1
|
Fu R, Ramamoorthy A. 17O Solid-State NMR Spectroscopy of Lipid Membranes. J Phys Chem B 2024; 128:3527-3537. [PMID: 38568422 DOI: 10.1021/acs.jpcb.4c01016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Despite the limitations posed by poor sensitivity, studies have reported the unique advantages of 17O based NMR spectroscopy to study systems existing in liquid, solid, or semisolid states. 17O NMR studies have exploited the remarkable sensitivity of quadrupole coupling and chemical shift anisotropy tensors to the local environment in the characterization of a variety of intra- and intermolecular interactions and motion. Recent studies have considerably expanded the use of 17O NMR to study dynamic intermolecular interactions associated with some of the challenging biological systems under magic angle spinning (MAS) and aligned conditions. The very fast relaxing nature of 17O has been well utilized in cellular and in vivo MRS (magnetic resonance spectroscopy) and MRI (magnetic resonance imaging) applications. The main focus of this Review is to highlight the new developments in the biological solids with a detailed discussion for a few selected examples including membrane proteins and nanodiscs. In addition to the unique benefits and limitations, the remaining challenges to overcome, and the impacts of higher magnetic fields and sensitivity enhancement techniques are discussed.
Collapse
Affiliation(s)
- Riqiang Fu
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Ayyalusamy Ramamoorthy
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
- Department of Chemical and Biomedical Engineering, Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32310, United States
| |
Collapse
|
2
|
McKay MJ, Fu R, Greathouse DV, Koeppe RE. Breaking the Backbone: Central Arginine Residues Induce Membrane Exit and Helix Distortions within a Dynamic Membrane Peptide. J Phys Chem B 2019; 123:8034-8047. [PMID: 31483653 DOI: 10.1021/acs.jpcb.9b06034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transmembrane domains of membrane proteins sometimes contain conserved charged or ionizable residues which may be essential for protein function and regulation. This work examines the molecular interactions of single Arg residues within a highly dynamic transmembrane peptide helix. To this end, we have modified the GW4,20ALP23 (acetyl-GGAW4(AL)7AW20AGA-amide) model peptide framework to incorporate Arg residues near the center of the peptide. Peptide helix formation, orientation and dynamics were analyzed by means of solid-state NMR spectroscopy to monitor specific 2H- or 15N-labeled residues. GW4,20ALP23 itself adopts a tilted orientation within lipid bilayer membranes. Nevertheless, the GW4,20ALP23 helix exhibits moderate to high dynamic averaging of NMR observables, such as 2H quadrupolar splittings or 15N-1H dipolar couplings, due to competition between the interfacial Trp residues on opposing helix faces. Here we examine how the helix dynamics are impacted by the introduction of a single Arg residue at position 12 or 14. Residue R14 restricts the helix to low dynamic averaging and a well-defined tilt that varies inversely with the lipid bilayer thickness. To compensate for the dominance of R14, the competing Trp residues cause partial unwinding of the helix at the C-terminal. By contrast, R12GW4,20ALP23 exits the DOPC bilayer to an interfacial surface-bound location. Interestingly, multiple orientations are exhibited by a single residue, Ala-9. Quadrupolar splittings generated by 2H-labeled residues A3, A5, A7, and A9 do not fit to the α-helical quadrupolar wave plot defined by residues A11, A13, A15, A17, A19, and A21. The discontinuity at residue A9 implicates a helical swivel distortion and an apparent 310-helix involving the N-terminal residues preceding A11. These molecular features suggest that, while arginine residues are prominent factors controlling transmembrane helix dynamics, the influence of interfacial tryptophan residues cannot be ignored.
Collapse
Affiliation(s)
- Matthew J McKay
- Department of Chemistry and Biochemistry , University of Arkansas , Fayetteville , Arkansas 72701 , United States
| | - Riqiang Fu
- National High Magnetic Field Laboratory, Florida State University , Tallahassee , Florida 32310 , United States
| | - Denise V Greathouse
- Department of Chemistry and Biochemistry , University of Arkansas , Fayetteville , Arkansas 72701 , United States
| | - Roger E Koeppe
- Department of Chemistry and Biochemistry , University of Arkansas , Fayetteville , Arkansas 72701 , United States
| |
Collapse
|
3
|
New insights into the influence of monofluorination on dimyristoylphosphatidylcholine membrane properties: A solid-state NMR study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:654-663. [DOI: 10.1016/j.bbamem.2017.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/29/2017] [Accepted: 12/04/2017] [Indexed: 10/18/2022]
|
4
|
Leninger M, Traaseth NJ. NMR Spectroscopy Approach to Study the Structure, Orientation, and Mechanism of the Multidrug Exporter EmrE. Methods Mol Biol 2018; 1700:83-96. [PMID: 29177827 PMCID: PMC5926179 DOI: 10.1007/978-1-4939-7454-2_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Multidrug exporters are a class of membrane proteins that remove antibiotics from the cytoplasm of bacteria and in the process confer multidrug resistance to the organism. This chapter outlines the sample preparation and optimization of oriented solid-state NMR experiments applied to the study of structure and dynamics for the model transporter EmrE from the small multidrug resistance (SMR) family.
Collapse
Affiliation(s)
- Maureen Leninger
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, USA
| | - Nathaniel J Traaseth
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, USA.
| |
Collapse
|
5
|
Wang J, Zhang Z, Zhao W, Wang L, Yang J. Heating and temperature gradients of lipid bilayer samples induced by RF irradiation in MAS solid-state NMR experiments. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2016; 54:753-759. [PMID: 27161041 DOI: 10.1002/mrc.4450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/16/2016] [Accepted: 04/18/2016] [Indexed: 05/15/2023]
Abstract
The MAS solid-state NMR has been a powerful technique for studying membrane proteins within the native-like lipid bilayer environment. In general, RF irradiation in MAS NMR experiments can heat and potentially destroy expensive membrane protein samples. However, under practical MAS NMR experimental conditions, detailed characterization of RF heating effect of lipid bilayer samples is still lacking. Herein, using 1 H chemical shift of water for temperature calibration, we systematically study the dependence of RF heating on hydration levels and salt concentrations of three lipids in MAS NMR experiments. Under practical 1 H decoupling conditions used in biological MAS NMR experiments, three lipids show different dependence of RF heating on hydration levels as well as salt concentrations, which are closely associated with the properties of lipids. The maximum temperature elevation of about 10 °C is similar for the three lipids containing 200% hydration, which is much lower than that in static solid-state NMR experiments. The RF heating due to salt is observed to be less than that due to hydration, with a maximum temperature elevation of less than 4 °C in the hydrated samples containing 120 mmol l-1 of salt. Upon RF irradiation, the temperature gradient across the sample is observed to be greatly increased up to 20 °C, as demonstrated by the remarkable broadening of 1 H signal of water. Based on detailed characterization of RF heating effect, we demonstrate that RF heating and temperature gradient can be significantly reduced by decreasing the hydration levels of lipid bilayer samples from 200% to 30%. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhengfeng Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Weijing Zhao
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Liying Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jun Yang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| |
Collapse
|
6
|
Martin RW, Kelly JE, Collier KA. Spatial reorientation experiments for NMR of solids and partially oriented liquids. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2015; 90-91:92-122. [PMID: 26592947 PMCID: PMC6936739 DOI: 10.1016/j.pnmrs.2015.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 10/13/2015] [Accepted: 10/15/2015] [Indexed: 06/05/2023]
Abstract
Motional reorientation experiments are extensions of Magic Angle Spinning (MAS) where the rotor axis is changed in order to average out, reintroduce, or scale anisotropic interactions (e.g. dipolar couplings, quadrupolar interactions or chemical shift anisotropies). This review focuses on Variable Angle Spinning (VAS), Switched Angle Spinning (SAS), and Dynamic Angle Spinning (DAS), all of which involve spinning at two or more different angles sequentially, either in successive experiments or during a multidimensional experiment. In all of these experiments, anisotropic terms in the Hamiltonian are scaled by changing the orientation of the spinning sample relative to the static magnetic field. These experiments vary in experimental complexity and instrumentation requirements. In VAS, many one-dimensional spectra are collected as a function of spinning angle. In SAS, dipolar couplings and/or chemical shift anisotropies are reintroduced by switching the sample between two different angles, often 0° or 90° and the magic angle, yielding a two-dimensional isotropic-anisotropic correlation spectrum. Dynamic Angle Spinning (DAS) is a related experiment that is used to simultaneously average out the first- and second-order quadrupolar interactions, which cannot be accomplished by spinning at any unique rotor angle in physical space. Although motional reorientation experiments generally require specialized instrumentation and data analysis schemes, some are accessible with only minor modification of standard MAS probes. In this review, the mechanics of each type of experiment are described, with representative examples. Current and historical probe and coil designs are discussed from the standpoint of how each one accomplishes the particular objectives of the experiment(s) it was designed to perform. Finally, applications to inorganic materials and liquid crystals, which present very different experimental challenges, are discussed. The review concludes with perspectives on how motional reorientation experiments can be applied to current problems in chemistry, molecular biology, and materials science, given the many advances in high-field NMR magnets, fast spinning, and sample preparation realized in recent years.
Collapse
Affiliation(s)
- Rachel W Martin
- Department of Chemistry, University of California, Irvine 92697-2025, United States; Department of Molecular Biology and Biochemistry, University of California, Irvine 92697-3900, United States.
| | - John E Kelly
- Department of Chemistry, University of California, Irvine 92697-2025, United States
| | - Kelsey A Collier
- Department of Physics and Astronomy, University of California, Irvine 92697-4575, United States
| |
Collapse
|
7
|
Bertani P, Raya J, Bechinger B. 15N chemical shift referencing in solid state NMR. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2014; 61-62:15-18. [PMID: 24746715 DOI: 10.1016/j.ssnmr.2014.03.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 03/19/2014] [Accepted: 03/29/2014] [Indexed: 06/03/2023]
Abstract
Solid-state NMR spectroscopy has much advanced during the last decade and provides a multitude of data that can be used for high-resolution structure determination of biomolecules, polymers, inorganic compounds or macromolecules. In some cases the chemical shift referencing has become a limiting factor to the precision of the structure calculations and we have therefore evaluated a number of methods used in proton-decoupled (15)N solid-state NMR spectroscopy. For (13)C solid-state NMR spectroscopy adamantane is generally accepted as an external standard, but to calibrate the (15)N chemical shift scale several standards are in use. As a consequence the published chemical shift values exhibit considerable differences (up to 22 ppm). In this paper we report the (15)N chemical shift of several commonly used references compounds in order to allow for comparison and recalibration of published data and future work. We show that (15)NH4Cl in its powdered form (at 39.3 ppm with respect to liquid NH3) is a suitable external reference as it produces narrow lines when compared to other reference compounds and at the same time allows for the set-up of cross-polarization NMR experiments. The compound is suitable to calibrate magic angle spinning and static NMR experiments. Finally the temperature variation of (15)NH4Cl chemical shift is reported.
Collapse
Affiliation(s)
- Philippe Bertani
- Université de Strasbourg/CNRS, UMR7177, Institut de Chimie de Strasbourg, 1 rue Blaise Pascal, 67070 Strasbourg, France.
| | - Jésus Raya
- Université de Strasbourg/CNRS, UMR7177, Institut de Chimie de Strasbourg, 1 rue Blaise Pascal, 67070 Strasbourg, France
| | - Burkhard Bechinger
- Université de Strasbourg/CNRS, UMR7177, Institut de Chimie de Strasbourg, 1 rue Blaise Pascal, 67070 Strasbourg, France
| |
Collapse
|
8
|
Murray D, Griffin J, Cross TA. Detergent optimized membrane protein reconstitution in liposomes for solid state NMR. Biochemistry 2014; 53:2454-63. [PMID: 24665863 PMCID: PMC4004220 DOI: 10.1021/bi500144h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 03/24/2014] [Indexed: 12/18/2022]
Abstract
For small helical membrane proteins, their structures are highly sensitive to their environment, and solid state NMR is a structural technique that can characterize these membrane proteins in native-like lipid bilayers and proteoliposomes. To date, a systematic method by which to evaluate the effect of the solubilizing detergent on proteoliposome preparations for solid state NMR of membrane proteins has not been presented in the literature. A set of experiments are presented aimed at determining the conditions most amenable to dialysis mediated reconstitution sample preparation. A membrane protein from M. tuberculosis is used to illustrate the method. The results show that a detergent that stabilizes the most protein is not always ideal and sometimes cannot be removed by dialysis. By focusing on the lipid and protein binding properties of the detergent, proteoliposome preparations can be readily produced, which provide double the signal-to-noise ratios for both the oriented sample and magic angle spinning solid state NMR. The method will allow more membrane protein drug targets to be structurally characterized in lipid bilayer environments.
Collapse
Affiliation(s)
- Dylan
T. Murray
- Institute
for Molecular Biophysics, Florida State
University, 91 Chieftan
Way, Tallahassee, Florida 32306, United States
- The
National High Magnetic Field Laboratory, 1800 E. Paul Dirac Dr., Tallahassee, Florida 32310, United States
| | - James Griffin
- The
National High Magnetic Field Laboratory, 1800 E. Paul Dirac Dr., Tallahassee, Florida 32310, United States
- Department
of Chemistry and Biochemistry, Florida State
University, 95 Chieftan
Way, Tallahassee, Florida 32306, United States
| | - Timothy A. Cross
- Institute
for Molecular Biophysics, Florida State
University, 91 Chieftan
Way, Tallahassee, Florida 32306, United States
- The
National High Magnetic Field Laboratory, 1800 E. Paul Dirac Dr., Tallahassee, Florida 32310, United States
- Department
of Chemistry and Biochemistry, Florida State
University, 95 Chieftan
Way, Tallahassee, Florida 32306, United States
| |
Collapse
|
9
|
Murray DT, Das N, Cross TA. Solid state NMR strategy for characterizing native membrane protein structures. Acc Chem Res 2013; 46:2172-81. [PMID: 23470103 DOI: 10.1021/ar3003442] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Unlike water soluble proteins, the structures of helical transmembrane proteins depend on a very complex environment. These proteins sit in the midst of dramatic electrical and chemical gradients and are often subject to variations in the lateral pressure profile, order parameters, dielectric constant, and other properties. Solid state NMR is a collection of tools that can characterize high resolution membrane protein structure in this environment. Indeed, prior work has shown that this complex environment significantly influences transmembrane protein structure. Therefore, it is important to characterize such structures under conditions that closely resemble its native environment. Researchers have used two approaches to gain protein structural restraints via solid state NMR spectroscopy. The more traditional approach uses magic angle sample spinning to generate isotropic chemical shifts, much like solution NMR. As with solution NMR, researchers can analyze the backbone chemical shifts to obtain torsional restraints. They can also examine nuclear spin interactions between nearby atoms to obtain distances between atomic sites. Unfortunately, for membrane proteins in lipid preparations, the spectral resolution is not adequate to obtain complete resonance assignments. Researchers have developed another approach for gaining structural restraints from membrane proteins: the use of uniformly oriented lipid bilayers, which provides a method for obtaining high resolution orientational restraints. When the bilayers are aligned with respect to the magnetic field of the NMR spectrometer, researchers can obtain orientational restraints in which atomic sites in the protein are restrained relative to the alignment axis. However, this approach does not allow researchers to determine the relative packing between helices. By combining the two approaches, we can take advantage of the information acquired from each technique to minimize the challenges and maximize the quality of the structural results. By combining the distance, torsional, and orientational restraints, we can characterize high resolution membrane protein structure in native-like lipid bilayer environments.
Collapse
Affiliation(s)
- Dylan T. Murray
- Institute of Molecular Biophysics, Department of Chemistry and Biochemistry, and National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Nabanita Das
- Institute of Molecular Biophysics, Department of Chemistry and Biochemistry, and National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Timothy A. Cross
- Institute of Molecular Biophysics, Department of Chemistry and Biochemistry, and National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| |
Collapse
|
10
|
Dürr UH, Soong R, Ramamoorthy A. When detergent meets bilayer: birth and coming of age of lipid bicelles. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2013; 69:1-22. [PMID: 23465641 PMCID: PMC3741677 DOI: 10.1016/j.pnmrs.2013.01.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 08/30/2012] [Indexed: 05/12/2023]
|
11
|
Dürr UN, Gildenberg M, Ramamoorthy A. The magic of bicelles lights up membrane protein structure. Chem Rev 2012; 112:6054-74. [PMID: 22920148 PMCID: PMC3497859 DOI: 10.1021/cr300061w] [Citation(s) in RCA: 274] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Indexed: 12/12/2022]
Affiliation(s)
| | - Melissa Gildenberg
- Biophysics
and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055,
United States
| | - Ayyalusamy Ramamoorthy
- Biophysics
and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055,
United States
| |
Collapse
|
12
|
Marassi FM, Das BB, Lu GJ, Nothnagel HJ, Park SH, Son WS, Tian Y, Opella SJ. Structure determination of membrane proteins in five easy pieces. Methods 2011; 55:363-9. [PMID: 21964394 PMCID: PMC3264820 DOI: 10.1016/j.ymeth.2011.09.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 09/13/2011] [Indexed: 10/17/2022] Open
Abstract
Rotational Alignment (RA) solid-state NMR provides the basis for a general method for determining the structures of membrane proteins in phospholipid bilayers under physiological conditions. Membrane proteins are high priority targets for structure determination, and are challenging for existing experimental methods. Because membrane proteins reside in liquid crystalline phospholipid bilayer membranes it is important to study them in this type of environment. The RA solid-state NMR approach we have developed can be summarized in five steps, and incorporates methods of molecular biology, biochemistry, sample preparation, the implementation of NMR experiments, and structure calculations. It relies on solid-state NMR spectroscopy to obtain high-resolution spectra and residue-specific structural restraints for membrane proteins that undergo rotational diffusion around the membrane normal, but whose mobility is otherwise restricted by interactions with the membrane phospholipids. High resolution spectra of membrane proteins alone and in complex with other proteins and ligands set the stage for structure determination and functional studies of these proteins in their native, functional environment.
Collapse
Affiliation(s)
- Francesca M. Marassi
- Sanford Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Bibhuti B. Das
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0307, USA
| | - George J. Lu
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0307, USA
| | - Henry J. Nothnagel
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0307, USA
| | - Sang Ho Park
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0307, USA
| | - Woo Sung Son
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0307, USA
| | - Ye Tian
- Sanford Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0307, USA
| | - Stanley J. Opella
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0307, USA
| |
Collapse
|
13
|
Saitô H, Ando I, Ramamoorthy A. Chemical shift tensor - the heart of NMR: Insights into biological aspects of proteins. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2010; 57:181-228. [PMID: 20633363 PMCID: PMC2905606 DOI: 10.1016/j.pnmrs.2010.04.005] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 04/26/2010] [Indexed: 05/19/2023]
Affiliation(s)
- Hazime Saitô
- Department of Life Science, Himeji Institute of Technology, University of Hyogo, Kamigori, Hyog, 678-1297, Japan
| | - Isao Ando
- Department of Chemistry and Materials Science, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, 152-0033, Japan
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109-1055, USA
| |
Collapse
|
14
|
Wang C, Teng Q, Cross TA. Solid-state C NMR spectroscopy of a C carbonyl-labeled polypeptide. Biophys J 2010; 61:1550-6. [PMID: 19431834 DOI: 10.1016/s0006-3495(92)81959-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
High resolution structural elucidation of macromolecular structure by solid-state nuclear magnetic resonance requires the preparation of uniformly aligned samples that are isotopically labeled. In addition, to use the chemical shift interaction as a high resolution constraint requires an in situ tensor characterization for each site of interest. For (13)C in the peptide backbone, this characterization is complicated by the presence of dipolar coupled (14)N from the peptide bond. Here the (13)C(1)-Gly(2) site in gramicidin A is studied both as a dry powder and in a fully hydrated lipid bilayer environment. Linewidths reported for the oriented samples are a factor of five narrower than those reported elsewhere, and previous misinterpretations of the linewidths are corrected. The observed frequency from oriented samples is shown to be consistent with the recently determined structure for this site in the gramicidin backbone. It is also shown that, whereas a dipolar coupling between (13)C and (14)N is apparent in dry preparations of the polypeptide, in a hydrated bilayer the dipolar coupling is absent, presumably due to a ;self-decoupling' mechanism.
Collapse
Affiliation(s)
- C Wang
- Department of Chemistry and the Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306-3006
| | | | | |
Collapse
|
15
|
Fu R, Gordon ED, Hibbard DJ, Cotten M. High resolution heteronuclear correlation NMR spectroscopy of an antimicrobial peptide in aligned lipid bilayers: peptide-water interactions at the water-bilayer interface. J Am Chem Soc 2009; 131:10830-1. [PMID: 19621928 DOI: 10.1021/ja903999g] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
High-resolution two-dimensional (2D) (1)H-(15)N heteronuclear correlation (HETCOR) spectroscopy has been used to characterize the structure and dynamics of (15)N-backbone labeled antimicrobial piscidin 1 (p1) oriented in "native-like" hydrated lipid bilayers. Piscidin belongs to a family of amphipatic cationic antimicrobial peptides, which are membrane-active and have broad spectrum antimicrobial activity on bacteria. When the (1)H chemical shifts are encoded by the (1)H-(15)N dipolar couplings, 2D dipolar-encoded HETCOR (i.e., de-HETCOR) solid-state NMR spectra yield high resolution (1)H and (15)N chemical shifts as well as (1)H-(15)N heteronuclear dipolar couplings. Several advantages of HETCOR and de-HETCOR techniques that emerge from our investigations could facilitate the atomic-level investigations of structure-function relationships in membrane-active peptides and membrane-bound species. First, the de-HETCOR NMR spectrum of a ten-site (15)N-labeled sample of p1 aligned in hydrated lipid bilayers can resolve resonances that are overlapped in the standard HETCOR spectrum. Second, the resolution in de-HETCOR spectra of p1 improves significantly at higher magnetic field due to an enhanced alignment that improves spectrum definition uniformly. Third, the HETCOR spectrum of (15)N-K(14) p1 oriented in hydrated lipid bilayers displays not only the expected crosscorrelation between the chemical shifts of bonded amide(1)H and (15)N spins but also a cross peak between the (1)H chemical shift from bulk water and the (15)N chemical shift from the labeled amide nitrogen. This information provides new insights into the intermolecular interactions of an amphipathic antimicrobial peptide optimized to partition at the water-bilayer interface and may have implications at the biological level.
Collapse
Affiliation(s)
- Riqiang Fu
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, USA.
| | | | | | | |
Collapse
|
16
|
Verly RM, de Moraes CM, Resende JM, Aisenbrey C, Bemquerer MP, Piló-Veloso D, Valente AP, Almeida FCL, Bechinger B. Structure and membrane interactions of the antibiotic peptide dermadistinctin K by multidimensional solution and oriented 15N and 31P solid-state NMR spectroscopy. Biophys J 2009; 96:2194-203. [PMID: 19289046 DOI: 10.1016/j.bpj.2008.11.063] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 10/18/2008] [Accepted: 11/06/2008] [Indexed: 01/05/2023] Open
Abstract
DD K, a peptide first isolated from the skin secretion of the Phyllomedusa distincta frog, has been prepared by solid-phase chemical peptide synthesis and its conformation was studied in trifluoroethanol/water as well as in the presence of sodium dodecyl sulfate and dodecylphosphocholine micelles or small unilamellar vesicles. Multidimensional solution NMR spectroscopy indicates an alpha-helical conformation in membrane environments starting at residue 7 and extending to the C-terminal carboxyamide. Furthermore, DD K has been labeled with (15)N at a single alanine position that is located within the helical core region of the sequence. When reconstituted into oriented phosphatidylcholine membranes the resulting (15)N solid-state NMR spectrum shows a well-defined helix alignment parallel to the membrane surface in excellent agreement with the amphipathic character of DD K. Proton-decoupled (31)P solid-state NMR spectroscopy indicates that the peptide creates a high level of disorder at the level of the phospholipid headgroup suggesting that DD K partitions into the bilayer where it severely disrupts membrane packing.
Collapse
Affiliation(s)
- Rodrigo M Verly
- Departamento de Química Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kim C, Spano J, Park EK, Wi S. Evidence of pores and thinned lipid bilayers induced in oriented lipid membranes interacting with the antimicrobial peptides, magainin-2 and aurein-3.3. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1482-96. [PMID: 19409370 DOI: 10.1016/j.bbamem.2009.04.017] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Revised: 04/22/2009] [Accepted: 04/22/2009] [Indexed: 11/29/2022]
Abstract
Dynamic structures of supramolecular lipid assemblies, such as toroidal pores and thinned bilayers induced in oriented lipid membranes, which are interacting with membrane-acting antimicrobial peptides (AMPs), magainin-2 and aurein-3.3, were explored by 31P and 2H solid-state NMR (ssNMR) spectroscopy. Various types of phospholipid systems, such as POPC-d31, POPC-d31/POPG, and POPC-d31/cholesterol, were investigated to understand the membrane disruption mechanisms of magainin-2 and aurein-3.3 peptides at various peptide-to-lipid (P:L) ratios. The experimental lineshapes of anisotropic 31P and 2H ssNMR spectra measured on these peptide-lipid systems were simulated reasonably well by assuming the presence of supramolecular lipid assemblies, such as toroidal pores and thinned bilayers, in membranes. Furthermore, the observed decrease in the anisotropic frequency span of either 31P or 2H ssNMR spectra of oriented lipid bilayers, particularly when anionic POPG lipids are interacting with AMPs at high P:L ratios, can directly be explained by a thinned membrane surface model with fast lateral diffusive motions of lipids. The spectral analysis protocol we developed enables extraction of the lateral diffusion coefficients of lipids distributed on the curved surfaces of pores and thinned bilayers on a few nanometers scale.
Collapse
Affiliation(s)
- Chul Kim
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | | | | | | |
Collapse
|
18
|
Cheng JTJ, Hale JD, Elliot M, Hancock REW, Straus SK. Effect of membrane composition on antimicrobial peptides aurein 2.2 and 2.3 from Australian southern bell frogs. Biophys J 2009; 96:552-65. [PMID: 19167304 DOI: 10.1016/j.bpj.2008.10.012] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 10/09/2008] [Indexed: 12/25/2022] Open
Abstract
The effects of hydrophobic thickness and the molar phosphatidylglycerol (PG) content of lipid bilayers on the structure and membrane interaction of three cationic antimicrobial peptides were examined: aurein 2.2, aurein 2.3 (almost identical to aurein 2.2, except for a point mutation at residue 13), and a carboxy C-terminal analog of aurein 2.3. Circular dichroism results indicated that all three peptides adopt an alpha-helical structure in the presence of a 3:1 molar mixture of 1,2-dimyristoyl-sn-glycero-3-phosphocholine/1,2-dimyristoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (DMPC/DMPG), and 1:1 and 3:1 molar mixtures of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine/1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (POPC/POPG). Oriented circular dichroism data for three different lipid compositions showed that all three peptides were surface-adsorbed at low peptide concentrations, but were inserted into the membrane at higher peptide concentrations. The (31)P solid-state NMR data of the three peptides in the DMPC/DMPG and POPC/POPG bilayers showed that all three peptides significantly perturbed lipid headgroups, in a peptide or lipid composition-dependent manner. Differential scanning calorimetry results demonstrated that both amidated aurein peptides perturbed the overall phase structure of DMPC/DMPG bilayers, but perturbed the POPC/POPG chains less. The nature of the perturbation of DMPC/DMPG bilayers was most likely micellization, and for the POPC/POPG bilayers, distorted toroidal pores or localized membrane aggregate formation. Calcein release assay results showed that aurein peptide-induced membrane leakage was more severe in DMPC/DMPG liposomes than in POPC/POPG liposomes, and that aurein 2.2 induced higher calcein release than aurein 2.3 and aurein 2.3-COOH from 1:1 and 3:1 POPC/POPG liposomes. Finally, DiSC(3)5 assay data further delineated aurein 2.2 from the others by showing that it perturbed the lipid membranes of intact S. aureus C622 most efficiently, whereas aurein 2.3 had the same efficiency as gramicidin S, and aurein 2.3-COOH was the least efficient. Taken together, these data show that the membrane interactions of aurein peptides are affected by the hydrophobic thickness of the lipid bilayers and the PG content.
Collapse
Affiliation(s)
- John T J Cheng
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | |
Collapse
|
19
|
Nakazawa Y, Suzuki Y, Williamson MP, Saitô H, Asakura T. The interaction of amyloid Abeta(1-40) with lipid bilayers and ganglioside as studied by 31P solid-state NMR. Chem Phys Lipids 2008; 158:54-60. [PMID: 19138679 DOI: 10.1016/j.chemphyslip.2008.12.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 12/04/2008] [Accepted: 12/05/2008] [Indexed: 12/31/2022]
Abstract
Amyloid beta-peptide (Abeta) is a major component of plaques in Alzheimer's disease, and formation of senile plaques has been suggested to originate from regions of neuronal membrane rich in gangliosides. We analyzed the mode of interaction of Abeta with lipid bilayers by multinuclear NMR using (31)P nuclei. We found that Abeta (1-40) strongly perturbed the bilayer structure of dimyristoylphosphatidylcholine (DMPC), to form a non-lamellar phase (most likely micellar). The ganglioside GM1 potentiated the effect of Abeta (1-40), as viewed from (31)P NMR. The difference of the isotropic peak intensity between DMPC/Abeta and DMPC/GM1/Abeta suggests a specific interaction between Abeta and GM1. We show that in the DMPC/GM1/Abeta system there are three lipid phases, namely a lamellar phase, a hexagonal phase and non-oriented lipids. The latter two phases are induced by the presence of the Abeta peptide, and facilitated by GM1.
Collapse
Affiliation(s)
- Yasumoto Nakazawa
- Nature and Science Museum, Tokyo University of Agriculture and Technology, 2-24-16, Nakacho, Koganei, Tokyo, 184-8588 Japan
| | | | | | | | | |
Collapse
|
20
|
Lee DK, Kwon BS, Ramamoorthy A. Freezing point depression of water in phospholipid membranes: a solid-state NMR study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:13598-13604. [PMID: 18991419 PMCID: PMC2649677 DOI: 10.1021/la8023698] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Lipid-water interaction plays an important role in the properties of lipid bilayers, cryoprotectants, and membrane-associated peptides and proteins. The temperature at which water bound to lipid bilayers freezes is lower than that of free water. Here, we report a solid-state NMR investigation on the freezing point depression of water in phospholipid bilayers in the presence and absence of cholesterol. Deuterium NMR spectra at different temperatures ranging from -75 to + 10 degrees C were obtained from fully (2)H2O-hydrated POPC (1-palmitoyl-2-oleoylphosphatidylcholine) multilamellar vesicles (MLVs), prepared with and without cholesterol, to determine the freezing temperature of water and the effect of cholesterol on the freezing temperature of water in POPC bilayers. Our 2H NMR experiments reveal the motional behavior of unfrozen water molecules in POPC bilayers even at temperatures significantly below 0 degrees C and show that the presence of cholesterol further lowered the freezing temperature of water in POPC bilayers. These results suggest that in the presence of cholesterol the fluidity and dynamics of lipid bilayers can be retained even at very low temperatures as exist in the liquid crystalline phase of the lipid. Therefore, bilayer samples prepared with a cryoprotectant like cholesterol should enable the performance of multidimensional solid-state NMR experiments to investigate the structure, dynamics, and topology of membrane proteins at a very low temperature with enhanced sample stability and possibly a better sensitivity. Phosphorus-31 NMR data suggest that lipid bilayers can be aligned at low temperatures, while 15N NMR experiments demonstrate that such aligned samples can be used to enhance the signal-to-noise ratio of is 15N chemical shift spectra of a 37-residue human antimicrobial peptide, LL-37.
Collapse
Affiliation(s)
- Dong-Kuk Lee
- Department of Fine Chemistry, Seoul National University of Technology, Seoul 139-743, Korea.
| | | | | |
Collapse
|
21
|
Guo J, Yang DP, Chari R, Tian X, Pavlopoulos S, Lu D, Makriyannis A. Magnetically aligned bicelles to study the orientation of lipophilic ligands in membrane bilayers. J Med Chem 2008; 51:6793-9. [PMID: 18834109 DOI: 10.1021/jm800766x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Magnetically aligned bicelles were used as a model membrane to study the orientation and dynamic properties of two cannabinoids (Delta (8)-THC and Me-Delta (8)-THC) using (31)P and (2)H NMR. The uniform alignment of the bicelles allowed us to obtain well resolved deuterium spectra from a solution NMR spectrometer. The preferred orientations of Delta (8)-THC and Me-Delta (8)-THC were calculated on the basis of the measurements of individual quadrupolar splittings. Our results agree with previous experiments using multilamellar membranes as well as with molecular dynamics simulation data described here. In conjunction with our earlier report using small and fast tumbling bicelles, the present work of well aligned bicelles shows that bicelle preparations can provide either pseudoisotropic or anisotropic NMR spectra to study the conformation, orientation, and dynamic properties of ligands in membrane bilayers. Such data are of critical value for understanding the interactions of lipophilic drug molecules with membrane proteins.
Collapse
Affiliation(s)
- Jianxin Guo
- Center for Drug Discovery, 116 Mugar Life Sciences Building, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Lindblom G, Orädd G. Lipid lateral diffusion and membrane heterogeneity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1788:234-44. [PMID: 18805393 DOI: 10.1016/j.bbamem.2008.08.016] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 08/13/2008] [Accepted: 08/21/2008] [Indexed: 11/24/2022]
Abstract
The pulsed field gradient (pfg)-NMR method for measurements of translational diffusion of molecules in macroscopically aligned lipid bilayers is described. This technique is proposed to have an appreciable potential for investigations in the field of lipid and membrane biology. Transport of molecules in the plane of the bilayer can be successfully studied, as well as lateral phase separation of lipids and their dynamics within the bilayer organizations. Lateral diffusion coefficients depend on lipid packing and acyl chain ordering and investigations of order parameters of perdeuterated acyl chains, using (2)H NMR quadrupole splittings, are useful complements. In this review we summarize some of our recent achievements obtained on lipid membranes. In particular, bilayers exhibiting two-phase coexistence of liquid disordered (l(d)) and liquid ordered (l(o)) phases are considered in detail. Methods for obtaining good oriented lipid bilayers, necessary for the pfg-NMR method to be efficiently used, are also briefly described. Among our major results, besides determinations of l(d) and l(o) phases, belongs the finding that the lateral diffusion is the same for all components, independent of the molecular structure (including cholesterol (CHOL)), if they reside in the same domain or phase in the membrane. Furthermore, quite unexpectedly CHOL seems to partition into the l(d)and l(o) phases to roughly the same extent, indicating that CHOL has no strong preference for any of these phases, i.e. CHOL seems to have similar interactions with all of the lipids. We propose that the lateral phase separation in bilayers containing one high-T(m) and one low-T(m) lipid together with CHOL is driven by the increasing difficulty of incorporating an unsaturated or prenyl lipid into the highly ordered bilayer formed by a saturated lipid and CHOL, i.e. the phase transition is entropy driven to keep the disorder of the hydrocarbon chains of the unsaturated lipid.
Collapse
|
23
|
Wi S, Kim C. Pore structure, thinning effect, and lateral diffusive dynamics of oriented lipid membranes interacting with antimicrobial peptide protegrin-1: 31P and 2H solid-state NMR study. J Phys Chem B 2008; 112:11402-14. [PMID: 18700738 DOI: 10.1021/jp801825k] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Membrane pores that are induced in oriented membranes by an antimicrobial peptide (AMP), protegrin-1 (PG-1), are investigated by (31)P and (2)H solid state NMR spectroscopy. We incorporated a well-studied peptide, protegrin-1 (PG-1), a beta-sheet AMP, to investigate AMP-induced dynamic supramolecular lipid assemblies at different peptide concentrations and membrane compositions. Anisotropic NMR line shapes specifying toroidal pores and thinned membranes, which are formed in membrane bilayers by the binding of AMPs, have been analyzed for the first time. Theoretical NMR line shapes of lipids distributed on the surface of toroidal pores and thinned membranes reproduce reasonably well the line shape characteristics of our experimentally measured (31)P and (2)H solid-state NMR spectra of oriented lipids binding with PG-1. The lateral diffusions of lipids are also analyzed from the motionally averaged one- and two-dimensional (31)P and (2)H solid-state NMR spectra of oriented lipids that are binding with AMPs.
Collapse
Affiliation(s)
- Sungsool Wi
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA.
| | | |
Collapse
|
24
|
Dürr UH, Waskell L, Ramamoorthy A. The cytochromes P450 and b5 and their reductases—Promising targets for structural studies by advanced solid-state NMR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:3235-59. [DOI: 10.1016/j.bbamem.2007.08.007] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Accepted: 08/08/2007] [Indexed: 02/02/2023]
|
25
|
Agrawal P, Kiihne S, Hollander J, Hulsbergen F, Hofmann M, Langosch D, de Groot H. Solid state NMR investigation of the interaction between biomimetic lipid bilayers and de novo designed fusogenic peptides. Chembiochem 2007; 8:493-6. [PMID: 17328022 DOI: 10.1002/cbic.200600518] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Prashant Agrawal
- Biophysical Organic Chemistry/Solid State NMR, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
26
|
Lindblom G, Orädd G. Order and Disorder in a Liquid Crystalline Bilayer: Pulsed Field Gradient NMR Studies of Lateral Phase Separation. J DISPER SCI TECHNOL 2007. [DOI: 10.1080/01932690600992522] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Lopez JJ, Mason AJ, Kaiser C, Glaubitz C. Separated local field NMR experiments on oriented samples rotating at the magic angle. JOURNAL OF BIOMOLECULAR NMR 2007; 37:97-111. [PMID: 17180549 DOI: 10.1007/s10858-006-9109-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 10/04/2006] [Accepted: 10/13/2006] [Indexed: 05/13/2023]
Abstract
Biophysical studies on membrane proteins by solid state NMR (SSNMR) can be carried out directly in a membrane environment. Samples are usually prepared in form of multi-lamellar dispersions for magic angle sample spinning or as aligned multi-layers for orientation dependent NMR experiments without sample rotation. A new development is the application of MAS NMR to aligned samples (MAOSS; Magic Angle Oriented Sample Spinning). In combination with separated local field (SLF) experiments, size and orientation of heteronuclear dipolar couplings may be extracted from two-dimensional experiments which correlate dipolar couplings with isotropic chemical shifts. The orientation of these (1)H-X dipolar couplings can be directly related to the orientation of molecular groups in the sample. Here, we demonstrate the feasibility of these experiments on highly ordered polyethylene fibers which serve as model compound. Based on these data, the experiment is also applied to ordered multi-layers of bacteriorhodopsin (purple membrane) which is used as a model for aligned membrane proteins. We present a detailed analysis of different experimental designs with respect to angular sensitivity and the influence of residual sample disorder ("mosaic spread"). The results of the MAOSS-SLF experiment are discussed within the context of established solid state NMR experiments which are usually performed without sample rotation and we compare the data to orientation information obtained from X-ray diffraction.
Collapse
Affiliation(s)
- Jakob J Lopez
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, J.W. Goethe University, 60438, Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
28
|
Orädd G, Lindblom G. Lateral diffusion coefficients of raft lipids from pulsed field gradient NMR. Methods Mol Biol 2007; 398:127-42. [PMID: 18214378 DOI: 10.1007/978-1-59745-513-8_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The pulsed field gradient-nuclear magnetic resonance diffusion technique has an appreciable potential for biophysical investigations in membrane biology, various lyotropic liquid crystals, and other complex fluid systems. In particular, topics like transport of molecules both across and within the plane of a lipid membrane can be successfully studied, as well as the formation of lipid domains and their intrinsic dynamics. The pulsed field gradient-nuclear magnetic resonance technique and the preparation of oriented samples for investigations of lipid lateral diffusion in macroscopically aligned bilayers, oriented by a goniometer probe in the main magnetic field, are described. Some recent results illustrating the potential of the method in detecting and characterizing domain formation are also presented.
Collapse
Affiliation(s)
- Greger Orädd
- Dept. of Biophysical Chemistry, Umea University, Switzerland
| | | |
Collapse
|
29
|
Ouellet M, Otis F, Voyer N, Auger M. Biophysical studies of the interactions between 14-mer and 21-mer model amphipathic peptides and membranes: Insights on their modes of action. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:1235-44. [PMID: 16579961 DOI: 10.1016/j.bbamem.2006.02.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Revised: 02/16/2006] [Accepted: 02/16/2006] [Indexed: 11/17/2022]
Abstract
We have investigated the interactions between synthetic amphipathic peptides and zwitterionic model membranes. Peptides with 14 and 21 amino acids composed of leucines and phenylalanines modified by the addition of crown ethers have been synthesized. The 14-mer and 21-mer peptides both possess a helical amphipathic structure as revealed by circular dichroism. To shed light on their mechanism of membrane interaction, different complementary biophysical techniques have been used such as circular dichroism, fluorescence, membrane conductivity measurement and NMR spectroscopy. Results obtained by these different techniques show that the 14-mer peptide is a membrane perturbator that facilitate the leakage of species such as calcein and Na ions, while the 21-mer peptide acts as an ion channel. (31)P solid-state NMR experiments on multilamellar vesicles reveal that the dynamics and/or orientation of the polar headgroups are greatly affected by the presence of the peptides. Similar results have also been obtained in mechanically oriented DLPC and DMPC bilayers where different acyl chain lengths seem to play a role in the interaction. On the other hand, (2)H NMR experiments on multilamellar vesicles demonstrate that the acyl chain order is affected differently by the two peptides. Based on these studies, mechanisms of action are proposed for the 14-mer and 21-mer peptides with zwitterionic membranes.
Collapse
Affiliation(s)
- Marise Ouellet
- Département de Chimie, Centre de Recherche sur la Fonction, la Structure et l'Ingénierie des Protéines, Centre de Recherche en Sciences et Ingénierie des Macromolécules, Université Laval, Québec, Québec, Canada G1K 7P4
| | | | | | | |
Collapse
|
30
|
Chekmenev EY, Gor'kov PL, Cross TA, Alaouie AM, Smirnov AI. Flow-through lipid nanotube arrays for structure-function studies of membrane proteins by solid-state NMR spectroscopy. Biophys J 2006; 91:3076-84. [PMID: 16861277 PMCID: PMC1578476 DOI: 10.1529/biophysj.106.085191] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel method for studying membrane proteins in a native lipid bilayer environment by solid-state NMR spectroscopy is described and tested. Anodic aluminum oxide (AAO) substrates with flow-through 175 nm wide and 60-mum-long nanopores were employed to form macroscopically aligned peptide-containing lipid bilayers that are fluid and highly hydrated. We demonstrate that the surfaces of both leaflets of such bilayers are fully accessible to aqueous solutes. Thus, high hydration levels as well as pH and desirable ion and/or drug concentrations could be easily maintained and modified as desired in a series of experiments with the same sample. The method allows for membrane protein NMR experiments in a broad pH range that could be extended to as low as 1 and as high as 12 units for a period of up to a few hours and temperatures as high as 70 degrees C without losing the lipid alignment or bilayers from the nanopores. We demonstrate the utility of this method by a solid-state 19.6 T (17)O NMR study of reversible binding effects of mono- and divalent ions on the chemical shift properties of the Leu(10) carbonyl oxygen of transmembrane pore-forming peptide gramicidin A (gA). We further compare the (17)O shifts induced by binding metal ions to the binding of protons in the pH range from 1 to 12 and find a significant difference. This unexpected result points to a difference in mechanisms for ion and proton conduction by the gA pore. We believe that a large number of solid-state NMR-based studies, including structure-function, drug screening, proton exchange, pH, and other titration experiments, will benefit significantly from the method described here.
Collapse
Affiliation(s)
- Eduard Y Chekmenev
- The Center for Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, Tallahassee, Florida 32310, USA
| | | | | | | | | |
Collapse
|
31
|
Quine JR, Achuthan S, Asbury T, Bertram R, Chapman MS, Hu J, Cross TA. Intensity and mosaic spread analysis from PISEMA tensors in solid-state NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2006; 179:190-8. [PMID: 16413215 DOI: 10.1016/j.jmr.2005.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Revised: 12/01/2005] [Accepted: 12/07/2005] [Indexed: 05/06/2023]
Abstract
The solid-state NMR experiment PISEMA, is a technique for determining structures of proteins, especially membrane proteins, from oriented samples. One method for determining the structure is to find orientations of local molecular frames (peptide planes) with respect to the unit magnetic field direction, B0. This is done using equations that compute the coordinates of this vector in the frames. This requires an analysis of the PISEMA function and its degeneracies. As a measure of the sensitivity of peptide plane orientations to the data, we use these equations to derive a formula for the intensity function in the powder pattern. With this function and other measures, we investigate the effect of small changes in peptide plane orientations depending on the location of the resonances in the powder pattern spectrum. This gives us an indication of the change in lineshape due to mosaic spread and a way to interpret these in terms of an orientational error bar.
Collapse
Affiliation(s)
- J R Quine
- Department of Mathematics, Florida State University, Tallahassee, FL 32306-4510, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Rainey JK, Sykes BD. Optimizing oriented planar-supported lipid samples for solid-state protein NMR. Biophys J 2005; 89:2792-805. [PMID: 16085766 PMCID: PMC1366779 DOI: 10.1529/biophysj.105.063800] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sample orientation relative to the static magnetic field of an NMR spectrometer allows study of membrane proteins in the lipid bilayer setting. The straightforward preparation and handling of extremely thin mica substrates with consistent surface properties has prompted us to examine oriented phospholipid bilayer and hexagonal phases on mica. The spectral characteristics of oriented lipid samples formed on mica are as good as or better than those on glass. Nine solvents with varying dielectric constants were used to cast lipid films or for vesicle spreading; film characteristics were then compared, and static solid-state 31P-NMR was used to characterize the degree of orientation of the hydrated lipid species. Lipids with four headgroup chemistries were tested: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG), 1,2-dioleoyl-sn-glycero-3-phosphate (DOPA), and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE). Solvent affected orientation of POPG, DOPA, and DOPE, but not POPC. Film characteristics varied with solvent, with ramifications for producing homogeneous oriented lipid samples. POPC was used to optimize the amount of lipid per substrate and compare hydration methods. POPG did not orient reproducibly, whereas POPG-POPC mixtures did. DOPA showed 1-2 oriented states depending upon hydration level and deposition method. DOPE formed an oriented hexagonal phase that underwent a reversible temperature-induced phase transition to the oriented bilayer phase.
Collapse
Affiliation(s)
- Jan K Rainey
- Protein Engineering Network of Centres of Excellence, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
33
|
Chekmenev EY, Hu J, Gor'kov PL, Brey WW, Cross TA, Ruuge A, Smirnov AI. 15N and 31P solid-state NMR study of transmembrane domain alignment of M2 protein of influenza A virus in hydrated cylindrical lipid bilayers confined to anodic aluminum oxide nanopores. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2005; 173:322-327. [PMID: 15780925 DOI: 10.1016/j.jmr.2004.12.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Revised: 12/18/2004] [Indexed: 05/24/2023]
Abstract
This communication reports the first example of a high resolution solid-state 15N 2D PISEMA NMR spectrum of a transmembrane peptide aligned using hydrated cylindrical lipid bilayers formed inside nanoporous anodic aluminum oxide (AAO) substrates. The transmembrane domain SSDPLVVA(A-15N)SIIGILHLILWILDRL of M2 protein from influenza A virus was reconstituted in hydrated 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine bilayers that were macroscopically aligned by a conventional micro slide glass support or by the AAO nanoporous substrate. 15N and 31P NMR spectra demonstrate that both the phospholipids and the protein transmembrane domain are uniformly aligned in the nanopores. Importantly, nanoporous AAO substrates may offer several advantages for membrane protein alignment in solid-state NMR studies compared to conventional methods. Specifically, higher thermal conductivity of aluminum oxide is expected to suppress thermal gradients associated with inhomogeneous radio frequency heating. Another important advantage of the nanoporous AAO substrate is its excellent accessibility to the bilayer surface for exposure to solute molecules. Such high accessibility achieved through the substrate nanochannel network could facilitate a wide range of structure-function studies of membrane proteins by solid-state NMR.
Collapse
Affiliation(s)
- Eduard Y Chekmenev
- The Center for Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory (NHMFL), Tallahassee, FL 32310, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Stringer JA, Bronnimann CE, Mullen CG, Zhou DH, Stellfox SA, Li Y, Williams EH, Rienstra CM. Reduction of RF-induced sample heating with a scroll coil resonator structure for solid-state NMR probes. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2005; 173:40-8. [PMID: 15705511 DOI: 10.1016/j.jmr.2004.11.015] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2004] [Revised: 11/04/2004] [Indexed: 05/15/2023]
Abstract
Heating due to high power 1H decoupling limits the experimental lifetime of protein samples for solid-state NMR (SSNMR). Sample deterioration can be minimized by lowering the experimental salt concentration, temperature or decoupling fields; however, these approaches may compromise biological relevance and/or spectroscopic resolution and sensitivity. The desire to apply sophisticated multiple pulse experiments to proteins therefore motivates the development of probes that utilize the RF power more efficiently to generate a high ratio of magnetic to electric field in the sample. Here a novel scroll coil resonator structure is presented and compared to a traditional solenoid. The scroll coil is demonstrated to be more tolerant of high sample salt concentrations and cause less RF-induced sample heating. With it, the viable experimental lifetime of a microcrystalline ubiquitin sample has been extended by more than an order of magnitude. The higher B1 homogeneity and permissible decoupling fields enhance polarization transfer efficiency in 15N-13C correlation experiments employed for protein chemical shift assignments and structure determination.
Collapse
Affiliation(s)
- John A Stringer
- Varian, Inc., 2607 Midpoint Drive, Fort Collins, CO 80525, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Orädd G, Lindblom G. Lateral diffusion studied by pulsed field gradient NMR on oriented lipid membranes. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2004; 42:123-131. [PMID: 14745791 DOI: 10.1002/mrc.1338] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This mini-review focuses on the utilization of pulsed magnetic field gradients to measure diffusional motion in systems of macroscopically oriented lipid bilayers. The NMR diffusion technique is proposed to have appreciable potential for future biophysical investigations in the field of membrane biology. Topics such as transport of molecules both across and in the plane of the membrane can be successfully studied, and the formation of lipid domains and their intrinsic dynamics can also be scrutinized. First, a short introduction to the NMR technique is given together with a brief discussion on methods of obtaining a good bilayer orientation. Then, a number of recent results on biophysical/biological membrane systems of great interest is presented, in which some unique conclusions on so-called 'raft membranes' are reached. It is shown for systems with large two-phase areas of liquid disordered and liquid ordered phases that lipid lateral diffusion is faster in the former phase and has a smaller apparent activation energy. Further, on the time-scale of the experiments (50-250 ms), exchange between the two phases is fast in the phospholipid-cholesterol-water ternary system, whereas it is slow in the sphingomyelin-dioleoylphosphatidylcholine-cholesterol-water quaternary system.
Collapse
Affiliation(s)
- Greger Orädd
- Department of Biophysical Chemistry, Umeå University, Umeå, Sweden
| | | |
Collapse
|
36
|
Hallock KJ, Lee DK, Ramamoorthy A. MSI-78, an analogue of the magainin antimicrobial peptides, disrupts lipid bilayer structure via positive curvature strain. Biophys J 2003; 84:3052-60. [PMID: 12719236 PMCID: PMC1302867 DOI: 10.1016/s0006-3495(03)70031-9] [Citation(s) in RCA: 302] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In this work, we present the first characterization of the cell lysing mechanism of MSI-78, an antimicrobial peptide. MSI-78 is an amphipathic alpha-helical peptide designed by Genaera Corporation as a synthetic analog to peptides from the magainin family. (31)P-NMR of mechanically aligned samples and differential scanning calorimetry (DSC) were used to study peptide-containing lipid bilayers. DSC showed that MSI-78 increased the fluid lamellar to inverted hexagonal phase transition temperature of 1,2-dipalmitoleoyl-phosphatidylethanolamine indicating the peptide induces positive curvature strain in lipid bilayers. (31)P-NMR of lipid bilayers composed of MSI-78 and 1-palmitoyl-2-oleoyl-phosphatidylethanolamine demonstrated that the peptide inhibited the fluid lamellar to inverted hexagonal phase transition of 1-palmitoyl-2-oleoyl-phosphatidylethanolamine, supporting the DSC results, and the peptide did not induce the formation of nonlamellar phases, even at very high peptide concentrations (15 mol %). (31)P-NMR of samples containing 1-palmitoyl-2-oleoyl-phosphatidylcholine and MSI-78 revealed that MSI-78 induces significant changes in the bilayer structure, particularly at high peptide concentrations. At lower concentrations (1-5%), the peptide altered the morphology of the bilayer in a way consistent with the formation of a toroidal pore. Higher concentrations of peptide (10-15%) led to the formation of a mixture of normal hexagonal phase and lamellar phase lipids. This work shows that MSI-78 induces significant changes in lipid bilayers via positive curvature strain and presents a model consistent with both the observed spectral changes and previously published work.
Collapse
Affiliation(s)
- Kevin J Hallock
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | | | | |
Collapse
|
37
|
Zandomeneghi G, Tomaselli M, Williamson PTF, Meier BH. NMR of bicelles: orientation and mosaic spread of the liquid-crystal director under sample rotation. JOURNAL OF BIOMOLECULAR NMR 2003; 25:113-123. [PMID: 12652120 DOI: 10.1023/a:1022236217018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Model-membrane systems composed of liquid-crystalline bicellar phases can be uniaxially oriented with respect to a magnetic field, thereby facilitating structural and dynamics studies of membrane-associated proteins. Here we quantitatively characterize a method that allows the manipulation of the direction of this uniaxial orientation. Bicelles formed from DMPC/DHPC are examined by (31)P NMR under variable-angle sample-spinning (VAS) conditions, confirming that the orientation of the liquid-crystalline director can be influenced by sample spinning. The director is perpendicular to the rotation axis when Theta (the angle between the sample-spinning axis and the magnetic field direction) is smaller than the magic angle, and is parallel to the rotation axis when Theta is larger than the magic angle. The new (31)P NMR VAS data presented are considerably more sensitive to the orientation of the bicelle than earlier (2)H studies and the analysis of the sideband pattern allows the determination of the orientation of the liquid-crystal director and its variation over the sample, i.e., the mosaic spread. Under VAS, the mosaic spread is small if Theta deviates significantly from the magic angle but becomes very large at the magic angle.
Collapse
|
38
|
Tian C, Tobler K, Lamb RA, Pinto LH, Cross TA. Expression and initial structural insights from solid-state NMR of the M2 proton channel from influenza A virus. Biochemistry 2002; 41:11294-300. [PMID: 12220196 DOI: 10.1021/bi025695q] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The M2 protein from influenza A virus has been expressed, purified, and reconstituted into DMPC/DMPG liposomes. SDS-PAGE analysis of reconstituted M2 protein in DMPC/DMPG liposomes demonstrates a stable tetrameric preparation. Circular dichroism spectra of the intact M2 protein in detergent indicate 67% alpha-helix. The uniformly (15)N-labeled M2 protein and both (15)N-Val- and (15)N-Leu-labeled M2 protein have been expressed from defined M9 media. The (1)H-(15)N HSQC (heteronuclear single quantum correlation) solution NMR experiments have been performed on the amino acid specific labeled protein in 300 mM SDS-d(25) micelles, and the data indicate a homogeneous preparation. The reconstituted M2/DMPC/DMPG proteoliposomes were used for preparing uniformly aligned solid-state NMR samples for (15)N-(1)H dipolar/(15)N chemical shift correlation experiments. The spectra support a transmembrane helix in M2 protein having a tilt angle of approximate 25 degrees, quantitatively similar to results obtained on the isolated M2 transmembrane peptide reconstituted in DMPC bilayers (38 degrees ). In addition, the spectra suggest that the tetrameric protein forms a symmetric or at least pseudosymmetric bundle consistent with data obtained by other research groups based on electrophysiological measurements and substituted cysteine scanning mutagenesis experiments that characterize a tetrameric structure.
Collapse
Affiliation(s)
- Changlin Tian
- National High Magnetic Field Lab, Institute of Molecular Biophysics, and Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32310, USA
| | | | | | | | | |
Collapse
|
39
|
Hallock KJ, Henzler Wildman K, Lee DK, Ramamoorthy A. An innovative procedure using a sublimable solid to align lipid bilayers for solid-state NMR studies. Biophys J 2002; 82:2499-503. [PMID: 11964237 PMCID: PMC1302039 DOI: 10.1016/s0006-3495(02)75592-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Uniaxially aligned phospholipid bilayers are often used as model membranes to obtain structural details of membrane-associated molecules, such as peptides, proteins, drugs, and cholesterol. Well-aligned bilayer samples can be difficult to prepare and no universal procedure has been reported that orients all combinations of membrane-embedded components. In this study, a new method for producing mechanically aligned phospholipid bilayer samples using naphthalene, a sublimable solid, was developed. Using (31)P-NMR spectroscopy, comparison of a conventional method of preparing mechanically aligned samples with the new naphthalene procedure found that the use of naphthalene significantly enhanced the alignment of 3:1 1-palmitoyl-2-oleoyl-phosphatidylethanolamine to 1-palmitoyl-2-oleoyl-phosphatidylglycerol. The utility of the naphthalene procedure is also demonstrated on bilayers of many different compositions, including bilayers containing peptides such as pardaxin and gramicidin. These results show that the naphthalene procedure is a generally applicable method for producing mechanically aligned samples for use in NMR spectroscopy. The increase in bilayer alignment implies that this procedure will improve the sensitivity of solid-state NMR experiments, in particular those techniques that detect low-sensitivity nuclei, such as 15N and 13C.
Collapse
Affiliation(s)
- Kevin J Hallock
- Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | | | | | | |
Collapse
|
40
|
Yamaguchi S, Huster D, Waring A, Lehrer RI, Kearney W, Tack BF, Hong M. Orientation and dynamics of an antimicrobial peptide in the lipid bilayer by solid-state NMR spectroscopy. Biophys J 2001; 81:2203-14. [PMID: 11566791 PMCID: PMC1301692 DOI: 10.1016/s0006-3495(01)75868-7] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The orientation and dynamics of an 18-residue antimicrobial peptide, ovispirin, has been investigated using solid-state NMR spectroscopy. Ovispirin is a cathelicidin-like model peptide (NH(2)-KNLRRIIRKIIHIIKKYG-COOH) with potent, broad-spectrum bactericidal activity. (15)N NMR spectra of oriented ovispirin reconstituted into synthetic phospholipids show that the helical peptide is predominantly oriented in the plane of the lipid bilayer, except for a small portion of the helix, possibly at the C-terminus, which deviates from the surface orientation. This suggests differential insertion of the peptide backbone into the lipid bilayer. (15)N spectra of both oriented and unoriented peptides show a reduced (15)N chemical shift anisotropy at room temperature compared with that of rigid proteins, indicating that the peptide undergoes uniaxial rotational diffusion around the bilayer normal with correlation times shorter than 10(-4) s. This motion is frozen below the gel-to-liquid crystalline transition temperature of the lipids. Ovispirin interacts strongly with the lipid bilayer, as manifested by the significantly reduced (2)H quadrupolar splittings of perdeuterated palmitoyloleoylphosphatidylcholine acyl chains upon peptide binding. Therefore, ovispirin is a curved helix residing in the membrane-water interface that executes rapid uniaxial rotation. These structural and dynamic features are important for understanding the antimicrobial function of this peptide.
Collapse
Affiliation(s)
- S Yamaguchi
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Greathouse DV, Koeppe RE, Providence LL, Shobana S, Andersen OS. Design and characterization of gramicidin channels. Methods Enzymol 2001; 294:525-50. [PMID: 9916247 DOI: 10.1016/s0076-6879(99)94031-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
This article summarizes methods for the chemical synthesis and biophysical characterization of gramicidins with varying sequences and labels. The family of gramicidin channels has developed into a powerful model system for understanding fundamental properties, interactions, and dynamics of proteins and lipids generally, and ion channels specifically, in biological membranes.
Collapse
Affiliation(s)
- D V Greathouse
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville 72701, USA
| | | | | | | | | |
Collapse
|
42
|
Zandomeneghi G, Tomaselli M, van Beek JD, Meier BH. Manipulation of the director in bicellar mesophases by sample spinning: a new tool for NMR spectroscopy. J Am Chem Soc 2001; 123:910-3. [PMID: 11456624 DOI: 10.1021/ja0019326] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It is shown that bicellar nematic liquid-crystalline phases can be oriented with the director (the normal to the bicellar plane) at an arbitrary angle to the applied magnetic field by sample rotation around one axis (variable-angle sample spinning) or around two axes successively (switched-angle spinning). This promises to open novel possibilities for NMR studies of bicelles and proteins incorporated into bicelles or dissolved in a solution containing bicelles, including the correlation of several orientations in a two-dimensional NMR experiment.
Collapse
Affiliation(s)
- G Zandomeneghi
- Contribution from the Laboratory of Physical Chemistry, ETH-Zentrum, CH-8092 Zurich, Switzerland
| | | | | | | |
Collapse
|
43
|
Hori Y, Demura M, Iwadate M, Ulrich AS, Niidome T, Aoyagi H, Asakura T. Interaction of mastoparan with membranes studied by 1H-NMR spectroscopy in detergent micelles and by solid-state 2H-NMR and 15N-NMR spectroscopy in oriented lipid bilayers. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:302-9. [PMID: 11168364 DOI: 10.1046/j.1432-1033.2001.01880.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Several complementary NMR approaches were used to study the interaction of mastoparan, a 14-residue peptide toxin from wasp venom, with lipid membranes. First, the 3D structure of mastoparan was determined using 1H-NMR spectroscopy in perdeuterated (SDS-d25) micelles. NOESY experiments and distance geometry calculations yielded a straight amphiphilic alpha-helix with high-order parameters, and the chemical shifts of the amide protons showed a characteristic periodicity of 3-4 residues. Secondly, solid-state 2H-NMR spectoscopy was used to describe the binding of mastoparan to lipid bilayers, composed of headgroup-deuterated dimyristoylglycerophosphocholine (DMPC-d4) and dimyristoylphosphatidylglycerol (DMPG). By correlating the deuterium quadrupole splittings of the alpha-segments and beta-segments, it was possible to differentiate the electrostatically induced structural response of the choline headgroup from dynamic effects induced by the peptide. A partial phase separation was observed, leading to a DMPG-rich phase and a DMPG-depleted phase, each containing some mastoparan. Finally, the insertion and orientation of a specifically 15N-labeled mastoparan (at position Ala10) in the bilayer environment was investigated by solid-state 15N-NMR spectroscopy, using macroscopically oriented samples. Two distinct orientational states were observed for the mastoparan helix, namely an in-plane and a trans-membrane alignment. The two populations of 90% in-plane and 10% trans-membrane helices are characterized by a mosaic spread of +/- 30 degrees and +/- 10 degrees, respectively. The biological activity of mastoparan is discussed in terms of a pore-forming model, as the peptide is known to be able to induce nonlamellar phases and facilitate a flip-flop between the monolayers.
Collapse
Affiliation(s)
- Y Hori
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Japan
| | | | | | | | | | | | | |
Collapse
|
44
|
Byström T, Strandberg E, Kovacs FA, Cross TA, Lindblom G. Influence of transmembrane peptides on bilayers of phosphatidylcholines with different acyl chain lengths studied by solid-state NMR. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1509:335-45. [PMID: 11118544 DOI: 10.1016/s0005-2736(00)00316-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The molecular orientation in a lipid membrane of the peptide fragment VEYAGIALFFVAAVLTLWSMLQYLSAAR (phosphatidylglycerophosphate synthase (Pgs) peptide E) of an integral membrane protein, Pgs, in Escherichia coli has been investigated by solid-state 15N nuclear magnetic resonance (NMR) on macroscopically aligned lipid bilayers. The secondary structure of the peptide in lipid vesicles was determined by circular dichroism spectroscopy. Furthermore, the phase behaviour of the Pgs peptide E/dierucoylphosphatidylcholine (DEruPC)/water system was determined by (2)H, (31)P and 15N solid-state NMR spectroscopy. The phase behaviour obtained was then compared to that of the Pgs peptide E solubilised in dioleoylphosphatidylcholine and water that was previously studied by Morein et al. [Biophys. J. 73 (1997) 3078-3088]. This was aimed to answer the question whether a difference in the length of the hydrophobic part of this peptide and the hydrophobic thickness of the lipid bilayer (hydrophobic mismatch) will affect the phase behaviour. The peptide mostly has a transmembrane orientation and is in an alpha-helical conformation. An isotropic phase is formed in DEruPC with high peptide content (peptide/lipid molar ratio (p/l) > or =1:15) and high water content (> or =50%, w/w) at 35 degrees C. At 55 and 65 degrees C an isotropic phase is induced at high water content (> or =50%, w/w) at all peptide contents studied (no isotropic phase forms in the lipid/water system under the conditions in this study). At high peptide contents (p/l> or =1:15) an isotropic phase forms at 20 and 40% (w/w) of water at 55 and 65 degrees C. A comparison of the phase behaviour of the two homologous lipid systems reveals striking similarities, although the thicknesses of the two lipid bilayers differ by 7 A. This suggests that the rationalisation of the phase behaviour in terms of the hydrophobic mismatch is not applicable to these systems. The C-terminus of Pgs peptide E is amphiphilic and a considerable part of the peptide is situated outside the hydrophobic part of the bilayer, a property of the peptide that to a large extent will affect the lipid/peptide phase behaviour.
Collapse
Affiliation(s)
- T Byström
- Department of Chemistry, Biophysical Chemistry, Umeå University, Sweden.
| | | | | | | | | |
Collapse
|
45
|
Sanders CR, Oxenoid K. Customizing model membranes and samples for NMR spectroscopic studies of complex membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1508:129-45. [PMID: 11090822 DOI: 10.1016/s0005-2736(00)00308-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Both solution and solid state nuclear magnetic resonance (NMR) techniques for structural determination are advancing rapidly such that it is possible to contemplate bringing these techniques to bear upon integral membrane proteins having multiple transmembrane segments. This review outlines existing and emerging options for model membrane media for use in such studies and surveys the special considerations which must be taken into account when preparing larger membrane proteins for NMR spectroscopic studies.
Collapse
Affiliation(s)
- C R Sanders
- Department of Physiology and Biophysics, Case Western Reserve University, 44106-4970, Cleveland, OH, USA.
| | | |
Collapse
|
46
|
Abstract
Solid-state nmr spectroscopy provides a robust method for investigating polypeptides that have been prepared by chemical synthesis and that are immobilized by strong interactions with solid surfaces or large macroscopic complexes. Solid-state nmr spectroscopy has been widely used to investigate membrane polypeptides or peptide aggregates such as amyloid fibrils. Whereas magic angle spinning solid-state nmr spectroscopy allows one to measure distances and dihedral angles with high accuracy, static membrane samples that are aligned with respect to the magnetic field direction allow one to determine the secondary structure of bound polypeptides and their orientation with respect to the bilayer normal. Peptide dynamics and the effect of polypeptides on the macroscopic phase preference of phospholipid membranes have been investigated in nonoriented samples. Investigations of the structure and topology of membrane channels, peptide antibiotics, signal sequences as well as model systems that allow one to dissect the interaction contributions in phospholipid membranes will be presented in greater detail.
Collapse
Affiliation(s)
- B Bechinger
- Max-Planck-Institute for Biochemistry, Am Klopferspitz 18A, 82152 Marinsried, Germany.
| | | | | | | | | | | |
Collapse
|
47
|
Prosser RS, Shiyanovskaya IV. Lanthanide ion assisted magnetic alignment of model membranes and macromolecules. ACTA ACUST UNITED AC 2000. [DOI: 10.1002/1099-0534(2001)13:1<19::aid-cmr3>3.0.co;2-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
48
|
|
49
|
Hori Y, Demura M, Niidome T, Aoyagi H, Asakura T. Orientational behavior of phospholipid membranes with mastoparan studied by 31P solid state NMR. FEBS Lett 1999; 455:228-32. [PMID: 10437778 DOI: 10.1016/s0014-5793(99)00881-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Solid state 31P NMR spectroscopy was used to study the perturbing effect of the wasp venom peptide mastoparan (MP) on lipid bilayers composed of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylglycerol (DMPG). The 31P chemical shift anisotropy of multilamellar vesicles decreased with increasing peptide concentration, indicating that MP interacts strongly and selectively with the charged DMPG head group. Macroscopically oriented MP-lipid samples between glass plates were studied by 31P NMR as a function of tilt angle. These spectra showed the coexistence of orientation-dependent lamellar signals as well as an isotropic peak, suggesting that MP can induce non-lamellar phases in DMPC/DMPG membranes.
Collapse
Affiliation(s)
- Y Hori
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Japan
| | | | | | | | | |
Collapse
|
50
|
Tian F, Song Z, Cross TA. Orientational constraints derived from hydrated powder samples by two-dimensional PISEMA. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 1998; 135:227-231. [PMID: 9799698 DOI: 10.1006/jmre.1998.1544] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Affiliation(s)
- F Tian
- Center for Interdisciplinary Magnetic Resonance, Florida State University, Tallahassee, Florida, 32310, USA
| | | | | |
Collapse
|