1
|
Bryant SJ, Garvey CJ, Darwish TA, Georgii R, Bryant G. Molecular interactions with bilayer membrane stacks using neutron and X-ray diffraction. Adv Colloid Interface Sci 2024; 326:103134. [PMID: 38518550 DOI: 10.1016/j.cis.2024.103134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 03/24/2024]
Abstract
Lamellar unit cell reconstruction from neutron and X-ray diffraction data provides information about the disposition and position of molecules and molecular segments with respect to the bilayer. When supplemented with the judicious use of molecular deuteration, the technique probes the molecular interactions and conformations within the bilayer membrane and the water layer which constitute the crystallographic unit cell. The perspective is model independent, and potentially, with a higher degree of resolution than is available with other techniques. In the case of neutron diffraction the measurement consists of carefully normalised diffracted intensity under conditions of contrast variation of the water layer. The subsequent Fourier reconstruction of the unit cell is made using the phase information from variation of peak intensities with contrast. Although the phase problem is not as easily solved for the corresponding X-ray measurements, an intuitive approach can often suffice. Here we discuss the two complimentary techniques as probes of scattering length density profiles of a bilayer, and how such a perspective provides information about the location and orientation of molecules within or between lipid bilayers. Within the basic paradigm of lamellar phases this method has provided, for example, detailed insights into the location and interaction of cryoprotectants and stress proteins, of the mechanisms of actions of viral proteins, antimicrobial compounds and drugs, and the underlying structure of the stratum corneum. In this paper we review these techniques and provide examples of the systems that have been examined. We finish with a future outlook on the use of these techniques to improve our understanding of the interactions of membranes with biomolecules.
Collapse
Affiliation(s)
- Saffron J Bryant
- School of Science, College of STEM, RMIT University, Melbourne, Australia
| | - Christopher J Garvey
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstraße 1, 85748 Garching, Germany
| | - Tamim A Darwish
- National Deuteration Facility, Australian Nuclear Science and Technology Organization, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia; Faculty of Science and Technology, University of Canberra, ACT 2617, Australia
| | - Robert Georgii
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstraße 1, 85748 Garching, Germany
| | - Gary Bryant
- School of Science, College of STEM, RMIT University, Melbourne, Australia.
| |
Collapse
|
2
|
Bolik S, Schlaich A, Mukhina T, Amato A, Bastien O, Schneck E, Demé B, Jouhet J. Lipid bilayer properties potentially contributed to the evolutionary disappearance of betaine lipids in seed plants. BMC Biol 2023; 21:275. [PMID: 38017456 PMCID: PMC10685587 DOI: 10.1186/s12915-023-01775-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Many organisms rely on mineral nutrients taken directly from the soil or aquatic environment, and therefore, developed mechanisms to cope with the limitation of a given essential nutrient. For example, photosynthetic cells have well-defined responses to phosphate limitation, including the replacement of cellular membrane phospholipids with non-phosphorous lipids. Under phosphate starvation, phospholipids in extraplastidial membranes are replaced by betaine lipids in microalgae. In higher plants, the synthesis of betaine lipid is lost, driving plants to other strategies to cope with phosphate starvation where they replace their phospholipids by glycolipids. RESULTS The aim of this work was to evaluate to what extent betaine lipids and PC lipids share physicochemical properties and could substitute for each other. By neutron diffraction experiments and dynamic molecular simulation of two synthetic lipids, the dipalmitoylphosphatidylcholine (DPPC) and the dipalmitoyl-diacylglyceryl-N,N,N-trimethylhomoserine (DP-DGTS), we found that DP-DGTS bilayers are thicker than DPPC bilayers and therefore are more rigid. Furthermore, DP-DGTS bilayers are more repulsive, especially at long range, maybe due to unexpected unscreened electrostatic contribution. Finally, DP-DGTS bilayers could coexist in the gel and fluid phases. CONCLUSION The different properties and hydration responses of PC and DGTS provide an explanation for the diversity of betaine lipids observed in marine organisms and for their disappearance in seed plants.
Collapse
Affiliation(s)
- Stéphanie Bolik
- Laboratoire Physiologie Cellulaire Et Végétale, Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, Grenoble, France
- Large Scale Structures Group, Institut Laue-Langevin, 38000, Grenoble, France
| | - Alexander Schlaich
- Institute for Computational Physics, Universität Stuttgart, Stuttgart, Germany
- Stuttgart Center for Simulation Science (SimTech), Universität Stuttgart, Stuttgart, Germany
| | - Tetiana Mukhina
- Institute for Condensed Matter Physics, Darmstadt, Darmstadt, TU, Germany
| | - Alberto Amato
- Laboratoire Physiologie Cellulaire Et Végétale, Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, Grenoble, France
| | - Olivier Bastien
- Laboratoire Physiologie Cellulaire Et Végétale, Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, Grenoble, France
| | - Emanuel Schneck
- Institute for Condensed Matter Physics, Darmstadt, Darmstadt, TU, Germany
| | - Bruno Demé
- Large Scale Structures Group, Institut Laue-Langevin, 38000, Grenoble, France.
| | - Juliette Jouhet
- Laboratoire Physiologie Cellulaire Et Végétale, Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, Grenoble, France.
| |
Collapse
|
3
|
Spinozzi F, Barbosa LRS, Corucci G, Mariani P, Itri R. Small-angle scattering from flat bilayers containing correlated scattering length density inhomogeneities. J Appl Crystallogr 2023; 56:1348-1360. [PMID: 37791360 PMCID: PMC10543680 DOI: 10.1107/s1600576723006143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/12/2023] [Indexed: 10/05/2023] Open
Abstract
Model lipid bilayers have been widely employed as a minimal system to investigate the structural properties of biological membranes by small-angle X-ray (SAXS) and neutron scattering (SANS) techniques. These have nanometre resolution and can give information regarding membrane thickness and scattering length densities (SLDs) of polar and apolar regions. However, biological membranes are complex systems containing different lipids and protein species, in which lipid domains can be dynamically assembled and disassembled. Therefore, SLD variations can occur within the biomembrane. In this work, a novel method has been developed to simulate SAXS and SANS profiles obtained from large unilamellar vesicles containing SLD inhomogeneities that are spatially correlated over the membrane surface. Such inhomogeneities are represented by cylindrical entities with equivalent SLDs. Stacking of bilayers is also included in the model, with no correlation between horizontal and vertical order. The model is applied to a lipid bilayer containing SLD inhomogeneities representing pores, lipid domains, and transmembrane, partially immersed and anchored proteins. It is demonstrated that all the structural information from the host lipid bilayer and from the SLD inhomogeneity can be consistently retrieved by a combined analysis of experimental SAXS and SANS data through the methodology proposed here.
Collapse
Affiliation(s)
- Francesco Spinozzi
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Leandro R. S. Barbosa
- Institute of Physics, University of São Paulo, São Paulo, Brazil
- Brazilian Synchrotron Light Laboratory (LNLS), Campinas, São Paulo, Brazil
| | - Giacomo Corucci
- Institut Laue–Langevin, Grenoble, France
- École Doctorale de Physique, Université Grenoble Alpes, Saint-Martin-d’Héres, France
| | - Paolo Mariani
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Rosangela Itri
- Institute of Physics, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
White SH. Fifty Years of Biophysics at the Membrane Frontier. Annu Rev Biophys 2023; 52:21-67. [PMID: 36791747 DOI: 10.1146/annurev-biophys-051622-112341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
The author first describes his childhood in the South and the ways in which it fostered the values he has espoused throughout his life, his development of a keen fascination with science, and the influences that supported his progress toward higher education. His experiences in ROTC as a student, followed by two years in the US Army during the Vietnam War, honed his leadership skills. The bulk of the autobiography is a chronological journey through his scientific career, beginning with arrival at the University of California, Irvine in 1972, with an emphasis on the postdoctoral students and colleagues who have contributed substantially to each phase of his lab's progress. White's fundamental findings played a key role in the development of membrane biophysics, helping establish it as fertile ground for research. A story gradually unfolds that reveals the deeply collaborative and painstakingly executed work necessary for a successful career in science.
Collapse
Affiliation(s)
- Stephen H White
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California, USA;
| |
Collapse
|
5
|
Nagle JF, Jennings N, Qin W, Yan D, Tristram-Nagle S, Heinrich F. Structure of the gel phase of diC22:1PC lipid bilayers determined by x-ray diffraction. Biophys J 2023; 122:1033-1042. [PMID: 36566351 PMCID: PMC10111270 DOI: 10.1016/j.bpj.2022.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/21/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
High-resolution x-ray data are reported for the ordered phases of long-chain di-monounsaturated C22:1 phosphocholine lipid bilayers. Similar to PC lipids that have saturated chains, diC22:1PC has a subgel phase and a gel phase, but dissimilarly, we find no ripple phase. Our quantitative focus is on the structure of the gel phase. We have recorded 17 lamellar orders, indicating a very well-ordered structure. Fitting to a model provides the phases of the orders. The Fourier construction of the electron density profile has two well-defined headgroup peaks and a very sharp and deep methyl trough. The wide-angle scattering exhibits two Bragg rods that provide the area per molecule. They have an intensity pattern quite different than that of lipids with saturated chains. Models of chain packing indicate that ground state chain configurations are tilted primarily toward next nearest neighbors with an angle that is also consistent with the modeling of the electron density profile. Wide-angle modeling also indicates broken mirror symmetry between the monolayers. Our wide-angle results and our electron density profile together leads to the hypothesis that the sn-1 and sn-2 chains have equivalent penetration depths in contrast to the gel phase structure of lipids with saturated hydrocarbon chains.
Collapse
Affiliation(s)
- John F Nagle
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania.
| | - Nathaniel Jennings
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Weiheng Qin
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Daniel Yan
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | | | - Frank Heinrich
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania; Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland
| |
Collapse
|
6
|
Heller WT. Small-Angle Neutron Scattering for Studying Lipid Bilayer Membranes. Biomolecules 2022; 12:1591. [PMID: 36358941 PMCID: PMC9687511 DOI: 10.3390/biom12111591] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 09/23/2023] Open
Abstract
Small-angle neutron scattering (SANS) is a powerful tool for studying biological membranes and model lipid bilayer membranes. The length scales probed by SANS, being from 1 nm to over 100 nm, are well-matched to the relevant length scales of the bilayer, particularly when it is in the form of a vesicle. However, it is the ability of SANS to differentiate between isotopes of hydrogen as well as the availability of deuterium labeled lipids that truly enable SANS to reveal details of membranes that are not accessible with the use of other techniques, such as small-angle X-ray scattering. In this work, an overview of the use of SANS for studying unilamellar lipid bilayer vesicles is presented. The technique is briefly presented, and the power of selective deuteration and contrast variation methods is discussed. Approaches to modeling SANS data from unilamellar lipid bilayer vesicles are presented. Finally, recent examples are discussed. While the emphasis is on studies of unilamellar vesicles, examples of the use of SANS to study intact cells are also presented.
Collapse
Affiliation(s)
- William T Heller
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
7
|
Lewis-Laurent A, Doktorova M, Heberle FA, Marquardt D. Vesicle Viewer: Online visualization and analysis of small-angle scattering from lipid vesicles. Biophys J 2021; 120:4639-4648. [PMID: 34571013 DOI: 10.1016/j.bpj.2021.09.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/26/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022] Open
Abstract
Small-angle X-ray and neutron scattering are among the most powerful experimental techniques for investigating the structure of biological membranes. Much of the critical information contained in small-angle scattering (SAS) data is not easily accessible to researchers who have limited time to analyze results by hand or to nonexperts who may lack the necessary scientific background to process such data. Easy-to-use data visualization software can allow them to take full advantage of their SAS data and maximize the use of limited resources. To this end, we developed an internet-based application called Vesicle Viewer to visualize and analyze SAS data from unilamellar lipid bilayer vesicles. Vesicle Viewer utilizes a modified scattering density profile (SDP) analysis called EZ-SDP in which key bilayer structural parameters, such as area per lipid and bilayer thickness, are easily and robustly determined. Notably, we introduce a bilayer model that is able to describe an asymmetric bilayer, whether it be chemically or isotopically asymmetric. The application primarily uses Django, a Python package specialized for the development of robust web applications. In addition, several other libraries are used to support the more technical aspects of the project; notable examples are Matplotlib (for graphs) and NumPy (for calculations). By eliminating the barrier of downloading and installing software, this web-based application will allow scientists to analyze their own vesicle scattering data using their preferred operating system. The web-based application can be found at https://vesicleviewer.dmarquardt.ca/.
Collapse
Affiliation(s)
- Aislyn Lewis-Laurent
- Department of Chemistry & Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | - Milka Doktorova
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia
| | | | - Drew Marquardt
- Department of Chemistry & Biochemistry, University of Windsor, Windsor, Ontario, Canada; Department of Physics, University of Windsor, Windsor, Ontario, Canada.
| |
Collapse
|
8
|
Kinnun JJ, Scott HL, Ashkar R, Katsaras J. Biomembrane Structure and Material Properties Studied With Neutron Scattering. Front Chem 2021; 9:642851. [PMID: 33987167 PMCID: PMC8110834 DOI: 10.3389/fchem.2021.642851] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
Cell membranes and their associated structures are dynamical supramolecular structures where different physiological processes take place. Detailed knowledge of their static and dynamic structures is therefore needed, to better understand membrane biology. The structure–function relationship is a basic tenet in biology and has been pursued using a range of different experimental approaches. In this review, we will discuss one approach, namely the use of neutron scattering techniques as applied, primarily, to model membrane systems composed of lipid bilayers. An advantage of neutron scattering, compared to other scattering techniques, is the differential sensitivity of neutrons to isotopes of hydrogen and, as a result, the relative ease of altering sample contrast by substituting protium for deuterium. This property makes neutrons an ideal probe for the study of hydrogen-rich materials, such as biomembranes. In this review article, we describe isotopic labeling studies of model and viable membranes, and discuss novel applications of neutron contrast variation in order to gain unique insights into the structure, dynamics, and molecular interactions of biological membranes. We specifically focus on how small-angle neutron scattering data is modeled using different contrast data and molecular dynamics simulations. We also briefly discuss neutron reflectometry and present a few recent advances that have taken place in neutron spin echo spectroscopy studies and the unique membrane mechanical data that can be derived from them, primarily due to new models used to fit the data.
Collapse
Affiliation(s)
- Jacob J Kinnun
- Large Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,Oak Ridge National Laboratory, Shull-Wollan Center, Oak Ridge, TN, United States
| | - Haden L Scott
- Large Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,Oak Ridge National Laboratory, Shull-Wollan Center, Oak Ridge, TN, United States
| | - Rana Ashkar
- Department of Physics, Virginia Tech, Blacksburg, VA, United States.,Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, United States
| | - John Katsaras
- Oak Ridge National Laboratory, Shull-Wollan Center, Oak Ridge, TN, United States.,Sample Environment Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
9
|
Characterization of the Features of Water Inside the SecY Translocon. J Membr Biol 2021; 254:133-139. [PMID: 33811496 DOI: 10.1007/s00232-021-00178-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
Despite extended experimental and computational studies, the mechanism regulating membrane protein folding and stability in cell membranes is not fully understood. In this review, I will provide a personal and partial account of the scientific efforts undertaken by Dr. Stephen White to shed light on this topic. After briefly describing the role of water and the hydrophobic effect on cellular processes, I will discuss the physical chemistry of water confined inside the SecY translocon pore. I conclude with a review of recent literature that attempts to answer fundamental questions on the pathway and energetics of translocon-guided membrane protein insertion.
Collapse
|
10
|
Semeraro EF, Marx L, Frewein MPK, Pabst G. Increasing complexity in small-angle X-ray and neutron scattering experiments: from biological membrane mimics to live cells. SOFT MATTER 2021; 17:222-232. [PMID: 32104874 DOI: 10.1039/c9sm02352f] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Small-angle X-ray and neutron scattering are well-established, non-invasive experimental techniques to interrogate global structural properties of biological membrane mimicking systems under physiologically relevant conditions. Recent developments, both in bottom-up sample preparation techniques for increasingly complex model systems, and in data analysis techniques have opened the path toward addressing long standing issues of biological membrane remodelling processes. These efforts also include emerging quantitative scattering studies on live cells, thus enabling a bridging of molecular to cellular length scales. Here, we review recent progress in devising compositional models for joint small-angle X-ray and neutron scattering studies on diverse membrane mimics - with a specific focus on membrane structural coupling to amphiphatic peptides and integral proteins - and live Escherichia coli. In particular, we outline the present state-of-the-art in small-angle scattering methods applied to complex membrane systems, highlighting how increasing system complexity must be followed by an advance in compositional modelling and data-analysis tools.
Collapse
Affiliation(s)
- Enrico F Semeraro
- University of Graz, Institute of Molecular Biosciences, Biophysics Division, NAWI Graz, 8010 Graz, Austria. and BioTechMed Graz, 8010 Graz, Austria
| | - Lisa Marx
- University of Graz, Institute of Molecular Biosciences, Biophysics Division, NAWI Graz, 8010 Graz, Austria. and BioTechMed Graz, 8010 Graz, Austria
| | - Moritz P K Frewein
- University of Graz, Institute of Molecular Biosciences, Biophysics Division, NAWI Graz, 8010 Graz, Austria. and BioTechMed Graz, 8010 Graz, Austria and Institut Laue-Langevin, 38000 Grenoble, France
| | - Georg Pabst
- University of Graz, Institute of Molecular Biosciences, Biophysics Division, NAWI Graz, 8010 Graz, Austria. and BioTechMed Graz, 8010 Graz, Austria
| |
Collapse
|
11
|
Tan L, Elkins JG, Davison BH, Kelley EG, Nickels J. Implementation of a self-consistent slab model of bilayer structure in the SasView suite. J Appl Crystallogr 2021; 54:10.1107/s1600576720015526. [PMID: 37965294 PMCID: PMC10644672 DOI: 10.1107/s1600576720015526] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/23/2020] [Indexed: 11/10/2022] Open
Abstract
Slab models are simple and useful structural descriptions which have long been used to describe lyotropic lamellar phases, such as lipid bilayers. Typically, slab models assume a midline symmetry and break a bilayer structure into three pieces, a central solvent-free core and two symmetric outer layers composed of the soluble portion of the amphiphile and associated solvent. This breakdown matches reasonably well to the distribution of neutron scattering length density and therefore is a convenient and common approach for the treatment of small-angle scattering data. Here, an implementation of this model within the SasView software suite is reported. The implementation is intended to provide physical consistency through the area per amphiphile molecule and number of solvent molecules included within the solvent-exposed outer layer. The proper use of this model requires knowledge of (or good estimates for) the amphiphile and solvent molecule volume and atomic composition, ultimately providing a self-consistent data treatment with only two free parameters: the lateral area per amphiphile molecule and the number of solvent molecules included in the outer region per amphiphile molecule. The use of this code is demonstrated in the fitting of standard lipid bilayer data sets, obtaining structural parameters consistent with prior literature and illustrating the typical and ideal cases of fitting for neutron scattering data obtained using single or multiple contrast conditions. While demonstrated here for lipid bilayers, this model is intended for general application to block copolymers, surfactants, and other lyotropic lamellar phase structures for which a slab model is able to reasonably estimate the neutron scattering length density/electron-density profile of inner and outer layers of the lamellae.
Collapse
Affiliation(s)
- Luoxi Tan
- Department of Chemical and Environmental Engineering, University of Cincinnati, 2901 Woodside Drive, Cincinnati, OH 45221, USA
| | - James G. Elkins
- Biosciences Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831, USA
| | - Brian H. Davison
- Biosciences Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831, USA
| | - Elizabeth G. Kelley
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersberg, MD 20899, USA
| | - Jonathan Nickels
- Department of Chemical and Environmental Engineering, University of Cincinnati, 2901 Woodside Drive, Cincinnati, OH 45221, USA
| |
Collapse
|
12
|
DiPasquale M, Gbadamosi O, Nguyen MHL, Castillo SR, Rickeard BW, Kelley EG, Nagao M, Marquardt D. A Mechanical Mechanism for Vitamin E Acetate in E-cigarette/Vaping-Associated Lung Injury. Chem Res Toxicol 2020; 33:2432-2440. [PMID: 32842741 DOI: 10.1021/acs.chemrestox.0c00212] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The outbreak of electronic-cigarette/vaping-associated lung injury (EVALI) has made thousands ill. This lung injury has been attributed to a physical interaction between toxicants from the vaping solution and the pulmonary surfactant. In particular, studies have implicated vitamin E acetate as a potential instigator of EVALI. Pulmonary surfactant is vital to proper respiration through the mechanical processes of adsorption and interface stability to achieve and maintain low surface tension at the air-liquid interface. Using neutron spin echo spectroscopy, we investigate the impact of vitamin E acetate on the mechanical properties of two lipid-only pulmonary surfactant mimics: pure 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and a more comprehensive lipid mixture. It was found that increasing vitamin E acetate concentration nonlinearly increased membrane fluidity and area compressibility to a plateau. Softer membranes would promote adsorption to the air-liquid interface during inspiration as well as collapse from the interface during expiration. These findings indicate the potential for the failure of the pulmonary surfactant upon expiration, attributed to monolayer collapse. This collapse could contribute to the observed EVALI signs and symptoms, including shortness of breath and pneumonitis.
Collapse
Affiliation(s)
| | | | | | | | | | - Elizabeth G Kelley
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Michihiro Nagao
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States.,Center for Exploration of Energy and Matter, Department of Physics, Indiana University, Bloomington, Indiana 47408, United States.,Department of Physics and AstronomyUniversity of DelawareNewarkDelaware19716United States
| | | |
Collapse
|
13
|
Doktorova M, Kučerka N, Kinnun JJ, Pan J, Marquardt D, Scott HL, Venable RM, Pastor RW, Wassall SR, Katsaras J, Heberle FA. Molecular Structure of Sphingomyelin in Fluid Phase Bilayers Determined by the Joint Analysis of Small-Angle Neutron and X-ray Scattering Data. J Phys Chem B 2020; 124:5186-5200. [PMID: 32468822 DOI: 10.1021/acs.jpcb.0c03389] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We have determined the fluid bilayer structure of palmitoyl sphingomyelin (PSM) and stearoyl sphingomyelin (SSM) by simultaneously analyzing small-angle neutron and X-ray scattering data. Using a newly developed scattering density profile (SDP) model for sphingomyelin lipids, we report structural parameters including the area per lipid, total bilayer thickness, and hydrocarbon thickness, in addition to lipid volumes determined by densitometry. Unconstrained all-atom simulations of PSM bilayers at 55 °C using the C36 CHARMM force field produced a lipid area of 56 Å2, a value that is 10% lower than the one determined experimentally by SDP analysis (61.9 Å2). Furthermore, scattering form factors calculated from the unconstrained simulations were in poor agreement with experimental form factors, even though segmental order parameter (SCD) profiles calculated from the simulations were in relatively good agreement with SCD profiles obtained from NMR experiments. Conversely, constrained area simulations at 61.9 Å2 resulted in good agreement between the simulation and experimental scattering form factors, but not with SCD profiles from NMR. We discuss possible reasons for the discrepancies between these two types of data that are frequently used as validation metrics for molecular dynamics force fields.
Collapse
Affiliation(s)
- Milka Doktorova
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas 77030, United States
| | - Norbert Kučerka
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia.,Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University, 814 99 Bratislava, Slovakia
| | - Jacob J Kinnun
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Jianjun Pan
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States
| | - Drew Marquardt
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Haden L Scott
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Richard M Venable
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Richard W Pastor
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Stephen R Wassall
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - John Katsaras
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Frederick A Heberle
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
14
|
How We Came to Understand the "Tumultuous Chemical Heterogeneity" of the Lipid Bilayer Membrane. J Membr Biol 2020; 253:185-190. [PMID: 32488366 DOI: 10.1007/s00232-020-00126-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 05/29/2020] [Indexed: 10/24/2022]
Abstract
The path to our modern understanding of the structure of the lipid bilayer membrane is a long one that can be traced from today perhaps as far back as Benjamin Franklin in the eighteenth century. Here, I provide a personal account of one of the important steps in that path, the description of the "Complete Structure" of a hydrated, fluid phase dioleoyl phosphatidylcholine bilayer by the joint refinement of neutron and X-ray diffraction data by Stephen White and his colleagues.
Collapse
|
15
|
Treece BW, Heinrich F, Ramanathan A, Lösche M. Steering Molecular Dynamics Simulations of Membrane-Associated Proteins with Neutron Reflection Results. J Chem Theory Comput 2020; 16:3408-3419. [DOI: 10.1021/acs.jctc.0c00136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Bradley W. Treece
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Frank Heinrich
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- The NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Arvind Ramanathan
- Data Science and Learning, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Mathias Lösche
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- The NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
16
|
Abstract
Of all the macromolecular assemblies of life, the least understood is the biomembrane. This is especially true in regard to its atomic structure. Ideas on biomembranes, developed in the last 200 years, culminated in the fluid mosaic model of the membrane. In this essay, I provide a historical outline of how we arrived at our current understanding of biomembranes and the models we use to describe them. A selection of direct experimental findings on the nano-scale structure of biomembranes is taken up to discuss their physical nature, and special emphasis is put on the surprising insights that arise from atomic scale descriptions.
Collapse
|
17
|
Bryant G, Taylor MB, Darwish TA, Krause-Heuer AM, Kent B, Garvey CJ. Effect of deuteration on the phase behaviour and structure of lamellar phases of phosphatidylcholines - Deuterated lipids as proxies for the physical properties of native bilayers. Colloids Surf B Biointerfaces 2019; 177:196-203. [PMID: 30743066 DOI: 10.1016/j.colsurfb.2019.01.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/20/2018] [Accepted: 01/19/2019] [Indexed: 12/29/2022]
Abstract
Deuteration of phospholipids is a common practice to elucidate membrane structure, dynamics and function, by providing selective visualisation in neutron scattering, nuclear magnetic resonance and vibrational spectroscopy. It is generally assumed that the properties of the deuterated lipids are identical to those of the protiated lipids, and while a number of papers have compared the properties of different forms, to date this has been no systematic study of the effects over a range of conditions. Here we present a study of the effects of deuteration on the organisation and phase behaviour of four common phospholipids (DSPC, DPPC, DMPC, DOPC), observing the effect of chain deuteration and headgroup deuteration on lipid structure and phase behaviour. For saturated lipids in excess water the gel-fluid phase transition temperature is 4.3 ± 0.1 °C lower for lipids with deuterated chains compared to protiated chains, consistent with previous work. Despite this significant change, well away from the transition structural changes as measured by powder small angle X-ray scattering are small and within errors. To investigate this further, measurements were carried out on oriented multilamellar stacks of DOPC in the fluid phase at reduced hydration. Neutrons are used in conjunction with contrast variation to elucidate the role of the deuteration explicitly. It is found that deuterated chains cause a reduction in the lamellar repeat spacing and bilayer thickness, but deuterated headgroups cause an increase. Consequences for the interpretation of Neutron Scattering data with deuterated lipids are discussed.
Collapse
Affiliation(s)
- Gary Bryant
- Centre for Molecular and Nanoscale Physics, School of Science, RMIT University, Melbourne, Australia.
| | - Matthew B Taylor
- Centre for Molecular and Nanoscale Physics, School of Science, RMIT University, Melbourne, Australia
| | - Tamim A Darwish
- National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Lucas Heights, Australia.
| | - Anwen M Krause-Heuer
- National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Lucas Heights, Australia
| | - Ben Kent
- Institute for Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin, Berlin, Germany.
| | - Christopher J Garvey
- Neutron Scattering, Australian Nuclear Science and Technology Organisation, Lucas Heights, Australia.
| |
Collapse
|
18
|
Lee MT. Biophysical characterization of peptide–membrane interactions. ADVANCES IN PHYSICS: X 2018. [DOI: 10.1080/23746149.2017.1408428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Ming-Tao Lee
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan
- Department of Physics, National Central University, Jhongli, Taiwan
| |
Collapse
|
19
|
Schroeter A, Stahlberg S, Školová B, Sonnenberger S, Eichner A, Huster D, Vávrová K, Hauß T, Dobner B, Neubert RHH, Vogel A. Phase separation in ceramide[NP] containing lipid model membranes: neutron diffraction and solid-state NMR. SOFT MATTER 2017; 13:2107-2119. [PMID: 28225091 DOI: 10.1039/c6sm02356h] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The stratum corneum is the outermost layer of the skin and protects the organism against external influences as well as water loss. It consists of corneocytes embedded in a mixture of ceramides, fatty acids, and cholesterol in a molar ratio of roughly 1 : 1 : 1. The unique structural and compositional arrangement of these stratum corneum lipids is responsible for the skin barrier properties. Many studies investigated the organization of these barrier lipids and, in particular, the exact conformation of ceramides. However, so far no consensus has been reached. In this study, we investigate a model system comprised of N-(non-hydroxy-tetracosanoyl)-phytosphingosine/cholesterol/tetracosanoic acid (CER[NP]-C24/CHOL/TA) at a 1 : 1 : 1 molar ratio using neutron diffraction and 2H solid-state NMR spectroscopy at temperatures from 25 °C to 80 °C. Deuterated variants of all three lipid components of the model system were used to enable their separate investigation in the NMR spectra and quantification of the amount of molecules in each phase. Neutron scattering experiments show the coexistence of two lipid phases at low temperatures with repeat spacings of 54.2 Å and 43.0 Å at a physiological skin temperature of 32 °C. They appear to be indistinguishable in the 2H NMR spectra as both phases are crystalline and ceramide molecules do not rotate around their long axis on a microsecond timescale. The evolution of these phases upon heating is followed and with increasing temperature fluid and even isotropically mobile molecules are observed. A model of the organization of the lamellar phases is proposed in which the thicker phase consists of CER[NP]-C24 in a hairpin conformation mixed with CHOL and TA, while the phase with a repeat spacing of 43.0 Å contains CER[NP]-C24 in a V-shape conformation.
Collapse
Affiliation(s)
- Annett Schroeter
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Sören Stahlberg
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany.
| | - Barbora Školová
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany. and Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic
| | - Stefan Sonnenberger
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Adina Eichner
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany.
| | - Kateřina Vávrová
- Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic
| | - Thomas Hauß
- Institute of Soft Matter and Functional Materials, Helmholtz-Zentrum für Materialien und Energie, Berlin, Germany
| | - Bodo Dobner
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Reinhard H H Neubert
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany and Institute of Applied Dermatopharmacy at the Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Alexander Vogel
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany.
| |
Collapse
|
20
|
Marquardt D, Heberle FA, Nickels JD, Pabst G, Katsaras J. On scattered waves and lipid domains: detecting membrane rafts with X-rays and neutrons. SOFT MATTER 2015; 11:9055-72. [PMID: 26428538 PMCID: PMC4719199 DOI: 10.1039/c5sm01807b] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/21/2015] [Indexed: 05/28/2023]
Abstract
In order to understand the biological role of lipids in cell membranes, it is necessary to determine the mesoscopic structure of well-defined model membrane systems. Neutron and X-ray scattering are non-invasive, probe-free techniques that have been used extensively in such systems to probe length scales ranging from angstroms to microns, and dynamics occurring over picosecond to millisecond time scales. Recent developments in the area of phase separated lipid systems mimicking membrane rafts will be presented, and the underlying concepts of the different scattering techniques used to study them will be discussed in detail.
Collapse
Affiliation(s)
- Drew Marquardt
- University of Graz, Institute of Molecular Biosciences, Biophysics Division, NAWI Graz, Humboldtstr. 50/III, Graz, Austria. and BioTechMed-Graz, Graz, Austria
| | - Frederick A Heberle
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA. and Joint Institute for Neutron Sciences, Oak Ridge, Tennessee 37831, USA
| | - Jonathan D Nickels
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA. and Joint Institute for Neutron Sciences, Oak Ridge, Tennessee 37831, USA
| | - Georg Pabst
- University of Graz, Institute of Molecular Biosciences, Biophysics Division, NAWI Graz, Humboldtstr. 50/III, Graz, Austria. and BioTechMed-Graz, Graz, Austria
| | - John Katsaras
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA. and Joint Institute for Neutron Sciences, Oak Ridge, Tennessee 37831, USA
| |
Collapse
|
21
|
Qian S, Heller WT. Melittin-induced cholesterol reorganization in lipid bilayer membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2253-60. [DOI: 10.1016/j.bbamem.2015.06.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 06/05/2015] [Accepted: 06/10/2015] [Indexed: 11/27/2022]
|
22
|
Structural Significance of Lipid Diversity as Studied by Small Angle Neutron and X-ray Scattering. MEMBRANES 2015; 5:454-72. [PMID: 26402708 PMCID: PMC4584290 DOI: 10.3390/membranes5030454] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/15/2015] [Indexed: 11/17/2022]
Abstract
We review recent developments in the rapidly growing field of membrane biophysics, with a focus on the structural properties of single lipid bilayers determined by different scattering techniques, namely neutron and X-ray scattering. The need for accurate lipid structural properties is emphasized by the sometimes conflicting results found in the literature, even in the case of the most studied lipid bilayers. Increasingly, accurate and detailed structural models require more experimental data, such as those from contrast varied neutron scattering and X-ray scattering experiments that are jointly refined with molecular dynamics simulations. This experimental and computational approach produces robust bilayer structural parameters that enable insights, for example, into the interplay between collective membrane properties and its components (e.g., hydrocarbon chain length and unsaturation, and lipid headgroup composition). From model studies such as these, one is better able to appreciate how a real biological membrane can be tuned by balancing the contributions from the lipid's different moieties (e.g., acyl chains, headgroups, backbones, etc.).
Collapse
|
23
|
Blasic JR, Worcester DL, Gawrisch K, Gurnev P, Mihailescu M. Pore hydration states of KcsA potassium channels in membranes. J Biol Chem 2015; 290:26765-75. [PMID: 26370089 DOI: 10.1074/jbc.m115.661819] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Indexed: 12/30/2022] Open
Abstract
Water-filled hydrophobic cavities in channel proteins serve as gateways for transfer of ions across membranes, but their properties are largely unknown. We determined water distributions along the conduction pores in two tetrameric channels embedded in lipid bilayers using neutron diffraction: potassium channel KcsA and the transmembrane domain of M2 protein of influenza A virus. For the KcsA channel in the closed state, the distribution of water is peaked in the middle of the membrane, showing water in the central cavity adjacent to the selectivity filter. This water is displaced by the channel blocker tetrabutyl-ammonium. The amount of water associated with the channel was quantified, using neutron diffraction and solid state NMR. In contrast, the M2 proton channel shows a V-shaped water profile across the membrane, with a narrow constriction at the center, like the hourglass shape of its internal surface. These two types of water distribution are therefore very different in their connectivity to the bulk water. The water and protein profiles determined here provide important evidence concerning conformation and hydration of channels in membranes and the potential role of pore hydration in channel gating.
Collapse
Affiliation(s)
- Joseph R Blasic
- From the Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850
| | - David L Worcester
- the Department of Physiology and Biophysics, University of California, Irvine, California 92697, the National Institute of Standards and Technology, Center for Neutron Research, Gaithersburg, Maryland 20899
| | - Klaus Gawrisch
- the Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892
| | - Philip Gurnev
- the Physics Department, University of Massachusetts, Amherst, Massachusetts 01003, and From the Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850
| | - Mihaela Mihailescu
- From the Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850,
| |
Collapse
|
24
|
Heberle FA, Myles DAA, Katsaras J. Biomembranes research using thermal and cold neutrons. Chem Phys Lipids 2015; 192:41-50. [PMID: 26241882 DOI: 10.1016/j.chemphyslip.2015.07.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 07/25/2015] [Accepted: 07/27/2015] [Indexed: 01/26/2023]
Abstract
In 1932 James Chadwick discovered the neutron using a polonium source and a beryllium target (Chadwick, 1932). In a letter to Niels Bohr dated February 24, 1932, Chadwick wrote: "whatever the radiation from Be may be, it has most remarkable properties." Where it concerns hydrogen-rich biological materials, the "most remarkable" property is the neutron's differential sensitivity for hydrogen and its isotope deuterium. Such differential sensitivity is unique to neutron scattering, which unlike X-ray scattering, arises from nuclear forces. Consequently, the coherent neutron scattering length can experience a dramatic change in magnitude and phase as a result of resonance scattering, imparting sensitivity to both light and heavy atoms, and in favorable cases to their isotopic variants. This article describes recent biomembranes research using a variety of neutron scattering techniques.
Collapse
Affiliation(s)
- F A Heberle
- Biology and Soft Matter Division, Neutron Sciences Directorate, Oak Ridge, TN, 37831, United States; Joint Institute for Neutron Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, United States
| | - D A A Myles
- Biology and Soft Matter Division, Neutron Sciences Directorate, Oak Ridge, TN, 37831, United States
| | - J Katsaras
- Biology and Soft Matter Division, Neutron Sciences Directorate, Oak Ridge, TN, 37831, United States; Joint Institute for Neutron Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, United States; Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, 37996, United States.
| |
Collapse
|
25
|
Solís-Calero C, Ortega-Castro J, Frau J, Muñoz F. Nonenzymatic Reactions above Phospholipid Surfaces of Biological Membranes: Reactivity of Phospholipids and Their Oxidation Derivatives. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:319505. [PMID: 25977746 PMCID: PMC4419266 DOI: 10.1155/2015/319505] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/24/2015] [Accepted: 03/25/2015] [Indexed: 01/03/2023]
Abstract
Phospholipids play multiple and essential roles in cells, as components of biological membranes. Although phospholipid bilayers provide the supporting matrix and surface for many enzymatic reactions, their inherent reactivity and possible catalytic role have not been highlighted. As other biomolecules, phospholipids are frequent targets of nonenzymatic modifications by reactive substances including oxidants and glycating agents which conduct to the formation of advanced lipoxidation end products (ALEs) and advanced glycation end products (AGEs). There are some theoretical studies about the mechanisms of reactions related to these processes on phosphatidylethanolamine surfaces, which hypothesize that cell membrane phospholipids surface environment could enhance some reactions through a catalyst effect. On the other hand, the phospholipid bilayers are susceptible to oxidative damage by oxidant agents as reactive oxygen species (ROS). Molecular dynamics simulations performed on phospholipid bilayers models, which include modified phospholipids by these reactions and subsequent reactions that conduct to formation of ALEs and AGEs, have revealed changes in the molecular interactions and biophysical properties of these bilayers as consequence of these reactions. Then, more studies are desirable which could correlate the biophysics of modified phospholipids with metabolism in processes such as aging and diseases such as diabetes, atherosclerosis, and Alzheimer's disease.
Collapse
Affiliation(s)
- Christian Solís-Calero
- Institut d'Investigació en Ciències de la Salut (IUNICS), Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain
- Instituto de Investigación Sanitaria de Palma, 07010 Palma, Spain
| | - Joaquín Ortega-Castro
- Institut d'Investigació en Ciències de la Salut (IUNICS), Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain
- Instituto de Investigación Sanitaria de Palma, 07010 Palma, Spain
| | - Juan Frau
- Institut d'Investigació en Ciències de la Salut (IUNICS), Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain
- Instituto de Investigación Sanitaria de Palma, 07010 Palma, Spain
| | - Francisco Muñoz
- Institut d'Investigació en Ciències de la Salut (IUNICS), Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain
- Instituto de Investigación Sanitaria de Palma, 07010 Palma, Spain
| |
Collapse
|
26
|
Solís-Calero C, Ortega-Castro J, Hernández-Laguna A, Frau J, Muñoz F. A DFT study of the carboxymethyl-phosphatidylethanolamine formation from glyoxal and phosphatidylethanolamine surface. Comparison with the formation of N(ε)-(carboxymethyl)lysine from glyoxal and l-lysine. Phys Chem Chem Phys 2015; 17:8210-22. [DOI: 10.1039/c4cp05360e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mechanisms of the generation of CML and CM-PE from the reactions between glyoxal and l-lysine, and glyoxal and phosphatidylethanolamine (PE) were studied using the DFT method.
Collapse
Affiliation(s)
- C. Solís-Calero
- Institut d’Investigació en Ciències de la Salut (IUNICS)
- Departament de Química
- Universitat de les Illes Balears
- E-07122 Palma de Mallorca
- Spain
| | - J. Ortega-Castro
- Institut d’Investigació en Ciències de la Salut (IUNICS)
- Departament de Química
- Universitat de les Illes Balears
- E-07122 Palma de Mallorca
- Spain
| | | | - J. Frau
- Institut d’Investigació en Ciències de la Salut (IUNICS)
- Departament de Química
- Universitat de les Illes Balears
- E-07122 Palma de Mallorca
- Spain
| | - F. Muñoz
- Institut d’Investigació en Ciències de la Salut (IUNICS)
- Departament de Química
- Universitat de les Illes Balears
- E-07122 Palma de Mallorca
- Spain
| |
Collapse
|
27
|
Fogarty JC, Arjunwadkar M, Pandit SA, Pan J. Atomically detailed lipid bilayer models for the interpretation of small angle neutron and X-ray scattering data. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:662-72. [PMID: 25448879 DOI: 10.1016/j.bbamem.2014.10.041] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 10/11/2014] [Accepted: 10/29/2014] [Indexed: 10/24/2022]
Abstract
We present a new atom density profile (ADP) model and a statistical approach for extracting structural characteristics of lipid bilayers from X-ray and neutron scattering data. Models for five lipids with varying head and tail chemical composition in the fluid phase, 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC), 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylserine (POPS), and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol (POPG), are optimized using a simplex based method to simultaneously reproduce both neutron and X-ray scattering data. Structural properties are determined using statistical analysis of multiple optimal model structures. The method and models presented make minimal assumptions regarding the atomic configuration, while taking into account the underlying physical properties of the system. The more general model and statistical approach yield data with well defined uncertainties, indicating the precision in determining density profiles, atomic locations, and bilayer structural characteristics. Resulting bilayer structures include regions exhibiting large conformational variation. Due to the increased detail in the model, the results demonstrate the possibility of a distinct hydration layer within the interfacial (backbone) region.
Collapse
Affiliation(s)
- Joseph C Fogarty
- Department of Physics, University of South Florida, Tampa, FL 33620, USA
| | - Mihir Arjunwadkar
- Centre for Modeling and Simulation, University of Pune, Pune 411007, India
| | - Sagar A Pandit
- Department of Physics, University of South Florida, Tampa, FL 33620, USA.
| | - Jianjun Pan
- Department of Physics, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
28
|
Nanda H, Heinrich F, Lösche M. Membrane association of the PTEN tumor suppressor: neutron scattering and MD simulations reveal the structure of protein-membrane complexes. Methods 2014; 77-78:136-46. [PMID: 25461777 DOI: 10.1016/j.ymeth.2014.10.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 10/10/2014] [Accepted: 10/14/2014] [Indexed: 12/31/2022] Open
Abstract
Neutron reflection (NR) from planar interfaces is an emerging technology that provides unique and otherwise inaccessible structural information on disordered molecular systems such as membrane proteins associated with fluid bilayers, thus addressing one of the remaining challenges of structural biology. Although intrinsically a low-resolution technique, using structural information from crystallography or NMR allows the construction of NR models that describe the architecture of protein-membrane complexes at high resolution. In addition, a combination of these methods with molecular dynamics (MD) simulations has the potential to reveal the dynamics of protein interactions with the bilayer in atomistic detail. We review recent advances in this area by discussing the application of these techniques to the complex formed by the PTEN phosphatase with the plasma membrane. These studies provide insights in the cellular regulation of PTEN, its interaction with PI(4,5)P2 in the inner plasma membrane and the pathway by which its substrate, PI(3,4,5)P3, accesses the PTEN catalytic site.
Collapse
Affiliation(s)
- Hirsh Nanda
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA; NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Frank Heinrich
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA; NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Mathias Lösche
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| |
Collapse
|
29
|
Khattari Z, Köhler S, Xu Y, Aeffner S, Salditt T. Stalk formation as a function of lipid composition studied by X-ray reflectivity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:41-50. [PMID: 25261611 DOI: 10.1016/j.bbamem.2014.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/24/2014] [Accepted: 08/08/2014] [Indexed: 10/24/2022]
Abstract
We have investigated the structure and interaction of solid-supported multilamellar phospholipid bilayers in view of stalk formation as model systems for membrane fusion. The multi-component bilayers were composed of ternary and quaternary mixtures, containing phosphatidylcholines, phosphatidylethanolamines, sphingomyelin, cholesterol, diacylglycerol, and phosphatidylinositol. Analysis of the obtained electron density profiles and the pressure-distance curves reveals systematic changes in structure and hydration repulsion. The osmotic pressure needed to induce stalk formation at the transition from the fluid lamellar to the rhombohedral phase indicates how membrane fusion properties are modified by bilayer composition.
Collapse
Affiliation(s)
- Ziad Khattari
- Department of Physics, Hashemite University, 13115 Zarqa, Jordan.
| | - Sebastian Köhler
- Institut für Röntgenphysik, Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Yihui Xu
- Institut für Röntgenphysik, Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Sebastian Aeffner
- Institut für Röntgenphysik, Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Tim Salditt
- Institut für Röntgenphysik, Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.
| |
Collapse
|
30
|
Pan J, Marquardt D, Heberle FA, Kučerka N, Katsaras J. Revisiting the bilayer structures of fluid phase phosphatidylglycerol lipids: Accounting for exchangeable hydrogens. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2966-9. [PMID: 25135659 DOI: 10.1016/j.bbamem.2014.08.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/06/2014] [Accepted: 08/08/2014] [Indexed: 11/30/2022]
Abstract
We recently published two papers detailing the structures of fluid phase phosphatidylglycerol (PG) lipid bilayers (Kučerka et al., 2012 J. Phys. Chem. B 116: 232-239; Pan et al., 2012 Biochim. Biophys. Acta Biomembr. 1818: 2135-2148), which were determined using the scattering density profile model. This hybrid experimental/computational technique utilizes molecular dynamics simulations to parse a lipid bilayer into components whose volume probabilities follow simple analytical functional forms. Given the appropriate scattering densities, these volume probabilities are then translated into neutron scattering length density (NSLD) and electron density (ED) profiles, which are used to jointly refine experimentally obtained small angle neutron and X-ray scattering data. However, accurate NSLD and ED profiles can only be obtained if the bilayer's chemical composition is known. Specifically, in the case of neutron scattering, the lipid's exchangeable hydrogens with aqueous D2O must be accounted for, as they can have a measureable effect on the resultant lipid bilayer structures. This was not done in our above-mentioned papers. Here we report on the molecular structures of PG lipid bilayers by appropriately taking into account the exchangeable hydrogens. Analysis indicates that the temperature-averaged PG lipid areas decrease by 1.5 to 3.8Å(2), depending on the lipid's acyl chain length and unsaturation, compared to PG areas when hydrogen exchange was not taken into account.
Collapse
Affiliation(s)
- Jianjun Pan
- Department of Physics, University of South Florida, Tampa, FL 33620, USA.
| | - Drew Marquardt
- Department of Physics, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Frederick A Heberle
- Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Norbert Kučerka
- Department of Physical Chemistry of Drugs, Comenius University, 832 32 Bratislava, Slovakia; Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia
| | - John Katsaras
- Department of Physics, Brock University, St. Catharines, ON L2S 3A1, Canada; Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; Joint Institute for Neutron Scattering, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
31
|
Ryabova NY, Gruzinov AY, Zabelin AV. Synchrotron X-ray diffraction study of the structure of oral stratum corneum model lipid membranes. CRYSTALLOGR REP+ 2014. [DOI: 10.1134/s106377451401012x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Schmidt NW, Wong GCL. Antimicrobial peptides and induced membrane curvature: geometry, coordination chemistry, and molecular engineering. CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE 2013; 17:151-163. [PMID: 24778573 PMCID: PMC4000235 DOI: 10.1016/j.cossms.2013.09.004] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Short cationic, amphipathic antimicrobial peptides are multi-functional molecules that have roles in host defense as direct microbicides and modulators of the immune response. While a general mechanism of microbicidal activity involves the selective disruption and permeabilization of cell membranes, the relationships between peptide sequence and membrane activity are still under investigation. Here, we review the diverse functions that AMPs collectively have in host defense, and show that these functions can be multiplexed with a membrane mechanism of activity derived from the generation of negative Gaussian membrane curvature. As AMPs preferentially generate this curvature in model bacterial cell membranes, the selective generation of negative Gaussian curvature provides AMPs with a broad mechanism to target microbial membranes. The amino acid constraints placed on AMPs by the geometric requirement to induce negative Gaussian curvature are consistent with known AMP sequences. This 'saddle-splay curvature selection rule' is not strongly restrictive so AMPs have significant compositional freedom to multiplex membrane activity with other useful functions. The observation that certain proteins involved in cellular processes which require negative Gaussian curvature contain domains with similar motifs as AMPs, suggests this rule may be applicable to other curvature-generating proteins. Since our saddle-splay curvature design rule is based upon both a mechanism of activity and the existing motifs of natural AMPs, we believe it will assist the development of synthetic antimicrobials.
Collapse
Affiliation(s)
- Nathan W. Schmidt
- Department of Bioengineering, Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Gerard C. L. Wong
- Department of Bioengineering, Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
33
|
Quinn PJ. Structure of sphingomyelin bilayers and complexes with cholesterol forming membrane rafts. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:9447-9456. [PMID: 23863113 DOI: 10.1021/la4018129] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Sphingomyelin and cholesterol are of interest to biologists because they interact to form condensed structures said to be responsible for a variety of functions that membranes perform. Synchrotron X-ray diffraction methods have been used to investigate the structure of bilayers of D-erythro palmitoyl-sphingomyelin and complexes formed by palmitoyl- and egg-sphingomyelin with cholesterol in aqueous multibilayer dispersions. D-erythro palmitoyl sphingomyelin bilayers exist in two conformers that are distinguished by their lamellar repeat spacing, bilayer thickness, and polar group hydration. The distinction is attributed to hydrogen bonding to water or to intermolecular hydrogen bonds that are disrupted by the formation of ripple structure. The coexisting bilayer structures of pure palmitoyl sphingomyelin are observed in the presence of cholesterol-rich bilayers that are characterized by different bilayer parameters. The presence of cholesterol preferentially affects the conformer of D-erythro sphingomyelin with thicker, more hydrated bilayers. Coexisting bilayers of sphingomyelin and complexes with cholesterol are in register and remain coupled at temperatures at least up to 50 °C. Cholesterol forms a complex of 1.8 mols of sphingomyelin per cholesterol at 37 °C that coexists with bilayers of pure sphingomyelin up to 50 °C. Redistribution of the two lipids takes place on cooling below the fluid- to gel-phase transition temperature, resulting in the withdrawal of sphingomyelin into gel phase and the formation of coexisting bilayers of equimolar proportions of the two lipids. Cholesterol-rich bilayers fit a stripe model at temperatures less than 37 °C characterized by alternating rows of sphingomyelin and cholesterol molecules. A quasicrystalline array models the arrangement at higher temperatures in which each cholesterol molecule is surrounded by seven hydrocarbon chains, each of which is in contact with two cholesterol molecules. The thickness of bilayer complexes of sphingomyelin and cholesterol is less than that of coexisting bilayers of pure sphingomyelin. The implications for protein sorting theories based on bilayer thickness are discussed.
Collapse
Affiliation(s)
- Peter J Quinn
- Department of Biochemistry, King's College London, 150 Stamford Street, London SE1 9NH, UK.
| |
Collapse
|
34
|
Ryabova NY, Sheverev SG, Hauß T. Neutron diffraction studies of oral stratum corneum model lipid membranes. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2013; 42:621-9. [DOI: 10.1007/s00249-013-0910-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 04/28/2013] [Accepted: 05/09/2013] [Indexed: 11/29/2022]
|
35
|
Garvey CJ, Lenné T, Koster KL, Kent B, Bryant G. Phospholipid membrane protection by sugar molecules during dehydration-insights into molecular mechanisms using scattering techniques. Int J Mol Sci 2013; 14:8148-63. [PMID: 23584028 PMCID: PMC3645735 DOI: 10.3390/ijms14048148] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 04/03/2013] [Accepted: 04/09/2013] [Indexed: 11/17/2022] Open
Abstract
Scattering techniques have played a key role in our understanding of the structure and function of phospholipid membranes. These techniques have been applied widely to study how different molecules (e.g., cholesterol) can affect phospholipid membrane structure. However, there has been much less attention paid to the effects of molecules that remain in the aqueous phase. One important example is the role played by small solutes, particularly sugars, in protecting phospholipid membranes during drying or slow freezing. In this paper, we present new results and a general methodology, which illustrate how contrast variation small angle neutron scattering (SANS) and synchrotron-based X-ray scattering (small angle (SAXS) and wide angle (WAXS)) can be used to quantitatively understand the interactions between solutes and phospholipids. Specifically, we show the assignment of lipid phases with synchrotron SAXS and explain how SANS reveals the exclusion of sugars from the aqueous region in the particular example of hexagonal II phases formed by phospholipids.
Collapse
Affiliation(s)
- Christopher J. Garvey
- Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC NSW 2232, Australia; E-Mail:
| | - Thomas Lenné
- Research School of Biological Sciences, the Australian National University, Canberra, ACT 0200, Australia; E-Mail:
| | - Karen L. Koster
- Department of Biology, The University of South Dakota, Vermillion, SD 57069, USA; E-Mail:
| | - Ben Kent
- Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC NSW 2232, Australia; E-Mail:
| | - Gary Bryant
- School of Applied Sciences, RMIT University, Melbourne, VIC 3001, Australia; E-Mail:
| |
Collapse
|
36
|
Pan J, Cheng X, Heberle FA, Mostofian B, Kučerka N, Drazba P, Katsaras J. Interactions between ether phospholipids and cholesterol as determined by scattering and molecular dynamics simulations. J Phys Chem B 2012. [PMID: 23199292 DOI: 10.1021/jp310345j] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cholesterol and ether lipids are ubiquitous in mammalian cell membranes, and their interactions are crucial in ether lipid mediated cholesterol trafficking. We report on cholesterol's molecular interactions with ether lipids as determined using a combination of small-angle neutron and X-ray scattering, and all-atom molecular dynamics (MD) simulations. A scattering density profile model for an ether lipid bilayer was developed using MD simulations, which was then used to simultaneously fit the different experimental scattering data. From analysis of the data the various bilayer structural parameters were obtained. Surface area constrained MD simulations were also performed to reproduce the experimental data. This iterative analysis approach resulted in good agreement between the experimental and simulated form factors. The molecular interactions taking place between cholesterol and ether lipids were then determined from the validated MD simulations. We found that in ether membranes cholesterol primarily hydrogen bonds with the lipid headgroup phosphate oxygen, while in their ester membrane counterparts cholesterol hydrogen bonds with the backbone ester carbonyls. This different mode of interaction between ether lipids and cholesterol induces cholesterol to reside closer to the bilayer surface, dehydrating the headgroup's phosphate moiety. Moreover, the three-dimensional lipid chain spatial density distribution around cholesterol indicates anisotropic chain packing, causing cholesterol to tilt. These insights lend a better understanding of ether lipid-mediated cholesterol trafficking and the roles that the different lipid species have in determining the structural and dynamical properties of membrane associated biomolecules.
Collapse
Affiliation(s)
- Jianjun Pan
- Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.
| | | | | | | | | | | | | |
Collapse
|
37
|
Boggara MB, Mihailescu M, Krishnamoorti R. Structural Association of Nonsteroidal Anti-Inflammatory Drugs with Lipid Membranes. J Am Chem Soc 2012; 134:19669-76. [DOI: 10.1021/ja3064342] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mohan Babu Boggara
- Department of Chemical and Biomolecular
Engineering, University of Houston, Houston,
Texas 77204, United States
| | - Mihaela Mihailescu
- Institute for Bioscience and
Biotechnology Research, University of Maryland, Rockville, Maryland 20850, United States
- National Institute for Standard and Technology, Center for Neutron Research,
Gaithersburg, Maryland 20899, United States
| | - Ramanan Krishnamoorti
- Department of Chemical and Biomolecular
Engineering, University of Houston, Houston,
Texas 77204, United States
| |
Collapse
|
38
|
Pan J, Heberle FA, Carmichael JR, Ankner JF, Katsaras J. Time-of-flight Bragg scattering from aligned stacks of lipid bilayers using the Liquids Reflectometer at the Spallation Neutron Source. J Appl Crystallogr 2012. [DOI: 10.1107/s0021889812039945] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Time-of-flight (TOF) neutron diffraction experiments on aligned stacks of lipid bilayers using the horizontal Liquids Reflectometer at the Spallation Neutron Source are reported. Specific details are given regarding the instrumental setup, data collection and reduction, phase determination of the structure factors, and reconstruction of the one-dimensional neutron scattering length density (NSLD) profile. The validity of using TOF measurements to determine the one-dimensional NSLD profile is demonstrated by reproducing the results of two well known lipid bilayer structures. The method is then applied to show how an antimicrobial peptide affects membranes with and without cholesterol.
Collapse
|
39
|
Energetics of stalk intermediates in membrane fusion are controlled by lipid composition. Proc Natl Acad Sci U S A 2012; 109:E1609-18. [PMID: 22589300 DOI: 10.1073/pnas.1119442109] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have used X-ray diffraction on the rhombohedral phospholipid phase to reconstruct stalk structures in different pure lipids and lipid mixtures with unprecedented resolution, enabling a quantitative analysis of geometry, as well as curvature and hydration energies. Electron density isosurfaces are used to study shape and curvature properties of the bent lipid monolayers. We observe that the stalk structure is highly universal in different lipid systems. The associated curvatures change in a subtle, but systematic fashion upon changes in lipid composition. In addition, we have studied the hydration interaction prior to the transition from the lamellar to the stalk phase. The results indicate that facilitating dehydration is the key to promote stalk formation, which becomes favorable at an approximately constant interbilayer separation of 9.0 ± 0.5 Å for the investigated lipid compositions.
Collapse
|
40
|
Pan J, Heberle FA, Tristram-Nagle S, Szymanski M, Koepfinger M, Katsaras J, Kučerka N. Molecular structures of fluid phase phosphatidylglycerol bilayers as determined by small angle neutron and X-ray scattering. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2135-48. [PMID: 22583835 DOI: 10.1016/j.bbamem.2012.05.007] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 03/22/2012] [Accepted: 05/07/2012] [Indexed: 10/28/2022]
Abstract
We have determined the molecular structures of commonly used phosphatidylglycerols (PGs) in the commonly accepted biologically relevant fluid phase. This was done by simultaneously analyzing small angle neutron and X-ray scattering data, with the constraint of measured lipid volumes. We report the temperature dependence of bilayer parameters obtained using the one-dimensional scattering density profile model - which was derived from molecular dynamics simulations - including the area per lipid, the overall bilayer thickness, as well as other intrabilayer parameters (e.g., hydrocarbon thickness). Lipid areas are found to be larger than their phosphatidylcholine (PC) counterparts, a result likely due to repulsive electrostatic interactions taking place between the charged PG headgroups even in the presence of sodium counterions. In general, PG and PC bilayers show a similar response to changes in temperature and chain length, but differ in their response to chain unsaturation. For example, compared to PC bilayers, the inclusion of a first double bond in PG lipids results in a smaller incremental change to the area per lipid and bilayer thickness. However, the extrapolated lipid area of saturated PG lipids to infinite chain length is found to be similar to that of PCs, an indication of the glycerol-carbonyl backbone's pivotal role in influencing the lipid-water interface.
Collapse
Affiliation(s)
- Jianjun Pan
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6100, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Quinn PJ. The structure of complexes between phosphatidylethanolamine and glucosylceramide: A matrix for membrane rafts. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2894-904. [DOI: 10.1016/j.bbamem.2011.08.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 08/22/2011] [Accepted: 08/30/2011] [Indexed: 12/12/2022]
|
42
|
Hsieh D, Davis A, Nanda V. A knowledge-based potential highlights unique features of membrane α-helical and β-barrel protein insertion and folding. Protein Sci 2011; 21:50-62. [PMID: 22031179 DOI: 10.1002/pro.758] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 09/06/2011] [Accepted: 10/19/2011] [Indexed: 12/16/2022]
Abstract
Outer membrane β-barrel proteins differ from α-helical inner membrane proteins in lipid environment, secondary structure, and the proposed processes of folding and insertion. It is reasonable to expect that outer membrane proteins may contain primary sequence information specific for their folding and insertion behavior. In previous work, a depth-dependent insertion potential, E(z) , was derived for α-helical inner membrane proteins. We have generated an equivalent potential for TM β-barrel proteins. The similarities and differences between these two potentials provide insight into unique aspects of the folding and insertion of β-barrel membrane proteins. This potential can predict orientation within the membrane and identify functional residues involved in intermolecular interactions.
Collapse
Affiliation(s)
- Daniel Hsieh
- BioMaPS Institute and the Graduate Program in Computational Biology and Molecular Biophysics, Rutgers University, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
43
|
PABST GEORG. GLOBAL PROPERTIES OF BIOMIMETIC MEMBRANES: PERSPECTIVES ON MOLECULAR FEATURES. ACTA ACUST UNITED AC 2011. [DOI: 10.1142/s1793048006000069] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Global properties of biological model membranes such as, e.g., structure or elasticity, are known to be closely related to their local features. If a membrane active compound interacts with the membrane assembly, the membrane will primarily be affected on the local, molecular level. The local perturbation may than, through some coupling, translate into a global adjustment of the membrane. In order to address this coupling x-ray and neutron diffraction data analysis techniques have been developed that allow accurate monitoring of changes in global properties. This offers new perspectives on molecular membrane features that in combination with complementary techniques, such as differential scanning calorimetry, spectroscopy or dynamic scattering lead to a better understanding of biomimetic membranes. The present article reviews these aspects giving application examples for single- and multicomponent membranes, respectively.
Collapse
Affiliation(s)
- GEORG PABST
- Institute of Biophysics and X-ray Structure Research, Austrian Academy of Sciences, Schmiedlstraße 6, Graz, 8042, Austria
| |
Collapse
|
44
|
Shekhar P, Nanda H, Lösche M, Heinrich F. Continuous distribution model for the investigation of complex molecular architectures near interfaces with scattering techniques. JOURNAL OF APPLIED PHYSICS 2011; 110:102216-10221612. [PMID: 22207767 PMCID: PMC3246012 DOI: 10.1063/1.3661986] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 11/28/2010] [Indexed: 05/22/2023]
Abstract
Biological membranes are composed of a thermally disordered lipid matrix and therefore require non-crystallographic scattering approaches for structural characterization with x-rays or neutrons. Here we develop a continuous distribution (CD) model to refine neutron or x-ray reflectivity data from complex architectures of organic molecules. The new model is a flexible implementation of the composition-space refinement of interfacial structures to constrain the resulting scattering length density profiles. We show this model increases the precision with which molecular components may be localized within a sample, with a minimal use of free model parameters. We validate the new model by parameterizing all-atom molecular dynamics (MD) simulations of bilayers and by evaluating the neutron reflectivity of a phospholipid bilayer physisorbed to a solid support. The determination of the structural arrangement of a sparsely-tethered bilayer lipid membrane (stBLM) comprised of a multi-component phospholipid bilayer anchored to a gold substrate by a thiolated oligo(ethylene oxide) linker is also demonstrated. From the model we extract the bilayer composition and density of tether points, information which was previously inaccessible for stBLM systems. The new modeling strategy has been implemented into the ga_refl reflectivity data evaluation suite, available through the National Institute of Standards and Technology (NIST) Center for Neutron Research (NCNR).
Collapse
|
45
|
Kang G, López-Peña I, Oklejas V, Gary CS, Cao W, Kim JE. Förster resonance energy transfer as a probe of membrane protein folding. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:154-61. [PMID: 21925139 DOI: 10.1016/j.bbamem.2011.08.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Revised: 08/24/2011] [Accepted: 08/25/2011] [Indexed: 11/27/2022]
Abstract
The folding reaction of a β-barrel membrane protein, outer membrane protein A (OmpA), is probed with Förster resonance energy transfer (FRET) experiments. Four mutants of OmpA were generated in which the donor fluorophore, tryptophan, and acceptor molecule, a naphthalene derivative, are placed in various locations on the protein to report the evolution of distances across the bilayer and across the protein pore during a folding event. Analysis of the FRET efficiencies reveals three timescales for tertiary structure changes associated with insertion and folding into a synthetic bilayer. A narrow pore forms during the initial stage of insertion, followed by bilayer traversal. Finally, a long-time component is attributed to equilibration and relaxation, and may involve global changes such as pore expansion and strand extension. These results augment the existing models that describe concerted insertion and folding events, and highlight the ability of FRET to provide insight into the complex mechanisms of membrane protein folding. This article is part of a Special Issue entitled: Membrane protein structure and function.
Collapse
Affiliation(s)
- Guipeun Kang
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | |
Collapse
|
46
|
Pisani M, Mobbili G, Placentino IF, Smorlesi A, Bruni P. Biophysical Characterization of Complexes of DNA with Mixtures of the Neutral Lipids 1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine-N-hexanoylamine or 1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine-N-dodecanoylamine and 1,2-Dioleoyl-sn-glycero-3-phosphocholine in the Presence of Bivalent Metal Cations for DNA Transfection. J Phys Chem B 2011; 115:10198-206. [DOI: 10.1021/jp202577u] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Michela Pisani
- Chemistry Division of the ISAC Department, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Giovanna Mobbili
- Chemistry Division of the ISAC Department, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Immacolata F. Placentino
- Chemistry Division of the ISAC Department, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Arianna Smorlesi
- Department of Pathology and Innovative Therapies, Polytechnic University of Marche, Via Tronto 10/A, 60100 Ancona, Italy
| | - Paolo Bruni
- Chemistry Division of the ISAC Department, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
47
|
Loudet-Courreges C, Nallet F, Dufourc EJ, Oda R. Unprecedented observation of days-long remnant orientation of phospholipid bicelles: a small-angle X-ray scattering and theoretical study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:9122-9130. [PMID: 21662979 DOI: 10.1021/la1050817] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Nanometric bilayer-based self-assembled micelles commonly named as bicelles, formed with a mixture of long and short chains phosphatidylcholine lipids (PC), are known to orient spontaneously in a magnetic field. This field-induced orientational order strongly depends on the molecular structure of the phospholipids. Using small-angle X-ray scattering (SAXS), we performed detailed structural studies of bicelles and investigated the orientation/relaxation kinetics in three different systems: saturated-chain lipid bicelles made of DMPC (dimyristoyl PC)/DCPC (1,2-dicaproyl PC) with and without the added paramagnetic lanthanide ions Eu(3+), as well as bicelles of TBBPC (1-tetradecanoyl-2-(4-(4-biphenyl)butanoyl)-sn-glycero-3-PC)/DCPC. The structural study confirmed the previous NMR studies, which showed that DMPC bicelles orient with the membrane normal perpendicular (defined here as "nematic" orientation) to the magnetic field, whereas they orient parallel (defined here as "smectic" orientation) to the magnetic field in the presence of Eu(3+). The TBBPC bicelles also show smectic orientation. Surprisingly, the orientational order induced in the magnetic field remains even after the magnetic field is removed, which allowed us to investigate the orientation and relaxation kinetics of different bicelle structures. We demonstrate that this kinetics is very different for all three types of bicelles at the same lipid concentration; DMPC bicelles (~40 nm diameter) with and without Eu(3+) orient faster than TBBPC bicelles (~80 nm diameter). However, for the relaxation, DMPC bicelles (nematic) lose their macroscopic orientation only after one hour, whereas both DMPC bicelles with Eu(3+) and TBBPC bicelles (smectic) remarkably stay oriented for up to several days! These results indicate that the orientation mechanism of these nanometric disks in the magnetic field is governed by their size, with smaller bicelles orienting faster than the larger bicelles. Their relaxation mechanism outside the magnetic field, however, is governed by the degree of ordering. Indeed, the angular distribution of oriented bicelles is much narrower for the bicelles with smectic orientation, and, consequently, they keep aligned for much longer time (days) than those with nematic ordering (hours) outside the magnetic field. The understanding of the orientation/relaxation kinetics, as well as the morphologies of these "molecular goniometers" at molecular and supramolecular levels, allows controlling such an unprecedented long-range and long-lived smectic ordering of nanodisks and opens a wide field of applications for structural biology or material sciences.
Collapse
Affiliation(s)
- Cécile Loudet-Courreges
- UMR 5248 CBMN, CNRS-Université Bordeaux1-ENITAB, Institut Européen de Chimie et Biologie, Pessac, France
| | | | | | | |
Collapse
|
48
|
Mihailescu M, Vaswani RG, Jardón-Valadez E, Castro-Román F, Freites JA, Worcester DL, Chamberlin AR, Tobias DJ, White SH. Acyl-chain methyl distributions of liquid-ordered and -disordered membranes. Biophys J 2011; 100:1455-62. [PMID: 21402027 DOI: 10.1016/j.bpj.2011.01.035] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 12/27/2010] [Accepted: 01/19/2011] [Indexed: 10/18/2022] Open
Abstract
A central feature of the lipid raft concept is the formation of cholesterol-rich lipid domains. The introduction of relatively rigid cholesterol molecules into fluid liquid-disordered (L(d)) phospholipid bilayers can produce liquid-ordered (L(o)) mixtures in which the rigidity of cholesterol causes partial ordering of the flexible hydrocarbon acyl chains of the phospholipids. Several lines of evidence support this concept, but direct structural information about L(o) membranes is lacking. Here we present the structure of L(o) membranes formed from cholesterol and dioleoylphosphatidylcholine (DOPC). Specific deuteration of the DOPC acyl-chain methyl groups and neutron diffraction measurements reveal an extraordinary disorder of the acyl chains of neat L(d) DOPC bilayers. The disorder is so great that >20% of the methyl groups are in intimate contact with water in the bilayer interface. The ordering of the DOPC acyl chains by cholesterol leads to retraction of the methyl groups away from the interface. Molecular dynamics simulations based on experimental systems reveal asymmetric transbilayer distributions of the methyl groups associated with each bilayer leaflet.
Collapse
Affiliation(s)
- Mihaela Mihailescu
- Department of Physiology and Biophysics, University of California, Irvine, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
A lipocentric view of peptide-induced pores. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2011; 40:399-415. [PMID: 21442255 PMCID: PMC3070086 DOI: 10.1007/s00249-011-0693-4] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 03/03/2011] [Indexed: 01/26/2023]
Abstract
Although lipid membranes serve as effective sealing barriers for the passage of most polar solutes, nonmediated leakage is not completely improbable. A high activation energy normally keeps unassisted bilayer permeation at a very low frequency, but lipids are able to self-organize as pores even in peptide-free and protein-free membranes. The probability of leakage phenomena increases under conditions such as phase coexistence, external stress or perturbation associated to binding of nonlipidic molecules. Here, we argue that pore formation can be viewed as an intrinsic property of lipid bilayers, with strong similarities in the structure and mechanism between pores formed with participation of peptides, lipidic pores induced by different types of stress, and spontaneous transient bilayer defects driven by thermal fluctuations. Within such a lipocentric framework, amphipathic peptides are best described as pore-inducing rather than pore-forming elements. Active peptides bound to membranes can be understood as a source of internal surface tension which facilitates pore formation by diminishing the high activation energy barrier. This first or immediate action of the peptide has some resemblance to catalysis. However, the presence of membrane-active peptides has the additional effect of displacing the equilibrium towards the pore-open state, which is then maintained over long times, and reducing the size of initial individual pores. Thus, pore-inducing peptides, regardless of their sequence and oligomeric organization, can be assigned a double role of increasing the probability of pore formation in membranes to high levels as well as stabilizing these pores after they appear.
Collapse
|
50
|
Thompson TE, Sankaram MB, Huang C. Organization and Dynamics of the Lipid Components of Biological Membranes. Compr Physiol 2011. [DOI: 10.1002/cphy.cp140102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|