1
|
Selivanovitch E, LaFrance B, Douglas T. Molecular exclusion limits for diffusion across a porous capsid. Nat Commun 2021; 12:2903. [PMID: 34006828 PMCID: PMC8131759 DOI: 10.1038/s41467-021-23200-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 04/01/2021] [Indexed: 12/19/2022] Open
Abstract
Molecular communication across physical barriers requires pores to connect the environments on either side and discriminate between the diffusants. Here we use porous virus-like particles (VLPs) derived from bacteriophage P22 to investigate the range of molecule sizes able to gain access to its interior. Although there are cryo-EM models of the VLP, they may not accurately depict the parameters of the molecules able to pass across the pores due to the dynamic nature of the P22 particles in the solution. After encapsulating the enzyme AdhD within the P22 VLPs, we use a redox reaction involving PAMAM dendrimer modified NADH/NAD+ to examine the size and charge limitations of molecules entering P22. Utilizing the three different accessible morphologies of the P22 particles, we determine the effective pore sizes of each and demonstrate that negatively charged substrates diffuse across more readily when compared to those that are neutral, despite the negatively charge exterior of the particles.
Collapse
Affiliation(s)
| | - Benjamin LaFrance
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Trevor Douglas
- Department of Chemistry, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
2
|
Gulsevin A. Nicotinic receptor pharmacology in silico: Insights and challenges. Neuropharmacology 2020; 177:108257. [PMID: 32738311 DOI: 10.1016/j.neuropharm.2020.108257] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 07/16/2020] [Accepted: 07/26/2020] [Indexed: 02/07/2023]
Abstract
Nicotinic acetylcholine receptors (nAChR) are homo- or hetero-pentameric ligand-gated ion channels of the Cys-loop superfamily and play important roles in the nervous system and muscles. Studies on nAChR benefit from in silico modeling due to the lack of high-resolution structures for most receptor subtypes and challenges in experiments addressing the complex mechanism of activation involving allosteric sites. Although there is myriad of computational modeling studies on nAChR, the multitude of the methods and parameters used in these studies makes modeling nAChR a daunting task, particularly for the non-experts in the field. To address this problem, the modeling literature on Torpedo nAChR and α7 nAChR were focused on as examples of heteromeric and homomeric nAChR, and the key in silico modeling studies between the years 1995-2019 were concisely reviewed. This was followed by a critical analysis of these studies by comparing the findings with each other and with the emerging experimental and computational data on nAChR. Based on these critical analyses, suggestions were made to guide the future researchers in the field of in silico modeling of nAChR. This article is part of the special issue on 'Contemporary Advances in Nicotine Neuropharmacology'.
Collapse
Affiliation(s)
- Alican Gulsevin
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA, 37221.
| |
Collapse
|
3
|
Gulsevin A, Papke RL, Horenstein N. In Silico Modeling of the α7 Nicotinic Acetylcholine Receptor: New Pharmacological Challenges Associated with Multiple Modes of Signaling. Mini Rev Med Chem 2020; 20:841-864. [PMID: 32000651 PMCID: PMC8719523 DOI: 10.2174/1389557520666200130105256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/13/2022]
Abstract
The α7 nicotinic acetylcholine receptor is a homopentameric ion-channel of the Cys-loop superfamily characterized by its low probability of opening, high calcium permeability, and rapid desensitization. The α7 receptor has been targeted for the treatment of the cognitive symptoms of schizophrenia, depression, and Alzheimer's disease, but it is also involved in inflammatory modulation as a part of the cholinergic anti-inflammatory pathway. Despite its functional importance, in silico studies of the α7 receptor cannot produce a general model explaining the structural features of receptor activation, nor predict the mode of action for various ligand classes. Two particular problems in modeling the α7 nAChR are the absence of a high-resolution structure and the presence of five potentially nonequivalent orthosteric ligand binding sites. There is wide variability regarding the templates used for homology modeling, types of ligands investigated, simulation methods, and simulation times. However, a systematic survey focusing on the methodological similarities and differences in modeling α7 has not been done. In this work, we make a critical analysis of the modeling literature of α7 nAChR by comparing the findings of computational studies with each other and with experimental studies under the main topics of structural studies, ligand binding studies, and comparisons with other nAChR. In light of our findings, we also summarize current problems in the field and make suggestions for future studies concerning modeling of the α7 receptor.
Collapse
Affiliation(s)
- Alican Gulsevin
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL, 32611-7200, United States
| | - Roger L Papke
- Department of Pharmacology and Therapeutics, University of Florida, P.O. Box 100267, Gainesville, FL 32610, United States
| | - Nicole Horenstein
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL, 32611-7200, United States
| |
Collapse
|
4
|
Suresh A, Hung A. Structural effects of divalent calcium cations on the α7 nicotinic acetylcholine receptor: A molecular dynamics simulation study. Proteins 2019; 87:992-1005. [PMID: 31228282 DOI: 10.1002/prot.25761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 05/27/2019] [Accepted: 06/15/2019] [Indexed: 12/11/2022]
Abstract
The α7 subtype of neuronal nicotinic acetylcholine receptor (nAChR) is a ligand-gated ion channel protein that is vital to various neurological functions, including modulation of neurotransmitter release. A relatively high concentration of extracellular Ca2+ in the neuronal environment is likely to exert substantial structural and functional influence on nAChRs, which may affect their interactions with agonists and antagonists. In this work, we employed atomistic molecular dynamics (MD) simulations to examine the effects of elevated Ca2+ on the structure and dynamics of α7 nAChR embedded in a model phospholipid bilayer. Our results suggest that the presence of Ca2+ in the α7 nAChR environment results in closure of loop C-in the extracellular ligand-binding domain, a motion normally associated with agonist binding and receptor activation. Elevated Ca2+ also alters the conformation of key regions of the receptor, including the inter-helical loops, pore-lining helices and the "gate" residues, and causes partial channel opening in the absence of an agonist, leading to an attendant reduction in the free energy of Ca2+ permeation through the pore as elucidated by umbrella sampling simulations. Overall, the structural and permeability changes in α7 nAChR suggest that elevated Ca2+ induces a partially activated receptor state that is distinct from both the resting and the agonist-activated states. These results are consistent with the notion that divalent ions can serve as a potentiator of nAChRs, resulting in a higher rate of receptor activation (and subsequent desensitization) in the presence of agonists, with possible implications for diseases involving calcium dysregulation.
Collapse
Affiliation(s)
- Abishek Suresh
- School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Andrew Hung
- School of Science, RMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Liu L, Sahu ID, Bottorf L, McCarrick RM, Lorigan GA. Investigating the Secondary Structure of Membrane Peptides Utilizing Multiple 2H-Labeled Hydrophobic Amino Acids via Electron Spin Echo Envelope Modulation (ESEEM) Spectroscopy. J Phys Chem B 2018; 122:4388-4396. [PMID: 29614227 DOI: 10.1021/acs.jpcb.7b11890] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An electron spin echo envelope modulation (ESEEM) approach was used to probe local secondary structures of membrane proteins and peptides. This ESEEM method detects dipolar couplings between 2H-labeled nuclei on the side chains of an amino acid (Leu or Val) and a strategically placed nitroxide spin-label in the proximity up to 8 Å. ESEEM spectra patterns for different samples correlate directly to the periodic structural feature of different secondary structures. Since this pattern can be affected by the side chain length and flexibility of the 2H-labeled amino acid used in the experiment, it is important to examine several different hydrophobic amino acids (d3 Ala, d8 Val, d8 Phe) utilizing this ESEEM approach. In this work, a series of ESEEM data were collected on the AChR M2δ membrane peptide to build a reference for the future application of this approach for various biological systems. The results indicate that, despite the relative intensity and signal-to-noise level, all amino acids share a similar ESEEM modulation pattern for α-helical structures. Thus, all commercially available 2H-labeled hydrophobic amino acids can be utilized as probes for the further application of this ESEEM approach. Also, the ESEEM signal intensities increase as the side chain length gets longer or less rigid. In addition, longer side chain amino acids had a larger 2H ESEEM FT peak centered at the 2H Larmor frequency for the i ± 4 sample when compared to the corresponding i ± 3 sample. For shorter side chain amino acids, the 2H ESEEM FT peak intensity ratio between i ± 4 and i ± 3 was not well-defined.
Collapse
Affiliation(s)
- Lishan Liu
- Department of Chemistry and Biochemistry , Miami University , Oxford , Ohio 45056 , United States
| | - Indra D Sahu
- Department of Chemistry and Biochemistry , Miami University , Oxford , Ohio 45056 , United States
| | - Lauren Bottorf
- Department of Chemistry and Biochemistry , Miami University , Oxford , Ohio 45056 , United States
| | - Robert M McCarrick
- Department of Chemistry and Biochemistry , Miami University , Oxford , Ohio 45056 , United States
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry , Miami University , Oxford , Ohio 45056 , United States
| |
Collapse
|
6
|
Liu L, Sahu ID, McCarrick RM, Lorigan GA. Probing the Secondary Structure of Membrane Peptides Using (2)H-Labeled d(10)-Leucine via Site-Directed Spin-Labeling and Electron Spin Echo Envelope Modulation Spectroscopy. J Phys Chem B 2016; 120:633-40. [PMID: 26735335 DOI: 10.1021/acs.jpcb.5b09040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Previously, we reported an electron spin echo envelope modulation (ESEEM) spectroscopic approach for probing the local secondary structure of membrane proteins and peptides utilizing (2)H isotopic labeling and site-directed spin-labeling (SDSL). In order to probe the secondary structure of a peptide sequence, an amino acid residue (i) side chain was (2)H-labeled, such as (2)H-labeled d10-Leucine, and a cysteine residue was strategically placed at a subsequent nearby position (denoted as i + 1 to i + 4) to which a nitroxide spin label was attached. In order to fully access and demonstrate the feasibility of this new ESEEM approach with (2)H-labeled d10-Leu, four Leu residues within the AChR M2δ peptide were fully mapped out using this ESEEM method. Unique (2)H-ESEEM patterns were observed with the (2)H-labeled d10-Leu for the AChR M2δ α-helical model peptide. For proteins and peptides with an α-helical secondary structure, deuterium modulation can be clearly observed for i ± 3 and i ± 4 samples, but not for i ± 2 samples. Also, a deuterium peak centered at the (2)H Larmor frequency of each i ± 4 sample always had a significantly higher intensity than the corresponding i + 3 sample. This unique feature can be potentially used to distinguish an α-helix from a π-helix or 310-helix. Moreover, (2)H modulation depth for ESEEM samples on Leu10 were significantly enhanced which was consistent with a kinked or curved structural model of the AChR M2δ peptide as suggested by previous MD simulations and NMR experiments.
Collapse
Affiliation(s)
- Lishan Liu
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| | - Indra D Sahu
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| | - Robert M McCarrick
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| |
Collapse
|
7
|
Leong RL, Xing H, Braekman JC, Kem WR. Non-competitive Inhibition of Nicotinic Acetylcholine Receptors by Ladybird Beetle Alkaloids. Neurochem Res 2014; 40:2078-86. [PMID: 25370792 DOI: 10.1007/s11064-014-1466-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 10/15/2014] [Accepted: 10/25/2014] [Indexed: 12/01/2022]
Abstract
Ladybird beetles (Family Coccinellidae) secrete an alkaloid rich venom from their leg joints that protects them from predators. Coccinellines, the major venom constituents, are alkaloids composed of three fused piperidine rings that share a common nitrogen atom. Although many coccinellines have been isolated and chemically characterized, their pharmacological properties are essentially unknown. Using radioligand binding and functional assays we investigated the actions of several coccinellines on skeletal muscle and α7 nicotinic acetylcholine receptors (nAChRs). The alkaloids were shown to displace the specific binding of tritiated piperidyl-N-(1-(2-thienyl)cyclohexyl)-3,4-piperidine ([(3)H]-TCP), which has been shown to bind deep within the ion channel of the electric fish (Torpedo) muscle nAChR. The stereoisomers precoccinelline and hippodamine (whose nitrogens are predicted to be ionized at physiological pH) and their respective analogs N-methyl-precoccinelline and N-methyl-hippodamine (whose quaternary nitrogens are permanently charged) displayed similar IC50s for inhibition of [(3)H]-TCP binding. However, the corresponding precoccinelline and hippodamine N-oxides, coccinelline and convergine (which have an electronegative oxygen bonded to an electropositive nitrogen) displayed significantly higher binding IC50s. Finally, exochomine, a dimeric coccinelline containing the hippodamine structure, displayed the highest IC50 (lowest affinity) for displacing specific [(3)H]-TCP binding. The presence of a desensitizing concentration (10(-3) M) of carbachol (CCh) had little or no effect on the affinity of the Torpedo nAChR for the three coccinellines tested. High concentrations of the coccinellid alkaloids did not affect binding of [(3)H]-cytisine to Torpedo receptor ACh binding sites. Inhibition of the alpha7 nAChR with pre-equilibrated precoccinelline was insurmountable with respect to ACh concentration. We conclude that the coccinellines bind to one or more allosteric sites rather than to the ACh binding sites, and inhibit nAChR responses to ACh through a non-competitive mechanism. Future chemical and pharmacological investigations of other ladybird beetle alkaloids are likely to reveal other interesting alkaloids affecting ligand-gated receptors.
Collapse
Affiliation(s)
- Ron L Leong
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, 32610, USA
| | - Hong Xing
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, 32610, USA
| | - Jean-Claude Braekman
- Laboratory of Bioorganic Chemistry, Faculty of Sciences, University of Brussels, 1050, Brussels, Belgium
| | - William R Kem
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
8
|
Bordag N, Keller S. α-Helical transmembrane peptides: A “Divide and Conquer” approach to membrane proteins. Chem Phys Lipids 2010; 163:1-26. [PMID: 19682979 DOI: 10.1016/j.chemphyslip.2009.07.009] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 07/21/2009] [Accepted: 07/21/2009] [Indexed: 11/26/2022]
|
9
|
A high resolution structure of the putative hinge region in M2 channel-lining segments of the nicotinic acetylcholine receptor. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:2961-70. [DOI: 10.1016/j.bbamem.2007.10.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Revised: 10/12/2007] [Accepted: 10/15/2007] [Indexed: 02/07/2023]
|
10
|
Moaddel R, Jozwiak K, Wainer IW. Allosteric modifiers of neuronal nicotinic acetylcholine receptors: new methods, new opportunities. Med Res Rev 2007; 27:723-53. [PMID: 17238157 DOI: 10.1002/med.20091] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Allosteric, non-competitive inhibitors (NCIs) of neuronal nicotinic acetylcholine receptors (nAChRs) have been shown to produce a wide variety of clinically relevant responses. Many of the observed effects are desired as the nAChR is the therapeutic target, while others are undesired consequences due to off-target binding at the nAChR. Thus, the determination of whether or not a lead drug candidate is an NCI should play an important role in drug discovery programs. However, the current experimental techniques used to identify NCIs are challenging, expensive, and time consuming. This review focuses on an alternative approach to the investigation of interactions between test compounds and nAChRs based upon liquid chromatographic stationary phases containing cellular fragments from cell lines expressing nAChRs. The development and validation of these phases as well as their use in drug discovery and pharmacophore modeling are discussed.
Collapse
Affiliation(s)
- Ruin Moaddel
- Gerontology Research Center, Laboratory of Clinical Investigations, National Institute on Aging/NIH, Baltimore, Maryland, USA
| | | | | |
Collapse
|
11
|
McNulty MM, Edgerton GB, Shah RD, Hanck DA, Fozzard HA, Lipkind GM. Charge at the lidocaine binding site residue Phe-1759 affects permeation in human cardiac voltage-gated sodium channels. J Physiol 2007; 581:741-55. [PMID: 17363383 PMCID: PMC2075178 DOI: 10.1113/jphysiol.2007.130161] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Our homology molecular model of the open/inactivated state of the Na(+) channel pore predicts, based on extensive mutagenesis data, that the local anaesthetic lidocaine docks eccentrically below the selectivity filter, such that physical occlusion is incomplete. Electrostatic field calculations suggest that the drug's positively charged amine produces an electrostatic barrier to permeation. To test the effect of charge at this pore level on permeation in hNa(V)1.5 we replaced Phe-1759 of domain IVS6, the putative binding site for lidocaine's alkylamino end, with positively and negatively charged residues as well as the neutral cysteine and alanine. These mutations eliminated use-dependent lidocaine block with no effect on tonic/rested state block. Mutant whole cell currents were kinetically similar to wild type (WT). Single channel conductance (gamma) was reduced from WT in both F1759K (by 38%) and F1759R (by 18%). The negatively charged mutant F1759E increased gamma by 14%, as expected if the charge effect were electrostatic, although F1759D was like WT. None of the charged mutations affected Na(+)/K(+) selectivity. Calculation of difference electrostatic fields in the pore model predicted that lidocaine produced the largest positive electrostatic barrier, followed by lysine and arginine, respectively. Negatively charged glutamate and aspartate both lowered the barrier, with glutamate being more effective. Experimental data were in rank order agreement with the predicted changes in the energy profile. These results demonstrate that permeation rate is sensitive to the inner pore electrostatic field, and they are consistent with creation of an electrostatic barrier to ion permeation by lidocaine's charge.
Collapse
Affiliation(s)
- Megan M McNulty
- Cardiac Electrophysiology Laboratory, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
12
|
Xu Y, Barrantes FJ, Luo X, Chen K, Shen J, Jiang H. Conformational dynamics of the nicotinic acetylcholine receptor channel: a 35-ns molecular dynamics simulation study. J Am Chem Soc 2005; 127:1291-9. [PMID: 15669869 DOI: 10.1021/ja044577i] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The nicotinic acetylcholine receptor (AChR) is the paradigm of ligand-gated ion channels, integral membrane proteins that mediate fast intercellular communication in response to neurotransmitters. A 35-ns molecular dynamics simulation has been performed to explore the conformational dynamics of the entire membrane-spanning region, including the ion channel pore of the AChR. In the simulation, the 20 transmembrane (TM) segments that comprise the whole TM domain of the receptor were inserted into a large dipalmitoylphosphatidylcholine (DPPC) bilayer. The dynamic behavior of individual TM segments and their corresponding AChR subunit helix bundles was examined in order to assess the contribution of each to the conformational transitions of the whole channel. Asymmetrical and asynchronous motions of the M1-M3 TM segments of each subunit were revealed. In addition, the outermost ring of five M4 TM helices was found to convey the effects exerted by the lipid molecules to the central channel domain. Remarkably, a closed-to-open conformational shift was found to occur in one of the channel ring positions in the time scale of the present simulations, the possible physiological significance of which is discussed.
Collapse
Affiliation(s)
- Yechun Xu
- Center for Drug Discovery and Design, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | | | | | | | | | | |
Collapse
|
13
|
Hung A, Tai K, Sansom MSP. Molecular dynamics simulation of the M2 helices within the nicotinic acetylcholine receptor transmembrane domain: structure and collective motions. Biophys J 2005; 88:3321-33. [PMID: 15722430 PMCID: PMC1305480 DOI: 10.1529/biophysj.104.052878] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Multiple nanosecond duration molecular dynamics simulations were performed on the transmembrane region of the Torpedo nicotinic acetylcholine receptor embedded within a bilayer mimetic octane slab. The M2 helices and M2-M3 loop regions were free to move, whereas the outer (M1, M3, M4) helix bundle was backbone restrained. The M2 helices largely retain their hydrogen-bonding pattern throughout the simulation, with some distortions in the helical end and loop regions. All of the M2 helices exhibit bending motions, with the hinge point in the vicinity of the central hydrophobic gate region (corresponding to residues alphaL251 and alphaV255). The bending motions of the M2 helices lead to a degree of dynamic narrowing of the pore in the region of the proposed hydrophobic gate. Calculations of Born energy profiles for various structures along the simulation trajectory suggest that the conformations of the M2 bundle sampled correspond to a closed conformation of the channel. Principal components analyses of each of the M2 helices, and of the five-helix M2 bundle, reveal concerted motions that may be relevant to channel function. Normal mode analyses using the anisotropic network model reveal collective motions similar to those identified by principal components analyses.
Collapse
Affiliation(s)
- Andrew Hung
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | | | | |
Collapse
|
14
|
Cui † Q, Smith VH. Analysis of K +/Na +selectivity of KcsA potassium channel with reference interaction site model theory. Mol Phys 2005. [DOI: 10.1080/00268970512331316201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Liang Y, Salas R, Marubio L, Bercovich D, De Biasi M, Beaudet AL, Dani JA. Functional polymorphisms in the human beta4 subunit of nicotinic acetylcholine receptors. Neurogenetics 2004; 6:37-44. [PMID: 15742216 DOI: 10.1007/s10048-004-0199-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2004] [Accepted: 10/15/2004] [Indexed: 10/26/2022]
Abstract
Human nicotinic acetylcholine receptor (nAChR) polymorphisms occur in different ethnic populations and may result in differences in nAChR ion channel properties. We have identified four nAChR beta 4 subunit (beta4) nucleotide variants: 392C-->T, 526C-->T, 538A-->G, and 1519A-->G. Their corresponding amino acid substitutions are: Thr to Ile at codon 91 (T91I), Arg to Trp at codon 136 (R136W), Ser to Gly at codon 140 (S140G), and Met to Val at codon 467 (M467V), respectively. The nAChR ion channel properties of these variants were studied and compared with the more-common (wild-type) allele as wild-types. The nAChRs (alpha4beta4 channels) were expressed heterologously in Xenopus oocytes and studied using the two-electrode voltage clamp technique to reveal functional differences between the wild-type and the variants. The receptors containing the R136W and M467V mutations (or variants) had a higher sensitivity to acetylcholine and lower EC50 than the wild-type. The T91I mutation had lower sensitivity to acetylcholine and the EC50 was larger than in wild-type nAChRs. The S140G mutation had a dose-response relationship that was similar to the wild-type. The T91I, R136W, and M467V mutations (or variants) also showed a slightly greater degree of steady-state desensitization than the wild-type in response to a 30-min exposure to one tenth of their EC50. The present results demonstrate that human beta4 nAChR DNA polymorphisms result in functional changes, and suggest that certain individuals with those variants may be more or less sensitive to cholinergic drugs or to dysfunctions associated with nicotinic cholinergic systems.
Collapse
Affiliation(s)
- Yong Liang
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Kessel A, Haliloglu T, Ben-Tal N. Interactions of the M2delta segment of the acetylcholine receptor with lipid bilayers: a continuum-solvent model study. Biophys J 2004; 85:3687-95. [PMID: 14645060 PMCID: PMC1303672 DOI: 10.1016/s0006-3495(03)74785-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
M2delta, one of the transmembrane segments of the nicotinic acetylcholine receptor, is a 23-amino-acid peptide, frequently used as a model for peptide-membrane interactions. In this and the companion article we describe studies of M2delta-membrane interactions, using two different computational approaches. In the present work, we used continuum-solvent model calculations to investigate key thermodynamic aspects of its interactions with lipid bilayers. M2delta was represented in atomic detail and the bilayer was represented as a hydrophobic slab embedded in a structureless aqueous phase. Our calculations show that the transmembrane orientation is the most favorable orientation of the peptide in the bilayer, in good agreement with both experimental and computational data. Moreover, our calculations produced the free energy of association of M2delta with the lipid bilayer, which, to our knowledge, has not been reported to date. The calculations included 10 structures of M2delta, determined by nuclear magnetic resonance in dodecylphosphocholine micelles. All the structures were found to be stable inside the lipid bilayer, although their water-to-membrane transfer free energies differed by as much as 12 kT. Although most of the structures were roughly linear, a single structure had a kink in its central region. Interestingly, this structure was found to be the most stable inside the lipid bilayer, in agreement with molecular dynamics simulations of the peptide and with the recently determined structure of the intact receptor. Our analysis showed that the kink reduced the polarity of the peptide in its central region by allowing the electrostatic masking of the Gln13 side chain in that area. Our calculations also showed a tendency for the membrane to deform in response to peptide insertion, as has been previously found for the membrane-active peptides alamethicin and gramicidin. The results are compared to Monte Carlo simulations of the peptide-membrane system, as presented in the accompanying article.
Collapse
Affiliation(s)
- Amit Kessel
- Department of Biochemistry, The George S Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | | | | |
Collapse
|
17
|
Jozwiak K, Ravichandran S, Collins JR, Wainer IW. Interaction of Noncompetitive Inhibitors with an Immobilized α3β4 Nicotinic Acetylcholine Receptor Investigated by Affinity Chromatography, Quantitative−Structure Activity Relationship Analysis, and Molecular Docking. J Med Chem 2004; 47:4008-21. [PMID: 15267239 DOI: 10.1021/jm0400707] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A large number of drug substances act as noncompetitive inhibitors (NCIs) of the nicotinic acetylcholine receptor (nAChR) by blocking the ion flux through the channel. An affinity chromatography technique has been developed for investigating the interactions between NCIs and the alpha3beta4 subtype of neuronal nAChR. The data obtained from the chromatographic study were used to construct QSAR models of the NCI-nAChR binding with both electronic and steric parameters observed as important descriptors. A molecular model of the transmembrane domain of the alpha3beta4 subtype of nAChR was constructed and used to simulate the docking of a series of NCIs. A key aspect of the model was the discovery of the cleft produced by the incorporation of the bulky phenylalanine moiety into the nonpolar section of the lumen by the beta4 subunit. Quantitatively, the results of docking simulations modeled the experimental affinity data better than QSAR results. The computational approach, combined with the modeling of NCI-nAChR interaction by affinity chromatography, can be used to predict possible toxicities and adverse interactions.
Collapse
Affiliation(s)
- Krzysztof Jozwiak
- Gerontology Research Center, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, Maryland 21224, USA
| | | | | | | |
Collapse
|
18
|
Park SH, Mrse AA, Nevzorov AA, Mesleh MF, Oblatt-Montal M, Montal M, Opella SJ. Three-dimensional structure of the channel-forming trans-membrane domain of virus protein "u" (Vpu) from HIV-1. J Mol Biol 2003; 333:409-24. [PMID: 14529626 DOI: 10.1016/j.jmb.2003.08.048] [Citation(s) in RCA: 184] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The three-dimensional structure of the channel-forming trans-membrane domain of virus protein "u" (Vpu) of HIV-1 was determined by NMR spectroscopy in micelle and bilayer samples. Vpu(2-30+) is a 36-residue polypeptide that consists of residues 2-30 from the N terminus of Vpu and a six-residue "solubility tag" at its C terminus that facilitates the isolation, purification, and sample preparation of this highly hydrophobic minimal channel-forming domain. Nearly all of the resonances in the two-dimensional 1H/15N HSQC spectrum of uniformly 15N labeled Vpu(2-30+) in micelles are superimposable on those from the corresponding residues in the spectrum of full-length Vpu, which indicates that the structure of the trans-membrane domain is not strongly affected by the presence of the cytoplasmic domain at its C terminus. The two-dimensional 1H/15N PISEMA spectrum of Vpu(2-30+) in lipid bilayers aligned between glass plates has been fully resolved and assigned. The "wheel-like" pattern of resonances in the spectrum is characteristic of a slightly tilted membrane-spanning helix. Experiments were also performed on weakly aligned micelle samples to measure residual dipolar couplings and chemical shift anisotropies. The analysis of the PISA wheels and Dipolar Waves obtained from both weakly and completely aligned samples show that Vpu(2-30+) has a trans-membrane alpha-helix spanning residues 8-25 with an average tilt of 13 degrees. The helix is kinked slightly at Ile17, which results in tilts of 12 degrees for residues 8-16 and 15 degrees for residues 17-25. A structural fit to the experimental solid-state NMR data results in a three-dimensional structure with precision equivalent to an RMSD of 0.4 A. Vpu(2-30+) exists mainly as an oligomer on PFO-PAGE and forms ion-channels, a most frequent conductance of 96(+/- 6) pS in lipid bilayers. The structural features of the trans-membrane domain are determinants of the ion-channel activity that may be associated with the protein's role in facilitating the budding of new virus particles from infected cells.
Collapse
Affiliation(s)
- Sang Ho Park
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0307, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Cordes FS, Tustian AD, Sansom MSP, Watts A, Fischer WB. Bundles consisting of extended transmembrane segments of Vpu from HIV-1: computer simulations and conductance measurements. Biochemistry 2002; 41:7359-65. [PMID: 12044168 DOI: 10.1021/bi025518p] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Part of the genome of the human immunodeficiency virus type 1 (HIV-1) encodes for a short membrane protein Vpu, which has a length of 81 amino acids. It has two functional roles: (i) to downregulate CD4 and (ii) to support particle release. These roles are attributed to two distinct domains of the peptide, the cytoplasmic and transmembrane (TM) domains, respectively. It has been suggested that the enhanced particle release function is linked to the ion channel activity of Vpu, with a slight preference for cations over anions. To allow ion flux across the membrane Vpu would be required to assemble in homooligomers to form functional water-filled pores. In this study molecular dynamics simulations are used to address the role of particular amino acids in 4, 5, and 6 TM helix bundle structures. The helices (Vpu(6-33)) are extended to include hydrophilic residues such as Glu, Tyr, and Arg (EYR motif). Our simulations indicate that this motif destabilizes the bundles at their C-terminal ends. The arginines point into the pore to form a positive charged ring that could act as a putative selectivity filter. The helices of the bundles adopt slightly higher average tilt angles with decreasing number of helices. We also suggest that the helices are kinked. Conductance measurements on a peptide (Vpu(1-32)) reconstituted into lipid membranes show that the peptide forms ion channels with several conductance levels.
Collapse
Affiliation(s)
- F S Cordes
- Biomembrane Structure Unit, Laboratory of Molecular Biophysics, Department of Biochemistry, Oxford University, South Parks Road, Oxford OX1 3QU, U.K
| | | | | | | | | |
Collapse
|
20
|
Mongan NP, Jones AK, Smith GR, Sansom MSP, Sattelle DB. Novel alpha7-like nicotinic acetylcholine receptor subunits in the nematode Caenorhabditis elegans. Protein Sci 2002; 11:1162-71. [PMID: 11967372 PMCID: PMC2373549 DOI: 10.1110/ps.3040102] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
We have used reverse-transcription-polymerase chain reaction (RT-PCR) and DNA sequencing techniques to confirm the transcription of seven (six alpha and one non-alpha) novel candidate nicotinic acetylcholine receptor (nAChR) subunit-encoding genes identified in the genome sequence of the nematode Caenorhabditis elegans. Compared to vertebrate nAChR subunits, they most closely resemble the homomer-forming, neuronal alpha7 subunit. Comparison of the predicted amino acid sequences of the new nAChR subunits with those described previously in C. elegans reveals five subunits (four alpha and one non-alpha) which resemble the DEG-3-like group of subunits. To date, this highly divergent nAChR subunit group is unique to C. elegans. ACR-22 is the first non-alpha member of the DEG-3-like group of subunits to be identified. Two new members of the related ACR-16-like nAChR group of subunits have also been shown to be transcribed, making the ACR-16-like subunit group the largest in C. elegans. Residues in the alpha subunit second transmembrane region (M2) which contribute to the channel lining show variations with implications for channel function. For example, in ACR-22, the highly conserved 0' lysine of M2 is replaced by histidine. Restrained molecular dynamics simulations have been used to generate molecular models of homo-pentameric M2 helix bundles for the novel subunits, enabling identification and display of pore-lining and protein interface residues. The number and diversity of genes encoding C. elegans nAChR subunits with similarities to the homomer-forming vertebrate alpha7 subunits and the identification of related non-alpha subunits, only found in C. elegans to date, suggest that at least some of these subunits may contribute to heteromers in vivo.
Collapse
Affiliation(s)
- Nigel P Mongan
- MRC Functional Genetics Unit, Department of Human Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | | | | | | | | |
Collapse
|
21
|
Bertaccini E, Trudell JR. Molecular modeling of ligand-gated ion channels: progress and challenges. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2002; 48:141-66. [PMID: 11526737 DOI: 10.1016/s0074-7742(01)48015-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
There has been rapid progress in molecular modeling of LGICs in recent years. The convergence of improved software for molecular mechanics/dynamics, techniques of chimeric substitution and site-directed mutations, and the first X-ray structures of transmembrane ion channels will make it possible to build reasonable models of neuronal ion channels well in advance of publication of their crystal structures. These models will not only serve as guides for future site-directed mutagenesis, but they will also be a starting point for understanding the dynamics of ion channel gating.
Collapse
Affiliation(s)
- E Bertaccini
- Department of Anesthesia, Stanford University School of Medicine, Stanford, California 94305, USA
| | | |
Collapse
|
22
|
Sansom MS, Weinstein H. Hinges, swivels and switches: the role of prolines in signalling via transmembrane alpha-helices. Trends Pharmacol Sci 2000; 21:445-51. [PMID: 11121576 DOI: 10.1016/s0165-6147(00)01553-4] [Citation(s) in RCA: 229] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Extracellular signals are transduced across membranes via conformational changes in the transmembrane domains (TMs) of ion channels and G-protein-coupled receptors (GPCRs). Experimental and simulation studies indicate that such conformational switches in transmembrane (alpha-helices can be generated by proline-containing motifs that form molecular hinges. Computational approaches tested on model channel-forming peptides (e.g. alamethicin) reveal functional mechanisms in gap-junction proteins (such as connexin) and voltage-gated K+ channels. Similarly, functionally important roles for proline-based switches in TM6 and TM7 were identified in GPCRs. However, hinges in transmembrane helices are not confined to proline-containing sequence motifs, as evidenced by a non-proline hinge in the M2 helix of the nicotinic acetylcholine receptor. This helix lines the pore and plays a key role in the gating of this channel.
Collapse
Affiliation(s)
- M S Sansom
- Department of Biochemistry, University of Oxford, UK.
| | | |
Collapse
|
23
|
Fischer WB, Pitkeathly M, Wallace BA, Forrest LR, Smith GR, Sansom MS. Transmembrane peptide NB of influenza B: a simulation, structure, and conductance study. Biochemistry 2000; 39:12708-16. [PMID: 11027151 DOI: 10.1021/bi001000e] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The putative transmembrane segment of the ion channel forming peptide NB from influenza B was synthesized by standard solid-phase peptide synthesis. Insertion into the planar lipid bilayer revealed ion channel activity with conductance levels of 20, 61, 107, and 142 pS in a 0.5 M KCl buffer solution. In addition, levels at -100 mV show conductances of 251 and 413 pS. A linear current-voltage relation reveals a voltage-independent channel formation. In methanol and in vesicles the peptide appears to adopt an alpha-helical-like structure. Computational models of alpha-helix bundles using N = 4, 5, and 6 NB peptides per bundle revealed water-filled pores after 1 ns of MD simulation in a solvated lipid bilayer. Calculated conductance values [using HOLE (Smart et al. (1997) Biophys. J. 72, 1109-1126)] of ca. 20, 60, and 90 pS, respectively, suggested that the multiple conductance levels seen experimentally must correspond to different degrees of oligomerization of the peptide to form channels.
Collapse
Affiliation(s)
- W B Fischer
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| | | | | | | | | | | |
Collapse
|
24
|
Allen TW, Bliznyuk A, Rendell AP, Kuyucak S, Chung SH. The potassium channel: Structure, selectivity and diffusion. J Chem Phys 2000. [DOI: 10.1063/1.481420] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
25
|
Moy G, Corry B, Kuyucak S, Chung SH. Tests of continuum theories as models of ion channels. I. Poisson-Boltzmann theory versus Brownian dynamics. Biophys J 2000; 78:2349-63. [PMID: 10777732 PMCID: PMC1300825 DOI: 10.1016/s0006-3495(00)76780-4] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Continuum theories of electrolytes are widely used to describe physical processes in various biological systems. Although these are well-established theories in macroscopic situations, it is not clear from the outset that they should work in small systems whose dimensions are comparable to or smaller than the Debye length. Here, we test the validity of the mean-field approximation in Poisson-Boltzmann theory by comparing its predictions with those of Brownian dynamics simulations. For this purpose we use spherical and cylindrical boundaries and a catenary shape similar to that of the acetylcholine receptor channel. The interior region filled with electrolyte is assumed to have a high dielectric constant, and the exterior region representing protein a low one. Comparisons of the force on a test ion obtained with the two methods show that the shielding effect due to counterions is overestimated in Poisson-Boltzmann theory when the ion is within a Debye length of the boundary. As the ion gets closer to the boundary, the discrepancy in force grows rapidly. The implication for membrane channels, whose radii are typically smaller than the Debye length, is that Poisson-Boltzmann theory cannot be used to obtain reliable estimates of the electrostatic potential energy and force on an ion in the channel environment.
Collapse
Affiliation(s)
- G Moy
- Protein Dynamics Unit, Department of Chemistry, Research School of Physical Sciences, Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | | | | | | |
Collapse
|
26
|
Law RJ, Forrest LR, Ranatunga KM, La Rocca P, Tieleman DP, Sansom MS. Structure and dynamics of the pore-lining helix of the nicotinic receptor: MD simulations in water, lipid bilayers, and transbilayer bundles. Proteins 2000; 39:47-55. [PMID: 10737926 DOI: 10.1002/(sici)1097-0134(20000401)39:1<47::aid-prot5>3.0.co;2-a] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Multiple nanosecond duration molecular dynamics simulations on the pore-lining M2 helix of the nicotinic acetylcholine receptor reveal how its structure and dynamics change as a function of environment. In water, the M2 helix partially unfolds to form a molecular hinge in the vicinity of a central Leu residue that has been implicated in the mechanism of ion channel gating. In a phospholipid bilayer, either as a single transmembrane helix, or as part of a pentameric helix bundle, the M2 helix shows less flexibility, but still exhibits a kink in the vicinity of the central Leu. The single M2 helix tilts relative to the bilayer normal by 12 degrees, in agreement with recent solid state NMR data (Opella et al., Nat Struct Biol 6:374-379, 1999). The pentameric helix bundle, a model for the pore domain of the nicotinic receptor and for channels formed by M2 peptides in a bilayer, is remarkably stable over a 2-ns MD simulation in a bilayer, provided one adjusts the pK(A)s of ionizable residues to their calculated values (when taking their environment into account) before starting the simulation. The resultant transbilayer pore shows fluctuations at either mouth which transiently close the channel. Proteins 2000;39:47-55.
Collapse
Affiliation(s)
- R J Law
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | | | | | | | | | |
Collapse
|
27
|
Zhorov BS, Bregestovski PD. Chloride channels of glycine and GABA receptors with blockers: Monte Carlo minimization and structure-activity relationships. Biophys J 2000; 78:1786-803. [PMID: 10733960 PMCID: PMC1300774 DOI: 10.1016/s0006-3495(00)76729-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
GABA and glycine receptors (GlyRs) are pentameric ligand-gated ion channels that respond to the inhibitory neurotransmitters by opening a chloride-selective central pore lined with five M2 segments homologous to those of alpha(1) GlyR/ ARVG(2')LGIT(6')TVLTMTTQSSGSR. The activity of cyanotriphenylborate (CTB) and picrotoxinin (PTX), the best-studied blockers of the Cl(-) pores, depends essentially on the subunit composition of the receptors, in particular, on residues in positions 2' and 6' that form the pore-facing rings R(2') and R(6'). Thus, CTB blocks alpha(1) and alpha(1)/beta, but not alpha(2) GlyRs (Rundström, N., V. Schmieden, H. Betz, J. Bormann, and D. Langosch. 1994. Proc. Natl. Acad. Sci. U.S.A. 91:8950-8954). PTX blocks homomeric receptors (alpha(1) GlyR and rat rho(1) GABAR), but weakly antagonizes heteromeric receptors (alpha(1)/beta GlyR and rho(1)/rho(2) GABAR) (Pribilla, I., T. Takagi, D. Langosch, J. Bormann, and H. Betz. 1992. EMBO J. 11:4305-4311; Zhang D., Z. H. Pan, X. Zhang, A. D. Brideau, and S. A. Lipton. 1995. Proc. Natl. Acad. Sci. U.S.A. 92:11756-11760). Using as a template the kinked-helices model of the nicotinic acetylcholine receptor in the open state (Tikhonov, D. B., and B. S. Zhorov. 1998. Biophys. J. 74:242-255), we have built homology models of GlyRs and GABARs and calculated Monte Carlo-minimized energy profiles for the blockers pulled through the pore. The profiles have shallow minima at the wide extracellular half of the pore, a barrier at ring R(6'), and a deep minimum between rings R(6') and R(2') where the blockers interact with five M2s simultaneously. The star-like CTB swings necessarily on its way through ring R(6') and its activity inversely correlates with the barrier at R(6'): Thr(6')s and Ala(2')s in alpha(2) GlyR confine the swinging by increasing the barrier, while Gly(2')s in alpha(1) GlyR and Phe(6')s in beta GlyR shrink the barrier. PTX has an egg-like shape with an isopropenyl group at the elongated end and the rounded end trimmed by ether and carbonyl oxygens. In the optimal binding mode to alpha(1) GlyR and rho(1) GABAR, the rounded end of PTX accepts several H-bonds from Thr(6')s, while the elongated end enters ring R(2'). The lack of H-bond donors on the side chains of Phe(6')s (beta GlyR) and Met(6')s (rho(2) GABAR) deteriorates the binding. The hydrophilic elongated end of picrotin does not fit the hydrophobic ring of Pro(2')s/Ala(2')s in GABARs, but fit a more hydrophilic ring with Gly(2')s in GlyRs. This analysis provides explanations for structure-activity relationships of noncompetitive agonists and predicts a narrow pore of LGICs in agreement with experimental data on the permeation of organic cations.
Collapse
Affiliation(s)
- B S Zhorov
- INSERM U-261 Neurobiologie Cellulaire, Institut Pasteur, Paris, France.
| | | |
Collapse
|
28
|
Randa HS, Forrest LR, Voth GA, Sansom MS. Molecular dynamics of synthetic leucine-serine ion channels in a phospholipid membrane. Biophys J 1999; 77:2400-10. [PMID: 10545343 PMCID: PMC1300517 DOI: 10.1016/s0006-3495(99)77077-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Molecular dynamics calculations were carried out on models of two synthetic leucine-serine ion channels: a tetrameric bundle with sequence (LSLLLSL)(3)NH(2) and a hexameric bundle with sequence (LSSLLSL)(3)NH(2). Each protein bundle is inserted in a palmitoyloleoylphosphatidylcholine bilayer membrane and solvated by simple point charge water molecules inside the pore and at both mouths. Both systems appear to be stable in the absence of an electric field during the 4 ns of molecular dynamics simulation. The water motion in the narrow pore of the four-helix bundle is highly restricted and may provide suitable conditions for proton transfer via a water wire mechanism. In the wider hexameric pore, the water diffuses much more slowly than in bulk but is still mobile. This, along with the dimensions of the pore, supports the observation that this peptide is selective for monovalent cations. Reasonable agreement of predicted conductances with experimentally determined values lends support to the validity of the simulations.
Collapse
Affiliation(s)
- H S Randa
- Department of Chemistry and Henry Eyring Center for Theoretical Chemistry, University of Utah, Salt Lake City, Utah 84112-0850, USA
| | | | | | | |
Collapse
|
29
|
Abstract
The structural, dynamical, and thermodynamic properties of a model potassium channel are studied using molecular dynamics simulations. We use the recently unveiled protein structure for the KcsA potassium channel from Streptomyces lividans. Total and free energy profiles of potassium and sodium ions reveal a considerable preference for the larger potassium ions. The selectivity of the channel arises from its ability to completely solvate the potassium ions, but not the smaller sodium ions. Self-diffusion of water within the narrow selectivity filter is found to be reduced by an order of magnitude from bulk levels, whereas the wider hydrophobic section of the pore maintains near-bulk self-diffusion. Simulations examining multiple ion configurations suggest a two-ion channel. Ion diffusion is found to be reduced to approximately 1/3 of bulk diffusion within the selectivity filter. The reduced ion mobility does not hinder the passage of ions, as permeation appears to be driven by Coulomb repulsion within this multiple ion channel.
Collapse
Affiliation(s)
- T W Allen
- Protein Dynamics Unit, Department of Chemistry, Research School of Physical Sciences, Australian National University, Canberra, ACT 0200, Australia.
| | | | | |
Collapse
|
30
|
Chung SH, Allen TW, Hoyles M, Kuyucak S. Permeation of ions across the potassium channel: Brownian dynamics studies. Biophys J 1999; 77:2517-33. [PMID: 10545353 PMCID: PMC1300527 DOI: 10.1016/s0006-3495(99)77087-6] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The physical mechanisms underlying the transport of ions across a model potassium channel are described. The shape of the model channel corresponds closely to that deduced from crystallography. From electrostatic calculations, we show that an ion permeating the channel, in the absence of any residual charges, encounters an insurmountable energy barrier arising from induced surface charges. Carbonyl groups along the selectivity filter, helix dipoles near the oval chamber, and mouth dipoles near the channel entrances together transform the energy barrier into a deep energy well. Two ions are attracted to this well, and their presence in the channel permits ions to diffuse across it under the influence of an electric field. Using Brownian dynamics simulations, we determine the magnitude of currents flowing across the channel under various conditions. The conductance increases with increasing dipole strength and reaches its maximum rapidly; a further increase in dipole strength causes a steady decrease in the channel conductance. The current also decreases systematically when the effective dielectric constant of the channel is lowered. The conductance with the optimal choice of dipoles reproduces the experimental value when the dielectric constant of the channel is assumed to be 60. The current-voltage relationship obtained with symmetrical solutions is linear when the applied potential is less than approximately 100 mV but deviates from Ohm's law at a higher applied potential. The reversal potentials obtained with asymmetrical solutions are in agreement with those predicted by the Nernst equation. The conductance exhibits the saturation property observed experimentally. We discuss the implications of these findings for the transport of ions across the potassium channels and membrane channels in general.
Collapse
Affiliation(s)
- S H Chung
- Protein Dynamics Unit, Department of Chemistry, Research School of Physical Sciences, Australian National University, Canberra, ACT 0200, Australia.
| | | | | | | |
Collapse
|
31
|
Abstract
We have used molecular dynamics simulations, corresponding to a total simulation time of 11 ns, to investigate the effective short-time local diffusion coefficient of potassium and chloride ions in a series of model ion channels. These models, which include channels formed by the fungal peptide alamethicin, by a synthetic leucine-serine peptide, and by the pore-lining M2 helix bundle of the nicotinic acetylcholine receptor, have a range of different secondary structures, diameters and hydrophobicities. We find that the diffusion coefficients of both ions are appreciably reduced in the narrower channels, the extent of the reduction being similar for both the anionic and cationic species. This suggests that a difference in mobility cannot be the source of the ion selectivity exhibited by some of the channels (for example, the leucine-serine peptide). We find no evidence for a reduction in mobility of either ion in the nAChR model. These results are broadly in line with a previous similar study of Na+ ions, and may be useful in Poisson-Nernst-Planck, Eyring rate theory or Brownian dynamics calculations of channel conductance.
Collapse
Affiliation(s)
- G R Smith
- Department of Biochemistry, University of Oxford, UK.
| | | |
Collapse
|
32
|
Tieleman DP, Berendsen HJ, Sansom MS. An alamethicin channel in a lipid bilayer: molecular dynamics simulations. Biophys J 1999; 76:1757-69. [PMID: 10096876 PMCID: PMC1300154 DOI: 10.1016/s0006-3495(99)77337-6] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We present the results of 2-ns molecular dynamics (MD) simulations of a hexameric bundle of Alm helices in a 1-palmitoyl-2-oleoylphosphatidylcholine bilayer. These simulations explore the dynamic properties of a model of a helix bundle channel in a complete phospholipid bilayer in an aqueous environment. We explore the stability and conformational dynamics of the bundle in a phospholipid bilayer. We also investigate the effect on bundle stability of the ionization state of the ring of Glu18 side chains. If all of the Glu18 side chains are ionised, the bundle is unstable; if none of the Glu18 side chains are ionized, the bundle is stable. pKA calculations suggest that either zero or one ionized Glu18 is present at neutral pH, correlating with the stable form of the helix bundle. The structural and dynamic properties of water in this model channel were examined. As in earlier in vacuo simulations (Breed et al., 1996 .Biophys. J. 70:1643-1661), the dipole moments of water molecules within the pore were aligned antiparallel to the helix dipoles. This contributes to the stability of the helix bundle.
Collapse
Affiliation(s)
- D P Tieleman
- BIOSON Research Institute and Department of Biophysical Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| | | | | |
Collapse
|
33
|
Tieleman DP, Sansom MS, Berendsen HJ. Alamethicin helices in a bilayer and in solution: molecular dynamics simulations. Biophys J 1999; 76:40-9. [PMID: 9876121 PMCID: PMC1302498 DOI: 10.1016/s0006-3495(99)77176-6] [Citation(s) in RCA: 174] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Alamethicin is an alpha-helical channel-forming peptide, which inserts into lipid bilayers in a voltage-dependent, asymmetrical fashion. Nanosecond molecular dynamics simulations have been used to compare alamethicin conformation and dynamics in three different environments: 1) in water; 2) in methanol; and 3) inserted into a lipid (palmitoyl-oleoyl-phosphatidylcholine) bilayer to form a transmembrane helix. In the bilayer and in methanol, there was little change (Calpha RMSD approximately 0.2 nm over 2 ns and 1 ns) from the initial helical conformation of the peptide. In water there were substantial changes (Calpha RMSD approximately 0.4 nm over 1 ns), especially in the C-terminal segment of the peptide, which lost its alpha-helical conformation. In the bilayer and in methanol, the alamethicin molecule underwent hinge-bending motion about its central Gly-X-X-Pro sequence motif. Analysis of H-bonding interactions revealed that the polar C-terminal side chains of alamethicin provided an "anchor" to the bilayer/water interface via formation of multiple H-bonds that persisted throughout the simulation. This explains why the preferred mode of helix insertion into the bilayer is N-terminal, which is believed to underlie the asymmetry of voltage activation of alamethicin channels.
Collapse
Affiliation(s)
- D P Tieleman
- BIOSON Research Institute and Department of Biophysical Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| | | | | |
Collapse
|
34
|
Pohorille A, New MH, Schweighofer K, Wilson MA. Chapter 3 Insights from Computer Simulations into the Interaction of Small Molecules with Lipid Bilayers. CURRENT TOPICS IN MEMBRANES 1999. [DOI: 10.1016/s0070-2161(08)61041-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
35
|
Smith GR, Sansom MS. Dynamic properties of Na+ ions in models of ion channels: a molecular dynamics study. Biophys J 1998; 75:2767-82. [PMID: 9826599 PMCID: PMC1299950 DOI: 10.1016/s0006-3495(98)77720-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
We present simulation results for the effective diffusion coefficients of a sodium ion in a series of model ion channels of different diameters and hydrophobicities, including models of alamethicin, a leucine-serine peptide, and the M2 helix bundle of the nicotinic acetylcholine receptor. The diffusion coefficient, which in the simulations has a value of 0.15(2) A2ps-1 in bulk water, is found to be reduced to as little as 0.02(1) A2ps-1 in the narrower channels, and to about 0.10(5) A2ps-1 in wider channels such as the nicotinic acetylcholine receptor. It is anticipated that this work will be useful in connection with calculations of channel conductivity using such techniques as the Poisson-Nernst-Planck equation, Eyring rate theory, or Brownian dynamics.
Collapse
Affiliation(s)
- G R Smith
- Laboratory of Molecular Biophysics, University of Oxford, Oxford OX1 3QU, United Kingdom
| | | |
Collapse
|
36
|
Abstract
The nicotinic acetylcholine receptor (nAChR) is a cation-selective ion channel that opens in response to acetylcholine binding. The related glycine receptor (GlyR) is anion selective. The pore-lining domain of each protein may be modeled as a bundle of five parallel M2 helices. Models of the pore-lining domains of homopentameric nAChR and GlyR have been used in continuum electrostatics calculations to probe the origins of ion selectivity. Calculated pKA values suggest that "rings" of acidic or basic side chains at the mouths of the nAChR or GlyR M2 helix bundles, respectively, may not be fully ionized. In particular, for the nAChR the ring of glutamate side chains at the extracellular mouth of the pore is predicted to be largely protonated at neutral pH, whereas those glutamate side chains in the intracellular and intermediate rings (at the opposite mouth of the pore) are predicted to be fully ionized. Inclusion of the other domains of each protein represented as an irregular cylindrical tube in which the M2 bundles are embedded suggests that both the M2 helices and the extramembrane domains play significant roles in determining ion selectivity.
Collapse
Affiliation(s)
- C Adcock
- Laboratory of Molecular Biophysics, University of Oxford, England
| | | | | |
Collapse
|
37
|
Affiliation(s)
- M E Green
- Department of Chemistry, City College of the City University of New York, New York 10031-9137, USA
| |
Collapse
|
38
|
Affiliation(s)
- M S Sansom
- Laboratory of Molecular Biophysics, University of Oxford, United Kingdom
| |
Collapse
|
39
|
Sansom MS, Adcock C, Smith GR. Modelling and simulation of ion channels: applications to the nicotinic acetylcholine receptor. J Struct Biol 1998; 121:246-62. [PMID: 9615441 DOI: 10.1006/jsbi.1997.3950] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Molecular dynamics simulations with experimentally derived restraints have been used to develop atomic models of M2 helix bundles forming the pore-lining domains of the nicotinic acetylcholine receptor and related ligand-gated ion channels. M2 helix bundles have been used in microscopic simulations of the dynamics and energetics of water and ions within an ion channel. Translational and rotational motion of water are restricted within the pore, and water dipoles are aligned relative to the pore axis by the surrounding helix dipoles. Potential energy profiles for translation of a Na+ ion along the pore suggest that the protein and water components of the interaction energy exert an opposing effect on the ion, resulting in a relatively flat profile which favors cation permeation. Empirical conductance calculations based on a pore radius profile suggest that the M2 helix model is consistent with a single channel conductance of ca. 50 pS. Continuum electrostatics calculations indicate that a ring of glutamate residues at the cytoplasmic mouth of the alpha 7 nicotinic receptor M2 helix bundle may not be fully ionized. A simplified model of the remainder of the channel protein when added to the M2 helix bundle plays a significant role in enhancing the ion selectivity of the channel.
Collapse
Affiliation(s)
- M S Sansom
- Laboratory of Molecular Biophysics, University of Oxford, United Kingdom.
| | | | | |
Collapse
|
40
|
Buckingham SD, Adcock C, Sansom MS, Sattelle DB, Baylis HA. Functional characterization of a mutated chicken alpha7 nicotinic acetylcholine receptor subunit with a leucine residue inserted in transmembrane domain 2. Br J Pharmacol 1998; 124:747-55. [PMID: 9690867 PMCID: PMC1565430 DOI: 10.1038/sj.bjp.0701866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
1. Site-directed mutagenesis was used to create an altered form of the chicken alpha7 nicotinic acetylcholine (ACh) receptor subunit (alpha7x61) in which a leucine residue was inserted between residues Leu9' and Ser10' in transmembrane domain 2. The properties of alpha7x61 receptors are distinct from those of the wild-type receptor. 2. Oocytes expressing wild-type alpha7 receptors responded to 10 microM nicotine with rapid inward currents that desensitized with a time-constant of 710+/-409 ms (mean+/-s.e.mean, n=5). However in alpha7x61 receptors 10 microM nicotine resulted in slower onset inward currents that desensitized with a time-constant of 5684+/-3403 ms (mean+/-s.e.mean, n = 4). No significant difference in the apparent affinity of nicotine or acetylcholine between mutant and wild-type receptors was observed. Dihydro-beta-erythroidine (DHbetaE) acted as an antagonist on both receptors. 3. Molecular modelling of the alpha7x61 receptor channel pore formed by a bundle of M2 alpha-helices suggested that three of the channel lining residues would be altered by the leucine insertion i.e.; Ser10 would be replaced by the leucine insertion, Val13' and Phe14' would be replaced, by Thr and Val, respectively. 4 When present in the LEV-1 nicotinic ACh receptor subunit from Caenorhabditis elegans the same alteration conferred resistance to levamisole anthelmintic drug. Levamisole blocked responses to nicotine of wild-type and alpha7x61 receptors. However, block was more dependent on membrane potential for the alpha7x61 receptors. 5. We conclude that the leucine insertion in transmembrane domain 2 has the unusual effect of slowing desensitization without altering apparent agonist affinity.
Collapse
Affiliation(s)
- S D Buckingham
- The Babraham Institute Laboratory of Molecular Signalling, Department of Zoology, University of Cambridge, UK
| | | | | | | | | |
Collapse
|
41
|
Abstract
The past year has seen major advances in our understanding of ion channels, resulting from molecular dynamics simulations and modelling studies. Simulations of gramicidin have revealed that proton conduction along a water wire is limited by the dynamics of water reorientation. Plausible models are now available for a number of other channels, including alamethicin, the influenza A virus M2 protein, and the pore domains of the nicotinic acetylcholine receptor and Kv channels. Molecular dynamics simulations and continuum calculations have revealed some of the subtleties of the interactions between transmembrane helices and their lipid bilayer environment.
Collapse
|
42
|
Tikhonov DB, Zhorov BS. Kinked-helices model of the nicotinic acetylcholine receptor ion channel and its complexes with blockers: simulation by the Monte Carlo minimization method. Biophys J 1998; 74:242-55. [PMID: 9449326 PMCID: PMC1299378 DOI: 10.1016/s0006-3495(98)77783-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A model of the nicotinic acetylcholine receptor ion channel was elaborated based on the data from electron microscopy, affinity labeling, cysteine scanning, mutagenesis studies, and channel blockade. A restrained Monte Carlo minimization method was used for the calculations. Five identical M2 segments (the sequence EKMTLSISVL10LALTVFLLVI20V) were arranged in five-helix bundles with various geometrical profiles of the pore. For each bundle, energy profiles for chlorpromazine, QX-222, pentamethonium, and other blocking drugs pulled through the pore were calculated. An optimal model obtained allows all of the blockers free access to the pore, but retards them at the rings of residues known to contribute to the corresponding binding sites. In this model, M2 helices are necessarily kinked. They come into contact with each other at the cytoplasmic end but diverge at the synaptic end, where N-termini of M1 segments may contribute to the pore. The kinks disengage alpha-helical H-bonds between Ala12 and Ser8. The uncoupled lone electron pairs of Ser8 carbonyl oxygens protrude into the pore, forming a hydrophilic ring that may be important for the permeation of cations. A split network of H-bonds provides a flexibility to the chains Val9-Ala12, the numerous conformations of which form only two or three intrasegment H-bonds. The cross-ectional dimensions of the interface between the flexible chains vary essentially at the level of Leu11. We suggest that conformational transitions in the chains Val9-Ala12 are responsible for the channel gating, whereas rotations of more stable alpha-helical parts of M2 segments may be necessary to transfer the channel in the desensitized state.
Collapse
Affiliation(s)
- D B Tikhonov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg
| | | |
Collapse
|
43
|
Sansom MS, Smith GR, Smart OS, Smith SO. Channels formed by the transmembrane helix of phospholamban: a simulation study. Biophys Chem 1997; 69:269-81. [PMID: 9474759 DOI: 10.1016/s0301-4622(97)00109-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Phospholamban is a small membrane protein which can form cation selective ion channels in lipid bilayers. Each subunit contains a single, largely hydrophobic transmembrane helix. The helices are thought to assemble as a pentameric and approximately parallel bundle surrounding a central pore. A model of this assembly (PDB code IPSL) has been used as the starting point for molecular dynamics (MD) simulations of a system consisting of the pentameric helix bundle, plus 217 water molecules located within and at either mouth of the pore. Interhelix distance restraints were employed to maintain the integrity of the helix bundle during a 500 ps MD simulation. Water molecules within the pore exhibited reduced diffusional and rotational mobility. Interactions between the alpha-helix dipoles and the water dipoles, the latter aligned anti-parallel to the former, contribute to the stability of the system. Analysis of the potential energy of interaction of a K+ ion as it was moved through the pore suggested that unfavourable interactions of the cation with the aligned helix dipoles at the N-terminal mouth were overcome by favourable ion-water interactions. Comparable analysis for a Cl ion revealed that the ion-(pore + water) interactions were unfavourable along the whole of the pore, increasingly so from the N- to the C-terminal mouth. Overall, the interaction energy profiles were consistent with a pore selective for cations over anions. Pore radius profiles were used to predict a channel conductance of 50 to 70 ps in 0.2 M KCl, which compares well with an experimental value of 100 ps.
Collapse
Affiliation(s)
- M S Sansom
- Laboratory of Molecular Biophysics, University of Oxford, UK.
| | | | | | | |
Collapse
|
44
|
Jaikaran DC, Biggin PC, Wenschuh H, Sansom MS, Woolley GA. Structure-function relationships in helix-bundle channels probed via total chemical synthesis of alamethicin dimers: effects of a Gln7 to Asn7 mutation. Biochemistry 1997; 36:13873-81. [PMID: 9374865 DOI: 10.1021/bi9716130] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Alamethicin channels are prototypical helix bundles that may serve as tractable models for more complex protein ion channels. Solid-phase peptide synthesis of alamethicin analogues using FMOC-amino acid fluorides followed by chemical dimerization of these peptides facilitates structure-function studies of particular channel states in bilayer membranes. State 3 in particular, tentatively assigned to a hexameric helix bundle, is sufficiently long-lived that current-voltage measurements can be made during the lifetime of an individual channel opening. Molecular models of hexameric helix bundles, generated using restrained molecular dynamics with simulated annealing, indicate that a Gln7-->Asn7 (Q7-->N7) mutation will increase channel diameter locally. Experimentally, the conductance of state 3 of the N7-alm channel is found to be larger than that of the Q7-alm channel when ion flow is in the usual direction (cations entering the C-terminal end of the channel). When ion flow is in the opposite direction, no difference in the conductances of state 3 of Q7 and state 3 of N7 channels is observed. These results indicate that the effect of a change in pore diameter at position 7 is dependent on the magnitude of other barriers to permeation and that these barriers are voltage-dependent.
Collapse
Affiliation(s)
- D C Jaikaran
- Department of Chemistry, University of Toronto, Canada
| | | | | | | | | |
Collapse
|
45
|
Sansom MS, Smith GR, Adcock C, Biggin PC. The dielectric properties of water within model transbilayer pores. Biophys J 1997; 73:2404-15. [PMID: 9370434 PMCID: PMC1181142 DOI: 10.1016/s0006-3495(97)78269-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Ion channels contain extended columns of water molecules within their transbilayer pores. The dynamic properties of such intrapore water have been shown to differ from those of water in its bulk state. In previous molecular dynamics simulations of two classes of model pore (parallel bundles of Ala20 alpha-helices and antiparallel barrels of Ala10 beta-strands), a substantially reduced translational and rotational mobility of waters was observed within the pore relative to bulk water. Molecular dynamics simulations in the presence of a transpore electrostatic field (i.e., a voltage drop along the pore axis) have been used to estimate the resultant polarization (due to reorientation) of the intrapore water, and hence to determine the local dielectric behavior within the pore. It is shown that the local dielectric constant of water within a pore is reduced for models formed by parallel alpha-helix bundles, but not by those formed by beta-barrels. This result is discussed in the context of electrostatics calculations of ion permeation through channels, and the effect of the local dielectric of water within a helix bundle pore is illustrated with a simple Poisson-Boltzmann calculation.
Collapse
Affiliation(s)
- M S Sansom
- Laboratory of Molecular Biophysics, University of Oxford, England.
| | | | | | | |
Collapse
|
46
|
Bouzat C, Barrantes FJ. Assigning functions to residues in the acetylcholine receptor channel region (review). Mol Membr Biol 1997; 14:167-77. [PMID: 9491368 DOI: 10.3109/09687689709048179] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review is concerned with the functional domains of the nicotinic acetylcholine receptor (AChR) involved in ion permeation. These comprise the ion pore and its gate. The latter allows the channel to be almost exclusively closed in the absence of agonist and favours ion flux in its presence. Early photoaffinity labelling experiments using open-channel blockers and site-directed mutagenesis studies identified M2 of each AChR subunit as the transmembrane domain lining the walls of the ion pore. Several biochemical, electrophysiological, and mutagenesis studies as well as molecular modelling and in vitro studies of ion channel formation with synthetic peptides corroborate these findings. Point mutations combined with electrophysiological techniques have contributed to dissecting the AChR channel region assigning functions to individual amino acid residues, thus revealing structural and functional stratification of the M2 channel domain. Specific residues have been found to be structural determinants of conductance, ion selectivity, gating, and desensitization. The three-dimensional structure of the AChR protein at 9A resolution suggests a possible arrangement of the M2 alpha-helices in the open and closed states, respectively. In spite of the current wealth of knowledge on the AChR ion channel stemming from the combination of experimental approaches discussed in this review, the mechanistic structure by which the interaction with the agonist favours the opening of the cationic channel remains unknown.
Collapse
Affiliation(s)
- C Bouzat
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, UNS-CONICET, Argentina
| | | |
Collapse
|
47
|
Smith GR, Sansom MS. Molecular dynamics study of water and Na+ ions in models of the pore region of the nicotinic acetylcholine receptor. Biophys J 1997; 73:1364-81. [PMID: 9284304 PMCID: PMC1181036 DOI: 10.1016/s0006-3495(97)78169-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The nicotinic acetylcholine receptor (nAChR) is an integral membrane protein that forms ligand-gated and cation-selective channels. The central pore is lined by a bundle of five approximately parallel M2 helices, one from each subunit. Candidate model structures of the solvated pore region of a homopentameric (alpha7)5 nAChR channel in the open state, and in two possible forms of the closed state, have been studied using molecular dynamics simulations with restraining potentials. It is found that the mobility of the water is substantially lower within the pore than in bulk, and the water molecules become aligned with the M2 helix dipoles. Hydrogen-bonding patterns in the pore, especially around pore-lining charged and hydrophilic residues, and around exposed regions of the helix backbone, have been determined. Initial studies of systems containing both water and sodium ions together within the pore region have also been conducted. A sodium ion has been introduced into the solvated models at various points along the pore axis and its energy profile evaluated. It is found that the ion causes only a local perturbation of the water structure. The results of these calculations have been used to examine the effectiveness of the central ring of leucines as a component of a gate in the closed-channel model.
Collapse
Affiliation(s)
- G R Smith
- Laboratory of Molecular Biophysics, University of Oxford, England
| | | |
Collapse
|
48
|
Green ME, Lu J. Simulation of Water in a Small Pore: Effect of Electric Field and Density. J Phys Chem B 1997. [DOI: 10.1021/jp971220a] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michael E. Green
- Department of Chemistry, The City College of the City University of New York, 138 Street and Convent Avenue, New York, New York 10031
| | - Jianjun Lu
- Department of Chemistry, The City College of the City University of New York, 138 Street and Convent Avenue, New York, New York 10031
| |
Collapse
|
49
|
Kerr ID, Sansom MS. The pore-lining region of shaker voltage-gated potassium channels: comparison of beta-barrel and alpha-helix bundle models. Biophys J 1997; 73:581-602. [PMID: 9251779 PMCID: PMC1180959 DOI: 10.1016/s0006-3495(97)78095-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Although there is a large body of site-directed mutagenesis data that identify the pore-lining sequence of the voltage-gated potassium channel, the structure of this region remains unknown. We have interpreted the available biochemical data as a set of topological and orientational restraints and employed these restraints to produce molecular models of the potassium channel pore region, H5. The H5 sequence has been modeled either as a tetramer of membrane-spanning beta-hairpins, thus producing an eight-stranded beta-barrel, or as a tetramer of incompletely membrane-spanning alpha-helical hairpins, thus producing an eight-staved alpha-helix bundle. In total, restraints-directed modeling has produced 40 different configurations of the beta-barrel model, each configuration comprising an ensemble of 20 structures, and 24 different configurations of the alpha-helix bundle model, each comprising an ensemble of 24 structures. Thus, over 1300 model structures for H5 have been generated. Configurations have been ranked on the basis of their predicted pore properties and on the extent of their agreement with the biochemical data. This ranking is employed to identify particular configurations of H5 that may be explored further as models of the pore-lining region of the voltage-gated potassium channel pore.
Collapse
Affiliation(s)
- I D Kerr
- Laboratory of Molecular Biophysics, University of Oxford, England
| | | |
Collapse
|
50
|
Sansom MS, Kerr ID, Smith GR, Son HS. The influenza A virus M2 channel: a molecular modeling and simulation study. Virology 1997; 233:163-73. [PMID: 9201226 DOI: 10.1006/viro.1997.8578] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The M2 protein of influenza virus forms ion channels activated by low pH which are proton permeable and play a key role in the life cycle of the virus. M2 is a 97-residue integral membrane protein containing a single transmembrane (TM) helix. M2 is present as disulfide-linked homotetramers. The TM domain of M2 has been modeled as a bundle of four parallel M2 helices. The helix bundle forms a left-handed supercoil surrounding a central pore. Residue H37 has been implicated in the mechanism of low-pH activation of the channel. Models generated with H37 in a fully deprotonated state exhibit a pore occluded by a ring of H37 side chains oriented toward the lumen of the pore. Models with H37 in a fully protonated state no longer exhibit such occlusion of the pore, as the H37 side chains adopt a more interfacial location. Extended molecular dynamics simulations with water molecules within and at the mouths of the pores support this distinction between the H37-deprotonated and H37-protonated models. These simulations suggest that only in the H37-protonated model is there a continuous column of water extending the entire length of the central pore. A mechanism for activation of M2 by low pH is presented in which the H37-deprotonated model corresponds to the "closed" form of the channel, while the H37-protonated model corresponds to the "open" form. A switch from the closed to the open form of the channel occurs if H37 is protonated midway through a simulation. The open channel is suggested to contain a wire of H-bonded water molecules which enables proton permeability.
Collapse
Affiliation(s)
- M S Sansom
- Laboratory of Molecular Biophysics, University of Oxford, United Kingdom.
| | | | | | | |
Collapse
|