1
|
A Long Journey into the Investigation of the Structure–Dynamics–Function Paradigm in Proteins through the Activities of the Palermo Biophysics Group. BIOPHYSICA 2022. [DOI: 10.3390/biophysica2040040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
An overview of the biophysics activity at the Department of Physics and Chemistry Emilio Segrè of the University of Palermo is given. For forty years, the focus of the research has been on the protein structure–dynamics–function paradigm, with the aim of understanding the molecular basis of the relevant mechanisms and the key role of solvent. At least three research lines are identified; the main results obtained in collaboration with other groups in Italy and abroad are presented. This review is dedicated to the memory of Professors Massimo Ugo Palma, Maria Beatrice Palma Vittorelli, and Lorenzo Cordone, which were the founders of the Palermo School of Biophysics. We all have been, directly or indirectly, their pupils; we miss their enthusiasm for scientific research, their deep physical insights, their suggestions, their strict but always constructive criticisms, and, most of all, their friendship. This paper is dedicated also to the memory of Prof. Hans Frauenfelder, whose pioneering works on nonexponential rebinding kinetics, protein substates, and energy landscape have inspired a large part of our work in the field of protein dynamics.
Collapse
|
2
|
Dartigalongue T, Hache F. Calculation of the circular dichroism spectra of carbon monoxy- and deoxy myoglobin: Interpretation of a time-resolved circular dichroism experiment. J Chem Phys 2005; 123:184901. [PMID: 16292933 DOI: 10.1063/1.2041467] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A calculation of the circular dichroism (CD) spectra of carbon monoxy- and deoxy myoglobin is carried out in relation with a time-resolved CD experiment. The calculation is based on the polarizability theory and the parameters are adjusted to fit the experimental absorption and CD spectra. By performing the calculation for intermediate configurations of the protein, we are able to propose an explanation of the CD structure observed on a sub-100 ps time scale. The role of the proximal histidine is, in particular, clearly demonstrated in the first step of the myoglobin relaxation from its liganded to it deliganded form.
Collapse
Affiliation(s)
- Thibault Dartigalongue
- Laboratoire d'Optique et Biosciences-Centre National de la Recherche Scientifique-Institute National de la Sante et de la Recherche Medicale, Ecole Polytechnique, 91128 Palaiseau Cedex, France
| | | |
Collapse
|
3
|
Levantino M, Cupane A, Zimányi L, Ormos P. Different relaxations in myoglobin after photolysis. Proc Natl Acad Sci U S A 2004; 101:14402-7. [PMID: 15385677 PMCID: PMC521970 DOI: 10.1073/pnas.0406062101] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To clarify the interplay of kinetic hole-burning (KHB), structural relaxation, and ligand migration in myoglobin (Mb), we measured time-resolved absorption spectra in the Soret region after photolysis of carbon monoxide Mb (MbCO) in the temperature interval 120-260 K and in the time window 350 ns to 200 ms. The spectral contributions of both photolyzed (Mb*) and liganded Mb (MbCO) have been analyzed by taking into account homogeneous bandwidth, coupling to vibrational modes, and static conformational heterogeneity. We succeeded in separating the "time-dependent" spectral changes, and this work provides possibilities to identify the events in the process of ligand rebinding. KHB is dominant at T <190 K in both the Mb* and the MbCO components. For MbCO, conformational substates interconversion at higher temperatures tends to average out the KHB effect. At 230-260 K, whereas almost no shift is observed in the MbCO spectrum, a shift of the order of approximately 80 cm(-1) is observed in Mb*. We attribute this shift to protein relaxation coupled to ligand migration. The time dependence of the Mb* spectral shift is interpreted with a model that enables us to calculate the highly nonexponential relaxation kinetics. Fits of stretched exponentials to this kinetics yield Kohlrausch parameter values of 0.25, confirming the analogy between proteins and glasses.
Collapse
Affiliation(s)
- Matteo Levantino
- National Institute for the Physics of Matter and Department of Physical and Astronomical Sciences, University of Palermo, Via Archirafi 36, I-90123 Palermo, Italy
| | | | | | | |
Collapse
|
4
|
Fischer CJ, Gafni A, Steel DG, Schauerte JA. The triplet-state lifetime of indole in aqueous and viscous environments: significance to the interpretation of room temperature phosphorescence in proteins. J Am Chem Soc 2002; 124:10359-66. [PMID: 12197738 DOI: 10.1021/ja016609x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The interpretation of room temperature phosphorescence studies of proteins requires an understanding of the mechanisms governing the tryptophan triplet-state lifetimes of residues fully exposed to solvent and those deeply buried in the hydrophobic core of proteins. Since solvents exposed tryptophans are expected to behave similarly to indole free in solution, it is important to have an accurate measure of the triplet state lifetime of indole in aqueous solution. Using photon counting techniques and low optical fluence (J/cm(2)), we observed the triplet-state lifetime of aqueous, deoxygenated indole and several indole derivatives to be approximately 40 micros, closely matching the previous reports by Bent and Hayon based on flash photolysis (12 micros; Bent, D. V.; Hayon, E. J. Am. Chem. Soc. 1975, 97, 2612-2619) but much shorter than the 1.2 ms lifetime observed more recently (Strambini, G. B.; Gonnelli, M. J. Am. Chem. Soc. 1995, 117, 7646-7651). However, we have now been able to reproduce the long lifetime reported by the latter workers for aqueous indole solutions and show that it likely arises from geminate recombination of the indole radical cation and solvated electron, a conclusion based on studies of the indole radical cation in water (Bent and Hayon, 1975). The evidence for this comes from a fast rise in the phosphorescence emission and measurements of a corresponding enhanced quantum yield in unbuffered solutions. This species can be readily quenched, and the corresponding fast rise disappears, leaving a monoexponential 40 micros decay, which we argue is the true indole triplet lifetime. The work is put in the context of room temperature phosphorescence studies of proteins.
Collapse
Affiliation(s)
- Christopher J Fischer
- Biophysics Research Program, Applied Physics Program, Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | | | | | | |
Collapse
|
5
|
Militello V, Leone M, Cupane A, Santucci R, Desideri A. Local dynamic properties of the heme pocket in native and solvent-induced molten-globule-like states of cytochrome c. Biophys Chem 2002; 97:121-8. [PMID: 12050004 DOI: 10.1016/s0301-4622(02)00044-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We report the Soret absorption band, down to cryogenic temperature, of native and molten-globule-like state of horse heart cytochrome c. The band profile is analyzed in terms of vibronic coupling of the heme normal modes to the electronic transition in the framework of the Franck-Condon approximation. From the temperature dependence of the Gaussian broadening and of the peak position, we obtain information on the 'bath' of low frequency harmonic motions of the heme group within the heme pocket. The reported data indicate that, compared to the native state, the less rigid tertiary structure of the molten globule is reflected in a higher flexibility of the heme pocket and in greater conformational disorder, allowing the transduction of large-amplitude motion of the protein to the dynamics of the heme pocket.
Collapse
Affiliation(s)
- V Militello
- Istituto Nazionale per la Fisica della Materia and Dipartimento di Medicina Sperimentale, University of Palermo, Corso Tukory 129, Palermo, Italy.
| | | | | | | | | |
Collapse
|
6
|
Kaposi AD, Vanderkooi JM, Wright WW, Fidy J, Stavrov SS. Influence of static and dynamic disorder on the visible and infrared absorption spectra of carbonmonoxy horseradish peroxidase. Biophys J 2001; 81:3472-82. [PMID: 11721008 PMCID: PMC1301802 DOI: 10.1016/s0006-3495(01)75978-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Spectroscopy of horseradish peroxidase with and without the substrate analog, benzohydroxamic acid, was monitored in a glycerol/water solvent as a function of temperature. It was determined from the water infrared (IR) absorption that the solvent has a glass transition at 170-180 K. In the absence of substrate, both the heme optical Q(0,0) absorption band and the IR absorption band of CO bound to heme broaden markedly upon heating from 10-300 K. The Q(0,0) band broadens smoothly in the whole temperature interval, whereas the IR bandwidth is constant in the glassy matrix and increases from 7 to 16 cm(-1) upon heating above the glass transition. Binding of substrate strongly diminishes temperature broadening of both the bands. The results are consistent with the view that the substrate strongly reduces the amplitude of motions of amino acids forming the heme pocket. The main contribution to the Q(0,0) bandwidth arises from the heme vibrations that are not affected by the phase transition. The CO band thermal broadening stems from the anharmonic coupling with motions of the heme environment, which, in the glassy state, are frozen in. Unusually strong temperature broadening of the CO band is interpreted to be caused by thermal population of a very flexible excited conformational substrate. Analysis of literature data on the thermal broadening of the A(0) band of Mb(CO) (Ansari et al., 1987. Biophys. Chem. 26:337-355) shows that such a state presents itself also in myoglobin.
Collapse
Affiliation(s)
- A D Kaposi
- Institute of Biophysics and Radiation Biology, Semmelweis University of Medicine, Budapest H-1088, Hungary
| | | | | | | | | |
Collapse
|
7
|
Piro MC, Militello V, Leone M, Gryczynski Z, Smith SV, Brinigar WS, Cupane A, Friedman FK, Fronticelli C. Heme pocket disorder in myoglobin: reversal by acid-induced soft refolding. Biochemistry 2001; 40:11841-50. [PMID: 11570884 DOI: 10.1021/bi010652f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The protein folding process of heme proteins entails generation of not only a correct global polypeptide structure, but also a correct, functionally competent heme environment. We employed a variety of spectroscopic approaches to probe the structure and dynamics of the heme pocket of a recombinant sperm whale myoglobin. The conformational characteristics were examined by circular dichroism, time-resolved fluorescence spectroscopy, FTIR spectroscopy, and optical absorption spectroscopy in the temperature range 300-20 K. Each of these spectroscopic probes detected modifications confined exclusively to the heme pocket of the expressed myoglobin relative to the native protein. The functional properties were examined by measuring the kinetics of CO binding after flash-photolysis. The kinetics of the expressed myoglobin were more heterogeneous than those of the native protein. Mild acid exposure of the ferric derivative of the recombinant protein resulted in a protein with "nativelike" spectroscopic properties and homogeneous CO binding kinetics. The heme pocket modifications observed in this recombinant myoglobin do not derive from inverted heme. In contrast, when native apomyoglobin is reconstituted with the heme in vitro, the heme pocket disorder could be attributed exclusively to 180 degrees rotation of the bound heme [La Mar, G. N., Toi, H., and Krishnamoorthi, R. (1984) J. Am. Chem. Soc. 106, 6395-6401; Light, W. R., Rohlfs, R. J., Palmer, G., and Olson, J. S. (1987) J. Biol. Chem. 262, 46-52]. We conclude that exposure to low pH decreases the affinity of globin for the heme and allows an extended conformational sampling or "soft refolding" to a nativelike conformation.
Collapse
Affiliation(s)
- M C Piro
- Department of Biochemistry and Molecular Biology, University of Maryland Medical School, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Bitler A, Stavrov SS. Iron-histidine resonance Raman band of deoxyheme proteins: effects of anharmonic coupling and glass-liquid phase transition. Biophys J 1999; 77:2764-76. [PMID: 10545375 PMCID: PMC1300549 DOI: 10.1016/s0006-3495(99)77109-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Weak anharmonic coupling of two soft molecular vibrations is shown to cause pronounced temperature dependence of the corresponding resonance Raman bands. The developed theory is used to interpret the temperature dependence of the iron-histidine band of deoxyheme proteins and model compounds. It is shown that anharmonic coupling of the iron-histidine and heme doming vibrations must cause pronounced broadening of the band, its asymmetry, and shift of its maximum to the red upon heating. It also can lead to a structured shape of this band at room temperature. Proper consideration of the anharmonic coupling allows simulation of the temperature dependence of the iron-histidine band shape of horse heart myoglobin in the temperature interval of 10-300 K, using the minimum number of necessary parameters. Analysis of this temperature dependence clearly shows that the iron-histidine band of deoxyheme proteins is sensitive to the glass-liquid phase transition in the protein hydration shell, which takes place at 160-190 K.
Collapse
Affiliation(s)
- A Bitler
- Department of Physiology and Pharmacology, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | | |
Collapse
|
9
|
Falconi M, Desideri A, Cupane A, Leone M, Ciccotti G, Peterson ES, Friedman JM, Gambacurta A, Ascoli F. Structural and dynamic properties of the homodimeric hemoglobin from Scapharca inaequivalvis Thr-72-->Ile mutant: molecular dynamics simulation, low temperature visible absorption spectroscopy, and resonance Raman spectroscopy studies. Biophys J 1998; 75:2489-503. [PMID: 9788944 PMCID: PMC1299923 DOI: 10.1016/s0006-3495(98)77693-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Molecular dynamics simulations, low temperature visible absorption spectroscopy, and resonance Raman spectroscopy have been performed on a mutant of the Scapharca inaequivalvis homodimeric hemoglobin, where residue threonine 72, at the subunit interface, has been substituted by isoleucine. Molecular dynamics simulation indicates that in the Thr-72-->Ile mutant several residues that have been shown to play a role in ligand binding fluctuate around orientations and distances similar to those observed in the x-ray structure of the CO derivative of the native hemoglobin, although the overall structure remains in the T state. Visible absorption spectroscopy data indicate that in the deoxy form the Soret band is less asymmetric in the mutant than in the native protein, suggesting a more planar heme structure; moreover, these data suggest a similar heme-solvent interaction in both the liganded and unliganded states of the mutant protein, at variance with that observed in the native protein. The "conformation sensitive" band III of the deoxy mutant protein is shifted to lower energy by >100 cm-1 with respect to the native one, about one-half of that observed in the low temperature photoproducts of both proteins, indicating a less polar or more hydrophobic heme environment. Resonance Raman spectroscopy data show a slight shift of the iron-proximal histidine stretching mode of the deoxy mutant toward lower frequency with respect to the native protein, which can be interpreted in terms of either a change in packing of the phenyl ring of Phe-97, as also observed from the simulation, or a loss of water in the heme pocket. In line with this latter interpretation, the number of water molecules that dynamically enters the intersubunit interface, as calculated by the molecular dynamics simulation, is lower in the mutant than in the native protein. The 10-ns photoproduct for the carbonmonoxy mutant derivative has a higher iron-proximal histidine stretching frequency than does the native protein. This suggests a subnanosecond relaxation that is slowed in the mutant, consistent with a stabilization of the R structure. Taken together, the molecular dynamics and the spectroscopic data indicate that the higher oxygen affinity displayed by the Thr-72-->Ile mutant is mainly due to a local perturbation in the dimer interface that propagates to the heme region, perturbing the polarity of the heme environment and propionate interactions. These changes are consistent with a destabilization of the T state and a stabilization of the R state in the mutant relative to the native protein.
Collapse
Affiliation(s)
- M Falconi
- Department of Biology and INFM, University of Rome "Tor Vergata," 00133 Roma, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Lehnert U, Réat V, Weik M, Zaccaï G, Pfister C. Thermal motions in bacteriorhodopsin at different hydration levels studied by neutron scattering: correlation with kinetics and light-induced conformational changes. Biophys J 1998; 75:1945-52. [PMID: 9746535 PMCID: PMC1299865 DOI: 10.1016/s0006-3495(98)77635-0] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Bacteriorhodopsin (BR) is a transmembrane protein in the purple membrane (PM) of Halobacterium salinarum. Its function as a light-driven proton pump is associated with a cycle of photointermediates which is strongly hydration-dependent. Using energy-resolved neutron scattering, we analyzed the thermal motions (in the nanosecond-to-picosecond time range) in PM at different hydration levels. Two main populations of motions were found that responded differently to water binding. Striking correlations appeared between these "fast" motions and the "slower" kinetic constants (in the millisecond time range) of relaxations and conformational changes occurring during the photocycle.
Collapse
Affiliation(s)
- U Lehnert
- Institut de Biologie Structurale, 38027 Grenoble Cedex 1, France
| | | | | | | | | |
Collapse
|
11
|
Mansy SS, Olson JS, Gonzalez G, Gilles-Gonzalez MA. Imidazole is a sensitive probe of steric hindrance in the distal pockets of oxygen-binding heme proteins. Biochemistry 1998; 37:12452-7. [PMID: 9730817 DOI: 10.1021/bi980516j] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The FixL heme-based sensor, despite its low affinity for oxygen, is much more reactive than myoglobin toward the large polar ligand imidazole. To determine which features of a myoglobin heme pocket favor binding of imidazole, we have measured binding of this ligand to the FixL heme domain, elephant myoglobin, wild-type sperm whale myoglobin, and sperm whale myoglobins having alanine, valine, threonine, glutamine, leucine, phenylalanine, or tryptophan substitutions of the distal (E7) histidine residue. Except for histidine, the association rate constants dropped more than 3000-fold as the volume of the E7 side chain, at position 64, was expanded from alanine (10(6) M-1 s-1) to phenylalanine (10(3) M-1 s-1). There was inhibition of imidazole binding due to displacement of coordinated water from H64 and H64Q sperm whale myoglobins, where the E7 side chain hydrogen bonds directly to the bound ligand. The imidazole dissociation rate constants varied less dramatically and less consistently with any single factor, though they were measurably decreased by hydrogen bonding to an E7 glutamine or histidine. On the whole, the results for the sperm whale myoglobin E7 substitutions show that the rate constants for imidazole binding are useful and sensitive indicators of steric hindrance and polar interactions in the distal pockets of myoglobins. The combined effects of the glutamine 64 and phenylalanine 29 in elephant myoglobin largely account for its increased imidazole association and dissociation rate constants, respectively, compared to those of sperm whale myoglobin. An unhindered distal pocket not competent to stabilize positive poles is indicated by the large imidazole association (>/=10(4) M-1 s-1) and dissociation (>/=50 s-1) rate constants, parameters that are characteristic of FixL.
Collapse
Affiliation(s)
- S S Mansy
- Ohio State Biochemistry Program, Department of Biochemistry, Plant Biotechnology Center, The Ohio State University, Columbus 43210-1002, USA
| | | | | | | |
Collapse
|
12
|
Cupane A, Leone M, Unger E, Lemke C, Beck M, Dreybrodt W, Schweitzer-Stenner R. Dynamics of Various Metal-Octaethylporphyrins in Solution Studied by Resonance Raman and Low-Temperature Optical Absorption Spectroscopies. Role of the Central Metal. J Phys Chem B 1998. [DOI: 10.1021/jp980362h] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Réat V, Patzelt H, Ferrand M, Pfister C, Oesterhelt D, Zaccai G. Dynamics of different functional parts of bacteriorhodopsin: H-2H labeling and neutron scattering. Proc Natl Acad Sci U S A 1998; 95:4970-5. [PMID: 9560212 PMCID: PMC20197 DOI: 10.1073/pnas.95.9.4970] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We show that dynamics of specific amino acids within a protein can be characterized by neutron spectroscopy and hydrogen-deuterium labeling, and we present data on the motions of a selected set of groups within bacteriorhodopsin (BR), the retinal-based proton pump in the purple membrane of halophilic Archaea. Elastic incoherent neutron scattering experiments allow the definition of motions in the nano- to picosecond time scale and have revealed a dynamical transition from a harmonic to a softer, anharmonic atomic fluctuation regime in the global behavior of proteins. Biological activity in proteins is correlated with this transition, suggesting that flexibility is required for function. Elastic incoherent neutron scattering is dominated by H atom scattering, and to study the dynamics of a selected part of BR, fully deuterated purple membrane with BR containing H-retinal, H-tryptophan, and H-methionine was prepared biosynthetically in Halobacterium salinarum. These amino acids cluster in the functional center of the protein. In contrast to the protein globally, the thermal motions of the labeled atoms were found to be shielded from solvent melting effects at 260 K. Above this temperature, the labeled groups appear as more rigid than the rest of the protein, with a significantly smaller mean square amplitude of motion. These experimental results quantify the dynamical heterogeneity of BR (which meets the functional requirements of global flexibility), on the one hand, to allow large conformational changes in the molecule and of a more rigid region in the protein, on the other, to control stereo-specific selection of retinal conformations.
Collapse
Affiliation(s)
- V Réat
- Institut de Biologie Structurale Commissariat à l'Energie Atomique-Centre National de la Recherche Scientifique, 41 Avenue des Martyrs, F-38027 Grenoble Cedex 1, France
| | | | | | | | | | | |
Collapse
|
14
|
Cohen DJ, King BC, Hawkridge FM. Spectroelectrochemical and electrochemical determination of ligand binding and electron transfer properties of myoglobin, cyanomyoglobin, and imidazolemyoglobin. J Electroanal Chem (Lausanne) 1998. [DOI: 10.1016/s0022-0728(98)00020-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Di Iorio EE, Tavernelli I, Yu W. Dynamic properties of monomeric insect erythrocruorin III from Chironomus thummi-thummi: relationships between structural flexibility and functional complexity. Biophys J 1997; 73:2742-51. [PMID: 9370468 PMCID: PMC1181176 DOI: 10.1016/s0006-3495(97)78303-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have investigated the kinetics of geminate carbon monoxide binding to the monomeric component III of Chironomus thummi-thummi erythrocruorin, a protein that undergoes pH-induced conformational changes linked to a pronounced Bohr effect. Measurements were performed from cryogenic temperatures to room temperature in 75% glycerol and either 0.1 M potassium phosphate (pH 7) or 0.1 potassium borate (pH 9) after nanosecond laser photolysis. The distributions of the low temperature activation enthalpy g(H) for geminate ligand binding derived from the kinetic traces are quite narrow and are influenced by temperature both below and above approximately 170 K, the glass transition temperature. The thermal evolution of the CO binding kinetics between approximately 50 K and approximately 170 K indicates the presence of some degree of structural relaxation, even in this temperature range. Above approximately 220 K the width of the g(H) progressively decreases, and at 280 K geminate CO binding becomes exponential in time. Based on a comparison with analogous investigations of the homodimeric hemoglobin from Scapharca inaequivalvis, we propose a link between dynamic properties and functional complexity.
Collapse
Affiliation(s)
- E E Di Iorio
- Laboratorium für Biochemie I, ETH Zurich, Switzerland.
| | | | | |
Collapse
|
16
|
Cupane A, Leone M, Militello V, Friedman FK, Koley AP, Vasquez GB, Brinigar WS, Karavitis M, Fronticelli C. Modification of alpha-chain or beta-chain heme pocket polarity by Val(E11) --> thr substitution has different effects on the steric, dynamic, and functional properties of human recombinant hemoglobin. Deoxy derivatives. J Biol Chem 1997; 272:26271-8. [PMID: 9334196 DOI: 10.1074/jbc.272.42.26271] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The dynamic and functional properties of mutant deoxyhemoglobins in which either the beta-globin Val67(E11) or the alpha-globin Val62(E11) is replaced by threonine have been investigated through the thermal evolution of the Soret absorption band in the temperature range 300 to 20 K and through the kinetics of CO rebinding after flash photolysis at room temperature. The conformational properties of the modified alpha chain and beta chain distal heme pockets were also studied through x-ray crystallography and molecular modeling. The data obtained with the various techniques consistently indicate that the polar isosteric mutation in the distal side of the alpha chain heme pocket has a larger effect on the investigated properties than the analogous mutation on the beta chain. We attribute the observed differences to the presence of a water molecule in the distal heme pocket of the modified alpha chains, interacting with the hydroxyl of the threonine side chain. This is indicated by molecular modeling which showed that the water molecule present in the alpha chain distal heme pocket can bridge by H bonding between Thr62(E11) and His58(E7) without introducing any unfavorable steric interactions. Consistent with the dynamic and functional data, the presence of a water molecule in the distal heme pocket of the modified beta chains is not observed by x-ray crystallography.
Collapse
Affiliation(s)
- A Cupane
- Istituto Nazionale di Fisica della Materia (INFM) and Istituto di Fisica dell'Università, 90123 Palermo, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Schweitzer-Stenner R, Stichternath A, Dreybrodt W, Jentzen W, Song XZ, Shelnutt JA, Nielsen OF, Medforth CJ, Smith KM. Raman dispersion spectroscopy on the highly saddled nickel(II)-octaethyltetraphenylporphyrin reveals the symmetry of nonplanar distortions and the vibronic coupling strength of normal modes. J Chem Phys 1997. [DOI: 10.1063/1.474532] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
18
|
Cupane A, Bologna C, Rizzo O, Vitrano E, Cordone L. Local dynamics of DNA probed with optical absorption spectroscopy of bound ethidium bromide. Biophys J 1997; 73:959-65. [PMID: 9251812 PMCID: PMC1180992 DOI: 10.1016/s0006-3495(97)78128-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have studied the local dynamics of calf thymus double-helical DNA by means of an "optical labeling" technique. The study has been performed by measuring the visible absorption band of the cationic dye ethidium bromide, both free in solution and bound to DNA, in the temperature interval 360-30 K and in two different solvent conditions. The temperature dependence of the absorption line shape has been analyzed within the framework of the vibronic coupling theory, to extract information on the dynamic properties of the system; comparison of the thermal behavior of the absorption band of free and DNA-bound ethidium bromide gave information on the local dynamics of the double helix in the proximity of the chromophore. For the dye free in solution, large spectral heterogeneity and coupling to a "bath" of low-frequency (soft) modes is observed; moreover, anharmonic motions become evident at suitably high temperatures. The average frequency of the soft modes and the amplitude of anharmonic motions depend upon solvent composition. For the DNA-bound dye, at low temperatures, heterogeneity is decreased, the average frequency of the soft modes is increased, and anharmonic motions are hindered. However, a new dynamic regime characterized by a large increase in anharmonic motions is observed at temperatures higher than approximately 280 K. The DNA double helix therefore appears to provide, at low temperatures, a rather rigid environment for the bound chromophore, in which conformational heterogeneity is reduced and low-frequency motions (both harmonic vibrations and anharmonic contributions) are hindered. The system becomes anharmonic at approximately 180 K; however, above approximately 280 K, anharmonicity starts to increase much more rapidly than for the dye free in solution; this can be attributed to the onset of wobbling of the dye in its intercalation site, which is likely connected with the onset of (functionally relevant) DNA motions, involving local opening/unwinding of the double helix. As shown by parallel measurements of the melting curves, these motions precede the melting of the double helix and depend upon solvent composition much more than does the melting itself.
Collapse
Affiliation(s)
- A Cupane
- Istituto Nazionale di Fisica della Materia, Palermo, Italy.
| | | | | | | | | |
Collapse
|
19
|
|
20
|
Cupane A, Leone M, Cordone L, Gilch H, Dreybrodt W, Unger E, Schweitzer-Stenner R. Conformational Properties of Nickel(II) Octaethylporphyrin in Solution. 2. A Low-Temperature Optical Absorption Spectroscopy Study. ACTA ACUST UNITED AC 1996. [DOI: 10.1021/jp953304u] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Antonio Cupane
- FB1-Institut für Experimentelle Physik, Universität Bremen, 28359 Bremen, Germany, and Istituto di Fisica and INFM−GNSM, University of Palermo, I-90123 Palermo, Italy
| | - Maurizio Leone
- FB1-Institut für Experimentelle Physik, Universität Bremen, 28359 Bremen, Germany, and Istituto di Fisica and INFM−GNSM, University of Palermo, I-90123 Palermo, Italy
| | - Lorenzo Cordone
- FB1-Institut für Experimentelle Physik, Universität Bremen, 28359 Bremen, Germany, and Istituto di Fisica and INFM−GNSM, University of Palermo, I-90123 Palermo, Italy
| | - Harald Gilch
- FB1-Institut für Experimentelle Physik, Universität Bremen, 28359 Bremen, Germany, and Istituto di Fisica and INFM−GNSM, University of Palermo, I-90123 Palermo, Italy
| | - Wolfgang Dreybrodt
- FB1-Institut für Experimentelle Physik, Universität Bremen, 28359 Bremen, Germany, and Istituto di Fisica and INFM−GNSM, University of Palermo, I-90123 Palermo, Italy
| | - Esko Unger
- FB1-Institut für Experimentelle Physik, Universität Bremen, 28359 Bremen, Germany, and Istituto di Fisica and INFM−GNSM, University of Palermo, I-90123 Palermo, Italy
| | - Reinhard Schweitzer-Stenner
- FB1-Institut für Experimentelle Physik, Universität Bremen, 28359 Bremen, Germany, and Istituto di Fisica and INFM−GNSM, University of Palermo, I-90123 Palermo, Italy
| |
Collapse
|
21
|
Cupane A, Vitrano E, Ormos P, Nienhaus GU. Heme geometry in the 10 K photoproduct from sperm whale carbonmonoxymyoglobin. Biophys Chem 1996; 60:111-7. [PMID: 8679922 DOI: 10.1016/0301-4622(96)00011-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We have measured the Soret band of the photoproduct obtained by complete photolysis of sperm whale carbonmonoxymyoglobin at 10 K. The experimental spectrum has been modeled with an analytical expression that takes into account the homogeneous bandwidth, the coupling of the electronic transition with both high and low frequency vibrational modes, and the effects of static conformational heterogeneity. The comparison with deoxymyoglobin at low temperature reveals three main differences. In the photoproduct, the Soret band is shifted to red. The band is less asymmetric, and an enhanced coupling to the heme vibrational mode at 674 cm-1 is observed. These differences reflect incomplete relaxation of the active site after ligand dissociation. The smaller band asymmetry of the photoproduct can be explained by a smaller displacement of the iron atom from the mean porphyrin plane, in quantitative agreement with the X-ray structure analysis. The enhanced vibrational coupling is attributed to a subtle heme distortion from the planar geometry that is barely detectable in the X-ray structure.
Collapse
Affiliation(s)
- A Cupane
- Istituto di Fisica and INFM, University of Palermo, Italy.
| | | | | | | |
Collapse
|
22
|
Leone M, Cupane A, Cordone L. Low temperature optical spectroscopy of low-spin ferric hemeproteins. EUROPEAN BIOPHYSICS JOURNAL : EBJ 1996; 24:117-24. [PMID: 8852558 DOI: 10.1007/bf00180268] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We report the Soret absorption spectra (500-350 nm) of the cyanomet derivatives of human hemoglobin and horse myoglobin, in the temperature range 300-20 K and in two different solvents (65% v/v glycerol-water or 65% v/v ethylene glycol-water). In order to obtain information on stereodynamic properties of active site of the two hemeproteins, we perform an analysis of the band profiles within the framework of electron-vibrations coupling. This approach enables us to single out the various contributions to the spectral bandwidth, such as those arising from non-radiative decay of the excited electronic state (homogeneous broadening) and from the coupling of the electronic transition i) with high frequency modes (that determines the vibronic structure of the band) and ii) with a "bath" of low frequency modes (that is responsible for the temperature dependence of the experimental spectra). We discuss the relevant parameters and their temperature dependence and compare them with the ones already reported for other derivatives of the same hemeproteins in the same solvents. In particular, non-harmonic contributions to soft modes are found, for cyanomet derivatives, to be larger than those observed for liganded carbonmonoxy but smaller than those observed for unliganded deoxy derivatives. The reported data enable us to obtain information on the dependence of stereodynamic properties of the heme pocket upon iron oxidation state, dimensions of the exogenous ligand and composition of the external matrix.
Collapse
Affiliation(s)
- M Leone
- Istituto di Fisica dell'Università di Palermo, Italy
| | | | | |
Collapse
|
23
|
Bisig DA, Di Iorio EE, Diederichs K, Winterhalter KH, Piontek K. Crystal structure of Asian elephant (Elephas maximus) cyano-metmyoglobin at 1.78-A resolution. Phe29(B10) accounts for its unusual ligand binding properties. J Biol Chem 1995; 270:20754-62. [PMID: 7657658 DOI: 10.1074/jbc.270.35.20754] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The crystal structure of Asian elephant cyano-metmyoglobin which has a glutamine instead of the usual distal site histidine has been determined to high resolution. In addition to this replacement, the substitution of a conserved leucine residue in position 29(B10) at the distal side by a phenylalanine was unambiguously identified based on the available electron density. The suspicion, that there were errors in the original sequence which has caused some confusion, is thus confirmed. Comparison with other myoglobin structures in various ligated forms reveals an essentially unchanged tertiary structure in elephant myoglobin despite the two amino acid substitutions in the heme pocket. Our current structural model shows that the N epsilon 2 atom of Gln64(E7) has moved with respect to the corresponding nitrogen position of His64(E7) in the CO complex of sperm whale myoglobin. The newly assigned residue Phe29(B10) penetrates into the distal side of the heme pocket approaching the ligand within van der Waals distance and causing a much more crowded heme pocket compared to other myoglobins. Kinetic properties of Asian elephant myoglobin, wild type, and recombinant sperm whale myoglobins are discussed in relation to the structural consequences of the two amino acid substitutions H64Q and L29F.
Collapse
Affiliation(s)
- D A Bisig
- Laboratory of Biochemistry I, Swiss Federal Institute of Technology, CH-8092 Zürich
| | | | | | | | | |
Collapse
|
24
|
Gilch H, Dreybrodt W, Schweitzer-Stenner R. Thermal fluctuations between conformational substates of the Fe(2+)-HisF8 linkage in deoxymyoglobin probed by the Raman active Fe-N epsilon (HisF8) stretching vibration. Biophys J 1995; 69:214-27. [PMID: 7669899 PMCID: PMC1236239 DOI: 10.1016/s0006-3495(95)79893-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have measured the VFe-His Raman band of horse heart deoxymyoglobin dissolved in an aqueous solution as a function of temperature between 10 and 300 K. The minimal model to which these data can be fitted in a statistically significant and physically meaningful way comprises four different Lorentzian bands with frequencies at 197, 209, 218, and 226 cm-1, and a Gaussian band at 240 cm-1, which exhibit halfwidths between 10 and 12.5 cm-1. All these parameters were assumed to be independent of temperature. The temperature dependence of the apparent total band shape's frequency is attributed to an intensity redistribution of the subbands at omega 1 = 209 cm-1, omega 2 = 218 cm-1, and omega 3 = 226 cm-1, which are assigned to Fe-N epsilon (HisF8) stretching modes in different conformational substrates of the Fe-HisF8 linkage. They comprise different out-of-plane displacements of the heme iron. The two remaining bands at 197 and 240 cm-1 result from porphyrin modes. Their intensity ratio is nearly temperature independent. The intensity ratio I3/I2 of the vFe-His subbands exhibits a van't Hoff behavior between 150 and 300 K, bending over in a region between 150 and 80 K, and remains constant between 80 and 10 K, whereas I2/I1 shows a maximum at 170 K and approaches a constant value at 80 K. These data can be fitted by a modified van't Hoff expression, which accounts for the freezing into a non-equilibrium distribution of substates below a distinct temperature Tf and also for the linear temperature dependence of the specific heat of proteins. The latter leads to a temperature dependence of the entropic and enthalpic differences between conformational substates. The fits to the intensity ratios of the vFe-His subbands yield a freezing temperature of Tf = 117 K and a transition region of delta T = 55 K. In comparison we have utilized the above thermodynamic model to reanalyze earlier data on the temperature dependence of the ratio Ao/A1 of two subbands underlying the infrared absorption band of the CO stretching vibration in CO-ligated myoglobin (A. Ansari, J. Berendzen, D. Braunstein, B. R. Cowen, H. Frauenfelder, M. K. Kong, I. E. T. Iben, J. Johnson, P. Ormos, T. B. Sauke, R. Scholl, A. Schulte, P. J. Steinbach, R. D. Vittitow, and R. D. Young, 1987, Biophys. Chem. 26:237-335). This yields thermodynamic parameters, in particular the freezing temperature (Tf = 231 K) and the width of the transition region (AT =8 K), which are significantly different from the corresponding parameters obtained from the above vFe-His data, but very close to values describing the transition of protein bound water from a liquid into an amorphous state. These findings and earlier reported data on the temperature dependence exhibited by the Soret absorption bands of various deoxy and carbonmonoxymyoglobins led us to the conclusion that the fluctuations between conformational substates of the heme environment in carbonmonoxymyoglobin are strongly coupled to motions within the hydration shell, whereas the thermal motions between the substates of the Fe-HisF8 linkage in deoxymyoglobin proceed on an energy landscape that is mainly determined by the intrinsic properties of the protein. The latter differ from protein fluctuations monitored by Mossbauer experiments ondeoxymyoglobin crystals which exhibit a strong coupling to the protein bound water and most probably reflect a higher tier in the hierarchical arrangement of substates and equilibrium fluctuations.
Collapse
Affiliation(s)
- H Gilch
- FB1-Institut für Experimentelle Physik, Universität Bremen, Germany
| | | | | |
Collapse
|
25
|
Militello V, Cupane A, Leone M, Brinigar WS, Lu AL, Fronticelli C. Dynamic properties of some beta-chain mutant hemoglobins. Proteins 1995; 22:12-9. [PMID: 7675782 DOI: 10.1002/prot.340220103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The thermal behavior of the Soret band relative to the carbonmonoxy derivatives of some beta-chain mutant hemoglobins is studied in the temperature range 300-10 K and compared to that of wild-type carbonmonoxy hemoglobin. The band profile at various temperatures is modeled as a Voigt function that accounts for homogeneous broadening and for the coupling with high- and low-frequency vibrational modes, while inhomogeneous broadening is taken into account with a gaussian distribution of purely electronic transition frequencies. The various contributions to the over-all bandwidth are singled out with this analysis and their temperature dependence, in turn, gives information on structural and dynamic properties of the system studied. In the wild-type and mutant hemoglobins, the values of homogeneous bandwidth and of the coupling constants to high-frequency vibrational modes are not modified with respect to natural human hemoglobin, thus indicating that the local electronic and vibrational properties of the heme-CO complex are not altered by the recombinant procedures. On the contrary, differences in the protein dynamic behavior are observed. The most relevant are those relative to the "polar isosteric" beta Val-67(E11)-->Thr substitution, localized in the heme pocket, which results in decreased coupling with low-frequency modes and increased anharmonic motions. Mutations involving residue beta Lys-144(Hc1) at the C-terminal and residue beta Cys-112(G14) at the alpha 1 beta 1 interface have a smaller effect consisting in an increased coupling with low-frequency modes. Mutations at the beta-N-terminal and at the alpha 1 beta 2 interface have no effect on the dynamic properties of the same heme pocket.
Collapse
Affiliation(s)
- V Militello
- Istituto di Fisica and INFM, Università di Palermo, Italy
| | | | | | | | | | | |
Collapse
|
26
|
Saltman P. On and beyond O2 binding: hemoglobin and myoglobin revisited. EXPERIENTIA 1995; 51:205-6. [PMID: 7698278 DOI: 10.1007/bf01931095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- P Saltman
- Department of Biology, University of California, San Diego, La Jolla 92093-0322, USA
| |
Collapse
|
27
|
Cupane A, Leone M, Vitrano E, Cordone L. Low temperature optical absorption spectroscopy: an approach to the study of stereodynamic properties of hemeproteins. EUROPEAN BIOPHYSICS JOURNAL : EBJ 1995; 23:385-98. [PMID: 7729363 DOI: 10.1007/bf00196825] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In this short review we show how suitable analysis of the temperature dependence of the optical absorption spectra of metalloproteins can give insight into their stereodynamic properties in the region of the chromophore. To this end, the theory of coupling between an intense allowed electronic transition of a chromophore and Franck-Condon active vibrations of the nearby atoms is applied to the Soret band of hemeproteins to obtain an analytical expression suitable for fitting the spectral profile at various temperatures. The reported approach enables one to separate the various contributions to the overall bandwidth together with the parameters that characterize the vibrational coupling. The thermal behavior of these quantities gives information on the dynamic properties of the active site and on their dependence upon protein structure and ligation state. The Soret band of hemeproteins appears to be coupled to high frequency vibrational modes of the heme group (as already shown by resonance Raman spectroscopy) and to a "bath" of low frequency modes most likely deriving from the bulk of the protein. For the deoxy derivatives inhomogeneous broadening arising from conformational heterogeneity appears to contribute substantially to the linewidth. The data indicate the onset, at temperatures near 180 K, of large scale anharmonic motions that can be attributed to jumping among different conformational substates of the protein.
Collapse
Affiliation(s)
- A Cupane
- Istituto di Fisica dell'Università and GNSM-INFM, Palmero, Italy
| | | | | | | |
Collapse
|
28
|
Leone M, Cupane A, Militello V, Cordone L. Thermal broadening of the Soret band in heme complexes and in heme-proteins: role of iron dynamics. EUROPEAN BIOPHYSICS JOURNAL : EBJ 1994; 23:349-52. [PMID: 7835318 DOI: 10.1007/bf00188658] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We report the thermal broadening of the Soret band in heme-CO, heme-OH and protoporphyrin IX in the temperature range 300-20 K. For protoporphyrin IX the temperature dependent Gaussian line broadening follows the behavior predicted by the harmonic approximation in the entire temperature range investigated. In contrast, for heme-CO and heme-OH the harmonic behavior is obeyed only up to about 180 K and an anomalous line broadening increase is observed at higher temperatures. This effect is attributed to the onset of anharmonic motions of the iron atom with respect to the porphyrin plane. Comparison with previously reported analogous data for heme proteins enables us to suggest that the onset of substrate interconversions in these latter systems can be reflected in motions of the iron atom with respect to the porphyrin plane.
Collapse
Affiliation(s)
- M Leone
- Istituto di Fisica, Università di Palermo, Italy
| | | | | | | |
Collapse
|
29
|
Boffi A, Verzili D, Chiancone E, Leone M, Cupane A, Militello V, Vitrano E, Cordone L, Yu W, Di Iorio EE. Stereodynamic properties of the cooperative homodimeric Scapharca inaequivalvis hemoglobin studied through optical absorption spectroscopy and ligand rebinding kinetics. Biophys J 1994; 67:1713-23. [PMID: 7819503 PMCID: PMC1225533 DOI: 10.1016/s0006-3495(94)80645-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The study of the thermal evolution of the Soret band in heme proteins has proved to be a useful tool to understand their stereodynamic properties; moreover, it enables one to relate protein matrix fluctuations and functional behavior when carried out in combination with kinetic experiments on carbon monoxide rebinding after flash photolysis. In this work, we report the thermal evolution of the Soret band of deoxy, carbonmonoxy, and nitric oxide derivatives of the cooperative homodimeric Scapharca inaequivalvis hemoglobin in the temperature range 10-300 K and the carbon monoxide rebinding kinetics after flash photolysis in the temperature range 60-200 K. The two sets of results indicate that Scapharca hemoglobin has a very rigid protein structure compared with other hemeproteins. This feature is brought out i) by the absence of nonharmonic contributions to the soft modes coupled to the Soret band in the liganded derivatives, and ii) by the almost "in plane" position of the iron atom in the photoproduct obtained approximately 10(-8) s after dissociating the bound carbon monoxide molecule at 15 K.
Collapse
Affiliation(s)
- A Boffi
- CNR Center of Molecular Biology, Department of Biochemical Sciences, University La Sapienza, Roma, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|