1
|
Yadav S, Sawarni N, Kumari P, Sharma M. Advancement in analytical techniques fabricated for the quantitation of cytochrome c. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
2
|
Gideon DA, Nirusimhan V, E JC, Sudarsha K, Manoj KM. Mechanism of electron transfers mediated by cytochromes c and b5 in mitochondria and endoplasmic reticulum: classical and murburn perspectives. J Biomol Struct Dyn 2021; 40:9235-9252. [PMID: 33998974 DOI: 10.1080/07391102.2021.1925154] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We explore the mechanism of electron transfers mediated by cytochrome c, a soluble protein involved in mitochondrial oxidative phosphorylation and cytochrome b5, a microsomal membrane protein acting as a redox aide in xenobiotic metabolism. We found minimal conservation in the sequence and surface amino acid residues of cytochrome c/b5 proteins among divergent species. Therefore, we question the evolutionary logic for electron transfer (ET) occurring through affinity binding via recognition of specific surface residues/topography. Also, analysis of putative protein-protein interactions in the crystal structures of these proteins and their redox partners did not point to any specific interaction logic. A comparison of the kinetic and thermodynamic constants of wildtype vs. mutants did not provide strong evidence to support the binding-based ET paradigm, but indicated support for diffusible reactive species (DRS)-mediated process. Topographically divergent cytochromes from one species have been substituted for reaction with proteins from other species, implying the involvement of non-specific interactions. We provide a viable alternative (murburn concept) to classical protein-protein binding-based long range ET mechanism. To account for the promiscuity of interactions and solvent-accessible hemes, we propose that the two proteins act as non- specific redox capacitors, mediating one-electron redox equilibriums involving DRS and unbound ions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Daniel Andrew Gideon
- Satyamjayatu: The Science & Ethics Foundation, Palakkad District, Kerala State, India.,Department of Biotechnology and Bioinformatics, Bishop Heber College (Autonomous), Tiruchirappalli, Tamil Nadu, India
| | - Vijay Nirusimhan
- Department of Biotechnology and Bioinformatics, Bishop Heber College (Autonomous), Tiruchirappalli, Tamil Nadu, India
| | - Jesu Castin E
- Department of Biotechnology and Bioinformatics, Bishop Heber College (Autonomous), Tiruchirappalli, Tamil Nadu, India
| | - Karthik Sudarsha
- Department of Biotechnology and Bioinformatics, Bishop Heber College (Autonomous), Tiruchirappalli, Tamil Nadu, India
| | - Kelath Murali Manoj
- Satyamjayatu: The Science & Ethics Foundation, Palakkad District, Kerala State, India
| |
Collapse
|
3
|
Gusev ID, Firsov AM, Chertkova RV, Kotova EA, Dolgikh DA, Kirpichnikov MP, Antonenko YN. Study of Interaction of Fluorescent Cytochrome C with Liposomes, Mitochondria, and Mitoplasts by Fluorescence Correlation Spectroscopy. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020060084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Cytochrome c modification and oligomerization induced by cardiolipin hydroperoxides in a membrane mimetic model. Arch Biochem Biophys 2020; 693:108568. [DOI: 10.1016/j.abb.2020.108568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 08/10/2020] [Accepted: 08/27/2020] [Indexed: 12/31/2022]
|
5
|
Di Leone S, Avsar SY, Belluati A, Wehr R, Palivan CG, Meier W. Polymer–Lipid Hybrid Membranes as a Model Platform to Drive Membrane–Cytochrome c Interaction and Peroxidase-like Activity. J Phys Chem B 2020; 124:4454-4465. [DOI: 10.1021/acs.jpcb.0c02727] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Stefano Di Leone
- Chemistry Department, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
- School of Life Sciences, Institute for Chemistry and Bioanalytics, University of Applied Sciences Northwestern Switzerland (FHNW), Grundenstrasse 40, 4132 Muttenz, Switzerland
| | - Saziye Yorulmaz Avsar
- Chemistry Department, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Andrea Belluati
- Chemistry Department, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Riccardo Wehr
- Chemistry Department, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Cornelia G. Palivan
- Chemistry Department, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Wolfgang Meier
- Chemistry Department, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| |
Collapse
|
6
|
Wheel and Deal in the Mitochondrial Inner Membranes: The Tale of Cytochrome c and Cardiolipin. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6813405. [PMID: 32377304 PMCID: PMC7193304 DOI: 10.1155/2020/6813405] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 02/28/2020] [Indexed: 12/15/2022]
Abstract
Cardiolipin oxidation and degradation by different factors under severe cell stress serve as a trigger for genetically encoded cell death programs. In this context, the interplay between cardiolipin and another mitochondrial factor—cytochrome c—is a key process in the early stages of apoptosis, and it is a matter of intense research. Cytochrome c interacts with lipid membranes by electrostatic interactions, hydrogen bonds, and hydrophobic effects. Experimental conditions (including pH, lipid composition, and post-translational modifications) determine which specific amino acid residues are involved in the interaction and influence the heme iron coordination state. In fact, up to four binding sites (A, C, N, and L), driven by different interactions, have been reported. Nevertheless, key aspects of the mechanism for cardiolipin oxidation by the hemeprotein are well established. First, cytochrome c acts as a pseudoperoxidase, a process orchestrated by tyrosine residues which are crucial for peroxygenase activity and sensitivity towards oxidation caused by protein self-degradation. Second, flexibility of two weakest folding units of the hemeprotein correlates with its peroxidase activity and the stability of the iron coordination sphere. Third, the diversity of the mode of interaction parallels a broad diversity in the specific reaction pathway. Thus, current knowledge has already enabled the design of novel drugs designed to successfully inhibit cardiolipin oxidation.
Collapse
|
7
|
Govind C, Paul M, Karunakaran V. Ultrafast Heme Relaxation Dynamics Probing the Unfolded States of Cytochrome c Induced by Liposomes: Effect of Charge of Phospholipids. J Phys Chem B 2020; 124:2769-2777. [DOI: 10.1021/acs.jpcb.9b11957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Chinju Govind
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Megha Paul
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Venugopal Karunakaran
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
8
|
Szymkowicz L, Lento C, Wilson DJ. Impact of Cardiolipin and Phosphatidylcholine Interactions on the Conformational Ensemble of Cytochrome c. Biochemistry 2019; 58:3617-3626. [DOI: 10.1021/acs.biochem.9b00495] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Lisa Szymkowicz
- Department of Chemistry, York University, Toronto, Ontario, Canada M3J 1P3
| | - Cristina Lento
- Department of Chemistry, York University, Toronto, Ontario, Canada M3J 1P3
| | - Derek J. Wilson
- Department of Chemistry, York University, Toronto, Ontario, Canada M3J 1P3
- Centre for Research in Mass Spectrometry, York University, Toronto, Ontario, Canada M3J 1P3
| |
Collapse
|
9
|
Manickam P, Kaushik A, Karunakaran C, Bhansali S. Recent advances in cytochrome c biosensing technologies. Biosens Bioelectron 2016; 87:654-668. [PMID: 27619529 DOI: 10.1016/j.bios.2016.09.013] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/31/2016] [Accepted: 09/02/2016] [Indexed: 11/27/2022]
Abstract
This review is an attempt, for the first time, to describe advancements in sensing technology for cytochrome c (cyt c) detection, at point-of-care (POC) application. Cyt c, a heme containing metalloprotein is located in the intermembrane space of mitochondria and released into bloodstream during pathological conditions. The release of cyt c from mitochondria is a key initiative step in the activation of cell death pathways. Circulating cyt c levels represents a novel in-vivo marker of mitochondrial injury after resuscitation from heart failure and chemotherapy. Thus, cyt c detection is not only serving as an apoptosis biomarker, but also is of great importance to understand certain diseases at cellular level. Various existing techniques such as enzyme-linked immunosorbent assays (ELISA), Western blot, high performance liquid chromatography (HPLC), spectrophotometry and flow cytometry have been used to estimate cyt c. However, the implementation of these techniques at POC application is limited due to longer analysis time, expensive instruments and expertise needed for operation. To overcome these challenges, significant efforts are being made to develop electrochemical biosensing technologies for fast, accurate, selective, and sensitive detection of cyt c. Presented review describes the cutting edge technologies available in the laboratories to detect cyt c. The recent advancements in designing and development of electrochemical cyt c biosensors for the quantification of cyt c are also discussed. This review also highlights the POC cyt c biosensors developed recently, that would prove of interest to biologist and therapist to get real time informatics needed to evaluate death process, diseases progression, therapeutics and processes related with mitochondrial injury.
Collapse
Affiliation(s)
- Pandiaraj Manickam
- Bio-MEMS and Microsystems Laboratory, Department of Electrical and Computer Engineering, Florida International University, Miami, FL, USA.
| | - Ajeet Kaushik
- Center for Personalized Nanomedicine, Institute of Neuro immune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Chandran Karunakaran
- Biomedical Research Laboratory, Department of Chemistry, VHNSN College (Autonomous), Virudhunagar, Tamil Nadu, India
| | - Shekhar Bhansali
- Bio-MEMS and Microsystems Laboratory, Department of Electrical and Computer Engineering, Florida International University, Miami, FL, USA
| |
Collapse
|
10
|
Wang L, Roth JS, Han X, Evans SD. Photosynthetic Proteins in Supported Lipid Bilayers: Towards a Biokleptic Approach for Energy Capture. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:3306-3318. [PMID: 25727786 DOI: 10.1002/smll.201403469] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/11/2015] [Indexed: 06/04/2023]
Abstract
In nature, plants and some bacteria have evolved an ability to convert solar energy into chemical energy usable by the organism. This process involves several proteins and the creation of a chemical gradient across the cell membrane. To transfer this process to a laboratory environment, several conditions have to be met: i) proteins need to be reconstituted into a lipid membrane, ii) the proteins need to be correctly oriented and functional and, finally, iii) the lipid membrane should be capable of maintaining chemical and electrical gradients. Investigating the processes of photosynthesis and energy generation in vivo is a difficult task due to the complexity of the membrane and its associated proteins. Solid, supported lipid bilayers provide a good model system for the systematic investigation of the different components involved in the photosynthetic pathway. In this review, the progress made to date in the development of supported lipid bilayer systems suitable for the investigation of membrane proteins is described; in particular, there is a focus on those used for the reconstitution of proteins involved in light capture.
Collapse
Affiliation(s)
- Lei Wang
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
- State Key Laboratory of Urban Water Resource and Environment, School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Johannes S Roth
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Stephen D Evans
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
11
|
Peroxidative permeabilization of liposomes induced by cytochrome c/cardiolipin complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:767-74. [DOI: 10.1016/j.bbamem.2014.11.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 11/21/2014] [Accepted: 11/25/2014] [Indexed: 01/23/2023]
|
12
|
Jaganathan M, Ramakrishnan C, Velmurugan D, Dhathathreyan A. Understanding ethylammonium nitrate stabilized cytochrome c – Molecular dynamics and experimental approach. J Mol Struct 2015. [DOI: 10.1016/j.molstruc.2014.10.049] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
13
|
Pandiscia LA, Schweitzer-Stenner R. Coexistence of Native-like and Non-Native Partially Unfolded Ferricytochrome c on the Surface of Cardiolipin-Containing Liposomes. J Phys Chem B 2015; 119:1334-49. [DOI: 10.1021/jp5104752] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Leah A. Pandiscia
- Department
of Chemistry, Drexel University, Philadelphia, PA 19104, United States
| | | |
Collapse
|
14
|
Capdevila DA, Marmisollé WA, Tomasina F, Demicheli V, Portela M, Radi R, Murgida DH. Specific methionine oxidation of cytochrome c in complexes with zwitterionic lipids by hydrogen peroxide: potential implications for apoptosis. Chem Sci 2015; 6:705-713. [PMID: 30154994 PMCID: PMC6085654 DOI: 10.1039/c4sc02181a] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 09/01/2014] [Indexed: 11/21/2022] Open
Abstract
Cytochrome c (Cyt-c) has been previously shown to participate in cardiolipin (CL) oxidation and, therefore, in mitochondrial membrane permeabilization during the early events of apoptosis. The gain in this function has been ascribed to specific CL/Cyt-c interactions. Here we report that the cationic protein Cyt-c is also able to interact electrostatically with the main lipid components of the mitochondrial membranes, the zwitterionic lipids phosphatidylcholine (PC) and phosphatidylethanolamine (PE), through the mediation of phosphate anions that bind specifically to amino groups in the surfaces of protein and model membranes. In these complexes, Cyt-c reacts efficiently with H2O2 at submillimolar levels, which oxidizes the sulfur atom of the axial ligand Met80. The modified protein is stable and presents significantly enhanced peroxidatic activity. Based on these results, we postulate that the rise of H2O2 concentrations to the submillimolar levels registered during initiation of the apoptotic program may represent one signaling event that triggers the gain in peroxidatic function of the Cyt-c molecules bound to the abundant PE and PC membrane components. As the activated protein is a chemically stable species, it can potentially bind and oxidize important targets, such as CL.
Collapse
Affiliation(s)
- Daiana A Capdevila
- Departamento de Química Inorgánica , Analítica y Química Física and INQUIMAE (CONICET-UBA) , Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires , Ciudad Universitaria , Pab. 2, piso 1 , C1428EHA-Buenos Aires , Argentina .
| | - Waldemar A Marmisollé
- Departamento de Química Inorgánica , Analítica y Química Física and INQUIMAE (CONICET-UBA) , Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires , Ciudad Universitaria , Pab. 2, piso 1 , C1428EHA-Buenos Aires , Argentina .
| | - Florencia Tomasina
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research , Facultad de Medicina , Universidad de la República , Montevideo , Uruguay
| | - Verónica Demicheli
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research , Facultad de Medicina , Universidad de la República , Montevideo , Uruguay
| | - Magdalena Portela
- Unidad de Bioquímica y Proteómica Analíticas , Institut Pasteur de Montevideo , Montevideo , Uruguay
| | - Rafael Radi
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research , Facultad de Medicina , Universidad de la República , Montevideo , Uruguay
| | - Daniel H Murgida
- Departamento de Química Inorgánica , Analítica y Química Física and INQUIMAE (CONICET-UBA) , Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires , Ciudad Universitaria , Pab. 2, piso 1 , C1428EHA-Buenos Aires , Argentina .
| |
Collapse
|
15
|
Wang ZP, Ding XZ, Wang J, Li YM. Double-edged sword in cells: chemical biology studies of the vital role of cytochrome c in the intrinsic pre-apoptotic mitochondria leakage pathway. RSC Adv 2015. [DOI: 10.1039/c4ra16856a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Besides functioning as an electron transporter in the mitochondrial electron transport chain, cytochrome c (cyt c) is also one of the determinants in the execution of cell death.
Collapse
Affiliation(s)
- Zhi-Peng Wang
- School of Medical Engineering
- Hefei University of Technology
- Hefei
- China
- Department of Chemistry
| | - Xiao-Zhe Ding
- Department of Chemistry
- School of Life Sciences
- Tsinghua University
- Beijing 100084
- China
| | - Jun Wang
- School of Medical Engineering
- Hefei University of Technology
- Hefei
- China
| | - Yi-Ming Li
- School of Medical Engineering
- Hefei University of Technology
- Hefei
- China
| |
Collapse
|
16
|
Muenzner J, Pletneva EV. Structural transformations of cytochrome c upon interaction with cardiolipin. Chem Phys Lipids 2013; 179:57-63. [PMID: 24252639 DOI: 10.1016/j.chemphyslip.2013.11.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 11/08/2013] [Accepted: 11/09/2013] [Indexed: 01/07/2023]
Abstract
Interactions of cytochrome c (cyt c) with cardiolipin (CL) play a critical role in early stages of apoptosis. Upon binding to CL, cyt c undergoes changes in secondary and tertiary structure that lead to a dramatic increase in its peroxidase activity. Insertion of the protein into membranes, insertion of CL acyl chains into the protein interior, and extensive unfolding of cyt c after adsorption to the membrane have been proposed as possible modes for interaction of cyt c with CL. Dissociation of Met80 is accompanied by opening of the heme crevice and binding of another heme ligand. Fluorescence studies have revealed conformational heterogeneity of the lipid-bound protein ensemble with distinct polypeptide conformations that vary in the degree of protein unfolding. We correlate these recent findings to other biophysical observations and rationalize the role of experimental conditions in defining conformational properties and peroxidase activity of the cyt c ensemble. Latest time-resolved studies propose the trigger and the sequence of cardiolipin-induced structural transitions of cyt c.
Collapse
Affiliation(s)
- Julia Muenzner
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, United States
| | | |
Collapse
|
17
|
Muenzner J, Toffey JR, Hong Y, Pletneva EV. Becoming a peroxidase: cardiolipin-induced unfolding of cytochrome c. J Phys Chem B 2013; 117:12878-86. [PMID: 23713573 DOI: 10.1021/jp402104r] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Interactions of cytochrome c (cyt c) with a unique mitochondrial glycerophospholipid cardiolipin (CL) are relevant for the protein's function in oxidative phosphorylation and apoptosis. Binding to CL-containing membranes promotes cyt c unfolding and dramatically enhances the protein's peroxidase activity, which is critical in early stages of apoptosis. We have employed a collection of seven dansyl variants of horse heart cyt c to probe the sequence of steps in this functional transformation. Kinetic measurements have unraveled four distinct processes during CL-induced cyt c unfolding: rapid protein binding to CL liposomes; rearrangements of protein substructures with small unfolding energies; partial insertion of the protein into the lipid bilayer; and extensive protein restructuring leading to "open" extended structures. While early rearrangements depend on a hierarchy of foldons in the native structure, the later process of large-scale unfolding is influenced by protein interactions with the membrane surface. The opening of the cyt c structure exposes the heme group, which enhances the protein's peroxidase activity and also frees the C-terminal helix to aid in the translocation of the protein through CL membranes.
Collapse
Affiliation(s)
- Julia Muenzner
- Department of Chemistry, Dartmouth College , Hanover, New Hampshire 03755, United States
| | | | | | | |
Collapse
|
18
|
Snider EJ, Muenzner J, Toffey JR, Hong Y, Pletneva EV. Multifaceted effects of ATP on cardiolipin-bound cytochrome c. Biochemistry 2013; 52:993-5. [PMID: 23331169 PMCID: PMC3658621 DOI: 10.1021/bi301682c] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Using a collection of dye-labeled cytochrome c (cyt c) variants, we identify transformations of the heterogeneous cardiolipin (CL)-bound cyt c ensemble with added ATP. Distributions of dye-to-heme distances P(r) from time-resolved fluorescence resonance energy transfer show that ATP decreases the population of largely unfolded cyt c conformers, but its effects are distinct from those of a simple salt. The high peroxidase activity of CL-bound cyt c with added ATP suggests binding interactions that favor protein structures with the open heme pocket. Although ATP weakens cyt c-CL binding interactions, it also boosts the apoptosis-relevant peroxidase activity of CL-bound cyt c.
Collapse
Affiliation(s)
- Erik J. Snider
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, United States
| | - Julia Muenzner
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, United States
| | - Jason R. Toffey
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, United States
| | - Yuning Hong
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, United States
| | | |
Collapse
|
19
|
Tumolo T, Nakamura M, Araki K, Baptista MS. Effect of cations/polycations on the efficiency of formation of a hybrid bilayer membrane that mimics the inner mitochondrial membrane. Colloids Surf B Biointerfaces 2012; 91:1-9. [DOI: 10.1016/j.colsurfb.2011.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 09/22/2011] [Accepted: 10/10/2011] [Indexed: 10/16/2022]
|
20
|
Penetration of Lysozyme and Cytochrome C in Lipid Bilayer: Fluorescent Study. J Membr Biol 2011; 242:95-103. [DOI: 10.1007/s00232-011-9380-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 06/20/2011] [Indexed: 10/18/2022]
|
21
|
Emami S, Ghourchian H, Divsalar A. Release of Cyt c from the model membrane due to conformational change induced by anticancer palladium complex. Int J Biol Macromol 2011; 48:243-8. [DOI: 10.1016/j.ijbiomac.2010.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 10/29/2010] [Accepted: 11/04/2010] [Indexed: 11/30/2022]
|
22
|
Trusova VM, Gorbenko GP, Molotkovsky JG, Kinnunen PKJ. Cytochrome c-lipid interactions: new insights from resonance energy transfer. Biophys J 2011; 99:1754-63. [PMID: 20858419 DOI: 10.1016/j.bpj.2010.06.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 05/25/2010] [Accepted: 06/07/2010] [Indexed: 01/01/2023] Open
Abstract
Resonance energy transfer (RET) from anthrylvinyl-labeled phosphatidylcholine (AV-PC) or cardiolipin (AV-CL) to cytochrome c (cyt c) heme moiety was employed to assess the molecular-level details of protein interactions with lipid bilayers composed of PC with 2.5 (CL2.5), 5 (CL5), 10 (CL10), or 20 (CL20) mol % CL under conditions of varying ionic strength and lipid/protein molar ratio. Monte Carlo analysis of multiple data sets revealed a subtle interplay between 1), exchange of the neutral and acidic lipid in the protein-lipid interaction zone; 2), CL transition into the extended conformation; and 3), formation of the hexagonal phase. The switch between these states was found to be controlled by CL content and salt concentration. At ionic strengths ≥ 40 mM, lipid bilayers with CL fraction not exceeding 5 mol % exhibited the tendency to transform from lamellar to hexagonal phase upon cyt c adsorption, whereas at higher contents of CL, transition into the extended conformation seems to become thermodynamically favorable. At lower ionic strengths, deviations from homogeneous lipid distributions were observed only for model membranes containing 2.5 mol % CL, suggesting the existence of a certain surface potential critical for assembly of lipid lateral domains in protein-lipid systems that may subsequently undergo morphological transformations depending on ambient conditions. These characteristics of cyt c-CL interaction are of great interest, not only from the viewpoint of regulating cyt c electron transfer and apoptotic propensities, but also to elucidate the general mechanisms by which membrane functional activities can be modulated by protein-lipid interactions.
Collapse
Affiliation(s)
- Valeriya M Trusova
- Department of Biological and Medical Physics, VN Karazin Kharkov National University, Kharkov, Ukraine
| | | | | | | |
Collapse
|
23
|
Gorbenko G, Trusova V. Protein aggregation in a membrane environment. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2011; 84:113-42. [DOI: 10.1016/b978-0-12-386483-3.00002-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
24
|
Morandat S, El Kirat K. Cytochrome c provokes the weakening of zwitterionic membranes as measured by force spectroscopy. Colloids Surf B Biointerfaces 2011; 82:111-7. [DOI: 10.1016/j.colsurfb.2010.08.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 08/16/2010] [Accepted: 08/18/2010] [Indexed: 11/29/2022]
|
25
|
El Kirat K, Morandat S. Cytochrome c interaction with neutral lipid membranes: influence of lipid packing and protein charges. Chem Phys Lipids 2009; 162:17-24. [DOI: 10.1016/j.chemphyslip.2009.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 08/05/2009] [Accepted: 08/13/2009] [Indexed: 10/20/2022]
|
26
|
ZHANG HAN, OROSZ KRISTINAS, TAKAHASHI HIROMI, SAAVEDRA SSCOTT. Broadband plasmon waveguide resonance spectroscopy for probing biological thin films. APPLIED SPECTROSCOPY 2009; 63:1062-7. [PMID: 19796490 PMCID: PMC2912159 DOI: 10.1366/000370209789379295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
A commercially available spectrometer has been modified to perform plasmon waveguide resonance (PWR) spectroscopy over a broad spectral bandwidth. When compared to surface plasmon resonance (SPR), PWR has the advantage of allowing measurements in both s- and p-polarizations on a waveguide surface that is silica or glass rather than a noble metal. Here the waveguide is a BK7 glass slide coated with silver and silica layers. The resonance wavelength is sensitive to the optical thickness of the medium adjacent to the silica layer. The sensitivity of this technique is characterized and compared with broadband SPR both experimentally and theoretically. The sensitivity of spectral PWR is comparable to that of spectral SPR for samples with refractive indices close to that of water. The hydrophilic surface of the waveguide allows supported lipid bilayers to be formed spontaneously by vesicle fusion; in contrast, the surface of an SPR chip requires chemical modification to create a supported lipid membrane. Broadband PWR spectroscopy should be a useful technique to study biointerfaces, including ligand binding to transmembrane receptors and adsorption of peripheral proteins on ligand-bearing membranes.
Collapse
|
27
|
Caesar CEB, Esbjörner EK, Lincoln P, Nordén B. Assigning membrane binding geometry of cytochrome C by polarized light spectroscopy. Biophys J 2009; 96:3399-411. [PMID: 19383483 DOI: 10.1016/j.bpj.2009.01.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 01/09/2009] [Accepted: 01/14/2009] [Indexed: 11/30/2022] Open
Abstract
In this work we demonstrate how polarized light absorption spectroscopy (linear dichroism (LD)) analysis of the peptide ultraviolet-visible spectrum of a membrane-associated protein (cytochrome (cyt) c) allows orientation and structure to be assessed with quite high accuracy in a native membrane environment that can be systematically varied with respect to lipid composition. Cyt c binds strongly to negatively charged lipid bilayers with a distinct orientation in which its alpha-helical segments are on average parallel to the membrane surface. Further information is provided by the LD of the pi-pi( *) transitions of the heme porphyrin and transitions of aromatic residues, mainly a single tryptophan. A good correlation with NMR data was found, and combining NMR structural data with LD angular data allowed the whole protein to be docked to the lipid membrane. When the redox state of cyt c was changed, distinct variations in the LD spectrum of the heme Soret band were seen corresponding to changes in electronic transition energies; however, no significant change in the overall protein orientation or structure was observed. Cyt c is known to interact in a specific manner with the doubly negatively charged lipid cardiolipin, and incorporation of this lipid into the membrane at physiologically relevant levels was indeed found to affect the protein orientation and its alpha-helical content. The detail in which cyt c binding is described in this study shows the potential of LD spectroscopy using shear-deformed lipid vesicles as a new methodology for exploring membrane protein structure and orientation.
Collapse
Affiliation(s)
- Christina E B Caesar
- Chalmers University of Technology, Department of Chemical and Biological Engineering, Division of Physical Chemistry, SE-412 96 Gothenburg, Sweden
| | | | | | | |
Collapse
|
28
|
Gorbenko GP, Trusova VM, Molotkovsky JG, Kinnunen PK. Cytochrome c induces lipid demixing in weakly charged phosphatidylcholine/phosphatidylglycerol model membranes as evidenced by resonance energy transfer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1358-65. [DOI: 10.1016/j.bbamem.2009.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 03/11/2009] [Accepted: 03/16/2009] [Indexed: 10/21/2022]
|
29
|
Mitochondrial kinases and their molecular interaction with cardiolipin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:2032-47. [PMID: 19409873 DOI: 10.1016/j.bbamem.2009.04.018] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 04/24/2009] [Indexed: 11/22/2022]
Abstract
Mitochondrial isoforms of creatine kinase (MtCK) and nucleoside diphosphate kinase (NDPK-D) are not phylogenetically related but share functionally important properties. They both use mitochondrially generated ATP with the ultimate goal of maintaining proper nucleotide pools, are located in the intermembrane/cristae space, have symmetrical oligomeric structures, and show high affinity binding to anionic phospholipids, in particular cardiolipin. The structural basis and functional consequences of the cardiolipin interaction have been studied and are discussed in detail in this review. They mainly result in a functional interaction of MtCK and NDPK-D with inner membrane adenylate translocator, probably by forming proteolipid complexes. These interactions allow for privileged exchange of metabolites (channeling) that ultimately regulate mitochondrial respiration. Further functions of the MtCK/membrane interaction include formation of cardiolipin membrane patches, stabilization of mitochondria and a role in apoptotic signaling, as well as in case of both kinases, a role in facilitating lipid transfer between two membranes. Finally, disturbed cardiolipin interactions of MtCK, NDPK-D and other proteins like cytochrome c and truncated Bid are discussed more generally in the context of apoptosis and necrosis.
Collapse
|
30
|
Daschner De Tercero M, Abbott NL. Ordering Transitions in Liquid Crystals Permit Imaging of Spatial and Temporal Patterns Formed by Proteins Penetrating into Lipid-Laden Interfaces. CHEM ENG COMMUN 2008; 196:234-251. [PMID: 23671353 DOI: 10.1080/00986440802290060] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Recent studies have reported that full monolayers of L-α-dilaurylphosphatidylcholine (L-DLPC) and D-α-dipalmitoylphosphatidylcholine (D-DPPC) formed at interfaces between thermotropic liquid crystals (LCs) and aqueous phases lead to homeotropic (perpendicular) orientations of nematic LCs and that specific binding of proteins to these interfaces (such as phospholipase A2 binding to D-DPPC) can trigger orientational ordering transitions in the liquid crystals. We report on the nonspecific interactions of proteins with aqueous-LC interfaces decorated with partial monolayer coverage of L-DLPC. Whereas nonspecific interactions of four proteins (cytochrome c, bovine serum albumin,immunoglobulins, and neutravidin) do not perturb the ordering of the LC when a full monolayer of L-DLPC is assembled at the aqueous-LC interface, we observe patterned orientational transitions in the LC that reflect penetration of proteins into the interface of the LC with partial monolayer coverage of L-DLPC. The spatial patterns formed by the proteins and lipids at the interface are surprisingly complex, and in some cases the protein domains are found to compartmentalize lipid within the interfaces. These results suggest that phospholipid-decorated interfaces between thermotropic liquid crystals and aqueous phases offer the basis of a simple and versatile tool to study the spatial organization and dynamics ofprotein networks formed at mobile, lipid-decorated interfaces.
Collapse
Affiliation(s)
- Maren Daschner De Tercero
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison,Wisconsin, USA
| | | |
Collapse
|
31
|
Subramaniam V, D'Ambruoso GD, Hall HK, Wysocki RJ, Brown MF, Saavedra SS. Reconstitution of rhodopsin into polymerizable planar supported lipid bilayers: influence of dienoyl monomer structure on photoactivation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:11067-75. [PMID: 18759470 PMCID: PMC2726791 DOI: 10.1021/la801835g] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
G-protein-coupled receptors (GPCRs) play key roles in cellular signal transduction and many are pharmacologically important targets for drug discovery. GPCRs can be reconstituted in planar supported lipid bilayers (PSLBs) with retention of activity, which has led to development of GPCR-based biosensors and biochips. However, PSLBs composed of natural lipids lack the high stability desired for many technological applications. One strategy is to use synthetic lipid monomers that can be polymerized to form robust bilayers. A key question is how lipid polymerization affects GPCR structure and activity. Here we have investigated the photochemical activity of bovine rhodopsin (Rho), a model GPCR, reconstituted into PSLBs composed of lipids having one or two polymerizable dienoyl moieties located in different regions of the acyl chains. Plasmon waveguide resonance spectroscopy was used to compare the degree of Rho photoactivation in fluid and poly(lipid) PSLBs. The position of the dienoyl moiety was found to have a significant effect: polymerization near the glycerol backbone significantly attenuates Rho activity whereas polymerization near the acyl chain termini does not. Differences in cross-link density near the acyl chain termini also do not affect Rho activity. In unpolymerized PSLBs, an equimolar mixture of phosphatidylethanolamine and phosphatidylcholine (PC) lipids enhances activity relative to pure PC; however after polymerization, the enhancement is eliminated which is attributed to stabilization of the membrane lamellar phase. These results should provide guidance for the design of robust lipid bilayers functionalized with transmembrane proteins for use in membrane-based biochips and biosensors.
Collapse
Affiliation(s)
- Varuni Subramaniam
- Department of Chemistry, University of Arizona, Tucson, Arizona, 85721-0041
| | | | - H. K. Hall
- Department of Chemistry, University of Arizona, Tucson, Arizona, 85721-0041
| | - Ronald J. Wysocki
- Department of Chemistry, University of Arizona, Tucson, Arizona, 85721-0041
| | - Michael F. Brown
- Department of Chemistry, University of Arizona, Tucson, Arizona, 85721-0041
| | - S. Scott Saavedra
- Department of Chemistry, University of Arizona, Tucson, Arizona, 85721-0041
| |
Collapse
|
32
|
Bernabeu A, Contreras LM, Villalaín J. Two-dimensional infrared correlation spectroscopy study of the interaction of oxidized and reduced cytochrome c with phospholipid model membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:2409-20. [PMID: 17560895 DOI: 10.1016/j.bbamem.2007.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Revised: 04/18/2007] [Accepted: 05/03/2007] [Indexed: 11/19/2022]
Abstract
We have used two-dimensional infrared correlation spectroscopy (2D-IR) to study the interaction and conformation of cytochrome c in the presence of a binary phospholipid mixture composed of a zwitterionic perdeuterated phospholipid and a negatively-charged one. The influence of the main temperature phase transition of the phospholipid model membranes on the conformation of cytochrome c has been evaluated by monitoring both the Amide I' band of the protein and the CH(2) and CD(2) stretching bands of the phospholipids. Synchronous 2D-IR analysis has been used to determine the different secondary structure components of cytochrome c which are involved in the specific interaction with the phospholipids, revealing the existence of a specific interaction between the protein with cardiolipin-containing vesicles but not with phosphatidic acid-containing ones. Interestingly, 2D-IR is capable of showing the existence of significant changes in the protein conformation at the same time that the phospholipid transition occurs. In summary, 2D-IR revealed an important effect of the phospholipid phase transition of cardiolipin on the secondary structure of oxidized cytochrome c but not to either reduced cytochrome c or in the presence of phosphatidic acid, demonstrating the existence of specific intermolecular interactions between cardiolipin and cytochrome c.
Collapse
Affiliation(s)
- Angela Bernabeu
- Instituto de Biología Molecular y Celular, Universidad "Miguel Hernández", E-03202 Elche-Alicante, Spain
| | | | | |
Collapse
|
33
|
Brake JM, Abbott NL. Coupling of the orientations of thermotropic liquid crystals to protein binding events at lipid-decorated interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:8497-507. [PMID: 17595119 DOI: 10.1021/la0634286] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We report a study of the interactions of proteins with monolayers of phospholipids (D/L-alpha-dipalmitoyl phosphatidylcholine and L-alpha-dilauroyl phosphatidylcholine) spontaneously assembled at an interface between an aqueous phase and a 20-microm-thick film of a nematic liquid crystal (4'-pentyl-4-cyanobiphenyl). Because the orientation of the liquid crystal is coupled to the organization of the lipids, specific interactions between phospholipase A2 and the lipids (binding and/or hydrolysis) that lead to reorganization of the lipids are optically reported (using polarized light) as dynamic orientational transitions in the liquid crystal. In contrast, nonspecific interactions between proteins such as albumin, lysozyme, and cytochrome-c and the lipid-laden interface of the liquid crystal are not reported as orientational transitions in the liquid crystals. Concurrent epifluorescence and polarized light imaging of labeled lipids and proteins at the aqueous-liquid crystal interface demonstrate that spatially patterned orientations of the liquid crystals observed during specific binding of phospholipase A2 to the interface, as well as during the subsequent hydrolysis of lipids by phospholipase A2, reflect the lateral organization (micrometer-sized domains) of the proteins and lipids, respectively, at the aqueous-liquid crystal interface.
Collapse
Affiliation(s)
- Jeffrey M Brake
- Department of Chemical Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
34
|
Gorbenko GP, Molotkovsky JG, Kinnunen PKJ. Cytochrome C interaction with cardiolipin/phosphatidylcholine model membranes: effect of cardiolipin protonation. Biophys J 2006; 90:4093-103. [PMID: 16565064 PMCID: PMC1459516 DOI: 10.1529/biophysj.105.080150] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Resonance energy transfer between anthrylvinyl-labeled phosphatidylcholine as a donor and heme moiety of cytochrome c (cyt c) as an acceptor has been employed to explore the protein binding to model membranes, composed of phosphatidylcholine and cardiolipin (CL). The existence of two types of protein-lipid complexes has been hypothesized where either deprotonated or partially protonated CL molecules are responsible for cyt c attachment to bilayer surface. To quantitatively describe cyt c membrane binding, the adsorption model based on scaled particle and double layer theories has been employed, with potential-dependent association constants being treated as a function of acidic phospholipid mole fraction, degree of CL protonation, ionic strength, and surface coverage. Multiple arrays of resonance energy transfer data obtained under conditions of varying pH, ionic strength, CL content, and protein/lipid molar ratio have been analyzed in terms of the model of energy transfer in two-dimensional systems combined with the adsorption model allowing for area exclusion and electrostatic effects. The set of recovered model parameters included effective protein charge, intrinsic association constants, and heme distance from the bilayer midplane for both types of protein-lipid complexes. Upon increasing CL mole fraction from 10 to 20 mol % (the value close to that characteristic of the inner mitochondrial membrane), the binding equilibrium dramatically shifted toward cyt c association with partially protonated CL species. The estimates of heme distance from bilayer center suggest shallow bilayer location of cyt c at physiological pH, whereas at pH below 6.0, the protein tends to insert into membrane core.
Collapse
Affiliation(s)
- Galyna P Gorbenko
- Department of Biological and Medical Physics, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
| | | | | |
Collapse
|
35
|
Domanov YA, Molotkovsky JG, Gorbenko GP. Coverage-dependent changes of cytochrome c transverse location in phospholipid membranes revealed by FRET. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1716:49-58. [PMID: 16183372 DOI: 10.1016/j.bbamem.2005.09.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Revised: 07/28/2005] [Accepted: 09/01/2005] [Indexed: 11/25/2022]
Abstract
The method of fluorescence resonance energy transfer (FRET) has been employed to monitor cytochrome c interaction with bilayer phospholipid membranes. Liposomes composed of phosphatidylcholine and varying amounts of anionic lipid cardiolipin (CL) were used as model membranes. Trace amount of fluorescent lipid derivative, anthrylvinyl-phosphatidylcholine was incorporated into the membranes to serve energy donor for heme moiety of cytochrome c. Energy transfer efficiency was measured at different lipid and protein concentrations to obtain extensive set of data, which were further analyzed globally in terms of adequate models of protein adsorption and energy transfer on the membrane surface. It has been found that the cytochrome c association with membranes containing 10 mol% CL can be described in terms of equilibrium binding model (yielding dissociation constant Kd = 0.2-0.4 microM and stoichiometry n = 11-13 lipid molecules per protein binding site) combined with FRET model assuming uniform acceptor distribution with the distance of 3.5-3.6 nm between the bilayer midplane and heme moiety of cytochrome c. However, increasing the CL content to 20 or 40 mol% (at low ionic strength) resulted in a different behavior of FRET profiles, inconsistent with the concepts of equilibrium adsorption of cytochrome c at the membrane surface and/or uniform acceptor distribution. To explain this fact, several possibilities are analyzed, including cytochrome c-induced formation of non-bilayer structures and clusters of charged lipids, or changes in the depth of cytochrome c penetration into the bilayer depending on the protein surface density. Additional control experiments have shown that only the latter process can explain the peculiar concentration dependences of FRET at high CL content.
Collapse
Affiliation(s)
- Yegor A Domanov
- Department of Biological and Medical Physics, V. N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv 61077, Ukraine.
| | | | | |
Collapse
|
36
|
Su L, Kelly JB, Hawkridge FM, Rhoten MC, Baskin SI. Characterization of cyanide binding to cytochrome c oxidase immobilized in electrode-supported lipid bilayer membranes. J Electroanal Chem (Lausanne) 2005. [DOI: 10.1016/j.jelechem.2005.04.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
37
|
Bernad S, Oellerich S, Soulimane T, Noinville S, Baron MH, Paternostre M, Lecomte S. Interaction of horse heart and thermus thermophilus type c cytochromes with phospholipid vesicles and hydrophobic surfaces. Biophys J 2005; 86:3863-72. [PMID: 15189883 PMCID: PMC1304288 DOI: 10.1529/biophysj.103.025114] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The binding of horse heart cytochrome c (cyt-c) and Thermus thermophilus cytochrome c(552) (cyt-c(552)) to dioleoyl phosphatidylglycerol (DOPG) vesicles was investigated using Fourier transform infrared (FTIR) spectroscopy and turbidity measurements. FTIR spectra revealed that the tertiary structures of both cytochromes became more open when bound to DOPG vesicles, but this was more pronounced for cyt-c. Their secondary structures were unchanged. Turbidity measurements showed important differences in their behavior bound to the negatively charged DOPG vesicles. Both cytochromes caused the liposomes to aggregate and flocculate, but the ways they did so differed. For cyt-c, more than a monolayer was adsorbed onto the liposome surface prior to aggregation due to charge neutralization, whereas cyt c(552) caused aggregation at a protein/lipid ratio well below that required for charge neutralization. Therefore, although cyt-c may cause liposomes to aggregate by electrostatic interaction, cyt-c(552) does not act in this way. FTIR-attenuated total reflection spectroscopy (FTIR-ATR) revealed that cyt-c lost much of its secondary structure when bound to the hydrophobic surface of octadecyltrichlorosilane, whereas cyt-c(552) folds its domains into a beta-structure. This hydrophobic effect may be the key to the difference between the behaviors of the two cytochromes when bound to DOPG vesicles.
Collapse
Affiliation(s)
- Sophie Bernad
- Laboratoire de Dynamique, Interactions et Reactivite, CNRS-Universite Paris VI, Thais, France.
| | | | | | | | | | | | | |
Collapse
|
38
|
Matveeva E, Gryczynski Z, Gryczynski I, Malicka J, Lakowicz JR. Myoglobin immunoassay utilizing directional surface plasmon-coupled emission. Anal Chem 2004; 76:6287-92. [PMID: 15516120 PMCID: PMC6848856 DOI: 10.1021/ac0491612] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We described an immunoassay for the cardiac marker myoglobin on a thin silver mirror surface using surface plasmon-coupled emission (SPCE). SPCE occurs for fluorophores in proximity (within approximately 200 nm) of a thin metal film (in our case, silver) and results in a highly directional radiation through a glass substrate at a well-defined angle from the normal axis. We used the effect of SPCE to develop a myoglobin immunoassay on the silver mirror surface deposited on a glass substrate. Binding of the labeled anti-myoglobin antibodies led to the enhanced fluorescence emission at a specific angle of 72 degrees . The directional and enhanced directional fluorescence emission enables detection of myoglobin over a wide range of concentrations from subnormal to the elevated level of this cardiac marker. Utilizing SPCE allowed us also to demonstrate significant background suppression (from serum or whole blood) in the myoglobin immunoassay. We expect SPCE to become a powerful technique for performing immunoassays for many biomarkers in surface-bound assays.
Collapse
Affiliation(s)
- Evgenia Matveeva
- Center for Fluorescence Spectroscopy, Department of Biochemistry and Molecular Biology, University of Maryland at Baltimore, 725 West Lombard Street, Baltimore, Maryland 21201
| | - Zygmunt Gryczynski
- Center for Fluorescence Spectroscopy, Department of Biochemistry and Molecular Biology, University of Maryland at Baltimore, 725 West Lombard Street, Baltimore, Maryland 21201
| | - Ignacy Gryczynski
- Center for Fluorescence Spectroscopy, Department of Biochemistry and Molecular Biology, University of Maryland at Baltimore, 725 West Lombard Street, Baltimore, Maryland 21201
| | - Joanna Malicka
- Center for Fluorescence Spectroscopy, Department of Biochemistry and Molecular Biology, University of Maryland at Baltimore, 725 West Lombard Street, Baltimore, Maryland 21201
| | - Joseph R. Lakowicz
- Center for Fluorescence Spectroscopy, Department of Biochemistry and Molecular Biology, University of Maryland at Baltimore, 725 West Lombard Street, Baltimore, Maryland 21201
| |
Collapse
|
39
|
Oellerich S, Lecomte S, Paternostre M, Heimburg T, Hildebrandt P. Peripheral and Integral Binding of Cytochromecto Phospholipids Vesicles. J Phys Chem B 2004. [DOI: 10.1021/jp036799t] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Gryczynski Z, Gryczynski I, Matveeva E, Malicka J, Nowaczyk K, Lakowicz JR. Surface-Plasmon–Coupled Emission: New Technology for Studying Molecular Processes. Methods Cell Biol 2004; 75:73-104. [PMID: 15603423 DOI: 10.1016/s0091-679x(04)75004-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zygmunt Gryczynski
- Center for Fluorescence Spectroscopy, University of Maryland at Baltimore, Department of Biochemistry and Molecular Biology, Baltimore, Maryland 21201, USA
| | | | | | | | | | | |
Collapse
|
41
|
Mozsolits H, Aguilar MI. Surface plasmon resonance spectroscopy: an emerging tool for the study of peptide-membrane interactions. Biopolymers 2003; 66:3-18. [PMID: 12228917 DOI: 10.1002/bip.10200] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The interactions between peptides and membranes mediate a wide variety of biological processes, and characterization of the molecular details of these interactions is central to our understanding of cellular events such as protein trafficking, cellular signaling and ion-channel formation. A wide variety of biophysical techniques have been combined with the use of model membrane systems to study peptide-membrane interactions, and have provided important information on the relationship between membrane-active peptide structure and their biological function. However, what has generally not been reported is a detailed analysis of the affinity of peptide for different membrane systems, which has largely been due to the difficulty in obtaining this information. To address this issue, surface plasmon resonance (SPR) spectroscopy has recently been applied to the study of biomembrane-based systems using both planar mono- or bilayers or liposomes. This article provides an overview of these recent applications that demonstrate the potential of SPR to enhance our molecular understanding of membrane-mediated peptide function.
Collapse
Affiliation(s)
- Henriette Mozsolits
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | | |
Collapse
|
42
|
Gole A, Thakar J, Sastry M. Protein diffusion into thermally evaporated lipid films: role of protein charge/mass ratio. Colloids Surf B Biointerfaces 2003. [DOI: 10.1016/s0927-7765(02)00141-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
43
|
Gorbenko GP, Domanov YA. Cytochrome c location in phosphatidylcholine/cardiolipin model membranes: resonance energy transfer study. Biophys Chem 2003; 103:239-49. [PMID: 12727286 DOI: 10.1016/s0301-4622(02)00319-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Resonance energy transfer between lipid-bound fluorescent probe 3-methoxybenzanthrone as a donor and heme group of cytochrome c as an acceptor has been examined to ascertain the protein disposition relative to the surface of model membranes composed of phosphatidylcholine and cardiolipin (10, 50 and 80 mol%). The model of energy transfer in membrane systems has been extended to the case of donors distributed between the two-bilayer leaflets and acceptors located at the outer monolayer taking into account the donor and acceptor orientational behavior. Assuming specific protein orientation relative to the membrane surface and varying lateral distance of the donor-acceptor closest approach in the range from 0 to 3.5 nm the limits for possible heme distances from the bilayer midplane have been found to be 0.8-3 nm (10 mol% CL), 0-2.6 nm (50 mol% CL), and 1.4-3.3 nm (80 mol% CL).
Collapse
Affiliation(s)
- Galina P Gorbenko
- V.N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv 61077, Ukraine.
| | | |
Collapse
|
44
|
Mozsolits H, Thomas WG, Aguilar MI. Surface plasmon resonance spectroscopy in the study of membrane-mediated cell signalling. J Pept Sci 2003; 9:77-89. [PMID: 12630693 DOI: 10.1002/psc.439] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Peptide-membrane interactions contribute to many important biological processes such as cellular signaling, protein trafficking and ion-channel formation. During receptor-mediated signalling, activated intracellular signalling molecules are often recruited into receptor-induced signaling complexes at the cytoplasmic surface of the cell membrane. Such recruitment can depend upon protein-protein and protein-lipid interactions as well as protein acylation. A wide variety of biophysical techniques have been combined with the use of model membrane systems to study these interactions and have provided important information on the relationship between the structure of these proteins involved in cell signalling and their biological function. More recently, surface plasmon resonance (SPR) spectroscopy has also been applied to the study of biomembrane-based systems using both planar mono- or bilayers or liposomes. This article provides an overview of these recent applications, which demonstrate the potential of SPR to enhance our molecular understanding of membrane-mediated cellular signalling.
Collapse
Affiliation(s)
- Henriette Mozsolits
- Department of Biochemistry and Molecular Biology, PO Box 13D, Monash University, Clayton 3800, Victoria, Australia
| | | | | |
Collapse
|
45
|
The reaction of cytochrome c from different species with cytochrome c oxidase immobilized in an electrode supported lipid bilayer membrane. J Electroanal Chem (Lausanne) 2002. [DOI: 10.1016/s0022-0728(02)01138-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
46
|
Oellerich S, Wackerbarth H, Hildebrandt P. Spectroscopic Characterization of Nonnative Conformational States of Cytochrome c. J Phys Chem B 2002. [DOI: 10.1021/jp013841g] [Citation(s) in RCA: 199] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Silke Oellerich
- Max-Planck-Institut für Strahlenchemie, Stiftstrasse 34-36, D-45470 Mülheim, Germany, and Instituto de Tecnologia Química e Biológica, Apartado 127, Av. da República, 2781-901 Oeiras, Portugal
| | - Hainer Wackerbarth
- Max-Planck-Institut für Strahlenchemie, Stiftstrasse 34-36, D-45470 Mülheim, Germany, and Instituto de Tecnologia Química e Biológica, Apartado 127, Av. da República, 2781-901 Oeiras, Portugal
| | - Peter Hildebrandt
- Max-Planck-Institut für Strahlenchemie, Stiftstrasse 34-36, D-45470 Mülheim, Germany, and Instituto de Tecnologia Química e Biológica, Apartado 127, Av. da República, 2781-901 Oeiras, Portugal
| |
Collapse
|
47
|
Dimitrova MN, Matsumura H, Terezova N, Neytchev V. Binding of globular proteins to lipid membranes studied by isothermal titration calorimetry and fluorescence. Colloids Surf B Biointerfaces 2002. [DOI: 10.1016/s0927-7765(01)00248-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Abstract
Nitric oxide (NO), an important molecule involved in neurotransmission, vascular homeostasis, immune regulation, and host defense, is generated from a guanido nitrogen of L-arginine by the family of NO synthase enzymes. Large amounts of NO produced for relatively long periods of time (days to weeks) by inducible NO synthase in macrophages and vascular endothelial cells after challenge with lipopolysaccharide or cytokines (such as interferons, tumor necrosis factor-alpha, and interleukin-1), are cytotoxic for various pathogens and tumor cells. This cytotoxic effect against tumor cells was found to be associated with apoptosis (programmed cell death). The mechanism of NO-mediated apoptosis involves accumulation of the tumor suppressor protein p53, damage of different mitochondrial functions, alterations in the expression of members of the Bcl-2 family, activation of the caspase cascade, and DNA fragmentation. Depending on the amount, duration, and the site of NO production, this molecule may not only mediate apoptosis in target cells but also protect cells from apoptosis induced by other apoptotic stimuli. In this review, we will concentrate on the current knowledge about the role of NO as an effector of apoptosis in tumor cells and discuss the mechanisms of NO-mediated apoptosis.
Collapse
Affiliation(s)
- V Umansky
- Division of Cellular Immunology, Tumor Immunology Program, German Cancer Research Center, D-69120 Heidelberg, Germany.
| | | |
Collapse
|
49
|
Paquet MJ, Laviolette M, Pézolet M, Auger M. Two-dimensional infrared correlation spectroscopy study of the aggregation of cytochrome c in the presence of dimyristoylphosphatidylglycerol. Biophys J 2001; 81:305-12. [PMID: 11423415 PMCID: PMC1301512 DOI: 10.1016/s0006-3495(01)75700-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Two-dimensional infrared correlation spectroscopy (2D-IR) was used in this study to investigate the aggregation of cytochrome c in the presence of dimyristoylphosphatidylglycerol. The influence of temperature on the aggregation has been evaluated by monitoring the intensity of a band at 1616 cm(-1), which is characteristic of aggregated proteins, and the 2D-IR analysis has been used to determine the various secondary structure components of cytochrome c involved before and during its aggregation. The 2D-IR correlation analysis clearly reveals for the first time that aggregation starts to occur between nearly native proteins, which then unfold, yielding to further aggregation of the protein. Later in the aggregation process, the formation of intermolecular bonds and unfolding of the alpha-helices appear to be simultaneous. These results lead us to propose a two-step aggregation process. Finally, the results obtained during the heating period clearly indicate that before the protein starts to aggregate, there is a loosening of the tertiary structure of cytochrome c, resulting in a decrease of the beta-sheet content and an increase of the amount of beta-turns. This study clearly demonstrates the potential of 2D-IR spectroscopy to investigate the aggregation of proteins and this technique could therefore be applied to other proteins such as those involved in fibrilogenesis.
Collapse
Affiliation(s)
- M J Paquet
- Département de chimie, Centre de Recherche en Sciences et Ingénierie des Macromolécules, Université Laval, Québec, Québec, Canada G1K 7P4
| | | | | | | |
Collapse
|
50
|
Tuominen EK, Zhu K, Wallace CJ, Clark-Lewis I, Craig DB, Rytomaa M, Kinnunen PK. ATP induces a conformational change in lipid-bound cytochrome c. J Biol Chem 2001; 276:19356-62. [PMID: 11279142 DOI: 10.1074/jbc.m100853200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Resonance energy transfer studies using a pyrene-labeled phospholipid derivative 1-palmitoyl-2-[10-(pyren-1-yl)decanoyl]-sn-glycero-3-phosphoglycerol (donor) and the heme (acceptor) of cytochrome c (cyt c) have indicated that ATP causes changes in the conformation of the lipid-bound protein (Rytömaa, M., Mustonen, P., and Kinnunen, P. K. J. (1992) J. Biol. Chem. 267, 22243-22248). Accordingly, after binding cyt c via its so called C-site to neat phosphatidylglycerol liposomes (mole fraction of PG = 1.0) has commenced, further quenching of donor fluorescence is caused by ATP, saturating at 2 mm nucleotide. ATP-induced conformational changes in liposome-associated cyt c could be directly demonstrated by CD in the Soret band region (380-460 nm). The latter data were further supported by time-resolved spectroscopy using the fluorescent cyt c analog with a Zn(2+)-substituted heme moiety. A high affinity ATP-binding site has been demonstrated in cyt c (Craig, D. B., and Wallace, C. J. A. (1993) Protein Sci. 2, 966-976) that is compromised by replacing the invariant Arg(91) to norleucine. Although no major effects on conformation and function of cyt c were concluded due to the modification, a significantly reduced effect by ATP on the lipid-bound [Nle(91)]cyt c was evident, implying that this modulation is mediated via the Arg(91)-containing binding site.
Collapse
Affiliation(s)
- E K Tuominen
- Helsinki Biophysics and Biomembrane Group, Department of Medical Chemistry, Institute of Biomedicine, P.O. Box B8 (Siltavuorenpenger 10 A), University of Helsinki, FIN-00014 Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|