1
|
Perros T, Biquet-Bisquert A, Ben Meriem Z, Delarue M, Joseph P, Marcq P, Cochet-Escartin O. Mechanical characterization of regenerating Hydra tissue spheres. Biophys J 2024; 123:1792-1803. [PMID: 38783602 PMCID: PMC11267430 DOI: 10.1016/j.bpj.2024.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/12/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024] Open
Abstract
Hydra vulgaris, long known for its remarkable regenerative capabilities, is also a long-standing source of inspiration for models of spontaneous patterning. Recently it became clear that early patterning during Hydra regeneration is an integrated mechanochemical process whereby morphogen dynamics is influenced by tissue mechanics. One roadblock to understanding Hydra self-organization is our lack of knowledge about the mechanical properties of these organisms. In this study, we combined microfluidic developments to perform parallelized microaspiration rheological experiments and numerical simulations to characterize these mechanical properties. We found three different behaviors depending on the applied stresses: an elastic response, a viscoelastic response, and tissue rupture. Using models of deformable shells, we quantify their Young's modulus, shear viscosity, and the critical stresses required to switch between behaviors. Based on these experimental results, we propose a description of the tissue mechanics during normal regeneration. Our results provide a first step toward the development of original mechanochemical models of patterning grounded in quantitative experimental data.
Collapse
Affiliation(s)
- Thomas Perros
- University Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, Villeurbanne, France
| | - Anaïs Biquet-Bisquert
- University Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, Villeurbanne, France; Centre de Biologie Structurale, CNRS UMR5048, INSERM U1054, University of Montpellier, Montpellier, France
| | - Zacchari Ben Meriem
- Laboratory for Analysis and Architecture of Systems, Université de Toulouse-CNRS, Toulouse, France
| | - Morgan Delarue
- Laboratory for Analysis and Architecture of Systems, Université de Toulouse-CNRS, Toulouse, France
| | - Pierre Joseph
- Laboratory for Analysis and Architecture of Systems, Université de Toulouse-CNRS, Toulouse, France
| | - Philippe Marcq
- Laboratoire Physique et Mécanique des Milieux Hétérogènes, Sorbonne Université, CNRS UMR 7636, ESPCI, Université Paris Cité, Paris, France
| | | |
Collapse
|
2
|
Mukhopadhyay A, Tsukasaki Y, Chan WC, Le JP, Kwok ML, Zhou J, Natarajan V, Mostafazadeh N, Maienschein-Cline M, Papautsky I, Tiruppathi C, Peng Z, Rehman J, Ganesh B, Komarova Y, Malik AB. trans-Endothelial neutrophil migration activates bactericidal function via Piezo1 mechanosensing. Immunity 2024; 57:52-67.e10. [PMID: 38091995 PMCID: PMC10872880 DOI: 10.1016/j.immuni.2023.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/02/2023] [Accepted: 11/10/2023] [Indexed: 12/21/2023]
Abstract
The regulation of polymorphonuclear leukocyte (PMN) function by mechanical forces encountered during their migration across restrictive endothelial cell junctions is not well understood. Using genetic, imaging, microfluidic, and in vivo approaches, we demonstrated that the mechanosensor Piezo1 in PMN plasmalemma induced spike-like Ca2+ signals during trans-endothelial migration. Mechanosensing increased the bactericidal function of PMN entering tissue. Mice in which Piezo1 in PMNs was genetically deleted were defective in clearing bacteria, and their lungs were predisposed to severe infection. Adoptive transfer of Piezo1-activated PMNs into the lungs of Pseudomonas aeruginosa-infected mice or exposing PMNs to defined mechanical forces in microfluidic systems improved bacterial clearance phenotype of PMNs. Piezo1 transduced the mechanical signals activated during transmigration to upregulate nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4, crucial for the increased PMN bactericidal activity. Thus, Piezo1 mechanosensing of increased PMN tension, while traversing the narrow endothelial adherens junctions, is a central mechanism activating the host-defense function of transmigrating PMNs.
Collapse
Affiliation(s)
- Amitabha Mukhopadhyay
- Department of Pharmacology and Regenerative Medicine and The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Yoshikazu Tsukasaki
- Department of Pharmacology and Regenerative Medicine and The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Wan Ching Chan
- Department of Pharmacology and Regenerative Medicine and The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Jonathan P Le
- Department of Pharmacology and Regenerative Medicine and The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Man Long Kwok
- Department of Pharmacology and Regenerative Medicine and The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Jian Zhou
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois, Chicago, IL 60612, USA
| | - Viswanathan Natarajan
- Department of Pharmacology and Regenerative Medicine and The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA; Department of Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Nima Mostafazadeh
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois, Chicago, IL 60612, USA
| | - Mark Maienschein-Cline
- Research Informatics Core, Research Resources Center, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Ian Papautsky
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois, Chicago, IL 60612, USA
| | - Chinnaswamy Tiruppathi
- Department of Pharmacology and Regenerative Medicine and The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Zhangli Peng
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois, Chicago, IL 60612, USA
| | - Jalees Rehman
- Department of Pharmacology and Regenerative Medicine and The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Balaji Ganesh
- Flow Cytometry Core, Research Resources Center, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Yulia Komarova
- Department of Pharmacology and Regenerative Medicine and The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA.
| | - Asrar B Malik
- Department of Pharmacology and Regenerative Medicine and The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA.
| |
Collapse
|
3
|
Waugh RE, Lomakina E, Amitrano A, Kim M. Activation effects on the physical characteristics of T lymphocytes. Front Bioeng Biotechnol 2023; 11:1175570. [PMID: 37256117 PMCID: PMC10225623 DOI: 10.3389/fbioe.2023.1175570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/18/2023] [Indexed: 06/01/2023] Open
Abstract
The deformability of leukocytes is relevant to a wide array of physiological and pathophysiological behaviors. The goal of this study is to provide a detailed, quantitative characterization of the mechanical properties of T cells and how those properties change with activation. We tested T cells and CD8+ cells isolated from peripheral blood samples of healthy donors either immediately (naïve population) or after 7 days of activation in vitro. Single-cell micropipette aspiration was used to test the mechanical properties. T cells exhibit the general characteristics of a highly viscous liquid drop with a cortical "surface" tension, T cort. The time course of each cell entry into the micropipette was measured at two different aspiration pressures to test for shear thinning behavior. The data were analyzed in the framework of an approximate mechanical model of the cell deformation to determine the cortical tension, the cell volume, the magnitude of the initial cell entry, the characteristic viscosity μ o, and the shear thinning coefficient, b. Activation generally caused increases in cellular resistance to deformation and a broadening of the distribution of cell properties. The cell volume increased substantially upon cell activation from ∼200 μm3 to ∼650 μm3. Naive and activated T cells had similar mean cortical tension (∼150 pN/μm). However, compared to naïve CD8+ cells, the cortical tension of activated CD8+ cells increased significantly to ∼250 pN/μm. Dynamic resistance of naive CD8+ T cells, as reflected in their characteristic viscosity, was ∼870 Pa and significantly increased to 1,180 Pa after in vitro activation. The magnitude of the instantaneous projection length as the cell enters the pipette (L init) was more than doubled for activated vs. naive cells. All cell types exhibited shear thinning behavior with coefficients b in the range 0.5-0.65. Increased cell size, cortical tension, and characteristic viscosity all point to increased resistance of activated T cells to passage through the microvasculature, likely contributing to cell trapping. The increased initial elastic response of cells after activation was unexpected and could point to instability in the cell that might contribute to spontaneous cell motility.
Collapse
Affiliation(s)
- Richard E. Waugh
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Elena Lomakina
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Andrea Amitrano
- Department of Pathology, University of Rochester Medical Center, Rochester, NY, United States
| | - Minsoo Kim
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY, United States
| |
Collapse
|
4
|
Murali A, Sarkar RR. Mechano-immunology in microgravity. LIFE SCIENCES IN SPACE RESEARCH 2023; 37:50-64. [PMID: 37087179 DOI: 10.1016/j.lssr.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/16/2023] [Accepted: 03/05/2023] [Indexed: 05/03/2023]
Abstract
Life on Earth has evolved to thrive in the Earth's natural gravitational field; however, as space technology advances, we must revisit and investigate the effects of unnatural conditions on human health, such as gravitational change. Studies have shown that microgravity has a negative impact on various systemic parts of humans, with the effects being more severe in the human immune system. Increasing costs, limited experimental time, and sample handling issues hampered our understanding of this field. To address the existing knowledge gap and provide confidence in modelling the phenomena, in this review, we highlight experimental works in mechano-immunology under microgravity and different computational modelling approaches that can be used to address the existing problems.
Collapse
Affiliation(s)
- Anirudh Murali
- Chemical Engineering and Process Development, CSIR - National Chemical Laboratory, Pune, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ram Rup Sarkar
- Chemical Engineering and Process Development, CSIR - National Chemical Laboratory, Pune, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
5
|
Hervas-Raluy S, Wirthl B, Guerrero PE, Robalo Rei G, Nitzler J, Coronado E, Font de Mora Sainz J, Schrefler BA, Gomez-Benito MJ, Garcia-Aznar JM, Wall WA. Tumour growth: An approach to calibrate parameters of a multiphase porous media model based on in vitro observations of Neuroblastoma spheroid growth in a hydrogel microenvironment. Comput Biol Med 2023; 159:106895. [PMID: 37060771 DOI: 10.1016/j.compbiomed.2023.106895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/09/2023] [Accepted: 04/09/2023] [Indexed: 04/17/2023]
Abstract
To unravel processes that lead to the growth of solid tumours, it is necessary to link knowledge of cancer biology with the physical properties of the tumour and its interaction with the surrounding microenvironment. Our understanding of the underlying mechanisms is however still imprecise. We therefore developed computational physics-based models, which incorporate the interaction of the tumour with its surroundings based on the theory of porous media. However, the experimental validation of such models represents a challenge to its clinical use as a prognostic tool. This study combines a physics-based model with in vitro experiments based on microfluidic devices used to mimic a three-dimensional tumour microenvironment. By conducting a global sensitivity analysis, we identify the most influential input parameters and infer their posterior distribution based on Bayesian calibration. The resulting probability density is in agreement with the scattering of the experimental data and thus validates the proposed workflow. This study demonstrates the huge challenges associated with determining precise parameters with usually only limited data for such complex processes and models, but also demonstrates in general how to indirectly characterise the mechanical properties of neuroblastoma spheroids that cannot feasibly be measured experimentally.
Collapse
Affiliation(s)
- Silvia Hervas-Raluy
- Multiscale in Mechanical and Biological Engineering, Department of Mechanical Engineering, University of Zaragoza, Aragon Institute for Engineering Research (I3A), Maria de Luna 3, Zaragoza, 50018, Spain.
| | - Barbara Wirthl
- Institute for Computational Mechanics, Technical University of Munich, TUM School of Engineering and Design, Department of Engineering Physics & Computation, Boltzmannstraße 15, Garching b. Munich, 85748, Germany
| | - Pedro E Guerrero
- Multiscale in Mechanical and Biological Engineering, Department of Mechanical Engineering, University of Zaragoza, Aragon Institute for Engineering Research (I3A), Maria de Luna 3, Zaragoza, 50018, Spain
| | - Gil Robalo Rei
- Institute for Computational Mechanics, Technical University of Munich, TUM School of Engineering and Design, Department of Engineering Physics & Computation, Boltzmannstraße 15, Garching b. Munich, 85748, Germany
| | - Jonas Nitzler
- Institute for Computational Mechanics, Technical University of Munich, TUM School of Engineering and Design, Department of Engineering Physics & Computation, Boltzmannstraße 15, Garching b. Munich, 85748, Germany; Professorship for Data-Driven Materials Modeling, Technical University of Munich, TUM School of Engineering and Design, Department of Engineering Physics & Computation, Boltzmannstraße 15, Garching b. Munich, 85748, Germany
| | - Esther Coronado
- Clinical and Translational Oncology Research Group, Instituto de Investigación La Fe,, Fernando Abril Martorell 106, Valencia, 46026, Spain
| | - Jaime Font de Mora Sainz
- Clinical and Translational Oncology Research Group, Instituto de Investigación La Fe,, Fernando Abril Martorell 106, Valencia, 46026, Spain
| | - Bernhard A Schrefler
- Department of Civil, Environmental and Architectural Engineering, University of Padua, Marzolo 9, Padua, 35131, Italy; Institute for Advanced Study, Technical University of Munich, Boltzmannstraße 15, Garching b. Munich, 85748, Germany
| | - Maria Jose Gomez-Benito
- Multiscale in Mechanical and Biological Engineering, Department of Mechanical Engineering, University of Zaragoza, Aragon Institute for Engineering Research (I3A), Maria de Luna 3, Zaragoza, 50018, Spain
| | - Jose Manuel Garcia-Aznar
- Multiscale in Mechanical and Biological Engineering, Department of Mechanical Engineering, University of Zaragoza, Aragon Institute for Engineering Research (I3A), Maria de Luna 3, Zaragoza, 50018, Spain
| | - Wolfgang A Wall
- Institute for Computational Mechanics, Technical University of Munich, TUM School of Engineering and Design, Department of Engineering Physics & Computation, Boltzmannstraße 15, Garching b. Munich, 85748, Germany
| |
Collapse
|
6
|
Wang Z, Lu R, Wang W, Tian FB, Feng JJ, Sui Y. A computational model for the transit of a cancer cell through a constricted microchannel. Biomech Model Mechanobiol 2023:10.1007/s10237-023-01705-6. [PMID: 36854992 PMCID: PMC10366299 DOI: 10.1007/s10237-023-01705-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/13/2023] [Indexed: 03/02/2023]
Abstract
We propose a three-dimensional computational model to simulate the transient deformation of suspended cancer cells flowing through a constricted microchannel. We model the cell as a liquid droplet enclosed by a viscoelastic membrane, and its nucleus as a smaller stiffer capsule. The cell deformation and its interaction with the suspending fluid are solved through a well-tested immersed boundary lattice Boltzmann method. To identify a minimal mechanical model that can quantitatively predict the transient cell deformation in a constricted channel, we conduct extensive parametric studies of the effects of the rheology of the cell membrane, cytoplasm and nucleus and compare the results with a recent experiment conducted on human leukaemia cells. We find that excellent agreement with the experiment can be achieved by employing a viscoelastic cell membrane model with the membrane viscosity depending on its mode of deformation (shear versus elongation). The cell nucleus limits the overall deformation of the whole cell, and its effect increases with the nucleus size. The present computational model may be used to guide the design of microfluidic devices to sort cancer cells, or to inversely infer cell mechanical properties from their flow-induced deformation.
Collapse
Affiliation(s)
- Z Wang
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
| | - R Lu
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
| | - W Wang
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
| | - F B Tian
- School of Engineering and Information Technology, University of New South Wales, Canberra, ACT, 2600, Australia
| | - J J Feng
- Departments of Mathematics and Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada
| | - Y Sui
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK.
| |
Collapse
|
7
|
Paul R, Zhang KS, Kurosu Jalil M, Castaño N, Kim S, Tang SKY. Hydrodynamic dissection of Stentor coeruleus in a microfluidic cross junction. LAB ON A CHIP 2022; 22:3508-3520. [PMID: 35971861 DOI: 10.1039/d2lc00527a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Stentor coeruleus, a single-cell ciliated protozoan, is a model organism for wound healing and regeneration studies. Despite Stentor's large size (up to 2 mm in extended state), microdissection of Stentor remains challenging. In this work, we describe a hydrodynamic cell splitter, consisting of a microfluidic cross junction, capable of splitting Stentor cells in a non-contact manner at a high throughput of ∼500 cells per minute under continuous operation. Introduction of asymmetry in the flow field at the cross junction leads to asymmetric splitting of the cells to generate cell fragments as small as ∼8.5 times the original cell size. Characterization of cell fragment viability shows reduced 5-day survival as fragment size decreases and as the extent of hydrodynamic stress imposed on the fragments increases. Our results suggest that cell fragment size and composition, as well as mechanical stress, play important roles in the long-term repair of Stentor cells and warrant further investigations. Nevertheless, the hydrodynamic splitter can be useful for studying phenomena immediately after cell splitting, such as the closure of wounds in the plasma membrane which occurs on the order of 100-1000 seconds in Stentor.
Collapse
Affiliation(s)
- Rajorshi Paul
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA.
| | - Kevin S Zhang
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA.
| | - Myra Kurosu Jalil
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA.
| | - Nicolas Castaño
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA.
| | - Sungu Kim
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA.
| | - Sindy K Y Tang
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
8
|
|
9
|
Sun W, Gao X, Lei H, Wang W, Cao Y. Biophysical Approaches for Applying and Measuring Biological Forces. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105254. [PMID: 34923777 PMCID: PMC8844594 DOI: 10.1002/advs.202105254] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Indexed: 05/13/2023]
Abstract
Over the past decades, increasing evidence has indicated that mechanical loads can regulate the morphogenesis, proliferation, migration, and apoptosis of living cells. Investigations of how cells sense mechanical stimuli or the mechanotransduction mechanism is an active field of biomaterials and biophysics. Gaining a further understanding of mechanical regulation and depicting the mechanotransduction network inside cells require advanced experimental techniques and new theories. In this review, the fundamental principles of various experimental approaches that have been developed to characterize various types and magnitudes of forces experienced at the cellular and subcellular levels are summarized. The broad applications of these techniques are introduced with an emphasis on the difficulties in implementing these techniques in special biological systems. The advantages and disadvantages of each technique are discussed, which can guide readers to choose the most suitable technique for their questions. A perspective on future directions in this field is also provided. It is anticipated that technical advancement can be a driving force for the development of mechanobiology.
Collapse
Affiliation(s)
- Wenxu Sun
- School of SciencesNantong UniversityNantong226019P. R. China
| | - Xiang Gao
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
| | - Hai Lei
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
- Chemistry and Biomedicine Innovation CenterNanjing UniversityNanjing210023P. R. China
| | - Wei Wang
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
| | - Yi Cao
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
- MOE Key Laboratory of High Performance Polymer Materials and TechnologyDepartment of Polymer Science & EngineeringCollege of Chemistry & Chemical EngineeringNanjing UniversityNanjing210023P. R. China
- Chemistry and Biomedicine Innovation CenterNanjing UniversityNanjing210023P. R. China
| |
Collapse
|
10
|
Wang C, Li S, Ademiloye AS, Nithiarasu P. Biomechanics of cells and subcellular components: A comprehensive review of computational models and applications. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021; 37:e3520. [PMID: 34390323 DOI: 10.1002/cnm.3520] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Cells are a fundamental structural, functional and biological unit for all living organisms. Up till now, considerable efforts have been made to study the responses of single cells and subcellular components to an external load, and understand the biophysics underlying cell rheology, mechanotransduction and cell functions using experimental and in silico approaches. In the last decade, computational simulation has become increasingly attractive due to its critical role in interpreting experimental data, analysing complex cellular/subcellular structures, facilitating diagnostic designs and therapeutic techniques, and developing biomimetic materials. Despite the significant progress, developing comprehensive and accurate models of living cells remains a grand challenge in the 21st century. To understand current state of the art, this review summarises and classifies the vast array of computational biomechanical models for cells. The article covers the cellular components at multi-spatial levels, that is, protein polymers, subcellular components, whole cells and the systems with scale beyond a cell. In addition to the comprehensive review of the topic, this article also provides new insights into the future prospects of developing integrated, active and high-fidelity cell models that are multiscale, multi-physics and multi-disciplinary in nature. This review will be beneficial for the researchers in modelling the biomechanics of subcellular components, cells and multiple cell systems and understanding the cell functions and biological processes from the perspective of cell mechanics.
Collapse
Affiliation(s)
- Chengyuan Wang
- Zienkiewicz Centre for Computational Engineering, Faculty of Science and Engineering, Swansea University, Bay Campus, Swansea, UK
| | - Si Li
- Zienkiewicz Centre for Computational Engineering, Faculty of Science and Engineering, Swansea University, Bay Campus, Swansea, UK
| | - Adesola S Ademiloye
- Zienkiewicz Centre for Computational Engineering, Faculty of Science and Engineering, Swansea University, Bay Campus, Swansea, UK
| | - Perumal Nithiarasu
- Zienkiewicz Centre for Computational Engineering, Faculty of Science and Engineering, Swansea University, Bay Campus, Swansea, UK
| |
Collapse
|
11
|
Wei M, Zhang F, Zhang R, Lin JM, Yang N. High-Throughput Characterization of Cell Adhesion Strength Using Long-Channel Constriction-Based Microfluidics. ACS Sens 2021; 6:2838-2844. [PMID: 34279900 DOI: 10.1021/acssensors.1c01037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The adhesion strength of a cancer cell is a valuable biophysical marker of its metastatic potential, tightly associated with various metastatic processes; for example, cancer cells escape from a primary tumor, and circulating tumor cells (CTCs) are anchored to the vessel wall. Although constriction-based microfluidics can realize the high-throughput characterization of single-cell deformability, due to the influence of cell size heterogeneity, accurately evaluating the adhesion strength of a cancer cell at high throughputs in constriction remains difficult. In this paper, we first proposed an approach for the assessment of adhesion strength of BGC-823 and SGC-7901 cell lines at high throughputs based on a friction coefficient using the constant velocity stage of cell transit in a long-channel constriction. Cell size was proven to be independent of adhesion strength by cell detachment assay; however, it has large effects on cell transit velocity in constriction. Therefore, the linear elasticity of a completely deformed cell in constriction is simplified as a compressed spring model, effectively reducing the influence of cell size heterogeneity. Theoretically, our proposed model can well offset the influence of cell size by cell transit velocity, while our experimental results indicate that the friction coefficient has a good linear relationship with the logarithm of the adhesion strength too. Therefore, our proposed approach can realize accurate characterization of cell adhesion strength at high throughputs using long-channel constriction-based microfluidics. Hence, this work might enrich the functions of constriction-based microfluidics and bring new insights into the characterization of mechanical phenotypes.
Collapse
Affiliation(s)
- Mingji Wei
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Fei Zhang
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Rongbiao Zhang
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jin-Ming Lin
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Ning Yang
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
12
|
Balogh P, Gounley J, Roychowdhury S, Randles A. A data-driven approach to modeling cancer cell mechanics during microcirculatory transport. Sci Rep 2021; 11:15232. [PMID: 34315934 PMCID: PMC8316468 DOI: 10.1038/s41598-021-94445-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/09/2021] [Indexed: 02/07/2023] Open
Abstract
In order to understand the effect of cellular level features on the transport of circulating cancer cells in the microcirculation, there has been an increasing reliance on high-resolution in silico models. Accurate simulation of cancer cells flowing with blood cells requires resolving cellular-scale interactions in 3D, which is a significant computational undertaking warranting a cancer cell model that is both computationally efficient yet sufficiently complex to capture relevant behavior. Given that the characteristics of metastatic spread are known to depend on cancer type, it is crucial to account for mechanistic behavior representative of a specific cancer's cells. To address this gap, in the present work we develop and validate a means by which an efficient and popular membrane model-based approach can be used to simulate deformable cancer cells and reproduce experimental data from specific cell lines. Here, cells are modeled using the immersed boundary method (IBM) within a lattice Boltzmann method (LBM) fluid solver, and the finite element method (FEM) is used to model cell membrane resistance to deformation. Through detailed comparisons with experiments, we (i) validate this model to represent cancer cells undergoing large deformation, (ii) outline a systematic approach to parameterize different cell lines to optimally fit experimental data over a range of deformations, and (iii) provide new insight into nucleated vs. non-nucleated cell models and their ability to match experiments. While many works have used the membrane-model based method employed here to model generic cancer cells, no quantitative comparisons with experiments exist in the literature for specific cell lines undergoing large deformation. Here, we describe a phenomenological, data-driven approach that can not only yield good agreement for large deformations, but explicitly detail how it can be used to represent different cancer cell lines. This model is readily incorporated into cell-resolved hemodynamic transport simulations, and thus offers significant potential to complement experiments towards providing new insights into various aspects of cancer progression.
Collapse
Affiliation(s)
- Peter Balogh
- grid.26009.3d0000 0004 1936 7961Department of Biomedical Engineering, Duke University, Durham, NC USA
| | - John Gounley
- grid.135519.a0000 0004 0446 2659Computational Sciences and Engineering, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Sayan Roychowdhury
- grid.26009.3d0000 0004 1936 7961Department of Biomedical Engineering, Duke University, Durham, NC USA
| | - Amanda Randles
- grid.26009.3d0000 0004 1936 7961Department of Biomedical Engineering, Duke University, Durham, NC USA
| |
Collapse
|
13
|
Puleri DF, Balogh P, Randles A. Computational models of cancer cell transport through the microcirculation. Biomech Model Mechanobiol 2021; 20:1209-1230. [PMID: 33765196 DOI: 10.1007/s10237-021-01452-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/08/2021] [Indexed: 02/07/2023]
Abstract
The transport of cancerous cells through the microcirculation during metastatic spread encompasses several interdependent steps that are not fully understood. Computational models which resolve the cellular-scale dynamics of complex microcirculatory flows offer considerable potential to yield needed insights into the spread of cancer as a result of the level of detail that can be captured. In recent years, in silico methods have been developed that can accurately and efficiently model the circulatory flows of cancer and other biological cells. These computational methods are capable of resolving detailed fluid flow fields which transport cells through tortuous physiological geometries, as well as the deformation and interactions between cells, cell-to-endothelium interactions, and tumor cell aggregates, all of which play important roles in metastatic spread. Such models can provide a powerful complement to experimental works, and a promising approach to recapitulating the endogenous setting while maintaining control over parameters such as shear rate, cell deformability, and the strength of adhesive binding to better understand tumor cell transport. In this review, we present an overview of computational models that have been developed for modeling cancer cells in the microcirculation, including insights they have provided into cell transport phenomena.
Collapse
Affiliation(s)
- Daniel F Puleri
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Peter Balogh
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Amanda Randles
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
14
|
Palenzuela H, Lacroix B, Sallé J, Minami K, Shima T, Jegou A, Romet-Lemonne G, Minc N. In Vitro Reconstitution of Dynein Force Exertion in a Bulk Viscous Medium. Curr Biol 2020; 30:4534-4540.e7. [PMID: 32946749 DOI: 10.1016/j.cub.2020.08.078] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/03/2020] [Accepted: 08/24/2020] [Indexed: 11/28/2022]
Abstract
The forces generated by microtubules (MTs) and their associated motors orchestrate essential cellular processes ranging from vesicular trafficking to centrosome positioning [1, 2]. To date, most studies have focused on MT force exertion by motors anchored to a static surface, such as the cell cortex in vivo or glass surfaces in vitro [2-4]. However, motors also transport large cargos and endomembrane networks, whose hydrodynamic interactions with the viscous cytoplasm should generate sizable forces in bulk. Such forces may contribute to MT aster centration, organization, and orientation [5-14] but have yet to be evidenced and studied in a minimal reconstituted system. By developing a bulk motility assay, based on stabilized MTs and dynein-coated beads freely floating in a viscous medium away from any surface, we demonstrate that the motion of a cargo exerts a pulling force on the MT and propels it in opposite direction. Quantification of resulting MT movements for different motors, motor velocities, over a range of cargo sizes and medium viscosities shows that the efficiency of this mechanism is primarily determined by cargo size and MT length. Forces exerted by cargos are additive, allowing us to recapitulate tug-of-war situations or bi-dimensional motions of minimal asters. These data also reveal unappreciated effects of the nature of viscous crowders and hydrodynamic interactions between cargos and MTs, likely relevant to understand this mode of force exertion in living cells. This study reinforces the notion that endomembrane transport can exert significant forces on MTs.
Collapse
Affiliation(s)
| | - Benjamin Lacroix
- Institut Jacques Monod, Université de Paris, CNRS, 75006 Paris, France
| | - Jérémy Sallé
- Institut Jacques Monod, Université de Paris, CNRS, 75006 Paris, France
| | - Katsuhiko Minami
- Graduate School of Science, The University of Tokyo, 113-0033 Tokyo, Japan
| | - Tomohiro Shima
- Graduate School of Science, The University of Tokyo, 113-0033 Tokyo, Japan
| | - Antoine Jegou
- Institut Jacques Monod, Université de Paris, CNRS, 75006 Paris, France
| | | | - Nicolas Minc
- Institut Jacques Monod, Université de Paris, CNRS, 75006 Paris, France.
| |
Collapse
|
15
|
Wang K, Sun X, Zhang Y, Wei Y, Chen D, Wu H, Song Z, Long R, Wang J, Chen J. Microfluidic Cytometry for High-Throughput Characterization of Single Cell Cytoplasmic Viscosity Using Crossing Constriction Channels. Cytometry A 2019; 97:630-637. [PMID: 31637858 DOI: 10.1002/cyto.a.23921] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/27/2019] [Accepted: 10/07/2019] [Indexed: 12/22/2022]
Abstract
This article presents an approach of microfluidic flow cytometry capable of continuously characterizing cytoplasmic viscosities of single cells. The microfluidic system consists of a major constriction channel and a side constriction channel perpendicularly crossing each other. Cells are forced to rapidly travel through the major channel and are partially aspirated into the side channel when passing the channel junction. Numerical simulations were conducted to model the time dependence of the aspiration length into the side channel, which enables the measurement of cytoplasmic viscosity by fitting the model results to experimental data. As a demonstration for high-throughput measurement, the cytoplasmic viscosities of HL-60 cells that were native or treated by N-Formylmethionine-leucyl-phenylalanine (fMLP) were quantified with sample sizes as large as thousands of cells. Both the average and median cytoplasmic viscosities of native HL-60 cells were found to be about 10% smaller than those of fMLP-treated HL-60 cells, consistent with previous observations that fMLP treatment can increase the rigidity of white blood cells. Furthermore, the microfluidic system was used to process granulocytes from three donors (sample size >1,000 cells for each donor). The results revealed that the cytoplasmic viscosity of granulocytes from one donor was significantly higher than the other two, which may result from the fact that this donor just recovered from an inflammation. In summary, the developed microfluidic system can collect cytoplasmic viscosities from thousands of cells and may function as an enabling tool in the field of single-cell analysis. © 2019 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Ke Wang
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, People's Republic of China
| | - Xiaohao Sun
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado.,CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, People's Republic of China
| | - Yi Zhang
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yuanchen Wei
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Deyong Chen
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Hengan Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, People's Republic of China
| | - Zijian Song
- School of Information and Electronics, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Rong Long
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado
| | - Junbo Wang
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jian Chen
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
16
|
Mohammed D, Versaevel M, Bruyère C, Alaimo L, Luciano M, Vercruysse E, Procès A, Gabriele S. Innovative Tools for Mechanobiology: Unraveling Outside-In and Inside-Out Mechanotransduction. Front Bioeng Biotechnol 2019; 7:162. [PMID: 31380357 PMCID: PMC6646473 DOI: 10.3389/fbioe.2019.00162] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/20/2019] [Indexed: 12/26/2022] Open
Abstract
Cells and tissues can sense and react to the modifications of the physico-chemical properties of the extracellular environment (ECM) through integrin-based adhesion sites and adapt their physiological response in a process called mechanotransduction. Due to their critical localization at the cell-ECM interface, transmembrane integrins are mediators of bidirectional signaling, playing a key role in “outside-in” and “inside-out” signal transduction. After presenting the basic conceptual fundamentals related to cell mechanobiology, we review the current state-of-the-art technologies that facilitate the understanding of mechanotransduction signaling pathways. Finally, we highlight innovative technological developments that can help to advance our understanding of the mechanisms underlying nuclear mechanotransduction.
Collapse
Affiliation(s)
- Danahe Mohammed
- Mechanobiology and Soft Matter Group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Marie Versaevel
- Mechanobiology and Soft Matter Group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Céline Bruyère
- Mechanobiology and Soft Matter Group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Laura Alaimo
- Mechanobiology and Soft Matter Group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Marine Luciano
- Mechanobiology and Soft Matter Group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Eléonore Vercruysse
- Mechanobiology and Soft Matter Group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Anthony Procès
- Mechanobiology and Soft Matter Group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, University of Mons, Mons, Belgium.,Department of Neurosciences, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Sylvain Gabriele
- Mechanobiology and Soft Matter Group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, University of Mons, Mons, Belgium
| |
Collapse
|
17
|
Butler JP, Green Y. Forces, Flows, Fluorescence, and μFluidics. Biophys J 2019; 112:1293-1294. [PMID: 28402872 DOI: 10.1016/j.bpj.2016.09.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 09/20/2016] [Accepted: 09/26/2016] [Indexed: 11/28/2022] Open
Affiliation(s)
- James P Butler
- Department of Environment Health, Harvard TH Chan School of Public Health, Boston, Massachusetts; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Yoav Green
- Department of Environment Health, Harvard TH Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
18
|
Wang K, Sun XH, Zhang Y, Zhang T, Zheng Y, Wei YC, Zhao P, Chen DY, Wu HA, Wang WH, Long R, Wang JB, Chen J. Characterization of cytoplasmic viscosity of hundreds of single tumour cells based on micropipette aspiration. ROYAL SOCIETY OPEN SCIENCE 2019; 6:181707. [PMID: 31032026 PMCID: PMC6458365 DOI: 10.1098/rsos.181707] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/31/2019] [Indexed: 05/19/2023]
Abstract
Cytoplasmic viscosity (μ c) is a key biomechanical parameter for evaluating the status of cellular cytoskeletons. Previous studies focused on white blood cells, but the data of cytoplasmic viscosity for tumour cells were missing. Tumour cells (H1299, A549 and drug-treated H1299 with compromised cytoskeletons) were aspirated continuously through a micropipette at a pressure of -10 or -5 kPa where aspiration lengths as a function of time were obtained and translated to cytoplasmic viscosity based on a theoretical Newtonian fluid model. Quartile coefficients of dispersion were quantified to evaluate the distributions of cytoplasmic viscosity within the same cell type while neural network-based pattern recognitions were used to classify different cell types based on cytoplasmic viscosity. The single-cell cytoplasmic viscosity with three quartiles and the quartile coefficient of dispersion were quantified as 16.7 Pa s, 42.1 Pa s, 110.3 Pa s and 74% for H1299 cells at -10 kPa (n cell = 652); 144.8 Pa s, 489.8 Pa s, 1390.7 Pa s, and 81% for A549 cells at -10 kPa (n cell = 785); 7.1 Pa s, 13.7 Pa s, 31.5 Pa s, and 63% for CD-treated H1299 cells at -10 kPa (n cell = 651); and 16.9 Pa s, 48.2 Pa s, 150.2 Pa s, and 80% for H1299 cells at -5 kPa (n cell = 600), respectively. Neural network-based pattern recognition produced successful classification rates of 76.7% for H1299 versus A549, 67.0% for H1299 versus drug-treated H1299 and 50.3% for H1299 at -5 and -10 kPa. Variations of cytoplasmic viscosity were observed within the same cell type and among different cell types, suggesting the potential role of cytoplasmic viscosity in cell status evaluation and cell type classification.
Collapse
Affiliation(s)
- K. Wang
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, People's Republic of China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - X. H. Sun
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui Province, People's Republic of China
| | - Y. Zhang
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, People's Republic of China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - T. Zhang
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, People's Republic of China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Y. Zheng
- The Affiliated High School of Peking University, Beijing, People's Republic of China
| | - Y. C. Wei
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - P. Zhao
- Department of Precision Instrument, Tsinghua University, Beijing, People's Republic of China
| | - D. Y. Chen
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, People's Republic of China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - H. A. Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui Province, People's Republic of China
| | - W. H. Wang
- Department of Precision Instrument, Tsinghua University, Beijing, People's Republic of China
| | - R. Long
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA
| | - J. B. Wang
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, People's Republic of China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - J. Chen
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, People's Republic of China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
19
|
Razvag Y, Neve-Oz Y, Sherman E, Reches M. Nanoscale Topography-Rigidity Correlation at the Surface of T Cells. ACS NANO 2019; 13:346-356. [PMID: 30485065 DOI: 10.1021/acsnano.8b06366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The mechanical properties of cells affect their function, in sensing, development, and motility. However, the rigidity of the cell surface and its correlation to its local topography remain poorly understood. Here, we applied quantitative imaging AFM to capture high-resolution force maps at the surface of nonadherent T cells. Using this method, we found a positive topography-rigidity correlation at the cells' surface, as opposed to a negative correlation at the surface of adherent cells. We then used 3D single-molecule localization microscopy of the membrane and cortical actin and an actin-perturbing drug to implicate actin involvement in the positive rigidity-topography correlation in T cells. Our results clearly reveal the variability of cell-surface rigidity and its underlying mechanism, showing a functional role for cortical actin in the PM protrusions of T cells, since they are locally more rigid than their surroundings. These findings suggest the possible functional role of membrane protrusions as mechanosensors.
Collapse
Affiliation(s)
- Yair Razvag
- Institute of Chemistry , The Hebrew University , Jerusalem , 91904 , Israel
- Racah Institute of Physics , The Hebrew University , Jerusalem , 91904 , Israel
| | - Yair Neve-Oz
- Racah Institute of Physics , The Hebrew University , Jerusalem , 91904 , Israel
| | - Eilon Sherman
- Racah Institute of Physics , The Hebrew University , Jerusalem , 91904 , Israel
| | - Meital Reches
- Institute of Chemistry , The Hebrew University , Jerusalem , 91904 , Israel
| |
Collapse
|
20
|
Advances in Micropipette Aspiration: Applications in Cell Biomechanics, Models, and Extended Studies. Biophys J 2019; 116:587-594. [PMID: 30683304 DOI: 10.1016/j.bpj.2019.01.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/29/2018] [Accepted: 01/02/2019] [Indexed: 12/31/2022] Open
Abstract
With five decades of sustained application, micropipette aspiration has enabled a wide range of biomechanical studies in the field of cell mechanics. Here, we provide an update on the use of the technique, with a focus on recent developments in the analysis of the experiments, innovative microaspiration-based approaches, and applications in a broad variety of cell types. We first recapitulate experimental variations of the technique. We then discuss analysis models focusing on important limitations of widely used biomechanical models, which underpin the urge to adopt the appropriate ones to avoid misleading conclusions. The possibilities of performing different studies on the same cell are also considered.
Collapse
|
21
|
Nyberg KD, Hu KH, Kleinman SH, Khismatullin DB, Butte MJ, Rowat AC. Quantitative Deformability Cytometry: Rapid, Calibrated Measurements of Cell Mechanical Properties. Biophys J 2017; 113:1574-1584. [PMID: 28978449 DOI: 10.1016/j.bpj.2017.06.073] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 06/14/2017] [Accepted: 06/29/2017] [Indexed: 11/29/2022] Open
Abstract
Advances in methods that determine cell mechanical phenotype, or mechanotype, have demonstrated the utility of biophysical markers in clinical and research applications ranging from cancer diagnosis to stem cell enrichment. Here, we introduce quantitative deformability cytometry (q-DC), a method for rapid, calibrated, single-cell mechanotyping. We track changes in cell shape as cells deform into microfluidic constrictions, and we calibrate the mechanical stresses using gel beads. We observe that time-dependent strain follows power-law rheology, enabling single-cell measurements of apparent elastic modulus, Ea, and power-law exponent, β. To validate our method, we mechanotype human promyelocytic leukemia (HL-60) cells and thereby confirm q-DC measurements of Ea = 0.53 ± 0.04 kPa. We also demonstrate that q-DC is sensitive to pharmacological perturbations of the cytoskeleton as well as differences in the mechanotype of human breast cancer cell lines (Ea = 2.1 ± 0.1 and 0.80 ± 0.19 kPa for MCF-7 and MDA-MB-231 cells). To establish an operational framework for q-DC, we investigate the effects of applied stress and cell/pore-size ratio on mechanotype measurements. We show that Ea increases with applied stress, which is consistent with stress stiffening behavior of cells. We also find that Ea increases for larger cell/pore-size ratios, even when the same applied stress is maintained; these results indicate strain stiffening and/or dependence of mechanotype on deformation depth. Taken together, the calibrated measurements enabled by q-DC should advance applications of cell mechanotype in basic research and clinical settings.
Collapse
Affiliation(s)
- Kendra D Nyberg
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California; Department of Bioengineering, University of California, Los Angeles, California
| | - Kenneth H Hu
- Department of Physics, Stanford University, Stanford, California
| | - Sara H Kleinman
- Department of Pediatrics, Stanford University, Stanford, California
| | | | - Manish J Butte
- Department of Pediatrics, University of California, Los Angeles, California; Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California
| | - Amy C Rowat
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California; Department of Bioengineering, University of California, Los Angeles, California; UCLA Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California; Broad Stem Cell Research Center, University of California, Los Angeles, California; Center for Biological Physics, University of California, Los Angeles, California.
| |
Collapse
|
22
|
Raj A, Dixit M, Doble M, Sen AK. A combined experimental and theoretical approach towards mechanophenotyping of biological cells using a constricted microchannel. LAB ON A CHIP 2017; 17:3704-3716. [PMID: 28983550 DOI: 10.1039/c7lc00599g] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We report a combined experimental and theoretical technique that enables the characterization of various mechanical properties of biological cells. The cells were infused into a microfluidic device that comprises multiple parallel micro-constrictions to eliminate device clogging and facilitate characterization of cells of different sizes and types on a single device. The extension ratio λ and transit velocity Uc of the cells were measured using high-speed and high-resolution imaging which were then used in a theoretical model to predict the Young's modulus Ec = f(λ, Uc) of the cells. The predicted Young's modulus Ec values for three different cell lines (182 ± 34.74 Pa for MDA MB 231, 360 ± 75 Pa for MCF 10A and, 763 ± 93 Pa for HeLa) compare well with those reported in the literature from micropipette measurements and atomic force microscopy measurement within 10% and 15%, respectively. Also, the Young's modulus of MDA-MB-231 cells treated with 50 μM 4-hyrdroxyacetophenone (for localization of myosin II) for 30 min was found out to be 260 ± 52 Pa. The entry time te of cells into the micro-constrictions was predicted using the model and validated using experimentally measured data. The entry and transit behaviors of cells in the micro-constriction including cell deformation (extension ratio λ) and velocity Uc were experimentally measured and used to predict various cell properties such as the Young's modulus, cytoplasmic viscosity and induced hydrodynamic resistance of different types of cells. The proposed combined experimental and theoretical approach leads to a new paradigm for mechanophenotyping of biological cells.
Collapse
Affiliation(s)
- A Raj
- Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai-600036, India.
| | | | | | | |
Collapse
|
23
|
Eldridge WJ, Steelman ZA, Loomis B, Wax A. Optical Phase Measurements of Disorder Strength Link Microstructure to Cell Stiffness. Biophys J 2017; 112:692-702. [PMID: 28256229 DOI: 10.1016/j.bpj.2016.12.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 11/13/2016] [Accepted: 12/09/2016] [Indexed: 01/01/2023] Open
Abstract
There have been sustained efforts on the part of cell biologists to understand the mechanisms by which cells respond to mechanical stimuli. To this end, many rheological tools have been developed to characterize cellular stiffness. However, measurement of cellular viscoelastic properties has been limited in scope by the nature of most microrheological methods, which require direct mechanical contact, applied at the single-cell level. In this article, we describe, to our knowledge, a new analysis approach for quantitative phase imaging that relates refractive index variance to disorder strength, a parameter that is linked to cell stiffness. Significantly, both disorder strength and cell stiffness are measured with the same phase imaging system, presenting a unique alternative for label-free, noncontact, single-shot imaging of cellular rheologic properties. To demonstrate the potential applicability of the technique, we measure phase disorder strength and shear stiffness across five cellular populations with varying mechanical properties and demonstrate an inverse relationship between these two parameters. The existence of this relationship suggests that predictions of cell mechanical properties can be obtained from examining the disorder strength of cell structure using this, to our knowledge, novel, noncontact technique.
Collapse
Affiliation(s)
- Will J Eldridge
- Duke University, Department of Biomedical Engineering, Durham, North Carolina
| | - Zachary A Steelman
- Duke University, Department of Biomedical Engineering, Durham, North Carolina
| | - Brianna Loomis
- Duke University, Department of Biomedical Engineering, Durham, North Carolina
| | - Adam Wax
- Duke University, Department of Biomedical Engineering, Durham, North Carolina.
| |
Collapse
|
24
|
Khan ZS, Kamyabi N, Hussain F, Vanapalli SA. Passage times and friction due to flow of confined cancer cells, drops, and deformable particles in a microfluidic channel. CONVERGENT SCIENCE PHYSICAL ONCOLOGY 2017. [DOI: 10.1088/2057-1739/aa5f60] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
25
|
Mobility and shape adaptation of neutrophil in the microchannel flow. J Mech Behav Biomed Mater 2017; 69:294-300. [PMID: 28126696 DOI: 10.1016/j.jmbbm.2017.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/04/2017] [Accepted: 01/08/2017] [Indexed: 11/21/2022]
Abstract
This paper presents motion of neutrophil in a confined environment. Many experimental and theoretical studies were performed to show mechanics and basic principles of the white blood cell motion. However, they were mostly performed on flat plates without boundaries. More realistic model of flow in the capillaries based on confinement, curvature and adequate dimensions is applied in our experiments. These conditions lead to cell motion with deformability and three-dimensional character of that movement. Neutrophils are important cells for human immune system. Their motion and attachment often influence several diseases and immune response. Hence, studies focus on that particular cell type. We have shown that deformability of the cell influences its velocity. Cells actively participate in the flow using the shear gradient to advance control motion. The observed neutrophil velocity was from 1 up to 100μm/s.
Collapse
|
26
|
Modeling the Mechanosensitivity of Neutrophils Passing through a Narrow Channel. Biophys J 2016; 109:2235-45. [PMID: 26636935 DOI: 10.1016/j.bpj.2015.10.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/20/2015] [Accepted: 10/13/2015] [Indexed: 11/21/2022] Open
Abstract
Recent experiments have found that neutrophils may be activated after passing through microfluidic channels and filters. Mechanical deformation causes disassembly of the cytoskeleton and a sudden drop of the elastic modulus of the neutrophil. This fluidization is followed by either activation of the neutrophil with protrusion of pseudopods or a uniform recovery of the cytoskeleton network with no pseudopod. The former occurs if the neutrophil traverses the narrow channel at a slower rate. We propose a chemo-mechanical model for the fluidization and activation processes. Fluidization is treated as mechanical destruction of the cytoskeleton by sufficiently rapid bending. Loss of the cytoskeleton removes a pathway by which cortical tension inhibits the Rac protein. As a result, Rac rises and polarizes through a wave-pinning mechanism if the chemical reaction rate is fast enough. This leads to recovery and reinforcement of the cytoskeleton at the front of the neutrophil, and hence protrusion and activation. Otherwise the Rac signal returns to a uniform pre-deformation state and no activation occurs. Thus, mechanically induced neutrophil activation is understood as the competition between two timescales: that of chemical reaction and that of mechanical deformation. The model captures the main features of the experimental observation.
Collapse
|
27
|
Nyberg KD, Scott MB, Bruce SL, Gopinath AB, Bikos D, Mason TG, Kim JW, Choi HS, Rowat AC. The physical origins of transit time measurements for rapid, single cell mechanotyping. LAB ON A CHIP 2016; 16:3330-9. [PMID: 27435631 DOI: 10.1039/c6lc00169f] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The mechanical phenotype or 'mechanotype' of cells is emerging as a potential biomarker for cell types ranging from pluripotent stem cells to cancer cells. Using a microfluidic device, cell mechanotype can be rapidly analyzed by measuring the time required for cells to deform as they flow through constricted channels. While cells typically exhibit deformation timescales, or transit times, on the order of milliseconds to tens of seconds, transit times can span several orders of magnitude and vary from day to day within a population of single cells; this makes it challenging to characterize different cell samples based on transit time data. Here we investigate how variability in transit time measurements depends on both experimental factors and heterogeneity in physical properties across a population of single cells. We find that simultaneous transit events that occur across neighboring constrictions can alter transit time, but only significantly when more than 65% of channels in the parallel array are occluded. Variability in transit time measurements is also affected by the age of the device following plasma treatment, which could be attributed to changes in channel surface properties. We additionally investigate the role of variability in cell physical properties. Transit time depends on cell size; by binning transit time data for cells of similar diameters, we reduce measurement variability by 20%. To gain further insight into the effects of cell-to-cell differences in physical properties, we fabricate a panel of gel particles and oil droplets with tunable mechanical properties. We demonstrate that particles with homogeneous composition exhibit a marked reduction in transit time variability, suggesting that the width of transit time distributions reflects the degree of heterogeneity in subcellular structure and mechanical properties within a cell population. Our results also provide fundamental insight into the physical underpinnings of transit measurements: transit time depends strongly on particle elastic modulus, and weakly on viscosity and surface tension. Based on our findings, we present a comprehensive methodology for designing, analyzing, and reducing variability in transit time measurements; this should facilitate broader implementation of transit experiments for rapid mechanical phenotyping in basic research and clinical settings.
Collapse
Affiliation(s)
- Kendra D Nyberg
- Department of Integrative Biology and Physiology, University of California, Los Angeles, USA. and Department of Bioengineering, University of California, Los Angeles, USA
| | - Michael B Scott
- Department of Integrative Biology and Physiology, University of California, Los Angeles, USA.
| | - Samuel L Bruce
- Department of Integrative Biology and Physiology, University of California, Los Angeles, USA.
| | - Ajay B Gopinath
- Department of Integrative Biology and Physiology, University of California, Los Angeles, USA.
| | - Dimitri Bikos
- Department of Chemistry and Biochemistry, University of California, Los Angeles, USA
| | - Thomas G Mason
- Department of Chemistry and Biochemistry, University of California, Los Angeles, USA and Department of Physics and Astronomy, University of California, Los Angeles, USA
| | - Jin Woong Kim
- Department of Bionano Technology, Hanyang University, Ansan, 426-791, Republic of Korea and Department of Applied Chemistry, Hanyang University, Ansan, 426-791, Republic of Korea
| | - Hong Sung Choi
- Shinsegae International Co. Ltd, Seoul, 135-954, Republic of Korea
| | - Amy C Rowat
- Department of Integrative Biology and Physiology, University of California, Los Angeles, USA. and Department of Bioengineering, University of California, Los Angeles, USA
| |
Collapse
|
28
|
Eldridge WJ, Sheinfeld A, Rinehart MT, Wax A. Imaging deformation of adherent cells due to shear stress using quantitative phase imaging. OPTICS LETTERS 2016; 41:352-5. [PMID: 26766712 DOI: 10.1364/ol.41.000352] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We present a platform for detecting cellular deformations from mechanical stimuli, such as fluid shear stress, using rapid quantitative phase imaging. Rapid quantitative phase imaging was used to analyze changes in the optical path length of adherent skin cancer cells during mechanical displacement. Both the whole-cell phase displacement and the resultant shift of the cellular center of mass were calculated over the duration of the stimulus. Whole-cell phase displacement images were found to match expectation. Furthermore, center-of-mass shifts of adherent cells were found to resemble that of a one-dimensional Kelvin-Voigt (KV) viscoelastic solid. Cellular steady-state displacements from step fluid shear stimuli were found to be linearly related to the shear stress. Shear stiffness constants for cells exposed to a cytoskeletal disrupting toxin were found to be significantly lower than unexposed cells. This novel technique allows for elastographic analysis of whole-cell effective shear stiffness without the use of an exogenous force applicator, a specialized culture substrate, or tracking net perimeter movement of the cell.
Collapse
|
29
|
Paschall CD, Klibanov AL, Lawrence MB. Regulation of L-selectin-dependent hydrodynamic shear thresholding by leukocyte deformability and shear dependent bond number. Biorheology 2015; 52:415-32. [PMID: 26600268 DOI: 10.3233/bir-15064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND During inflammation leukocyte attachment to the blood vessel wall is augmented by capture of near-wall flowing leukocytes by previously adherent leukocytes. Adhesive interactions between flowing and adherent leukocytes are mediated by L-selectin and P-selectin Glycoprotein Ligand-1 (PSGL-1) co-expressed on the leukocyte surface and ultimately regulated by hydrodynamic shear thresholding. OBJECTIVE We hypothesized that leukocyte deformability is a significant contributory factor in shear thresholding and secondary capture. METHODS Cytochalasin D (CD) was used to increase neutrophil deformability and fixation was used to reduce deformability. Neutrophil rolling on PSGL-1 coated planar surfaces and collisions with PSGL-1 coated microbeads were analyzed using high-speed videomicroscopy (250 fps). RESULTS Increased deformability led to an increase in neutrophil rolling flux on PSGL-1 surfaces while fixation led to a decrease in rolling flux. Abrupt drops in flow below the shear threshold resulted in extended release times from the substrate for CD-treated neutrophils, suggesting increased bond number. In a cell-microbead collision assay lower flow rates were correlated with briefer adhesion lifetimes and smaller adhesive contact patches. CONCLUSIONS Leukocyte deformation may control selectin bond number at the flow rates associated with hydrodynamic shear thresholding. Model analysis supported a requirement for both L-selectin catch-slip bond properties and multiple bond formation for shear thresholding.
Collapse
Affiliation(s)
| | - Alexander L Klibanov
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.,Department of Medicine, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Michael B Lawrence
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
30
|
Goñi C, Jeldres RI, Toledo PG, Stickland AD, Scales PJ. A non-linear viscoelastic model for sediments flocculated in the presence of seawater salts. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.06.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
Mechanical aspects of microtubule bundling in taxane-treated circulating tumor cells. Biophys J 2015; 107:1236-1246. [PMID: 25185559 DOI: 10.1016/j.bpj.2014.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/15/2014] [Accepted: 07/01/2014] [Indexed: 01/23/2023] Open
Abstract
Microtubules play an important role in many cellular processes, including mitotic spindle formation and cell division. Taxane-based anticancer treatments lead to the stabilization of microtubules, thus preventing the uncontrolled proliferation of tumor cells. One of the striking physical features of taxane-treated cells is the localization of their microtubules, which can be observed via fluorescent microscopy as an intense fluorescent band and are referred to as a microtubule bundle. With the recent advances in capturing and analyzing tumor cells circulating in a patient's blood system, there is increasing interest in using these cells to examine a patient's response to treatment. This includes taxanes that are used routinely in clinics to treat prostate, breast, lung, and other cancers. Here, we have used a computational model of microtubule mechanics to investigate self-arrangement patterns of stabilized microtubules, which allowed for the identification of specific combinations of three physical parameters: microtubule stiffness, intracellular viscosity, and cell shape, that can prevent the formation of microtubule bundles in cells with stabilized microtubules, such as taxane-treated cells. We also developed a method to quantify bundling in the whole microtubule aster structure and a way to compare the simulated results to fluorescent images from experimental data. Moreover, we investigated microtubule rearrangement in both suspended and attached cells and showed that the observed final microtubule patterns depend on the experimental protocol. The results from our computational studies can explain the heterogeneous bundling phenomena observed via fluorescent immunostaining from a mechanical point of view without relying on heterogeneous cellular responses to the microtubule-stabilizing drug.
Collapse
|
32
|
Plaza GR, Uyeda TQP, Mirzaei Z, Simmons CA. Study of the influence of actin-binding proteins using linear analyses of cell deformability. SOFT MATTER 2015; 11:5435-5446. [PMID: 26059185 DOI: 10.1039/c5sm00125k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The actin cytoskeleton plays a key role in the deformability of the cell and in mechanosensing. Here we analyze the contributions of three major actin cross-linking proteins, myosin II, α-actinin and filamin, to cell deformability, by using micropipette aspiration of Dictyostelium cells. We examine the applicability of three simple mechanical models: for small deformation, linear viscoelasticity and drop of liquid with a tense cortex; and for large deformation, a Newtonian viscous fluid. For these models, we have derived linearized equations and we provide a novel, straightforward methodology to analyze the experiments. This methodology allowed us to differentiate the effects of the cross-linking proteins in the different regimes of deformation. Our results confirm some previous observations and suggest important relations between the molecular characteristics of the actin-binding proteins and the cell behavior: the effect of myosin is explained in terms of the relation between the lifetime of the bond to actin and the resistive force; the presence of α-actinin obstructs the deformation of the cytoskeleton, presumably mainly due to the higher molecular stiffness and to the lower dissociation rate constants; and filamin contributes critically to the global connectivity of the network, possibly by rapidly turning over cross-links during the remodeling of the cytoskeletal network, thanks to the higher rate constants, flexibility and larger size. The results suggest a sophisticated relationship between the expression levels of actin-binding proteins, deformability and mechanosensing.
Collapse
Affiliation(s)
- Gustavo R Plaza
- Departamento de Ciencia de Materiales, ETSI de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain.
| | | | | | | |
Collapse
|
33
|
Hendriks J, Willem Visser C, Henke S, Leijten J, Saris DB, Sun C, Lohse D, Karperien M. Optimizing cell viability in droplet-based cell deposition. Sci Rep 2015; 5:11304. [PMID: 26065378 PMCID: PMC5387118 DOI: 10.1038/srep11304] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/24/2015] [Indexed: 01/21/2023] Open
Abstract
Biofabrication commonly involves the use of liquid droplets to transport cells to the printed structure. However, the viability of the cells after impact is poorly controlled and understood, hampering applications including cell spraying, inkjet bioprinting, and laser-assisted cell transfer. Here, we present an analytical model describing the cell viability after impact as a function of the cell-surrounding droplet characteristics. The model connects (1) the cell survival as a function of cell membrane elongation, (2) the membrane elongation as a function of the cell-containing droplet size and velocity, and (3) the substrate properties. The model is validated by cell viability measurements in cell spraying, which is a method for biofabrication and used for the treatment of burn wounds. The results allow for rational optimization of any droplet-based cell deposition technology, and we include practical suggestions to improve the cell viability in cell spraying.
Collapse
Affiliation(s)
- Jan Hendriks
- Department of Developmental BioEngineering, MIRA institute for Biomedical Technology & Technical Medicine, Faculty of Science and Technology, University of Twente, The Netherlands
| | - Claas Willem Visser
- Physics of Fluids Group, MIRA institute for Biomedical Technology & Technical Medicine, Faculty of Science and Technology, J. M. Burgers Centre for Fluid Dynamics, University of Twente, The Netherlands
| | - Sieger Henke
- Department of Developmental BioEngineering, MIRA institute for Biomedical Technology & Technical Medicine, Faculty of Science and Technology, University of Twente, The Netherlands
| | - Jeroen Leijten
- Department of Developmental BioEngineering, MIRA institute for Biomedical Technology & Technical Medicine, Faculty of Science and Technology, University of Twente, The Netherlands
| | - Daniël B.F. Saris
- Department of Orthopedics, UMC Utrecht, The Netherlands
- Department of Reconstructive Medicine, MIRA institute for Biomedical Technology & Technical Medicine, Faculty of Science and Technology, University of Twente, The Netherlands
| | - Chao Sun
- Physics of Fluids Group, MIRA institute for Biomedical Technology & Technical Medicine, Faculty of Science and Technology, J. M. Burgers Centre for Fluid Dynamics, University of Twente, The Netherlands
| | - Detlef Lohse
- Physics of Fluids Group, MIRA institute for Biomedical Technology & Technical Medicine, Faculty of Science and Technology, J. M. Burgers Centre for Fluid Dynamics, University of Twente, The Netherlands
| | - Marcel Karperien
- Department of Developmental BioEngineering, MIRA institute for Biomedical Technology & Technical Medicine, Faculty of Science and Technology, University of Twente, The Netherlands
| |
Collapse
|
34
|
Zheng Y, Wen J, Nguyen J, Cachia MA, Wang C, Sun Y. Decreased deformability of lymphocytes in chronic lymphocytic leukemia. Sci Rep 2015; 5:7613. [PMID: 25573422 PMCID: PMC4287721 DOI: 10.1038/srep07613] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 12/03/2014] [Indexed: 11/09/2022] Open
Abstract
This paper reports the first study of stiffness/deformability changes of lymphocytes in chronic lymphocytic leukemia (CLL) patients, demonstrating that at the single cell level, leukemic metastasis progresses are accompanied by biophysical property alterations. A microfluidic device was utilized to electrically measure cell volume and transit time of single lymphocytes from healthy and CLL patients. The results from testing thousands of cells reveal that lymphocytes from CLL patients have higher stiffness (i.e., lower deformability), as compared to lymphocytes in healthy samples, which was also confirmed by AFM indentation tests. This observation is in sharp contrast to the known knowledge on other types of metastatic cells (e.g., breast and lung cancer cells) whose stiffness becomes lower as metastasis progresses.
Collapse
Affiliation(s)
- Yi Zheng
- 1] Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada [2] Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Jun Wen
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - John Nguyen
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Mark A Cachia
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Chen Wang
- 1] Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada [2] Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Yu Sun
- 1] Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada [2] Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada [3] Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
35
|
Tachikawa M, Mochizuki A. Nonlinearity in cytoplasm viscosity can generate an essential symmetry breaking in cellular behaviors. J Theor Biol 2015; 364:260-5. [PMID: 25261729 DOI: 10.1016/j.jtbi.2014.09.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 09/06/2014] [Accepted: 09/16/2014] [Indexed: 11/26/2022]
Abstract
The cytoplasms of ameboid cells are nonlinearly viscous. The cell controls this viscosity by modulating the amount, localization and interactions of bio-polymers. Here we investigated how the nonlinearity infers the cellular behaviors and whether nonlinearity-specific behaviors exist. We modeled the developed plasmodium of the slime mold Physarum polycephalum as a network of branching tubes and examined the linear and nonlinear viscous cytoplasm flows in the tubes. We found that the nonlinearity in the cytoplasm׳s viscosity induces a novel type of symmetry breaking in the protoplasmic flow. We also show that symmetry breaking can play an important role in adaptive behaviors, namely, connection of behavioral modes implemented on different time scales and transportation of molecular signals from the front to the rear of the cell during cellular locomotion.
Collapse
Affiliation(s)
| | - Atsushi Mochizuki
- Theoretical Biology Laboratory, RIKEN, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Japan
| |
Collapse
|
36
|
Liu F, Wu D, Chen K. A zebrafish embryo behaves both as a "cortical shell-liquid core" structure and a homogeneous solid when experiencing mechanical forces. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2014; 20:1841-1847. [PMID: 25256119 DOI: 10.1017/s1431927614013269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Mechanical properties are vital for living cells, and various models have been developed to study the mechanical behavior of cells. However, there is debate regarding whether a cell behaves more similarly to a "cortical shell-liquid core" structure (membrane-like) or a homogeneous solid (cytoskeleton-like) when experiencing stress by mechanical forces. Unlike most experimental methods, which concern the small-strain deformation of a cell, we focused on the mechanical behavior of a cell undergoing small to large strain by conducting microinjection experiments on zebrafish embryo cells. The power law with order of 1.5 between the injection force and the injection distance indicates that the cell behaves as a homogenous solid at small-strain deformation. The linear relation between the rupture force and the microinjector radius suggests that the embryo behaves as membrane-like when subjected to large-strain deformation. We also discuss the possible reasons causing the debate by analyzing the mechanical properties of F-actin filaments.
Collapse
Affiliation(s)
- Fei Liu
- 1State Key Laboratory of Mechanical Transmission,College of Mechanical Engineering,Chongqing University,Chongqing 400044,China
| | - Dan Wu
- 3Department of Mechanical Engineering,Tsinghua University,Beijing 100084,China,100084
| | - Ken Chen
- 3Department of Mechanical Engineering,Tsinghua University,Beijing 100084,China,100084
| |
Collapse
|
37
|
Plaza GR, Marí N, Gálvez BG, Bernal A, Guinea GV, Daza R, Pérez-Rigueiro J, Solanas C, Elices M. Simple measurement of the apparent viscosity of a cell from only one picture: Application to cardiac stem cells. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:052715. [PMID: 25493824 DOI: 10.1103/physreve.90.052715] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Indexed: 06/04/2023]
Abstract
Mechanical deformability of cells is a key property that influences their ability to migrate and their contribution to tissue development and regeneration. We analyze here the possibility of characterizing the overall deformability of cells by their apparent viscosity, using a simplified method to estimate that parameter. The proposed method simplifies the quantitative analysis of micropipette-aspiration experiments. We have studied by this procedure the overall apparent viscosity of cardiac stem cells, which are considered a promising tool to regenerate damaged cardiac tissue. Comparison with the apparent viscosity of low-viscosity cells such as immune-system cells suggests that treatments to reduce the viscosity of these cells could enhance their ability to repair damaged cardiac tissue.
Collapse
Affiliation(s)
- G R Plaza
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain and Departamento de Ciencia de Materiales, ETSI de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - N Marí
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain and Departamento de Ciencia de Materiales, ETSI de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - B G Gálvez
- Department of Regenerative Cardiology, Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain
| | - A Bernal
- Department of Regenerative Cardiology, Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain
| | - G V Guinea
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain and Departamento de Ciencia de Materiales, ETSI de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - R Daza
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain and Departamento de Ciencia de Materiales, ETSI de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - J Pérez-Rigueiro
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain and Departamento de Ciencia de Materiales, ETSI de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - C Solanas
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain and Departamento de Ciencia de Materiales, ETSI de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - M Elices
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain and Departamento de Ciencia de Materiales, ETSI de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| |
Collapse
|
38
|
Monocytic cells become less compressible but more deformable upon activation. PLoS One 2014; 9:e92814. [PMID: 24676335 PMCID: PMC3968036 DOI: 10.1371/journal.pone.0092814] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 02/25/2014] [Indexed: 11/29/2022] Open
Abstract
Aims Monocytes play a significant role in the development of atherosclerosis. During the process of inflammation, circulating monocytes become activated in the blood stream. The consequent interactions of the activated monocytes with the blood flow and endothelial cells result in reorganization of cytoskeletal proteins, in particular of the microfilament structure, and concomitant changes in cell shape and mechanical behavior. Here we investigate the full elastic behavior of activated monocytes in relation to their cytoskeletal structure to obtain a better understanding of cell behavior during the progression of inflammatory diseases such as atherosclerosis. Methods and Results The recently developed Capillary Micromechanics technique, based on exposing a cell to a pressure difference in a tapered glass microcapillary, was used to measure the deformation of activated and non-activated monocytic cells. Monitoring the elastic response of individual cells up to large deformations allowed us to obtain both the compressive and the shear modulus of a cell from a single experiment. Activation by inflammatory chemokines affected the cytoskeletal organization and increased the elastic compressive modulus of monocytes with 73–340%, while their resistance to shape deformation decreased, as indicated by a 25–88% drop in the cell’s shear modulus. This decrease in deformability is particularly pronounced at high strains, such as those that occur during diapedesis through the vascular wall. Conclusion Overall, monocytic cells become less compressible but more deformable upon activation. This change in mechanical response under different modes of deformation could be important in understanding the interplay between the mechanics and function of these cells. In addition, our data are of direct relevance for computational modeling and analysis of the distinct monocytic behavior in the circulation and the extravascular space. Lastly, an understanding of the changes of monocyte mechanical properties will be important in the development of diagnostic tools and therapies concentrating on circulating cells.
Collapse
|
39
|
Abstract
Microfluidic cell adhesion assays have emerged as a means to increase throughput as well as reduce the amount of costly reagents. However as dimensions of the flow chamber are reduced and approach the diameter of a cell (D(c)), theoretical models have predicted that mechanical stress, force, and torque on a cell will be amplified. We fabricated a series of microfluidic devices that have a constant width:height ratio (10:1) but with varying heights. The smallest microfluidic device (200 μm ×20 μm) requires perfusion rates as low as 40 nL/min to generate wall shear stresses of 0.5 dynes/cm(2). When neutrophils were perfused through P-selectin coated chambers at equivalent wall shear stress, rolling velocities decreased by approximately 70 % as the ratio of cell diameter to chamber height (D(c)/H) increased from 0.08 (H = 100 μm) to 0.40 (H = 20 μm). Three-dimensional numerical simulations of neutrophil rolling in channels of different heights showed a similar trend. Complementary studies with PSGL-1 coated microspheres and paraformaldehyde-fixed neutrophils suggested that changes in rolling velocity were related to cell deformability. Using interference reflection microscopy, we observed increases in neutrophil contact area with increasing chamber height (9-33 %) and increasing wall shear stress (28-56 %). Our results suggest that rolling velocity is dependent not only on wall shear stress but also on the shear stress gradient experienced by the rolling cell. These results point to the D(c)/H ratio as an important design parameter of leukocyte microfluidic assays, and should be applicable to rolling assays that involve other cell types such as platelets or cancer cells.
Collapse
|
40
|
Luo ZY, Wang SQ, He L, Lu TJ, Xu F, Bai BF. Front tracking simulation of cell detachment dynamic mechanism in microfluidics. Chem Eng Sci 2013. [DOI: 10.1016/j.ces.2013.04.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
41
|
Coumans FAW, van Dalum G, Beck M, Terstappen LWMM. Filtration parameters influencing circulating tumor cell enrichment from whole blood. PLoS One 2013; 8:e61774. [PMID: 23658615 PMCID: PMC3637225 DOI: 10.1371/journal.pone.0061774] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 03/12/2013] [Indexed: 12/23/2022] Open
Abstract
Filtration can achieve circulating tumor cell (CTC) enrichment from blood. Key parameters such as flow-rate, applied pressure, and fixation, vary largely between assays and their influence is not well understood. Here, we used a filtration system, to monitor these parameters and determine their relationships. Whole blood, or its components, with and without spiked tumor cells were filtered through track-etched filters. We characterize cells passing through filter pores by their apparent viscosity; the viscosity of a fluid that would pass with the same flow. We measured a ratio of 5·10(4)∶10(2)∶1 for the apparent viscosities of 15 µm diameter MDA-231 cells, 10 µm white cells and 90 fl red cells passing through a 5 µm pore. Fixation increases the pressure needed to pass cells through 8 µm pores 25-fold and halves the recovery of spiked tumor cells. Filtration should be performed on unfixed samples at a pressure of ∼10 mbar for a 1 cm(2) track-etched filter with 5 µm pores. At this pressure MDA-231 cells move through the filter in 1 hour. If fixation is needed for sample preservation, a gentle fixative should be selected. The difference in apparent viscosity between CTC and blood cells is key in optimizing recovery of CTC.
Collapse
Affiliation(s)
- Frank A. W. Coumans
- Medical Cell BioPhysics, MIRA Institute, University of Twente, Enschede, The Netherlands
| | - Guus van Dalum
- Medical Cell BioPhysics, MIRA Institute, University of Twente, Enschede, The Netherlands
| | - Markus Beck
- Medical Cell BioPhysics, MIRA Institute, University of Twente, Enschede, The Netherlands
| | | |
Collapse
|
42
|
Abstract
Metastasis requires the penetration of cancer cells through tight spaces, which is mediated by the physical properties of the cells as well as their interactions with the confined environment. Various microfluidic approaches have been devised to mimic traversal in vitro by measuring the time required for cells to pass through a constriction. Although a cell's passage time is expected to depend on its deformability, measurements from existing approaches are confounded by a cell's size and its frictional properties with the channel wall. Here, we introduce a device that enables the precise measurement of (i) the size of a single cell, given by its buoyant mass, (ii) the velocity of the cell entering a constricted microchannel (entry velocity), and (iii) the velocity of the cell as it transits through the constriction (transit velocity). Changing the deformability of the cell by perturbing its cytoskeleton primarily alters the entry velocity, whereas changing the surface friction by immobilizing positive charges on the constriction's walls primarily alters the transit velocity, indicating that these parameters can give insight into the factors affecting the passage of each cell. When accounting for cell buoyant mass, we find that cells possessing higher metastatic potential exhibit faster entry velocities than cells with lower metastatic potential. We additionally find that some cell types with higher metastatic potential exhibit greater than expected changes in transit velocities, suggesting that not only the increased deformability but reduced friction may be a factor in enabling invasive cancer cells to efficiently squeeze through tight spaces.
Collapse
|
43
|
Numerical simulation of passage of a neutrophil through a rectangular channel with a moderate constriction. PLoS One 2013; 8:e59416. [PMID: 23527190 PMCID: PMC3603890 DOI: 10.1371/journal.pone.0059416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 02/14/2013] [Indexed: 01/12/2023] Open
Abstract
The authors have previously presented a mathematical model to predict transit time of a neutrophil through an alveolar capillary segment which was modeled as an axisymmetric arc-shaped constriction settled in a cylindrical straight pipe to investigate the influence of entrance curvature of a capillary on passage of the cell. The axially asymmetric cross section of a capillary also influences the transit time because it requires three-dimensional deformation of a cell when it passes through the capillary and could lead to plasma leakage between the cell surface and the capillary wall. In this study, a rectangular channel was introduced, the side walls of which were moderately constricted, as a representative of axially asymmetric capillaries. Dependence of transit time of a neutrophil passing through the constriction on the constriction geometry, i.e., channel height, throat width and curvature radius of the constriction, was numerically investigated, the transit time being compared with that through the axisymmetric model. It was found that the transit time is dominated by the throat hydraulic diameter and curvature radius of the constriction and that the throat aspect ratio little affects the transit time with a certain limitation, indicating that if an appropriate curvature radius is chosen, such a rectangular channel model can be substituted for an axisymmetric capillary model having the same throat hydraulic diameter in terms of the transit time by choosing an appropriate curvature radius. Thus, microchannels fabricated by the photolithography technique, whose cross section is generally rectangular, are expected to be applicable to in vitro model experiments of neutrophil retention and passage in the alveolar capillaries.
Collapse
|
44
|
Shojaei-Baghini E, Zheng Y, Sun Y. Automated micropipette aspiration of single cells. Ann Biomed Eng 2013; 41:1208-16. [PMID: 23508635 DOI: 10.1007/s10439-013-0791-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 03/12/2013] [Indexed: 01/26/2023]
Abstract
This paper presents a system for mechanically characterizing single cells using automated micropipette aspiration. Using vision-based control and position control, the system controls a micromanipulator, a motorized translation stage, and a custom-built pressure system to position a micropipette (4 μm opening) to approach a cell, form a seal, and aspirate the cell into the micropipette for quantifying the cell's elastic and viscoelastic parameters as well as viscosity. Image processing algorithms were developed to provide controllers with real-time visual feedback and to accurately measure cell deformation behavior on line. Experiments on both solid-like and liquid-like cells demonstrated that the system is capable of efficiently performing single-cell micropipette aspiration and has low operator skill requirements.
Collapse
Affiliation(s)
- Ehsan Shojaei-Baghini
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada.
| | | | | |
Collapse
|
45
|
Khismatullin DB, Truskey GA. Leukocyte rolling on P-selectin: a three-dimensional numerical study of the effect of cytoplasmic viscosity. Biophys J 2012; 102:1757-66. [PMID: 22768931 DOI: 10.1016/j.bpj.2012.03.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 02/12/2012] [Accepted: 03/02/2012] [Indexed: 01/23/2023] Open
Abstract
Rolling leukocytes deform and show a large area of contact with endothelium under physiological flow conditions. We studied the effect of cytoplasmic viscosity on leukocyte rolling using our three-dimensional numerical algorithm that treats leukocyte as a compound droplet in which the core phase (nucleus) and the shell phase (cytoplasm) are viscoelastic fluids. The algorithm includes the mechanical properties of the cell cortex by cortical tension and considers leukocyte microvilli that deform viscoelastically and form viscous tethers at supercritical force. Stochastic binding kinetics describes binding of adhesion molecules. The leukocyte cytoplasmic viscosity plays a critical role in leukocyte rolling on an adhesive substrate. High-viscosity cells are characterized by high mean rolling velocities, increased temporal fluctuations in the instantaneous velocity, and a high probability for detachment from the substrate. A decrease in the rolling velocity, drag, and torque with the formation of a large, flat contact area in low-viscosity cells leads to a dramatic decrease in the bond force and stable rolling. Using values of viscosity consistent with step aspiration studies of human neutrophils (5-30 Pa·s), our computational model predicts the velocities and shape changes of rolling leukocytes as observed in vitro and in vivo.
Collapse
Affiliation(s)
- Damir B Khismatullin
- Department of Biomedical Engineering and Center for Computational Science, Tulane University, New Orleans, Louisiana, USA.
| | | |
Collapse
|
46
|
Cell visco-elasticity measured with AFM and optical trapping at sub-micrometer deformations. PLoS One 2012; 7:e45297. [PMID: 23028915 PMCID: PMC3446885 DOI: 10.1371/journal.pone.0045297] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 08/20/2012] [Indexed: 11/23/2022] Open
Abstract
The measurement of the elastic properties of cells is widely used as an indicator for cellular changes during differentiation, upon drug treatment, or resulting from the interaction with the supporting matrix. Elasticity is routinely quantified by indenting the cell with a probe of an AFM while applying nano-Newton forces. Because the resulting deformations are in the micrometer range, the measurements will be affected by the finite thickness of the cell, viscous effects and even cell damage induced by the experiment itself. Here, we have analyzed the response of single 3T3 fibroblasts that were indented with a micrometer-sized bead attached to an AFM cantilever at forces from 30–600 pN, resulting in indentations ranging from 0.2 to 1.2 micrometer. To investigate the cellular response at lower forces up to 10 pN, we developed an optical trap to indent the cell in vertical direction, normal to the plane of the coverslip. Deformations of up to two hundred nanometers achieved at forces of up to 30 pN showed a reversible, thus truly elastic response that was independent on the rate of deformation. We found that at such small deformations, the elastic modulus of 100 Pa is largely determined by the presence of the actin cortex. At higher indentations, viscous effects led to an increase of the apparent elastic modulus. This viscous contribution that followed a weak power law, increased at larger cell indentations. Both AFM and optical trapping indentation experiments give consistent results for the cell elasticity. Optical trapping has the benefit of a lower force noise, which allows a more accurate determination of the absolute indentation. The combination of both techniques allows the investigation of single cells at small and large indentations and enables the separation of their viscous and elastic components.
Collapse
|
47
|
Guo Q, Park S, Ma H. Microfluidic micropipette aspiration for measuring the deformability of single cells. LAB ON A CHIP 2012; 12:2687-95. [PMID: 22622288 DOI: 10.1039/c2lc40205j] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We present a microfluidic technique for measuring the deformability of single cells using the pressure required to deform such cells through micrometre-scale tapered constrictions. Our technique is equivalent to whole-cell micropipette aspiration, but involves considerably simpler operation, less specialized equipment, and less technical skill. Single cells are infused into a microfluidic channel, and then deformed through a series of funnel-shaped constrictions. The constriction openings are sized to create a temporary seal with each cell as it passes through the constriction, replicating the interaction with the orifice of a micropipette. Precisely controlled deformation pressures are generated using an external source and then attenuated 100 : 1 using an on-chip microfluidic circuit. Our apparatus is capable of generating precisely controlled pressures as small as 0.3 Pa in a closed microchannel network, which is impervious to evaporative losses that normally limit the precision of such equipment. Intrinsic cell deformability, expressed as cortical tension, is determined from the threshold deformation pressure using the liquid-drop model. We measured the deformability of several types of nucleated cells and determined the optimal range of constriction openings. The cortical tension of passive human neutrophils was measured to be 37.0 ± 4.8 pN μm(-1), which is consistent with previous micropipette aspiration studies. The cortical tensions of human lymphocytes, RT4 human bladder cancer cells, and L1210 mouse lymphoma cells were measured to be 74.7 ± 9.8, 185.4 ± 25.3, and 235.4 ± 31.0 pN μm(-1) respectively. The precision and usability of our technique demonstrates its potential as a biomechanical assay for wide-spread use in biological and clinical laboratories.
Collapse
Affiliation(s)
- Quan Guo
- Department of Mechanical Engineering, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
48
|
Biomechanics of the sarcolemma and costameres in single skeletal muscle fibers from normal and dystrophin-null mice. J Muscle Res Cell Motil 2011; 31:323-36. [PMID: 21312057 DOI: 10.1007/s10974-011-9238-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 01/11/2011] [Indexed: 01/01/2023]
Abstract
We studied the biomechanical properties of the sarcolemma and its links through costameres to the contractile apparatus in single mammalian myofibers of Extensor digitorum longus muscles isolated from wild (WT) and dystrophin-null (mdx) mice. Suction pressures (P) applied through a pipette to the sarcolemma generated a bleb, the height of which increased with increasing P. Larger increases in P broke the connections between the sarcolemma and myofibrils and eventually caused the sarcolemma to burst. We used the values of P at which these changes occurred to estimate the tensions and stiffness of the system and its individual elements. Tensions of the whole system and the sarcolemma, as well as the maximal tension sustained by the costameres, were all significantly lower (1.8-3.3 fold) in muscles of mdx mice compared to WT. Values of P at which separation and bursting occurred, as well as the stiffness of the whole system and of the isolated sarcolemma, were ~2-fold lower in mdx than in WT. Our results indicate that the absence of dystrophin reduces muscle stiffness, increases sarcolemmal deformability, and compromises the mechanical stability of costameres and their connections to nearby myofibrils.
Collapse
|
49
|
|
50
|
Modeling cell entry into a micro-channel. Biomech Model Mechanobiol 2010; 10:755-66. [PMID: 21104422 DOI: 10.1007/s10237-010-0271-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 11/08/2010] [Indexed: 10/18/2022]
Abstract
Cell entry into a micro-channel has potential applications in cell sorting and cancer diagnostics. In this paper, we numerically model breast cancer cell entry into a constricted micro-channel. Our results indicate that the cell velocity decreases during entry and increases after entry, an observation in agreement with experiments. We found that the cell entry time depend strongly on the cortical stiffness and is minimum at some critical cortical elasticity. In addition, we found that for the same entry time, a stiff nucleus is displaced toward the cell front, whereas a viscous nucleus is displaced toward the rear. In comparison, the nucleus is less sensitive to the viscosity of the cytoplasm. These observations suggest that specific intra-cellular properties can be deduced non-invasively during cell entry, through the inspection of the nucleus using suitable illumination techniques, such as fluorescent labeling.
Collapse
|