korea
| | - Ah Reum Choi
- Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University, Shinsu-Dong 1, Mapo-Gu, Seoul 121-742, Republic of Korea
| | - Jung-Ha Lee
- Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University, Shinsu-Dong 1, Mapo-Gu, Seoul 121-742, Republic of Korea
| | - Kwang-Hwan Jung
- Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University, Shinsu-Dong 1, Mapo-Gu, Seoul 121-742, Republic of Korea.
| |
Collapse
|
25
|
Ozasa K, Lee J, Song S, Hara M, Maeda M. Autonomous Pattern Formation of Micro-organic Cell Density with Optical Interlink between Two Isolated Culture Dishes. ARTIFICIAL LIFE 2015; 21:234-246. [PMID: 25622016 DOI: 10.1162/artl_a_00159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Artificial linking of two isolated culture dishes is a fascinating means of investigating interactions among multiple groups of microbes or fungi. We examined artificial interaction between two isolated dishes containing Euglena cells, which are photophobic to strong blue light. The spatial distribution of swimming Euglena cells in two micro-aquariums in the dishes was evaluated as a set of new measures: the trace momentums (TMs). The blue light patterns next irradiated onto each dish were deduced from the set of TMs using digital or analogue feedback algorithms. In the digital feedback experiment, one of two different pattern-formation rules was imposed on each feedback system. The resultant cell distribution patterns satisfied the two rules with an and operation, showing that cooperative interaction was realized in the interlink feedback. In the analogue experiment, two dishes A and B were interlinked by a feedback algorithm that illuminated dish A (B) with blue light of intensity proportional to the cell distribution in dish B (A). In this case, a distribution pattern and its reverse were autonomously formed in the two dishes. The autonomous formation of a pair of reversal patterns reflects a type of habitat separation realized by competitive interaction through the interlink feedback. According to this study, interlink feedback between two or more separate culture dishes enables artificial interactions between isolated microbial groups, and autonomous cellular distribution patterns will be achieved by correlating various microbial species, despite environmental and spatial scale incompatibilities. The optical interlink feedback is also useful for enhancing the performance of Euglena-based soft biocomputing.
Collapse
|
26
|
Li H, Govorunova EG, Sineshchekov OA, Spudich JL. Role of a helix B lysine residue in the photoactive site in channelrhodopsins. Biophys J 2014; 106:1607-17. [PMID: 24739160 DOI: 10.1016/j.bpj.2014.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 02/20/2014] [Accepted: 03/06/2014] [Indexed: 12/20/2022] Open
Abstract
In most studied microbial rhodopsins two conserved carboxylic acid residues (the homologs of Asp-85 and Asp-212 in bacteriorhodopsin) and an arginine residue (the homolog of Arg-82) form a complex counterion to the protonated retinylidene Schiff base, and neutralization of the negatively charged carboxylates causes red shifts of the absorption maximum. In contrast, the corresponding neutralizing mutations in some relatively low-efficiency channelrhodopsins (ChRs) result in blue shifts. These ChRs do not contain a lysine residue in the second helix, conserved in higher efficiency ChRs (Lys-132 in the crystallized ChR chimera). By action spectroscopy of photoinduced channel currents in HEK293 cells and absorption spectroscopy of detergent-purified pigments, we found that in tested ChRs the Lys-132 homolog controls the direction of spectral shifts in the mutants of the photoactive site carboxylic acid residues. Analysis of double mutants shows that red spectral shifts occur when this Lys is present, whether naturally or by mutagenesis, and blue shifts occur when it is replaced with a neutral residue. A neutralizing mutation of the Lys-132 homolog alone caused a red spectral shift in high-efficiency ChRs, whereas its introduction into low-efficiency ChR1 from Chlamydomonas augustae (CaChR1) caused a blue shift. Taking into account that the effective charge of the carboxylic acid residues is a key factor in microbial rhodopsin spectral tuning, these findings suggest that the Lys-132 homolog modulates their pKa values. On the other hand, mutation of the Arg-82 homolog that fulfills this role in bacteriorhodopsin caused minimal spectral changes in the tested ChRs. Titration revealed that the pKa of the Asp-85 homolog in CaChR1 lies in the alkaline region unlike in most studied microbial rhodopsins, but is substantially decreased by introduction of a Lys-132 homolog or neutralizing mutation of the Asp-212 homolog. In the three ChRs tested the Lys-132 homolog also alters channel current kinetics.
Collapse
Affiliation(s)
- Hai Li
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, Texas
| | - Elena G Govorunova
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, Texas
| | - Oleg A Sineshchekov
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, Texas
| | - John L Spudich
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, Texas.
| |
Collapse
|
27
|
Fu G, Nagasato C, Oka S, Cock JM, Motomura T. Proteomics analysis of heterogeneous flagella in brown algae (stramenopiles). Protist 2014; 165:662-75. [PMID: 25150613 DOI: 10.1016/j.protis.2014.07.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/22/2014] [Accepted: 07/22/2014] [Indexed: 10/25/2022]
Abstract
Flagella are conserved organelles among eukaryotes and they are composed of many proteins, which are necessary for flagellar assembly, maintenance and function. Stramenopiles, which include brown algae, diatoms and oomycetes, possess two laterally inserted flagella. The anterior flagellum (AF) extends forward and bears tripartite mastigonemes, whilst the smooth posterior flagellum (PF) often has a paraflagellar body structure. These heterogeneous flagella have served as crucial structures in algal studies especially from a viewpoint of phylogeny. However, the protein compositions of the flagella are still largely unknown. Here we report a LC-MS/MS based proteomics analysis of brown algal flagella. In total, 495 flagellar proteins were identified. Functional annotation of the proteome data revealed that brown algal flagellar proteins were associated with cell motility, signal transduction and various metabolic activities. We separately isolated AF and PF and analyzed their protein compositions. This analysis led to the identification of several AF- and PF-specific proteins. Among the PF-specific proteins, we found a candidate novel blue light receptor protein involved in phototaxis, and named it HELMCHROME because of the steering function of PF. Immunological analysis revealed that this protein was localized along the whole length of the PF and concentrated in the paraflagellar body.
Collapse
Affiliation(s)
- Gang Fu
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran 051-0013, Hokkaido, Japan
| | - Chikako Nagasato
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran 051-0013, Hokkaido, Japan
| | - Seiko Oka
- Instrumental Analysis Division, Equipment Management Center, Creative Research Institution, Hokkaido University, Sapporo 001-0021, Hokkaido, Japan
| | - J Mark Cock
- University Pierre et Marie Curie and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7139, Laboratoire International Associé Dispersal and Adaptation in Marine Species, Station Biologique de Roscoff, 29682 Roscoff Cedex, France
| | - Taizo Motomura
- Muroran Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Muroran 051-0013, Hokkaido, Japan.
| |
Collapse
|
28
|
Ernst OP, Lodowski DT, Elstner M, Hegemann P, Brown L, Kandori H. Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem Rev 2014; 114:126-63. [PMID: 24364740 PMCID: PMC3979449 DOI: 10.1021/cr4003769] [Citation(s) in RCA: 791] [Impact Index Per Article: 79.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Oliver P. Ernst
- Departments
of Biochemistry and Molecular Genetics, University of Toronto, 1 King’s College Circle, Medical Sciences Building, Toronto, Ontario M5S 1A8, Canada
| | - David T. Lodowski
- Center
for Proteomics and Bioinformatics, Case
Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Marcus Elstner
- Institute
for Physical Chemistry, Karlsruhe Institute
of Technology, Kaiserstrasse
12, 76131 Karlsruhe, Germany
| | - Peter Hegemann
- Institute
of Biology, Experimental Biophysics, Humboldt-Universität
zu Berlin, Invalidenstrasse
42, 10115 Berlin, Germany
| | - Leonid
S. Brown
- Department
of Physics and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Hideki Kandori
- Department
of Frontier Materials, Nagoya Institute
of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
29
|
Kianianmomeni A, Hallmann A. Algal photoreceptors: in vivo functions and potential applications. PLANTA 2014; 239:1-26. [PMID: 24081482 DOI: 10.1007/s00425-013-1962-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 09/09/2013] [Indexed: 06/02/2023]
Abstract
Many algae, particularly microalgae, possess a sophisticated light-sensing system including photoreceptors and light-modulated signaling pathways to sense environmental information and secure the survival in a rapidly changing environment. Over the last couple of years, the multifaceted world of algal photobiology has enriched our understanding of the light absorption mechanisms and in vivo function of photoreceptors. Moreover, specific light-sensitive modules have already paved the way for the development of optogenetic tools to generate light switches for precise and spatial control of signaling pathways in individual cells and even in complex biological systems.
Collapse
Affiliation(s)
- Arash Kianianmomeni
- Department of Cellular and Developmental Biology of Plants, University of Bielefeld, Universitätsstr. 25, 33615, Bielefeld, Germany,
| | | |
Collapse
|
30
|
Lórenz-Fonfría VA, Heberle J. Channelrhodopsin unchained: structure and mechanism of a light-gated cation channel. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:626-42. [PMID: 24212055 DOI: 10.1016/j.bbabio.2013.10.014] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 10/21/2013] [Accepted: 10/30/2013] [Indexed: 12/25/2022]
Abstract
The new and vibrant field of optogenetics was founded by the seminal discovery of channelrhodopsin, the first light-gated cation channel. Despite the numerous applications that have revolutionised neurophysiology, the functional mechanism is far from understood on the molecular level. An arsenal of biophysical techniques has been established in the last decades of research on microbial rhodopsins. However, application of these techniques is hampered by the duration and the complexity of the photoreaction of channelrhodopsin compared with other microbial rhodopsins. A particular interest in resolving the molecular mechanism lies in the structural changes that lead to channel opening and closure. Here, we review the current structural and mechanistic knowledge that has been accomplished by integrating the static structure provided by X-ray crystallography and electron microscopy with time-resolved spectroscopic and electrophysiological techniques. The dynamical reactions of the chromophore are effectively coupled to structural changes of the protein, as shown by ultrafast spectroscopy. The hierarchical sequence of structural changes in the protein backbone that spans the time range from 10(-12)s to 10(-3)s prepares the channel to open and, consequently, cations can pass. Proton transfer reactions that are associated with channel gating have been resolved. In particular, glutamate 253 and aspartic acid 156 were identified as proton acceptor and donor to the retinal Schiff base. The reprotonation of the latter is the critical determinant for channel closure. The proton pathway that eventually leads to proton pumping is also discussed. This article is part of a Special Issue entitled: Retinal Proteins - You can teach an old dog new tricks.
Collapse
Affiliation(s)
- Víctor A Lórenz-Fonfría
- Freie Universität Berlin, Experimental Molecular Biophysics, Arnimallee 14, 14195 Berlin, Germany
| | - Joachim Heberle
- Freie Universität Berlin, Experimental Molecular Biophysics, Arnimallee 14, 14195 Berlin, Germany.
| |
Collapse
|
31
|
Govorunova EG, Sineshchekov OA, Li H, Janz R, Spudich JL. Characterization of a highly efficient blue-shifted channelrhodopsin from the marine alga Platymonas subcordiformis. J Biol Chem 2013; 288:29911-22. [PMID: 23995841 DOI: 10.1074/jbc.m113.505495] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Rhodopsin photosensors of phototactic algae act as light-gated cation channels when expressed in animal cells. These proteins (channelrhodopsins) are extensively used for millisecond scale photocontrol of cellular functions (optogenetics). We report characterization of PsChR, one of the phototaxis receptors in the alga Platymonas (Tetraselmis) subcordiformis. PsChR exhibited ∼3-fold higher unitary conductance and greater relative permeability for Na(+) ions, as compared with the most frequently used channelrhodopsin-2 from Chlamydomonas reinhardtii (CrChR2). Photocurrents generated by PsChR in HEK293 cells showed lesser inactivation and faster peak recovery than those by CrChR2. Their maximal spectral sensitivity was at 445 nm, making PsChR the most blue-shifted channelrhodopsin so far identified. The λmax of detergent-purified PsChR was 437 nm at neutral pH and exhibited red shifts (pKa values at 6.6 and 3.8) upon acidification. The purified pigment undergoes a photocycle with a prominent red-shifted intermediate whose formation and decay kinetics match the kinetics of channel opening and closing. The rise and decay of an M-like intermediate prior to formation of this putative conductive state were faster than in CrChR2. PsChR mediated sufficient light-induced membrane depolarization in cultured hippocampal neurons to trigger reliable repetitive spiking at the upper threshold frequency of the neurons. At low frequencies spiking probability decreases less with PsChR than with CrChR2 because of the faster recovery of the former. Its blue-shifted absorption enables optogenetics at wavelengths even below 400 nm. A combination of characteristics makes PsChR important for further research on structure-function relationships in ChRs and potentially useful for optogenetics, especially for combinatorial applications when short wavelength excitation is required.
Collapse
Affiliation(s)
- Elena G Govorunova
- From the Department of Biochemistry & Molecular Biology, Center for Membrane Biology and
| | | | | | | | | |
Collapse
|
32
|
Intramolecular proton transfer in channelrhodopsins. Biophys J 2013; 104:807-17. [PMID: 23442959 DOI: 10.1016/j.bpj.2013.01.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 12/19/2012] [Accepted: 01/02/2013] [Indexed: 10/27/2022] Open
Abstract
Channelrhodopsins serve as photoreceptors that control the motility behavior of green flagellate algae and act as light-gated ion channels when heterologously expressed in animal cells. Here, we report direct measurements of proton transfer from the retinylidene Schiff base in several channelrhodopsin variants expressed in HEK293 cells. A fast outward-directed current precedes the passive channel current that has the opposite direction at physiological holding potentials. This rapid charge movement occurs on the timescale of the M intermediate formation in microbial rhodopsins, including that for channelrhodopsin from Chlamydomonas augustae and its mutants, reported in this study. Mutant analysis showed that the glutamate residue corresponding to Asp(85) in bacteriorhodopsin acts as the primary acceptor of the Schiff-base proton in low-efficiency channelrhodopsins. Another photoactive-site residue corresponding to Asp(212) in bacteriorhodopsin serves as an alternative proton acceptor and plays a more important role in channel opening than the primary acceptor. In more efficient channelrhodopsins from Chlamydomonas reinhardtii, Mesostigma viride, and Platymonas (Tetraselmis) subcordiformis, the fast current was apparently absent. The inverse correlation of the outward proton transfer and channel activity is consistent with channel function evolving in channelrhodopsins at the expense of their capacity for active proton transport.
Collapse
|
33
|
Spudich JL, Sineshchekov OA, Govorunova EG. Mechanism divergence in microbial rhodopsins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:546-52. [PMID: 23831552 DOI: 10.1016/j.bbabio.2013.06.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 06/15/2013] [Accepted: 06/17/2013] [Indexed: 10/26/2022]
Abstract
A fundamental design principle of microbial rhodopsins is that they share the same basic light-induced conversion between two conformers. Alternate access of the Schiff base to the outside and to the cytoplasm in the outwardly open "E" conformer and cytoplasmically open "C" conformer, respectively, combined with appropriate timing of pKa changes controlling Schiff base proton release and uptake make the proton path through the pumps vectorial. Phototaxis receptors in prokaryotes, sensory rhodopsins I and II, have evolved new chemical processes not found in their proton pump ancestors, to alter the consequences of the conformational change or modify the change itself. Like proton pumps, sensory rhodopsin II undergoes a photoinduced E→C transition, with the C conformer a transient intermediate in the photocycle. In contrast, one light-sensor (sensory rhodopsin I bound to its transducer HtrI) exists in the dark as the C conformer and undergoes a light-induced C→E transition, with the E conformer a transient photocycle intermediate. Current results indicate that algal phototaxis receptors channelrhodopsins undergo redirected Schiff base proton transfers and a modified E→C transition which, contrary to the proton pumps and other sensory rhodopsins, is not accompanied by the closure of the external half-channel. The article will review our current understanding of how the shared basic structure and chemistry of microbial rhodopsins have been modified during evolution to create diverse molecular functions: light-driven ion transport and photosensory signaling by protein-protein interaction and light-gated ion channel activity. This article is part of a Special Issue entitled: Retinal Proteins - You can teach an old dog new tricks.
Collapse
Affiliation(s)
- John L Spudich
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical School, 6431 Fannin St., MSB6.130, Houston, TX 77030, USA.
| | - Oleg A Sineshchekov
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical School, 6431 Fannin St., MSB6.130, Houston, TX 77030, USA
| | - Elena G Govorunova
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical School, 6431 Fannin St., MSB6.130, Houston, TX 77030, USA
| |
Collapse
|
34
|
Kato HE, Nureki O. Crystal structure of channelrhodopsin, a light-gated cation channel - all cations lead through the monomer. Biophysics (Nagoya-shi) 2013; 9:57-61. [PMID: 27493541 PMCID: PMC4629680 DOI: 10.2142/biophysics.9.57] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 04/23/2013] [Indexed: 12/01/2022] Open
Abstract
Channelrhodopsin (ChR) is a light-gated cation channel derived from green algae. Since the inward flow of cations triggers the neuron firing, neurons expressing ChRs can be optically controlled even within freely moving mammals. Although ChR has been broadly applied to neuro-science research, little is known about its molecular mechanisms. We determined the crystal structure of chimeric ChR at 2.3 Å resolution and revealed its molecular architecture. The integration of structural, electrophysio-logical, and computational analyses provided insight into the molecular basis for the channel function of ChR, and paved the way for the principled design of ChR variants with novel properties.
Collapse
Affiliation(s)
- Hideaki E Kato
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Osamu Nureki
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
35
|
Trippens J, Greiner A, Schellwat J, Neukam M, Rottmann T, Lu Y, Kateriya S, Hegemann P, Kreimer G. Phototropin influence on eyespot development and regulation of phototactic behavior in Chlamydomonas reinhardtii. THE PLANT CELL 2012; 24:4687-4702. [PMID: 23204408 PMCID: PMC3531860 DOI: 10.1105/tpc.112.103523] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 10/21/2012] [Accepted: 11/09/2012] [Indexed: 05/21/2023]
Abstract
The eyespot of Chlamydomonas reinhardtii is a light-sensitive organelle important for phototactic orientation of the alga. Here, we found that eyespot size is strain specific and downregulated in light. In a strain in which the blue light photoreceptor phototropin was deleted by homologous recombination, the light regulation of the eyespot size was affected. We restored this dysfunction in different phototropin complementation experiments. Complementation with the phototropin kinase fragment reduced the eyespot size, independent of light. Interestingly, overexpression of the N-terminal light, oxygen or voltage sensing domains (LOV1+LOV2) alone also affected eyespot size and phototaxis, suggesting that aside from activation of the kinase domain, they fulfill an independent signaling function in the cell. Moreover, phototropin is involved in adjusting the level of channelrhodopsin-1, the dominant primary receptor for phototaxis within the eyespot. Both the level of channelrhodopsin-1 at the onset of illumination and its steady state level during the light period are downregulated by phototropin, whereas the level of channelrhodopsin-2 is not significantly altered. Furthermore, a light intensity-dependent formation of a C-terminal truncated phototropin form was observed. We propose that phototropin is a light regulator of phototaxis that desensitizes the eyespot when blue light intensities increase.
Collapse
Affiliation(s)
- Jessica Trippens
- Department of Biology, Friedrich-Alexander-University, 91058 Erlangen, Germany
| | - Andre Greiner
- Institute for Experimental Biophysics, Humboldt University, 10115 Berlin, Germany
| | - Jana Schellwat
- Department of Biology, Friedrich-Alexander-University, 91058 Erlangen, Germany
| | - Martin Neukam
- Department of Biology, Friedrich-Alexander-University, 91058 Erlangen, Germany
| | - Theresa Rottmann
- Department of Biology, Friedrich-Alexander-University, 91058 Erlangen, Germany
| | - Yinghong Lu
- Institute for Experimental Biophysics, Humboldt University, 10115 Berlin, Germany
| | - Suneel Kateriya
- Department of Biochemistry, University of Delhi South Campus, 110021 Delhi, India
| | - Peter Hegemann
- Institute for Experimental Biophysics, Humboldt University, 10115 Berlin, Germany
| | - Georg Kreimer
- Department of Biology, Friedrich-Alexander-University, 91058 Erlangen, Germany
- Erlangen Center of Plant Science, Friedrich-Alexander-University, 91058 Erlangen, Germany
- Address correspondence to
| |
Collapse
|
36
|
2D measurement of ion currents associated to the signal transduction of the phototactic alga Chlamydomonas reinhardtii. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2012; 114:147-52. [PMID: 22750082 DOI: 10.1016/j.jphotobiol.2012.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Accepted: 06/05/2012] [Indexed: 11/22/2022]
Abstract
Our objective was to develop a simple procedure for the detection of light-induced ion currents of photomotile cells in two dimensions. The novel technique was based on the light gradient method (LGM), and the model object was Chlamydomonas reinhardtii, a phototactic unicellular alga, ideal for such experiments. The conventional LGM cuvette was modified such that the electrode pair could be rotated around the sample and pick up the electric signals from arbitrary directions. The experiments were performed with and without the application of an auxiliary light beam preorienting the motile cells. The analysis of the detected traces revealed two main vectorial components of the signal by the help of singular value decomposition (SVD), in concert with previous experimental findings and theoretical considerations suggesting different origins of the "fast" and "slow" components of the photoelectric response of Chlamydomonas and Haematococcus cells. Using plausible assumptions, our method allowed a quantitative analysis of the signal, assigning size and direction to the two vectorial components. The method allows a rapid and accurate way to measure electric signals of photomotive cells in 2D, and particularly to test the physiological activity and in vivo-kinetics of site-directed mutants of ChR1 or ChR2, providing novel photo-electrophysiological methods with important quantitative information.
Collapse
|
37
|
Sineshchekov OA, Govorunova EG, Wang J, Spudich JL. Enhancement of the long-wavelength sensitivity of optogenetic microbial rhodopsins by 3,4-dehydroretinal. Biochemistry 2012; 51:4499-506. [PMID: 22577956 DOI: 10.1021/bi2018859] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Electrogenic microbial rhodopsins (ion pumps and channelrhodopsins) are widely used to control the activity of neurons and other cells by light (optogenetics). Long-wavelength absorption by optogenetic tools is desirable for increasing the penetration depth of the stimulus light by minimizing tissue scattering and absorption by hemoglobin. A2 retinal (3,4-dehydroretinal) is a natural retinoid that serves as the chromophore in red-shifted visual pigments of several lower aquatic animals. Here we show that A2 retinal reconstitutes a fully functional archaerhodopsin-3 (AR-3) proton pump and four channelrhodopsin variants (CrChR1, CrChR2, CaChR1, and MvChR1). Substitution of A1 with A2 retinal significantly shifted the spectral sensitivity of all tested rhodopsins to longer wavelengths without altering other aspects of their function. The spectral shift upon substitution of A1 with A2 in AR-3 was close to that measured in other archaeal rhodopsins. Notably, the shifts in channelrhodopsins were larger than those measured in archaeal rhodopsins and close to those in animal visual pigments with similar absorption maxima of their A1-bound forms. Our results show that chromophore substitution provides a complementary strategy for improving the efficiency of optogenetic tools.
Collapse
Affiliation(s)
- Oleg A Sineshchekov
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, Texas 77030, United States.
| | | | | | | |
Collapse
|
38
|
Zhang F, Vierock J, Yizhar O, Fenno LE, Tsunoda S, Kianianmomeni A, Prigge M, Berndt A, Cushman J, Polle J, Magnuson J, Hegemann P, Deisseroth K. The microbial opsin family of optogenetic tools. Cell 2012; 147:1446-57. [PMID: 22196724 PMCID: PMC4166436 DOI: 10.1016/j.cell.2011.12.004] [Citation(s) in RCA: 375] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 11/17/2011] [Accepted: 12/05/2011] [Indexed: 11/24/2022]
Abstract
The capture and utilization of light is an exquisitely evolved process. The single-component microbial opsins, although more limited than multicomponent cascades in processing, display unparalleled compactness and speed. Recent advances in understanding microbial opsins have been driven by molecular engineering for optogenetics and by comparative genomics. Here we provide a Primer on these light-activated ion channels and pumps, describe a group of opsins bridging prior categories, and explore the convergence of molecular engineering and genomic discovery for the utilization and understanding of these remarkable molecular machines.
Collapse
Affiliation(s)
- Feng Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Hou SY, Govorunova EG, Ntefidou M, Lane CE, Spudich EN, Sineshchekov OA, Spudich JL. Diversity of Chlamydomonas channelrhodopsins. Photochem Photobiol 2012; 88:119-28. [PMID: 22044280 PMCID: PMC3253254 DOI: 10.1111/j.1751-1097.2011.01027.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Channelrhodopsins act as photoreceptors for control of motility behavior in flagellates and are widely used as genetically targeted tools to optically manipulate the membrane potential of specific cell populations ("optogenetics"). The first two channelrhodopsins were obtained from the model organism Chlamydomonas reinhardtii (CrChR1 and CrChR2). By homology cloning we identified three new channelrhodopsin sequences from the same genus, CaChR1, CyChR1 and CraChR2, from C. augustae, C. yellowstonensis and C. raudensis, respectively. CaChR1 and CyChR1 were functionally expressed in HEK293 cells, where they acted as light-gated ion channels similar to CrChR1. However, both, which are similar to each other, differed from CrChR1 in current kinetics, inactivation, light intensity dependence, spectral sensitivity and dependence on the external pH. These results show that extensive channelrhodopsin diversity exists even within the same genus, Chlamydomonas. The maximal spectral sensitivity of CaChR1 was at 520 nm at pH 7.4, about 40 nm redshifted as compared to that of CrChR1 under the same conditions. CaChR1 was successfully expressed in Pichia pastoris and exhibited an absorption spectrum identical to the action spectrum of CaChR1-generated photocurrents. The redshifted spectra and the lack of fast inactivation in CaChR1- and CyChR1-generated currents are features desirable for optogenetics applications.
Collapse
Affiliation(s)
- Sing-Yi Hou
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston TX 77030, USA
| | - Elena G. Govorunova
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston TX 77030, USA
| | - Maria Ntefidou
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston TX 77030, USA
| | - C. Elizabeth Lane
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston TX 77030, USA
| | - Elena N. Spudich
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston TX 77030, USA
| | - Oleg A. Sineshchekov
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston TX 77030, USA
| | - John L. Spudich
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston TX 77030, USA
| |
Collapse
|
40
|
Abstract
Light control of motility behavior (phototaxis and photophobic responses) in green flagellate algae is mediated by sensory rhodopsins homologous to phototaxis receptors and light-driven ion transporters in prokaryotic organisms. In the phototaxis process, excitation of the algal sensory rhodopsins leads to generation of transmembrane photoreceptor currents. When expressed in animal cells, the algal phototaxis receptors function as light-gated cation channels, which has earned them the name "channelrhodopsins." Channelrhodopsins have become useful molecular tools for light control of cellular activity. Only four channelrhodopsins, identified in Chlamydomonas reinhardtii and Volvox carteri, have been reported so far. By screening light-induced currents among algal species, we identified that the phylogenetically distant flagellate Mesostigma viride showed photoelectrical responses in vivo with properties suggesting a channelrhodopsin especially promising for optogenetic use. We cloned an M. viride channelrhodopsin, MChR1, and studied its channel activity upon heterologous expression. Action spectra in HEK293 cells match those of the photocurrents observed in M. viride cells. Comparison of the more divergent MChR1 sequence to the previously studied phylogenetically clustered homologs and study of several MChR1 mutants refine our understanding of the sequence determinants of channelrhodopsin function. We found that MChR1 has the most red-shifted and pH-independent spectral sensitivity so far reported, matches or surpasses known channelrhodopsins' channel kinetics features, and undergoes minimal inactivation upon sustained illumination. This combination of properties makes MChR1 a promising candidate for optogenetic applications.
Collapse
|
41
|
Mittelmeier TM, Boyd JS, Lamb MR, Dieckmann CL. Asymmetric properties of the Chlamydomonas reinhardtii cytoskeleton direct rhodopsin photoreceptor localization. J Cell Biol 2011; 193:741-53. [PMID: 21555459 PMCID: PMC3166873 DOI: 10.1083/jcb.201009131] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 04/06/2011] [Indexed: 11/22/2022] Open
Abstract
The eyespot of the unicellular green alga Chlamydomonas reinhardtii is a photoreceptive organelle required for phototaxis. Relative to the anterior flagella, the eyespot is asymmetrically positioned adjacent to the daughter four-membered rootlet (D4), a unique bundle of acetylated microtubules extending from the daughter basal body toward the posterior of the cell. Here, we detail the relationship between the rhodopsin eyespot photoreceptor Channelrhodopsin 1 (ChR1) and acetylated microtubules. In wild-type cells, ChR1 was observed in an equatorial patch adjacent to D4 near the end of the acetylated microtubules and along the D4 rootlet. In cells with cytoskeletal protein mutations, supernumerary ChR1 patches remained adjacent to acetylated microtubules. In mlt1 (multieyed) mutant cells, supernumerary photoreceptor patches were not restricted to the D4 rootlet, and more anterior eyespots correlated with shorter acetylated microtubule rootlets. The data suggest a model in which photoreceptor localization is dependent on microtubule-based trafficking selective for the D4 rootlet, which is perturbed in mlt1 mutant cells.
Collapse
Affiliation(s)
- Telsa M. Mittelmeier
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
| | - Joseph S. Boyd
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
| | - Mary Rose Lamb
- Department of Biology, University of Puget Sound, Tacoma, WA 98416
| | - Carol L. Dieckmann
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
| |
Collapse
|
42
|
Abstract
Phototaxis in the broadest sense means positive or negative displacement along a light gradient or vector. Prokaryotes most often use a biased random walk strategy, employing type I sensory rhodopsin photoreceptors and two-component signalling to regulate flagellar reversal. This strategy only allows phototaxis along steep light gradients, as found in microbial mats or sediments. Some filamentous cyanobacteria evolved the ability to steer towards a light vector. Even these cyanobacteria, however, can only navigate in two dimensions, gliding on a surface. In contrast, eukaryotes evolved the capacity to follow a light vector in three dimensions in open water. This strategy requires a polarized organism with a stable form, helical swimming with cilia and a shading or focusing body adjacent to a light sensor to allow for discrimination of light direction. Such arrangement and the ability of three-dimensional phototactic navigation evolved at least eight times independently in eukaryotes. The origin of three-dimensional phototaxis often followed a transition from a benthic to a pelagic lifestyle and the acquisition of chloroplasts either via primary or secondary endosymbiosis. Based on our understanding of the mechanism of phototaxis in single-celled eukaryotes and animal larvae, it is possible to define a series of elementary evolutionary steps, each of potential selective advantage, which can lead to pelagic phototactic navigation. We can conclude that it is relatively easy to evolve phototaxis once cell polarity, ciliary swimming and a stable cell shape are present.
Collapse
Affiliation(s)
- Gáspár Jékely
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany.
| |
Collapse
|
43
|
Kianianmomeni A, Stehfest K, Nematollahi G, Hegemann P, Hallmann A. Channelrhodopsins of Volvox carteri are photochromic proteins that are specifically expressed in somatic cells under control of light, temperature, and the sex inducer. PLANT PHYSIOLOGY 2009; 151:347-366. [PMID: 19641026 PMCID: PMC2736010 DOI: 10.1104/pp.109.143297] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2009] [Accepted: 07/23/2009] [Indexed: 05/28/2023]
Abstract
Channelrhodopsins are light-gated ion channels involved in the photoresponses of microalgae. Here, we describe the characterization of two channelrhodopsins, Volvox channelrhodopsin-1 (VChR1) and VChR2, from the multicellular green alga Volvox carteri. Both are encoded by nuclear single copy genes and are highly expressed in the small biflagellated somatic cells but not in the asexual reproductive cells (gonidia). Expression of both VChRs increases after cell cleavage and peaks after completion of embryogenesis, when the biosynthesis of the extracellular matrix begins. Likewise, expression of both transcripts increases after addition of the sex-inducer protein, but VChR2 is induced much more than VChR1. The expression of VChR1 is specifically promoted by extended dark periods, and heat stress reduces predominantly VChR1 expression. Expression of both VChRs increased under low light conditions, whereas cold stress and wounding reduced expression. Both VChRs were spectroscopically studied in their purified recombinant forms. VChR2 is similar to the ChR2 counterpart from Chlamydomonas reinhardtii with respect to its absorption maximum (460 nm) and photocycle dynamics. In contrast, VChR1 absorbs maximally at 540 nm at low pH (D540), shifting to 500 nm at high pH (D500). Flash photolysis experiments showed that after light excitation, the D540 dark state bleaches and at least two photoproducts, P600 and P500, are sequentially populated during the photocycle. We hypothesize that VChR2 is a general photoreceptor that is responsible for the avoidance of blue light and might play a key role in sexual development, whereas VChR1 is the main phototaxis photoreceptor under vegetative conditions, as it is more specifically adapted to environmental conditions and the developmental stages of Volvox.
Collapse
Affiliation(s)
- Arash Kianianmomeni
- Department of Cellular and Developmental Biology of Plants, University of Bielefeld, 33615 Bielefeld, Germany
| | | | | | | | | |
Collapse
|
44
|
Sineshchekov OA, Govorunova EG, Spudich JL. Photosensory functions of channelrhodopsins in native algal cells. Photochem Photobiol 2009; 85:556-63. [PMID: 19222796 DOI: 10.1111/j.1751-1097.2008.00524.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Photomotility responses in flagellate alga are mediated by two types of sensory rhodopsins (A and B). Upon photoexcitation they trigger a cascade of transmembrane currents which provide sensory transduction of light stimuli. Both types of algal sensory rhodopsins demonstrate light-gated ion channel activities when heterologously expressed in animal cells, and therefore they have been given the alternative names channelrhodopsin 1 and 2. In recent publications their channel activity has been assumed to initiate the transduction chain in the native algal cells. Here we present data showing that: (1) the modes of action of both types of sensory rhodopsins are different in native cells such as Chlamydomonas reinhardtii than in heterologous expression systems, and also differ between the two types of rhodopsins; (2) the primary function of Type B sensory rhodopsin (channelrhodopsin-2) is biochemical activation of secondary Ca(2+)-channels with evidence for amplification and a diffusible messenger, sufficient for mediating phototaxis and photophobic responses; (3) Type A sensory rhodopsin (channelrhodopsin-1) mediates avoidance responses by direct channel activity under high light intensities and exhibits low-efficiency amplification. These dual functions of algal sensory rhodopsins enable the highly sophisticated photobehavior of algal cells.
Collapse
Affiliation(s)
- Oleg A Sineshchekov
- Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, TX, USA.
| | | | | |
Collapse
|
45
|
Tsunoda SP, Hegemann P. Glu 87 of channelrhodopsin-1 causes pH-dependent color tuning and fast photocurrent inactivation. Photochem Photobiol 2009; 85:564-9. [PMID: 19192197 DOI: 10.1111/j.1751-1097.2008.00519.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Channelrhodopsins (ChR1 and ChR2) are directly light-gated ion channels acting as sensory photoreceptors in the green alga Chlamydomonas reinhardtii. These channels open rapidly after light absorption and both become permeable for cations such as H(+), Li(+), Na(+), K(+) and Ca(2+). K(m) for Ca(2+) is 16.6 mm in ChR1 and 18.3 mm in ChR2 whereas the K(m) values for Na(+) are higher than 100 mm for both ChRs. Action spectra of ChR1 peak between 470 and 500 nm depending on the pH conditions, whereas ChR2 peaks at 470 nm regardless of the pH value. Now we created two chimeric ChRs possessing helix 1-5 of ChR1 and 6, 7 of ChR2 (ChR1/2(5/2)), or 1, 2 from ChR1 and 3-7 from ChR2 (ChR1/2(2/5)). Both ChR-chimera still showed pH-dependent action spectra shifts. Finally, a mutant ChR1E87Q was generated that inactivated only slowly in the light and showed no spectral shift upon pH change. The results indicate that protonation/deprotonation of E87 in helix 1 alters the chromophore polarity, which shifts the absorption and modifies channel inactivation accordingly. We propose a trimodal counter ion complex for ChR1 but only a bimodal complex for ChR2.
Collapse
Affiliation(s)
- Satoshi P Tsunoda
- Institute of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany.
| | | |
Collapse
|
46
|
Abstract
Motile microorganisms react to a host of external stimuli, including light, gravity, the magnetic field of the Earth as well as thermal and chemical gradients, in their habitat in order to select a niche suitable for survival and reproduction. Several forms of light-induced behavior have been described in microorganisms including phototaxis, photophobic responses, and photokinesis. Other functions of photoreceptors are regulation of development and entrainment of circadian rhythms. Basically five types of photoreceptor molecules have been identified in microorganisms: BLUF proteins, cryptochromes, phototropins, phytochromes, and rhodopsins. The photoreceptors can control light-activated ion channels or activated enzymes. The responses to the different stimuli in their habitat can be connected in a complex network of signal transduction chains.
Collapse
|
47
|
Abstract
Plants and algae often absorb too much light-more than they can actually use in photosynthesis. To prevent photo-oxidative damage and to acclimate to changes in their environment, photosynthetic organisms have evolved direct and indirect mechanisms for sensing and responding to excess light. Photoreceptors such as phototropin, neochrome, and cryptochrome can sense excess light directly and relay signals for chloroplast movement and gene expression responses. Indirect sensing of excess light through biochemical and metabolic signals can be transduced into local responses within chloroplasts, into changes in nuclear gene expression via retrograde signaling pathways, or even into systemic responses, all of which are associated with photoacclimation.
Collapse
Affiliation(s)
- Zhirong Li
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
48
|
Kreimer G. The green algal eyespot apparatus: a primordial visual system and more? Curr Genet 2008; 55:19-43. [PMID: 19107486 DOI: 10.1007/s00294-008-0224-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2008] [Revised: 11/28/2008] [Accepted: 12/02/2008] [Indexed: 10/21/2022]
Abstract
Most flagellate green algae exhibiting phototaxis posses a singular specialized light sensitive organelle, the eyespot apparatus (EA). Its design principles are similar in all green algae and produce, in conjunction with the movement pattern of the cell, a highly directional optical device. It enables an oriented movement response with respect to the direction and intensity of light. The functional EA involves local specializations of different compartments (plasma membrane, cytosol, and chloroplast) and utilizes specialized microbial-type rhodopsins, which act as directly light-gated ion channels. Due to their elaborate structures and the presence of retinal-based photoreceptors in some lineages, algal EAs are thought to play an important role in the evolution of photoreception and are thus not only of interest to plant biologists. In green algae considerable progress in the molecular dissection of components of this primordial visual system has been made by genetic and proteomic approaches in recent years. This review summarizes general aspects of the green algal EA as well as recent progress in the identification of proteins related to it. Further, novel data supporting a link between eyespot globules and plastoglobules will be presented and potential additional roles of the EA besides those in photoreception will be discussed.
Collapse
Affiliation(s)
- Georg Kreimer
- Department Biologie, Friedrich-Alexander Universität Erlangen, 91058, Erlangen, Germany.
| |
Collapse
|
49
|
Ritter E, Stehfest K, Berndt A, Hegemann P, Bartl FJ. Monitoring light-induced structural changes of Channelrhodopsin-2 by UV-visible and Fourier transform infrared spectroscopy. J Biol Chem 2008; 283:35033-41. [PMID: 18927082 DOI: 10.1074/jbc.m806353200] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Channelrhodopsin-2 (ChR2) is a microbial type rhodopsin and a light-gated cation channel that controls phototaxis in Chlamydomonas. We expressed ChR2 in COS-cells, purified it, and subsequently investigated this unusual photoreceptor by flash photolysis and UV-visible and Fourier transform infrared difference spectroscopy. Several transient photoproducts of the wild type ChR2 were identified, and their kinetics and molecular properties were compared with those of the ChR2 mutant E90Q. Based on the spectroscopic data we developed a model of the photocycle comprising six distinguishable intermediates. This photocycle shows similarities to the photocycle of the ChR2-related Channelrhodopsin of Volvox but also displays significant differences. We show that molecular changes include retinal isomerization, changes in hydrogen bonding of carboxylic acids, and large alterations of the protein backbone structure. These alterations are stronger than those observed in the photocycle of other microbial rhodopsins like bacteriorhodopsin and are related to those occurring in animal rhodopsins. UV-visible and Fourier transform infrared difference spectroscopy revealed two late intermediates with different time constants of tau = 6 and 40 s that exist during the recovery of the dark state. The carboxylic side chain of Glu(90) is involved in the slow transition. The molecular changes during the ChR2 photocycle are discussed with respect to other members of the rhodopsin family.
Collapse
Affiliation(s)
- Eglof Ritter
- Institut für medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | | | | | | | | |
Collapse
|
50
|
Abstract
Studies of ion channels have for long been dominated by the animalcentric, if not anthropocentric, view of physiology. The structures and activities of ion channels had, however, evolved long before the appearance of complex multicellular organisms on earth. The diversity of ion channels existing in cellular membranes of prokaryotes is a good example. Although at first it may appear as a paradox that most of what we know about the structure of eukaryotic ion channels is based on the structure of bacterial channels, this should not be surprising given the evolutionary relatedness of all living organisms and suitability of microbial cells for structural studies of biological macromolecules in a laboratory environment. Genome sequences of the human as well as various microbial, plant, and animal organisms unambiguously established the evolutionary links, whereas crystallographic studies of the structures of major types of ion channels published over the last decade clearly demonstrated the advantage of using microbes as experimental organisms. The purpose of this review is not only to provide an account of acquired knowledge on microbial ion channels but also to show that the study of microbes and their ion channels may also hold a key to solving unresolved molecular mysteries in the future.
Collapse
Affiliation(s)
- Boris Martinac
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia.
| | | | | |
Collapse
|