1
|
Hossain SI, Seppelt M, Nguyen N, Stokes C, Deplazes E. The role of ion-lipid interactions and lipid packing in transient defects caused by phenolic compounds. Biophys J 2022; 121:3520-3532. [PMID: 35932150 PMCID: PMC9515000 DOI: 10.1016/j.bpj.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/19/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
The transient disruption of membranes for the passive permeation of ions or small molecules is a complex process relevant to understanding physiological processes and biotechnology applications. Phenolic compounds are widely studied for their antioxidant and antimicrobial properties, and some of these activities are based on the interactions of the phenolic compound with membranes. Ions are ubiquitous in cells and are known to alter the structure of phospholipid bilayers. Yet, ion-lipid interactions are usually ignored when studying the membrane-altering properties of phenolic compounds. This study aims to assess the role of Ca2+ ions on the membrane-disrupting activity of two phenolic acids and to highlight the role of local changes in lipid packing in forming transient defects or pores. Results from tethered bilayer lipid membrane electrical impedance spectroscopy experiments showed that Ca2+ significantly reduces membrane disruption by caffeic acid methyl ester and caffeic acid. As phenolic acids are known metal chelators, we used UV-vis and fluorescence spectroscopy to exclude the possibility that Ca2+ interferes with membrane disruption by binding to the phenolic compound and subsequently preventing membrane binding. Molecular dynamics simulations showed that Ca2+ but not caffeic acid methyl ester or caffeic acid increases lipid packing in POPC bilayers. The combined data confirm that Ca2+ reduces the membrane-disrupting activity of the phenolic compounds, and that Ca2+-induced changes to lipid packing govern this effect. We discuss our data in the context of ion-induced pores and transient defects and how lipid packing affects membrane disruption by small molecules.
Collapse
Affiliation(s)
- Sheikh I Hossain
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Mathilda Seppelt
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Natalie Nguyen
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Chelsea Stokes
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Evelyne Deplazes
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
2
|
Khadria A. Tools to measure membrane potential of neurons. Biomed J 2022; 45:749-762. [DOI: 10.1016/j.bj.2022.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/08/2022] [Accepted: 05/29/2022] [Indexed: 12/31/2022] Open
|
3
|
Garcia A, Pochinda S, Elgaard-Jørgensen PN, Khandelia H, Clarke RJ. Evidence for ATP Interaction with Phosphatidylcholine Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:9944-9953. [PMID: 31291108 DOI: 10.1021/acs.langmuir.9b01240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
ATP is a fundamental intracellular molecule and is thought to diffuse freely throughout the cytosol. Evidence obtained from nucleotide-sensing sarcolemmal ion channels and red blood cells, however, suggest that ATP is compartmentalized or buffered, especially beneath the sarcolemma, but no definitive mechanism for restricted diffusion or potential buffering system has been postulated. In this study, we provide evidence from alterations to membrane dipole potential, membrane conductance, changes in enthalpy of phospholipid phase transition, and from free energy calculations that ATP associates with phospholipid bilayers. Furthermore, all-atom molecular dynamics simulations show that ATP can form aggregates in the aqueous phase at high concentrations. ATP interaction with membranes provides a new model to understand the diffusion of ATP through the cell. Coupled with previous reports of diffusion restriction in the subsarcolemmal space, these findings support the existence of compartmentalized or buffered pools of ATP.
Collapse
Affiliation(s)
- Alvaro Garcia
- School of Life Sciences , University of Technology Sydney , Ultimo , NSW 2007 , Australia
| | - Simon Pochinda
- PHYLIFE: Physical Life Sciences at SDU, Department of Physics, Chemistry and Pharmacy and MEMPHYS: Center for Biomembrane Physics , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - Paninnguaq N Elgaard-Jørgensen
- PHYLIFE: Physical Life Sciences at SDU, Department of Physics, Chemistry and Pharmacy and MEMPHYS: Center for Biomembrane Physics , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - Himanshu Khandelia
- PHYLIFE: Physical Life Sciences at SDU, Department of Physics, Chemistry and Pharmacy and MEMPHYS: Center for Biomembrane Physics , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - Ronald J Clarke
- School of Chemistry , University of Sydney , Sydney , NSW 2006 , Australia
- The University of Sydney Nano Institute , Sydney , NSW 2006 , Australia
| |
Collapse
|
4
|
Effect of Cholesterol on the Dipole Potential of Lipid Membranes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1115:135-154. [DOI: 10.1007/978-3-030-04278-3_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Garcia A, Pratap PR, Lüpfert C, Cornelius F, Jacquemin D, Lev B, Allen TW, Clarke RJ. The voltage-sensitive dye RH421 detects a Na + ,K + -ATPase conformational change at the membrane surface. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:813-823. [DOI: 10.1016/j.bbamem.2017.01.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/09/2017] [Accepted: 01/19/2017] [Indexed: 10/20/2022]
|
6
|
Rokitskaya TI, Kosenko ID, Sivaev IB, Antonenko YN, Bregadze VI. Fast flip–flop of halogenated cobalt bis(dicarbollide) anion in a lipid bilayer membrane. Phys Chem Chem Phys 2017; 19:25122-25128. [DOI: 10.1039/c7cp04207h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Halogenation dramatically affects the flip–flop of cobalt bis(dicarbollide) across the lipid membrane causing acceleration (Cl, Br, I) or deceleration (F).
Collapse
Affiliation(s)
- Tatyana I. Rokitskaya
- Belozersky Institute of Physico-Chemical Biology
- Lomonosov Moscow State University
- Moscow 119991
- Russian Federation
| | - Irina D. Kosenko
- A. N. Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- Moscow
- Russian Federation
| | - Igor B. Sivaev
- A. N. Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- Moscow
- Russian Federation
| | - Yuri N. Antonenko
- Belozersky Institute of Physico-Chemical Biology
- Lomonosov Moscow State University
- Moscow 119991
- Russian Federation
| | - Vladimir I. Bregadze
- A. N. Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- Moscow
- Russian Federation
| |
Collapse
|
7
|
Sokolov VS, Gavrilchik AN, Kulagina AO, Meshkov IN, Pohl P, Gorbunova YG. Voltage-sensitive styryl dyes as singlet oxygen targets on the surface of bilayer lipid membrane. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 161:162-9. [PMID: 27236238 DOI: 10.1016/j.jphotobiol.2016.05.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 05/18/2016] [Indexed: 11/30/2022]
Abstract
Photosensitizers are widely used as photodynamic therapeutic agents killing cancer cells by photooxidation of their components. Development of new effective photosensitive molecules requires profound knowledge of possible targets for reactive oxygen species, especially for its singlet form. Here we studied photooxidation of voltage-sensitive styryl dyes (di-4-ANEPPS, di-8-ANEPPS, RH-421 and RH-237) by singlet oxygen on the surface of bilayer lipid membranes commonly used as cell membrane models. Oxidation was induced by irradiation of a photosensitizer (aluminum phthalocyanine tetrasulfonate) and monitored by the change of dipole potential on the surface of the membrane. We studied the drop of the dipole potential both in the case when the dye molecules were adsorbed on the same side of the lipid bilayer as the photosensitizer (cis-configuration) and in the case when they were adsorbed on the opposite side (trans-configuration). Based on a simple model, we determined the rate of oxidation of the dyes from the kinetics of change of the potential during and after irradiation. This rate is proportional to steady-state concentration of singlet oxygen in the membrane under irradiation. Comparison of the oxidation rates of various dyes reveals that compounds of ANEPPS series are more sensitive to singlet oxygen than RH type dyes, indicating that naphthalene group is primarily responsible for their oxidation.
Collapse
Affiliation(s)
- V S Sokolov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Science, Moscow, Russia.
| | - A N Gavrilchik
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Science, Moscow, Russia
| | - A O Kulagina
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Science, Moscow, Russia
| | - I N Meshkov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Science, Moscow, Russia
| | - P Pohl
- Institute of Biophysics, Johannes Kepler University Linz, Austria
| | - Yu G Gorbunova
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Science, Moscow, Russia; N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Science, Moscow, Russia
| |
Collapse
|
8
|
da Fonseca CO, Khandelia H, Salazar MD, Schönthal AH, Meireles OC, Quirico-Santos T. Perillyl alcohol: Dynamic interactions with the lipid bilayer and implications for long-term inhalational chemotherapy for gliomas. Surg Neurol Int 2016; 7:1. [PMID: 26862440 PMCID: PMC4722523 DOI: 10.4103/2152-7806.173301] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 10/26/2015] [Indexed: 01/03/2023] Open
Abstract
Background: Gliomas display a high degree of intratumor heterogeneity, including changes in physiological parameters and lipid composition of the plasma membrane, which may contribute to the development of drug resistance. Biophysical interactions between therapeutic agents and the lipid components at the outer plasma membrane interface are critical for effective drug uptake. Amphipathic molecules such as perillyl alcohol (POH) have a high partition coefficient and generally lead to altered lipid acyl tail dynamics near the lipid-water interface, impacting the lipid bilayer structure and transport dynamics. We therefore hypothesized that glioma cells may display enhanced sensitivity to POH-induced apoptosis due to plasma membrane alterations, while in non-transformed cells, POH may be expelled through thermal agitation. Methods: Interactions between POH and the plasma membrane was studied using molecular dynamics simulations. In this phase I/II trial, we set up to evaluate the clinical effectiveness of long-term (up to 5 years) daily intranasal administration of POH in a cohort of 19 patients with low-grade glioma (LGG). Importantly, in a series of clinical studies previously published by our group, we have successfully established that intranasal delivery of POH to patients with malignant gliomas is a viable and effective therapeutic strategy. Results: POH altered the plasma membrane potential of the lipid bilayer of gliomas and prolonged intranasal administration of POH in a cohort of patients with LGG halted disease progression with virtually no toxicity. Conclusion: Altogether, the results suggest that POH-induced alterations of the plasma membrane might be contributing to its therapeutic efficacy in preventing LGG progression.
Collapse
Affiliation(s)
- Clovis Orlando da Fonseca
- Department of General and Specialized Surgery, Antonio Pedro University Hospital, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Himanshu Khandelia
- Memphys-Center for Biomembrane Physics, University of Southern Denmark, Odense, Denmark
| | | | - Axel H Schönthal
- Department of Microbiology and Immunology, Keck School of Medicine, University of Southern California, California, USA
| | - Osório C Meireles
- Retired Professor from the Rio de Janeiro Federal University, Rio de Janeiro, Brazil
| | - Thereza Quirico-Santos
- Department of Cellular and Molecular Biology, Institute of Biology, Fluminense Federal University, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Mares LJ, Garcia A, Rasmussen HH, Cornelius F, Mahmmoud YA, Berlin JR, Lev B, Allen TW, Clarke RJ. Identification of electric-field-dependent steps in the Na(+),K(+)-pump cycle. Biophys J 2015; 107:1352-63. [PMID: 25229143 DOI: 10.1016/j.bpj.2014.05.054] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 04/30/2014] [Accepted: 05/16/2014] [Indexed: 01/25/2023] Open
Abstract
The charge-transporting activity of the Na(+),K(+)-ATPase depends on its surrounding electric field. To isolate which steps of the enzyme's reaction cycle involve charge movement, we have investigated the response of the voltage-sensitive fluorescent probe RH421 to interaction of the protein with BTEA (benzyltriethylammonium), which binds from the extracellular medium to the Na(+),K(+)-ATPase's transport sites in competition with Na(+) and K(+), but is not occluded within the protein. We find that only the occludable ions Na(+), K(+), Rb(+), and Cs(+) cause a drop in RH421 fluorescence. We conclude that RH421 detects intramembrane electric field strength changes arising from charge transport associated with conformational changes occluding the transported ions within the protein, not the electric fields of the bound ions themselves. This appears at first to conflict with electrophysiological studies suggesting extracellular Na(+) or K(+) binding in a high field access channel is a major electrogenic reaction of the Na(+),K(+)-ATPase. All results can be explained consistently if ion occlusion involves local deformations in the lipid membrane surrounding the protein occurring simultaneously with conformational changes necessary for ion occlusion. The most likely origin of the RH421 fluorescence response is a change in membrane dipole potential caused by membrane deformation.
Collapse
Affiliation(s)
- Laura J Mares
- School of Chemistry, University of Sydney, Sydney, Australia
| | - Alvaro Garcia
- Department of Cardiology, Royal North Shore Hospital, Sydney, Australia; Kolling Institute, University of Sydney, Sydney, Australia
| | - Helge H Rasmussen
- Department of Cardiology, Royal North Shore Hospital, Sydney, Australia; Kolling Institute, University of Sydney, Sydney, Australia
| | | | | | - Joshua R Berlin
- Department of Pharmacology and Physiology, Rutgers University, Newark, New Jersey
| | - Bogdan Lev
- School of Applied Science and Health Innovations Research Institute, REMIT University, Melbourne, Australia
| | - Toby W Allen
- School of Applied Science and Health Innovations Research Institute, REMIT University, Melbourne, Australia
| | - Ronald J Clarke
- School of Chemistry, University of Sydney, Sydney, Australia.
| |
Collapse
|
10
|
Fisher JAN, Salzberg BM. Two-Photon Excitation of Fluorescent Voltage-Sensitive Dyes: Monitoring Membrane Potential in the Infrared. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 859:427-53. [PMID: 26238063 DOI: 10.1007/978-3-319-17641-3_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Functional imaging microscopy based on voltage-sensitive dyes (VSDs) has proven effective for revealing spatio-temporal patterns of activity in vivo and in vitro. Microscopy based on two-photon excitation of fluorescent VSDs offers the possibility of recording sub-millisecond membrane potential changes on micron length scales in cells that lie upwards of one millimeter below the brain's surface. Here we describe progress in monitoring membrane voltage using two-photon excitation (TPE) of VSD fluorescence, and detail an application of this emerging technology in which action potentials were recorded in single trials from individual mammalian nerve terminals in situ. Prospects for, and limitations of this method are reviewed.
Collapse
|
11
|
Demchenko AP, Duportail G, Oncul S, Klymchenko AS, Mély Y. Introduction to fluorescence probing of biological membranes. Methods Mol Biol 2015; 1232:19-43. [PMID: 25331125 DOI: 10.1007/978-1-4939-1752-5_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Fluorescence is one of the most powerful and commonly used tools in biophysical studies of biomembrane structure and dynamics that can be applied on different levels, from lipid monolayers and bilayers to living cells, tissues, and whole animals. Successful application of this method relies on proper design of fluorescence probes with optimized photophysical properties. These probes are efficient for studying the microscopic analogs of viscosity, polarity, and hydration, as well as the molecular order, environment relaxation, and electrostatic potentials at the sites of their location. Being smaller than the membrane width they can sense the gradients of these parameters across the membrane. We present examples of novel dyes that achieve increased spatial resolution and information content of the probe responses. In this respect, multiparametric environment-sensitive probes feature considerable promise.
Collapse
Affiliation(s)
- Alexander P Demchenko
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha Street, Kiev, 01030, Ukraine,
| | | | | | | | | |
Collapse
|
12
|
Combined use of two membrane-potential-sensitive dyes for determination of the Galvani potential difference across a biomimetic oil/water interface. Anal Bioanal Chem 2014; 406:3407-14. [DOI: 10.1007/s00216-014-7776-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 03/17/2014] [Accepted: 03/17/2014] [Indexed: 11/25/2022]
|
13
|
Binding thermodynamics of a glutamate transporter homolog. Nat Struct Mol Biol 2013; 20:634-40. [PMID: 23563139 PMCID: PMC3711778 DOI: 10.1038/nsmb.2548] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 02/25/2013] [Indexed: 12/02/2022]
Abstract
Glutamate transporters catalyze concentrative uptake of the neurotransmitter into glial cells and neurons. Their transport cycle involves binding and release of the substrate on the extra- and intracellular sides of the plasma membranes, and translocation of the substrate-binding site across the lipid bilayers. The energy of the ionic gradients, mainly sodium, fuels the cycle. Here, we used a cross-linking approach to trap a glutamate transporter homologue from Pyrococcus horikoshii in key conformational states with substrate-binding site facing either the extracellular or intracellular sides of the membrane to study their binding thermodynamics. We show that the chemical potential of sodium ions in solution is exclusively coupled to substrate binding and release, and not to substrate translocation. Despite the structural symmetry, the binding mechanisms are distinct on the opposite sides of the membrane and more complex than the current models suggest.
Collapse
|
14
|
Probing the orientational distribution of dyes in membranes through multiphoton microscopy. Biophys J 2013; 103:907-17. [PMID: 23009840 DOI: 10.1016/j.bpj.2012.08.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 07/23/2012] [Accepted: 08/01/2012] [Indexed: 11/21/2022] Open
Abstract
Numerous dyes are available or under development for probing the structural and functional properties of biological membranes. Exogenous chromophores adopt a range of orientations when bound to membranes, which have a drastic effect on their biophysical behavior. Here, we present a method that employs optical anisotropy data from three polarization-imaging techniques to establish the distribution of orientations adopted by molecules in monolayers and bilayers. The resulting probability density functions, which contain the preferred molecular tilt μ and distribution breadth γ, are more informative than an average tilt angle [φ]. We describe a methodology for the extraction of anisotropy data through an image-processing technology that decreases the error in polarization measurements by about a factor of four. We use this technique to compare di-4-ANEPPS and di-8-ANEPPS, both dipolar dyes, using data from polarized 1-photon, 2-photon fluorescence and second-harmonic generation imaging. We find that di-8-ANEPPS has a lower tilt but the same distributional width. We find the distribution of tilts taken by di-4-ANEPPS in two phospholipid membrane models: giant unilamellar vesicles and water-in-oil droplet monolayers. Both models result in similar distribution functions with average tilts of 52° and 47°, respectively.
Collapse
|
15
|
Matson M, Carlsson N, Beke-Somfai T, Nordén B. Spectral properties and orientation of voltage-sensitive dyes in lipid membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:10808-10817. [PMID: 22738247 DOI: 10.1021/la301726w] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Voltage-sensitive dyes are frequently used for probing variations in the electric potential across cell membranes. The dyes respond by changing their spectral properties: measured as shifts of wavelength of absorption or emission maxima or as changes of absorption or fluorescence intensity. Although such probes have been studied and used for decades, the mechanism behind their voltage sensitivity is still obscure. We ask whether the voltage response is due to electrochromism as a result of direct field interaction on the chromophore or to solvatochromism, which is the focus of this study, as result of changed environment or molecular alignment in the membrane. The spectral properties of three styryl dyes, di-4-ANEPPS, di-8-ANEPPS, and RH421, were investigated in solvents of varying polarity and in model membranes using spectroscopy. Using quantum mechanical calculations, the spectral dependence of monomer and dimer ANEPPS on solvent properties was modeled. Also, the kinetics of binding to lipid membranes and the binding geometry of the probe molecules were found relevant to address. The spectral properties of all three probes were found to be highly sensitive to the local environment, and the probes are oriented nearly parallel with the membrane normal. Slow binding kinetics and scattering in absorption spectra indicate, especially for di-8-ANEPPS, involvement of aggregation. On the basis of the experimental spectra and time-dependent density functional theory calculations, we find that aggregate formation may contribute to the blue-shifts seen for the dyes in decanol and when bound to membrane models. In conclusion, solvatochromic and other intermolecular interactions effects also need to be included when considering electrochromic response voltage-sensitive dyes.
Collapse
Affiliation(s)
- Maria Matson
- Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | | | | | | |
Collapse
|
16
|
Osakai T, Yoshimura T, Kaneko D, Nagatani H, Son SH, Yamagishi Y, Yamada K. Potential-modulated fluorescence spectroscopy of zwitterionic and dicationic membrane-potential-sensitive dyes at the 1,2-dichloroethane/water interface. Anal Bioanal Chem 2012; 404:785-92. [PMID: 22744747 DOI: 10.1007/s00216-012-6199-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 06/10/2012] [Accepted: 06/13/2012] [Indexed: 11/25/2022]
Abstract
The previously introduced technique of potential-modulated fluorescence (PMF) spectroscopy was used to study the potential-induced fluorescence change of some different dyes at the polarized 1,2-dichloroethane (DCE)/water (W) interface. A zwitterionic dye (POLARIC 488PPS) showed a PMF response similar to that for the previously studied dye (di-4-ANEPPS) with the same ionic state, and the PMF response was likewise explained by the potential-dependent reorientation of the dye at the DCE/W interface. Though a monocationic dye (POLARIC 488PM) showed no distinct PMF signal, a dicationic dye (di-2-ANEPEQ) showed two relatively weak but detectable PMF signals at lower and higher potential. It has thus been found that the ionic state of a potential-sensitive dye strongly influences the potential-induced reorientation of the dye at the interface and consequently its PMF response. These results support the reorientation/solvatochromic mechanism proposed for "slow" dyes but do not necessarily exclude the electrochromic mechanism proposed for "fast" dyes. PMF spectroscopy would provide useful information on the design of slow dyes for the measurement of the resting potential of cell membranes.
Collapse
Affiliation(s)
- Toshiyuki Osakai
- Department of Chemistry, Graduate School of Science, Kobe University, Kobe, Japan.
| | | | | | | | | | | | | |
Collapse
|
17
|
TEWARI SHIVENDRAG. STOCHASTIC SIMULATION OF A DIMER SODIUM PUMP. J BIOL SYST 2012. [DOI: 10.1142/s0218339011003920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sodium pump is known to play an important role in almost all organs of our human body like heart, kidney, liver, brain, etc. A number of mechanisms for sodium pumping have been proposed till date, with Albers–Post Model being most widely used. Recently, Clarke proposed a two-gear dimer sodium pump model to replace the classical Albers–Post Model. This dimer model has two gears of sodium pumping depending upon the available adenosine triphosphate (ATP) concentrations. The mathematical model governing the two gears of sodium pumping overestimated the total fluorescence change of sodium pump labeled with voltage-sensitve probe RH421, which responds to electrogenic reactions of the pump, for ATP concentrations lesser than 25 μM. In this article, a modification has been proposed to the existing dimer mathematical model. Also, it is well known that stochastic chemical kinetics of enzymes has a stronger physical basis than classical reaction rate equations. Hence, the modified mathematical model is simulated using STochastic Engine for Pathway Simulation (STEPS). The stochastic results are used to perform comparative analysis with experimental and deterministic results to validate the modified model and consequently the dimeric nature of sodium pump. The modified model gave a better prediction of total fluorescence change for over all possible range of ATP concentrations. Similar approach can be used to stochastically simulate other ion pumping processes.
Collapse
Affiliation(s)
- SHIVENDRA G. TEWARI
- Systems Science and Informatics Unit, Indian Statistical Institute, Bangalore — 560 059, India
| |
Collapse
|
18
|
Comparative Analysis of Fluorescence Reporter Signals Based on Intensity, Anisotropy, Time-Resolution, and Wavelength-Ratiometry. SPRINGER SERIES ON FLUORESCENCE 2010. [DOI: 10.1007/978-3-642-04702-2_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Selective expression of a sodium pump isozyme by cough receptors and evidence for its essential role in regulating cough. J Neurosci 2009; 29:13662-71. [PMID: 19864578 DOI: 10.1523/jneurosci.4354-08.2009] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We have identified a distinct subtype of airway vagal afferent nerve that plays an essential role in regulating the cough reflex. These afferents are exquisitely sensitive to punctate mechanical stimuli, acid, and decreases in extracellular chloride concentrations, but are insensitive to capsaicin, bradykinin, histamine, adenosine, serotonin, or changes in airway intraluminal pressures. In this study we used intravital imaging, retrograde neuronal tracing, and electrophysiological analyses to characterize the structural basis for their peculiar mechanical sensitivity and to further characterize the regulation of their excitability. In completing these experiments, we uncovered evidence for an essential role of an isozyme of Na(+)-K(+) ATPase in regulating cough. These vagal sensory neurons arise bilaterally from the nodose ganglia and are selectively and brilliantly stained intravitally with the styryl dye FM2-10. Cough receptor terminations are confined and adherent to the extracellular matrix separating the airway epithelium and smooth muscle layers, a site of extensive remodeling in asthma and chronic obstructive pulmonary disease. The cough receptor terminals uniquely express the alpha(3) subunit of Na(+)-K(+) ATPase. Intravital staining of cough receptors by FM2-10, cough receptor excitability in vitro, and coughing in vivo are potently and selectively inhibited by the sodium pump inhibitor ouabain. These data provide the first detailed morphological description of the peripheral terminals of the sensory nerves regulating cough and identify a selective molecular target for their modulation.
Collapse
|
20
|
Potential-modulated fluorescence spectroscopy of the membrane potential-sensitive dye di-4-ANEPPS at the 1,2-dichloroethane/water interface. Anal Bioanal Chem 2009; 395:1055-61. [DOI: 10.1007/s00216-009-2915-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 06/10/2009] [Accepted: 06/12/2009] [Indexed: 10/20/2022]
|
21
|
Yao H, Yamashita M, Kimura K. Organic styryl dye nanoparticles: synthesis and unique spectroscopic properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:1131-1137. [PMID: 19086783 DOI: 10.1021/la802879e] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We report the synthesis and unique spectroscopic properties of organic styryl dye nanoparticles. Aqueous-phase ion association between a cationic styryl dye 2-(4-(dimethylamino)styryl)-1-ethylpyridinium (DASPE), possessing both electron donor and acceptor groups in its molecule, and tetraphenylborate (TPB) or tetrakis(4-fluorophenyl)borate (TFPB) anion, in the presence of poly(vinylpyrrolidone), produces the ion-based dye (DASPE) nanoparticles of approximately 30-100 nm in diameter. Absorption spectra of the DASPE nanoparticles show a large bathochromic shift in comparison with that of the dye monomer in water. Quantum chemical calculations demonstrate that ion-pair formation brings about a large internal rotation around a single bond in DASPE, and this internal twisting as well as local polarity of the counteranion have a strong influence on the red shift of the optical spectra. Furthermore, nanoparticle formation results in enhanced fluorescence of DASPE: more than a 20-fold enhancement in the fluorescence quantum yield as compared to that of the dye monomer in water, giving a new methodology for the synthesis of fluorescent organic nanoparticles. The observed fluorescence would come from an intramolecular charge-transfer (ICT) excited state stabilized by the matrix of TPB or TFPB, and the enhancement is due to both the high rotational resistance for the single bond in DASPE and the matrix polarity effect that can suppress the nonradiative processes.
Collapse
Affiliation(s)
- Hiroshi Yao
- Graduate School of Material Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo, 678-1297 Japan.
| | | | | |
Collapse
|
22
|
Korbakov N, Timmerman P, Lidich N, Urbach B, Sa'ar A, Yitzchaik S. Acetylcholine detection at micromolar concentrations with the use of an artificial receptor-based fluorescence switch. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:2580-2587. [PMID: 18266394 DOI: 10.1021/la703010z] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
An inclusion complex between water-soluble p-sulfocalix[n]arene (Cn, n=4, 6, 8) and the chromophore trans-4-[4-(dimethylamino)styryl]-1-methylpyridinium-p-toluenesulfonate (D) formed the basis for a highly sensitive sensor for the selective detection of neurotransmitter acetylcholine (ACh). Formation of the [Cn.D] complex (Ka=approximately 10(5) M(-1)) was accompanied by a drastic increase (up to 20-60-fold) in the chromophore relative quantum yield and by a large hypsochromic shift of the emission band maximum. The observed optical effects are fully reversible: ACh displaces the chromophore molecules from the calixarene cavity as shown by the reappearance of the free chromophore emission band. Formation and dissociation of the complex were studied by fluorescence, 1H NMR, and UV-vis absorption spectroscopies. The [Cn.D] complex is capable of sensing ACh selectively in solution at sub-micromolar concentrations. Immobilization of monocarboxyl p-sulfocalix[4]arene (C4m) on an oxide-containing silicon surface is in keeping with its properties, such as chromophore binding and the ability of the immobilized inclusion complex to detect ACh. The unique [Cn.D] complex optical switching paves the way for application in ACh imaging and optoelectronic sensing.
Collapse
Affiliation(s)
- Nina Korbakov
- The Chemistry Institute and the Farkas Center for Light Induced Processes and Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | | | |
Collapse
|
23
|
Moyano F, Silber JJ, Correa NM. On the investigation of the bilayer functionalities of 1,2-di-oleoyl-sn-glycero-3-phosphatidylcholine (DOPC) large unilamellar vesicles using cationic hemicyanines as optical probes: A wavelength-selective fluorescence approach. J Colloid Interface Sci 2008; 317:332-45. [DOI: 10.1016/j.jcis.2007.09.051] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 09/14/2007] [Accepted: 09/15/2007] [Indexed: 11/30/2022]
|
24
|
Le Goff G, Vitha MF, Clarke RJ. Orientational polarisability of lipid membrane surfaces. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:562-70. [PMID: 17178101 DOI: 10.1016/j.bbamem.2006.10.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Revised: 10/11/2006] [Accepted: 10/31/2006] [Indexed: 10/23/2022]
Abstract
Here we present a fluorescence method based on the Stokes shift of the voltage-sensitive dye di-8-ANEPPS to quantify the orientational polarisability of lipid membrane surfaces, i.e. the polarisability due to molecular reorientation. Di-8-ANEPPS is already an established probe of membrane dipole potential. Its use, therefore, as a probe of both the dipole potential and orientational polarisability allows a direct comparison of these two properties in an identical region of the lipid bilayer. We applied the new technique on phosphatidylcholine vesicles to study the effects of different degrees of hydrocarbon saturation and of the incorporation of cholesterol and some of its oxidized derivatives. We found that lipids with unsaturated chains had a lower orientational polarisability than those with saturated chains. This could be explained by a reduction in membrane dipole potential as a result of a decrease in lipid packing density. Cholesterol derivatives were found to either increase or decrease the orientational polarisability depending on their molecular structure. The varying effects could be explained by antagonistic effects of the dipole potential and membrane order, which are both changed to varying degrees by the cholesterol derivatives and which lead to increases and decreases in orientational polarisability, respectively.
Collapse
Affiliation(s)
- Gaëlle Le Goff
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| | | | | |
Collapse
|
25
|
Abstract
Optical techniques have revolutionized the investigation of cardiac cellular physiology and advanced our understanding of basic mechanisms of electrical activity, calcium homeostasis, and metabolism. Although optical methods are widely accepted and have been at the forefront of scientific discoveries, they have been primarily applied at cellular and subcellular levels and considerably less to whole heart organ physiology. Numerous technical difficulties had to be overcome to dynamically map physiological processes in intact hearts by optical methods. Problems of contraction artifacts, cellular heterogeneities, spatial and temporal resolution, limitations of surface images, depth-of-field, and need for large fields of view (ranging from 2x2 mm2 to 3x3 cm2) have all led to the development of new devices and optical probes to monitor physiological parameters in intact hearts. This review aims to provide a critical overview of current approaches, their contributions to the field of cardiac electrophysiology, and future directions of various optical imaging modalities as applied to cardiac physiology at organ and tissue levels.
Collapse
Affiliation(s)
- Igor R Efimov
- Case Western Reserve University, 10900 Euclid Ave, Cleveland, Ohio 44106-7207, USA.
| | | | | |
Collapse
|
26
|
Klymchenko AS, Duportail G, Mély Y, Demchenko AP. Ultrasensitive two-color fluorescence probes for dipole potential in phospholipid membranes. Proc Natl Acad Sci U S A 2003; 100:11219-24. [PMID: 12972636 PMCID: PMC208738 DOI: 10.1073/pnas.1934603100] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The principle of electrochromic modulation of excited-state intramolecular proton-transfer reaction was applied for the design of fluorescence probes with high two-color sensitivity to dipole potential, Psid, in phospholipid bilayers. We report on the effect of Psid variation on excitation and fluorescence spectra of two new 3-hydroxyflavone probes, which possess opposite orientations of the fluorescent moiety in the lipid bilayer. The dipole potential in the bilayer was modulated by the addition of 6-ketocholestanol or phloretin and by substitution of dimyristoyl phosphatidylcholine lipid with its ether analog 1,2-di-o-tetradecyl-sn-glycero-3-phosphocholine, and its value was estimated by the reference styryl dye 1-(3-sulfonatopropyl)-4-[beta[2-(di-n-octylamino)-6-naphthyl]vinyl]pyridinium betaine. We demonstrate that after Psid changes, the probe orienting in the bilayer similarly to the reference dye shows similar shifts in the excitation spectra, whereas the probe with the opposite orientation shows the opposite shifts. The new observation is that the response of 3-hydroxyflavone probes to Psid in excitation spectra is accompanied by and quantitatively correlated with dramatic changes of relative intensities of the two well separated emission bands that belong to the initial normal and the product tautomer forms of the excited-state intramolecular proton-transfer reaction. This provides a strong response to Psid by change in emission color.
Collapse
Affiliation(s)
- Andrey S Klymchenko
- TUBITAK Research Institute for Genetic Engineering and Biotechnology, Gebze-Kocaeli 41470, Turkey
| | | | | | | |
Collapse
|
27
|
Laage D, Thompson WH, Blanchard-Desce M, Hynes JT. Charged Push−Pull Polyenes in Solution: Anomalous Solvatochromism and Nonlinear Optical Properties. J Phys Chem A 2003. [DOI: 10.1021/jp0276597] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Damien Laage
- Département de Chimie, CNRS UMR 8640 PASTEUR, Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris Cedex 05, France, and Department of Chemistry, University of Kansas, Lawrence, Kansas 66045-7582, and CNRS UMR 6510 SESO, Université de Rennes I, Campus de Beaulieu, 263 Av. du Général Leclerc, 35042 Rennes, France, and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215
| | - Ward H. Thompson
- Département de Chimie, CNRS UMR 8640 PASTEUR, Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris Cedex 05, France, and Department of Chemistry, University of Kansas, Lawrence, Kansas 66045-7582, and CNRS UMR 6510 SESO, Université de Rennes I, Campus de Beaulieu, 263 Av. du Général Leclerc, 35042 Rennes, France, and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215
| | - Mireille Blanchard-Desce
- Département de Chimie, CNRS UMR 8640 PASTEUR, Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris Cedex 05, France, and Department of Chemistry, University of Kansas, Lawrence, Kansas 66045-7582, and CNRS UMR 6510 SESO, Université de Rennes I, Campus de Beaulieu, 263 Av. du Général Leclerc, 35042 Rennes, France, and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215
| | - James T. Hynes
- Département de Chimie, CNRS UMR 8640 PASTEUR, Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris Cedex 05, France, and Department of Chemistry, University of Kansas, Lawrence, Kansas 66045-7582, and CNRS UMR 6510 SESO, Université de Rennes I, Campus de Beaulieu, 263 Av. du Général Leclerc, 35042 Rennes, France, and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215
| |
Collapse
|
28
|
Passechnik VI, Sokolov VS. Estimation of electrochrome dyes position in the bilayer through the 2nd harmonic of capacitive current. Bioelectrochemistry 2002; 55:47-51. [PMID: 11786338 DOI: 10.1016/s1567-5394(01)00167-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The depth of location of electrochrome dyes RH-type in a bilayer is evaluated using the magnitudes of intramembrane field Delta phi measured by two methods: from relative change of the rate of transmembrane transport of hydrophobic ions and by means of electrostriction method based on the compensation of the 2nd harmonic of capacitive current, which is generated due to electrostriction phenomenon if sine voltage is applied to the bilayer. The experiments and theoretical analysis are conducted. Comparing the theoretical curves for Delta phi measured by the both methods and the experimental data, the depth of location was estimated as follows: 0.7-1 nm for the dyes RH-421 and RH-160, and 0.9-1.15 nm for the dye RH-237.
Collapse
Affiliation(s)
- Victor I Passechnik
- Scientific Research Centre ELDIS of IRE RAS, Starosadskii bstr. 8, 101000 Moscow, Russia.
| | | |
Collapse
|
29
|
Duportail G, Klymchenko A, Mely Y, Demchenko A. Neutral fluorescence probe with strong ratiometric response to surface charge of phospholipid membranes. FEBS Lett 2001; 508:196-200. [PMID: 11718715 DOI: 10.1016/s0014-5793(01)03055-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We report on dramatic differences in fluorescence spectra of 4'-dimethylamino-3-hydroxyflavone (probe F) studied in phospholipid membranes of different charge (phosphatidyl glycerol, phosphatidylcholine (PC), their mixture and the mixture of PC with a cationic lipid). The effect consists in variations of relative intensities at two well-separated band maxima at 520 and 570 nm belonging to normal (N*) and tautomer (T*) excited states of flavone chromophore. Based on these studies we propose a new approach to measure electrostatic potential at the surface layer of phospholipid membranes, which is based on potential-dependent changes of bilayer hydration and involves very sensitive and convenient ratiometric measurements in fluorescence emission.
Collapse
Affiliation(s)
- G Duportail
- Laboratoire de Pharmacologie et Physicochimie, UMR 7034 du CNRS, Faculté de Pharmacie, Université Louis Pasteur, Illkirch, France
| | | | | | | |
Collapse
|
30
|
Clarke RJ. The dipole potential of phospholipid membranes and methods for its detection. Adv Colloid Interface Sci 2001; 89-90:263-81. [PMID: 11215797 DOI: 10.1016/s0001-8686(00)00061-0] [Citation(s) in RCA: 210] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The dipole potential is an electrical potential within phospholipid membranes, which arises because of the alignment of dipolar residues of the lipids and/or water dipoles in the region between the aqueous phases and the hydrocarbon-like interior of the membrane. For a fully saturated phosphatidylcholine membrane, its value is believed to be in the range 220-280 mV, positive in the membrane interior. This results in an enormous electric field strength within the membrane of 10(8)-10(9) Vm(-1). The dipole potential is thus likely to have great significance in controlling the conformation of ion-translocating membrane proteins and so in regulating enzyme function. Because of its location within the membrane, quantification of the dipole potential is extremely difficult and presents a great challenge to the experimentalist and theoretician alike. Both electrical and spectroscopic methods developed for the determination of the dipole potential on lipid bilayers and monolayers are presented and possible causes for differences in the values derived are discussed.
Collapse
Affiliation(s)
- R J Clarke
- Division of Physical and Theoretical Chemistry, School of Chemistry, University of Sydney, New South Wales, Australia.
| |
Collapse
|
31
|
Fast VG, Ideker RE. Simultaneous optical mapping of transmembrane potential and intracellular calcium in myocyte cultures. J Cardiovasc Electrophysiol 2000; 11:547-56. [PMID: 10826934 DOI: 10.1111/j.1540-8167.2000.tb00008.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Fast spatially resolved measurements of transmembrane potential (Vm) and intracellular calcium (Ca(i)2+) are important for studying mechanisms of arrhythmias and defibrillation. The goals of this work were (1) to develop an optical technique for simultaneous multisite optical recordings of Vm and Ca(i)2+, and (2) to determine the relationship between Vm and Ca(i)2+ during normal impulse propagation in myocyte cultures. METHODS AND RESULTS Monolayers of neonatal rat myocytes were stained with fluorescent dye RH-237 (Vm) and Fluo-3AM (Ca(i)2+). Both dyes were excited at the same wavelength range. The emitted fluorescence was optically separated into components corresponding to changes in Vm and Ca(i)2+ and measured using two 16 x 16 photodiode arrays at a spatial resolution of up to 27.5 microm per diode and sampling rate of 2.5 kHz. The optical setup was adjusted so that there was no optical cross-talk between the two types of measurements, which was validated in experiments involving staining with either RH-237 or Fluo-3. The amplitude of Fluo-3 signals rapidly decreased during experiments due to dye leakage. Dye leakage was substantially reduced by application of 1 mM probenecid, a blocker of organic anion transport, which had no effect on action potential duration and only minor effect on conduction velocity. In double-stained preparations, during regular pacing Ca(i)2+ transients had a rise time of 14.2 +/- 2 msec, and they followed Vm upstrokes with a delay of 5.3 +/- 1 msec (n = 9). Durations of Vm and Ca(i)2+ transients determined at 50% level of signal recovery were 54.6 +/- 10 msec and 136 +/- 8 msec, respectively. Application of 2 microM nifedipine reduced the amplitude and duration of Ca(i)2+ transients without significantly affecting conduction velocity. CONCLUSION The results demonstrate feasibility of simultaneous optical recordings of Vm and Ca(i)2+ transients with high spatial and temporal resolution.
Collapse
Affiliation(s)
- V G Fast
- Department of Biomedical Engineering, University of Alabama at Birmingham, 35294, USA.
| | | |
Collapse
|
32
|
Abstract
Charged lipids constitute a substantial fraction of all membrane lipids. Their charges vary in quantity and distribution within their headgroup regions. In long range interactions, their charges' value and electrostatic potential in the vicinity of the membrane surface can be approximated by the Guy-Chapman theory. This theory treats the interface as a charged structureless plain surrounded by uniform environments. However, if one considers intermolecular interactions, such assumptions need to be revised. The interface is in reality a thick region containing the residual charges of lipid headgroups. Their arrangement depends on the type of lipid present in the membrane. The variety of lipids and their biological functions suggests that charge distribution determines the extent and type of interaction with surface associated molecules. Numerous examples show that protein behavior at the lipid bilayer surface is determined by the type of lipid present, indicating protein specificity towards certain surface locations and local properties (determined by lipid composition) of a particular type. Such specificity is achieved by a combination of electrostatic, hydrophobic and enthropic effects. Comparing lipid biological activity, it can be stated that residual charge distribution is one of the factors of intermolecular recognition leading to the specific interaction of lipid molecules and selected proteins in various processes, particularly those involved with signal transduction pathways. Such specificity enables a variety of processes occurring simultaneously on the same membrane surface to function without cross-reaction interference.
Collapse
Affiliation(s)
- M Langner
- Department of Physics and Biophysics, Agricultural University, Wrocław, Poland.
| | | |
Collapse
|
33
|
Clarke RJ, Lüpfert C. Influence of anions and cations on the dipole potential of phosphatidylcholine vesicles: a basis for the Hofmeister effect. Biophys J 1999; 76:2614-24. [PMID: 10233076 PMCID: PMC1300231 DOI: 10.1016/s0006-3495(99)77414-x] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Anions and cations have long been recognized to be capable of modifying the functioning of various membrane-related physiological processes. Here, a fluorescent ratio method using the styrylpyridinium dyes, RH421 and di-8-ANEPPS, was applied to determine the effect of a range of anions and cations on the intramembrane dipole potential of dimyristoylphosphatidylcholine vesicles. It was found that certain anions cause a decrease in the dipole potential. This could be explained by binding within the membrane, in support of a hypothesis originally put forward by A. L. Hodgkin and P. Horowicz [1960, J. Physiol. (Lond.) 153:404-412.] The effectiveness of the anions in reducing the dipole potential was found to be ClO4- > SCN- > I- > NO3- > Br- > Cl- > F- > SO42-. This order could be modeled by a partitioning of ions between the membrane and the aqueous phase, which is controlled predominantly by the Gibbs free energy of hydration. Cations were also found to be capable of reducing the dipole potential, although much less efficiently than can anions. The effects of the cations was found to be trivalent > divalent > monovalent. The cation effects were attributed to binding to a specific polar site on the surface of the membrane. The results presented provide a molecular basis for the interpretation of the Hofmeister effect of lyotropic anions on ion transport proteins.
Collapse
Affiliation(s)
- R J Clarke
- Department of Biophysical Chemistry, Max-Planck-Institut für Biophysik, Kennedyallee 70, D-60596 Frankfurt am Main, Germany
| | | |
Collapse
|
34
|
|
35
|
Fluorescence of organic dyes in lipid membranes: Site of solubilization and effects of viscosity and refractive index on lifetimes. J Fluoresc 1998. [DOI: 10.1007/bf02758241] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
36
|
Rakowski RF, Bezanilla F, De Weer P, Gadsby DC, Holmgren M, Wagg J. Charge translocation by the Na/K pump. Ann N Y Acad Sci 1997; 834:231-43. [PMID: 9405811 DOI: 10.1111/j.1749-6632.1997.tb52254.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- R F Rakowski
- Department of Physiology and Biophysics, Finch University of Health Sciences, Chicago Medical School, Illinois 60064, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Clarke RJ. Effect of lipid structure on the dipole potential of phosphatidylcholine bilayers. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1327:269-78. [PMID: 9271269 DOI: 10.1016/s0005-2736(97)00075-8] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A fluorescent ratio method utilizing styrylpyridinium dyes has recently been suggested for the measurement of the membrane dipole potential. Up to now only qualititative measurements have been possible. Here the fluorescence excitation ratio of the dye di-8-ANEPPS has been measured in lipid vesicles composed of a range of saturated and unsaturated phosphatidylcholines. It has been found that the fluorescence ratio is inversely proportional to the surface area occupied by the lipid in its fully hydrated state. This finding allows, by extra- and interpolation, the packing density to be estimated of phosphatidylcholines for which X-ray crystallographic data are not yet available. Comparison of the fluorescence data with literature data of the dipole potential from electrical measurements on monolayers and bilayers allows a calibration curve to be constructed, so that a quantitative determination of the dipole potential using di-8-ANEPPS is possible. It has been found that the value of the dipole potential decreases with increasing unsaturation and, in the case of unsaturated lipids, with increasing length of the hydrocarbon chains. This effect can be explained by the effects of chain packing on the spacing between the headgroups. In addition to the effects of lipid structure on membrane fluidity, these measurements demonstrate the possibility of a direct electrical mechanism for lipid regulation of protein function, in particular of ion transport proteins.
Collapse
Affiliation(s)
- R J Clarke
- Department of Biophysical Chemistry, Max-Planck-Institut für Biophysik, Frankfurt am Main, Germany.
| |
Collapse
|
38
|
Clarke RJ, Kane DJ. Optical detection of membrane dipole potential: avoidance of fluidity and dye-induced effects. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1323:223-39. [PMID: 9042345 DOI: 10.1016/s0005-2736(96)00188-5] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Fluorescent styrylpyridinium dyes have recently been suggested as probes of the membrane dipole potential and of the kinetics of electrogenic ion pumps. It is necessary, however, to be able to confidently attribute observed fluorescence changes to electrical effects alone and avoid interference from changes in membrane fluidity. Furthermore, the effect of the dyes themselves on the dipole potential must be investigated. The effect of membrane fluidity on the fluorescence excitation and emission spectra of the dyes RH421 and di-8-ANEPPS have been investigated in lipid vesicles by temperature scans between 15 and 60 degrees C. Both dyes show significant temperature-dependent shifts of their excitation spectra, the magnitude of which depend on the emission wavelength and on the lipid structure. In order to eliminate membrane fluidity effects, fluorescence must be detected at the red edge of the emission spectrum; in this case 670 nm. In order to avoid dye-induced shifts of the excitation spectra of membrane-bound dye, an excess molar ratio of lipid to dye of at least 200-fold is necessary. Fluorescence ratio measurements indicate qualitatively that dimyristoylphosphatidylcholine has a significantly higher dipole potential than that of dioleoylphosphatidylcholine.
Collapse
Affiliation(s)
- R J Clarke
- Department of Biophysical Chemistry, Max-Planck-Institut für Biophysik, Frankfurt am Main, Germany.
| | | |
Collapse
|
39
|
Frank J, Zouni A, van Hoek A, Visser AJ, Clarke RJ. Interaction of the fluorescent probe RH421 with ribulose-1,5-bisphosphate carboxylase/oxygenase and with Na+,K(+)-ATPase membrane fragments. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1280:51-64. [PMID: 8634316 DOI: 10.1016/0005-2736(95)00277-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Fluorescence titrations have shown that the voltage-sensitive probe RH421 interacts with the water-soluble protein ribulose-1,5-bisphosphate carboxylase/oxygenase and with Na+,K(+)-ATPase membrane fragments. The probe exhibits significantly different fluorescence excitation spectra in pure lipid and pure protein environments. Experiments with a range of polyamino acids showed interactions of the probe with tyrosine, lysine and arginine residues. At saturating RH421 concentrations (> or = microM) the probe quenches 60-75% of the total tryptophan fluorescence of the Na+,K(+)-ATPase preparation. Inhibition of the hydrolytic activity of the Na+,K(+)-ATPase occurs at RH421 concentrations in the micromolar range. This may be due to a probe-induced change in membrane fluidity. The sensitivity of the probe towards conformational changes of the Na+,K(+)-ATPase decreases hyperbolically as one increases the probe concentration. The decrease in sensitivity correlates well with association of the probe in the vicinity of membrane protein, as measured by tryptophan quenching. These results have important practical consequences for the application of RH421 as a voltage indicator in membrane preparations. Based on these and previously reported results, the fluorescent response of RH421 to the ATP-induced conformational change of the Na+,K+-ATPase is consistent with either a redistribution of dye from the liquid-crystalline lipid matrix into the vicinity of membrane protein or a reorganisation of the lipids surrounding the protein into a more rigid structure caused by the conformational change of the protein.
Collapse
Affiliation(s)
- J Frank
- Department of Physical Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany
| | | | | | | | | |
Collapse
|
40
|
Malkov DY, Sokolov VS. Fluorescent styryl dyes of the RH series affect a potential drop on the membrane/solution boundary. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1278:197-204. [PMID: 8593277 DOI: 10.1016/0005-2736(95)00197-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The effects of the adsorption of the fluorescent potential-sensitive dyes RH-421, RH-237 and RH-160 on the bilayer lipid membrane were studied. It was shown that a dipole potential drop, positive in the hydrophobic part of the membrane, arose due to the dye adsorption. The dye adsorption led to a considerable increase of the rate constant of hydrophobic anion translocation through the membrane, but did not affect their partition coefficient between membrane and water. It implies that the region of the membrane where the potential drops is located deeper than the adsorption plane of hydrophobic ions. The values of boundary potential differences were estimated by two independent methods with unilateral and bilateral application of the dyes to lipid bilayer membranes. The results suggest that RH dye molecules penetrate through the lipid bilayers. The values of zeta-potential in liposomes did not change on dye adsorption. Hence, dye molecules are adsorbed in a form that does not change the surface charge. We estimated the effects of electric field of dye dipole layer on an individual dipole located in the same layer and on ion transport through a membrane protein Na+/K+-ATPase. It turned out that the local electric field of each dye dipole decayed so rapidly that a neighbouring dye molecule did not feel it. It also appeared that RH dyes could have but a minor effect on the electrogenic transport performed by the sodium pump in the examined range of dye concentrations.
Collapse
Affiliation(s)
- D Y Malkov
- A.N. Frumkin Institute of Electrochemistry of the Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|