1
|
Yadav R, Sivoria N, Maiti S. Salt Gradient-Induced Phoresis of Vesicles and Enhanced Membrane Fusion in a Crowded Milieu. J Phys Chem B 2024; 128:9573-9585. [PMID: 39295542 DOI: 10.1021/acs.jpcb.4c03985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Phoresis of biocolloidal objects in response to chemical gradients is a matter of interest among diverse scientific disciplines owing to their importance in the spatiotemporal orchestration of biochemical processes. Although there are reports of soft matter transport/phoresis in the gradient of ions or salts in the aqueous system, their phoretic behavior in the presence of macromolecular crowder is largely unexplored. Notably, cellular cytoplasm is illustrated as a crowded milieu and thereby understanding biomolecular phoresis in the presence of polymeric macromolecules would endorse phoretic behavior in a biomimetic environment. Here, we report the phoresis-induced enhanced aggregation and fusion of vesicles in gradients of monovalent (NaCl) and divalent salt (MgCl2), in the presence of polymeric crowder, polyethylene glycol of molecular weight 400 (PEG 400). Apart from diffusiophoresis, depletion force plays a crucial factor in crowded environments to control localized vesicle aggregation in a salt gradient. This demonstration will potentially show the pathway to future research related to spatiotemporally correlated liposomal transport and membrane-dependent function (such as content mixing and signaling) in a physiologically relevant crowded environment.
Collapse
Affiliation(s)
- Reena Yadav
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Manauli, Knowledge City 140306, India
| | - Neetu Sivoria
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Manauli, Knowledge City 140306, India
| | - Subhabrata Maiti
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Manauli, Knowledge City 140306, India
| |
Collapse
|
2
|
Zhou X, Zhuang Y, Liu X, Gu Y, Wang J, Shi Y, Zhang L, Li R, Zhao Y, Chen H, Li J, Yao H, Li L. Study on tumour cell-derived hybrid exosomes as dasatinib nanocarriers for pancreatic cancer therapy. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2023; 51:532-546. [PMID: 37948136 DOI: 10.1080/21691401.2023.2264358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/23/2023] [Indexed: 11/12/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer-related death. Therefore, we intend to explore novel strategies against PDAC. The exosomes-based biomimetic nanoparticle is an appealing candidate served as a drug carrier in cancer treatment, due to its inherit abilities. In the present study, we designed dasatinib-loaded hybrid exosomes by fusing human pancreatic cancer cells derived exosomes with dasatinib-loaded liposomes, followed by characterization for particle size (119.9 ± 6.10 nm) and zeta potential (-11.45 ± 2.24 mV). Major protein analysis from western blot techniques reveal the presence of exosome marker proteins CD9 and CD81. PEGylated hybrid exosomes showed pH-sensitive drug release in acidic condition, benefiting drug delivery to acidic cancer environment. Dasatinib-loaded hybrid exosomes exhibited significantly higher uptake rates and cytotoxicity to parent PDAC cells by two-sample t-test or by one-way ANOVA analysis of variance, as compared to free drug or liposomal formulations. The results from our computational analysis demonstrated that the drug-likeness, ADMET, and protein-ligand binding affinity of dasatinib are verified successfully. Cancer derived hybrid exosomes may serve as a potential therapeutic candidate for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Xiaofei Zhou
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
- Department of Clinical Research Center, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yuetang Zhuang
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xiaohong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yaowen Gu
- Institute of Medical Information/Library, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Chemistry, NY University, New York City, NY, USA
| | - Junting Wang
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Yuchen Shi
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Li Zhang
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Rui Li
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Yelin Zhao
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Hebing Chen
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Jiao Li
- Institute of Medical Information/Library, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hongjuan Yao
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Liang Li
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| |
Collapse
|
3
|
Solis-Gonzalez OA, Tse CCW, Smith PJ, Fairclough JPA. Study of Salting Effect of Inorganic Salts on Nano- and Giant Polymersomes. Macromol Res 2022. [DOI: 10.1007/s13233-022-0051-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
4
|
Oikonomou EK, Berret JF. Advanced Eco-Friendly Formulations of Guar Biopolymer-Based Textile Conditioners. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5749. [PMID: 34640145 PMCID: PMC8510192 DOI: 10.3390/ma14195749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022]
Abstract
Fabric conditioners are household products used to impart softness and fragrance to textiles. They are colloidal dispersions of cationic double chain surfactants that self-assemble in vesicles. These surfactants are primarily derived from palm oil chemical modification. Reducing the content of these surfactants allows to obtain products with lower environmental impact. Such a reduction, without adverse effects on the characteristics of the softener and its performance, can be achieved by adding hydrophilic biopolymers. Here, we review the role of guar biopolymers modified with cationic or hydroxyl-propyl groups, on the physicochemical properties of the formulation. Electronic and optical microscopy, dynamic light scattering, X-ray scattering and rheology of vesicles dispersion in the absence and presence of guar biopolymers are analyzed. Finally, the deposition of the new formulation on cotton fabrics is examined through scanning electron microscopy and a new protocol based on fluorescent microscopy. With this methodology, it is possible to quantify the deposition of surfactants on cotton fibers. The results show that the approach followed here can facilitate the design of sustainable home-care products.
Collapse
Affiliation(s)
- Evdokia K. Oikonomou
- Université de Paris, Centre National de la Recherche Scientifique (CNRS), Matière et Systèmes Complexes, 75013 Paris, France;
| | | |
Collapse
|
5
|
Sahu S, Talele P, Patra B, Verma RS, Mishra AK. A Multiparametric Fluorescence Probe to Understand the Physicochemical Properties of Small Unilamellar Lipid Vesicles in Poly(ethylene glycol)-Water Medium. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:4842-4852. [PMID: 32283935 DOI: 10.1021/acs.langmuir.9b03902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
FDAPT (2-formyl-5-(4'-N,N-dimethylaminophenyl)thiophene) efficiently senses the minimum alteration of lipid bilayer microenvironment with all six different fluorescence parameters namely emission wavelength, fluorescence intensity, steady-state anisotropy, and their corresponding time-dependent parameters (Sahu et al., J. Phys. Chem. B 2018, 122, 7308-7318). In the present work, the effect of poly(ethylene glycol) on the small unilamellar vesicle is demonstrated with the emission behavior of the FDAPT probe. A medium and a high molecular weight PEG were chosen to perturb the lipid vesicles. The alteration of the bilayer polarity, water content inside bilayer, lipid packing density in the perturbed vesicles reflect significant changes in different fluorescence parameters of FDAPT probe. The effect of PEG on the unilamellar vesicle was rationalized with the alteration of the emission behavior, fluorescence lifetime, steady-state anisotropy and anisotropy decay of the probe. The simple and convenient fluorescence measurements provide new insights into the effect of PEG on the packing density, water volume, micro polarity, and microviscosity of the small unilamellar vesicle. The physiological understanding was extended to rationalize the cryoprotecting behavior of PEG.
Collapse
Affiliation(s)
- Saugata Sahu
- Department of Chemistry, Indian Institute of Technology Madras, Sardar Patel Road, Adyar, Chennai-600036, Tamil Nadu India
| | - Paurnima Talele
- Department of Chemistry, Indian Institute of Technology Madras, Sardar Patel Road, Adyar, Chennai-600036, Tamil Nadu India
| | - Bamadeb Patra
- Department of Biotechnology, Indian Institute of Technology Madras, Sardar Patel Road, Adyar, Chennai-600036, Tamil Nadu India
| | - Rama Shanker Verma
- Department of Biotechnology, Indian Institute of Technology Madras, Sardar Patel Road, Adyar, Chennai-600036, Tamil Nadu India
| | - Ashok Kumar Mishra
- Department of Chemistry, Indian Institute of Technology Madras, Sardar Patel Road, Adyar, Chennai-600036, Tamil Nadu India
| |
Collapse
|
6
|
Zhang M, Peyear T, Patmanidis I, Greathouse DV, Marrink SJ, Andersen OS, Ingólfsson HI. Fluorinated Alcohols' Effects on Lipid Bilayer Properties. Biophys J 2018; 115:679-689. [PMID: 30077334 PMCID: PMC6104562 DOI: 10.1016/j.bpj.2018.07.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/23/2018] [Accepted: 07/02/2018] [Indexed: 12/21/2022] Open
Abstract
Fluorinated alcohols (fluoroalcohols) have physicochemical properties that make them excellent solvents of peptides, proteins, and other compounds. Like other alcohols, fluoroalcohols also alter membrane protein function and lipid bilayer properties and stability. Thus, the questions arise: how potent are fluoroalcohols as lipid-bilayer-perturbing compounds, could small residual amounts that remain after adding compounds dissolved in fluoroalcohols alter lipid bilayer properties sufficiently to affect membranes and membrane protein function, and do they behave like other alcohols? To address these questions, we used a gramicidin-based fluorescence assay to determine the bilayer-modifying potency of selected fluoroalcohols: trifluoroethanol (TFE), HFIP, and perfluoro-tert-butanol (PFTB). These fluoroalcohols alter bilayer properties in the low (PFTB) to high (TFE) mM range. Using the same assay, we determined the bilayer partitioning of the alcohols. When referenced to the aqueous concentrations, the fluoroalcohols are more bilayer perturbing than their nonfluorinated counterparts, with the largest fluoroalcohol, PFTB, being the most potent and the smallest, TFE, the least. When referenced to the mole fractions in the membrane, however, the fluoroalcohols have equal or lesser bilayer-perturbing potency than their nonfluorinated counterparts, with TFE being more bilayer perturbing than PFTB. We compared the fluoroalcohols' molecular level bilayer interactions using atomistic molecular dynamics simulations and showed how, at higher concentrations, they can cause bilayer breakdown using absorbance measurements and 31P nuclear magnetic resonance.
Collapse
Affiliation(s)
- Mike Zhang
- Department Physiology and Biophysics, Weill Cornell Medicine, New York City, New York; The Bronx High School of Science, New York City, New York
| | - Thasin Peyear
- Department Physiology and Biophysics, Weill Cornell Medicine, New York City, New York
| | - Ilias Patmanidis
- Groningen Biomolecular Science and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands
| | - Denise V Greathouse
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas
| | - Siewert J Marrink
- Groningen Biomolecular Science and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands
| | - Olaf S Andersen
- Department Physiology and Biophysics, Weill Cornell Medicine, New York City, New York.
| | - Helgi I Ingólfsson
- Department Physiology and Biophysics, Weill Cornell Medicine, New York City, New York; Groningen Biomolecular Science and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands; Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California.
| |
Collapse
|
7
|
|
8
|
Yang JE, Park JS, Cho E, Jung S, Paik SR. Robust polydiacetylene-based colorimetric sensing material developed with amyloid fibrils of α-synuclein. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:1802-1810. [PMID: 25602613 DOI: 10.1021/la504645m] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Robust polydiacetylene-based colorimetric sensing material has been developed with amyloid fibrils of α-synuclein in the presence of 10,12-pentacosadiynoic acid (PCDA) by taking advantage of the specific fatty acid interaction of α-synuclein and structural regularity of the self-assembled product of amyloid fibrils. PCDA facilitated not only self-oligomerization of α-synuclein but also its fibrillation into the fibrils with increased thickness. Upon UV irradiation, the PCDA-containing amyloid fibrils (AF-PCDAs) turned blue, which then became red following heat treatment. The blue-to-red color transition was also observed with other stimuli of pH and ethanol. AF-PCDAs were demonstrated to be mechanically stable since not only the individual colors of blue and red but also their colorimetric transition were not affected by a number of sonications which readily disrupted the polydiaceylene (PDA) vesicles with the instant loss of color. Therefore, AF-PCDA can be considered to be a novel PDA-based colorimetric sensing material with high mechanical strength, which has the potential to be employed in various areas involving advanced sensing technologies.
Collapse
Affiliation(s)
- Jee Eun Yang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, College of Engineering, Seoul National University , Seoul 151-744, Korea
| | | | | | | | | |
Collapse
|
9
|
On formulating ophthalmic emulsions. Colloids Surf B Biointerfaces 2014; 122:7-11. [DOI: 10.1016/j.colsurfb.2014.06.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 06/16/2014] [Accepted: 06/18/2014] [Indexed: 11/18/2022]
|
10
|
Manconi M, Nácher A, Merino V, Merino-Sanjuan M, Manca ML, Mura C, Mura S, Fadda AM, Diez-Sales O. Improving oral bioavailability and pharmacokinetics of liposomal metformin by glycerolphosphate-chitosan microcomplexation. AAPS PharmSciTech 2013; 14:485-96. [PMID: 23471836 DOI: 10.1208/s12249-013-9926-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 01/12/2013] [Indexed: 11/30/2022] Open
Abstract
The purpose of this study was to develop a new delivery system capable of improving bioavailability and controlling release of hydrophilic drugs. Metformin-loaded liposomes were prepared and to improve their stability surface was coated with chitosan cross-linked with the biocompatible β-glycerolphosphate. X-ray diffraction, differential scanning calorimetry, as well as rheological analysis were performed to investigate interactions between chitosan and β-glycerolphosphate molecules. The entrapment of liposomes into the chitosan-β-glycerolphosphate network was assessed by scanning electron microscopy and transmission electron microscopy. Swelling and mucoadhesive properties as well as drug release were evaluated in vitro while the drug oral bioavailability was evaluated in vivo on Wistar rats. Results clearly showed that, compared to control, the proposed microcomplexes led to a 2.5-fold increase of metformin T(max) with a 40% augmentation of the AUC/D value.
Collapse
|
11
|
Zuo YY, Neumann AW. Pulmonary Surfactant and its in vitro Assessment Using Axisymmetric Drop Shape Analysis (ADSA): A Review. TENSIDE SURFACT DET 2013. [DOI: 10.3139/113.100255] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Recent progress in the study of pulmonary surfactant is reviewed. The first half of this paper provides general background in both physiological and clinical perspectives. The second half focuses on the in vitro assessment of pulmonary surfactant using methods based on a drop shape technique, Axisymmetric Drop Shape Analysis (ADSA). Theories, experiments, and techniques of image analysis used in these ADSA methods are briefly described. Typical applications of these methods are discussed in detail. It is concluded that the accuracy, versatility, and simplicity of these ADSA methods render them suitable to the study of pulmonary surfactant.
Collapse
|
12
|
Sakai H, Miyagawa N, Horinouchi H, Takeoka S, Takaori M, Tsuchida E, Kobayashi K. Intravenous infusion of Hb-vesicles (artificial oxygen carriers) after repetitive blood exchange with a series of plasma expanders (water-soluble biopolymers) in a rat model. POLYM ADVAN TECHNOL 2011. [DOI: 10.1002/pat.1964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Kinetic analysis of the interaction between poly(amidoamine) dendrimers and model lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:209-18. [DOI: 10.1016/j.bbamem.2010.08.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 08/11/2010] [Accepted: 08/24/2010] [Indexed: 01/11/2023]
|
14
|
Combined effects of polymers and KL4 peptide on surface activity of pulmonary surfactant lipids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1129-34. [DOI: 10.1016/j.bbamem.2010.02.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 01/29/2010] [Accepted: 02/22/2010] [Indexed: 01/08/2023]
|
15
|
Sakai H, Sato A, Takeoka S, Tsuchida E. Mechanism of Flocculate Formation of Highly Concentrated Phospholipid Vesicles Suspended in a Series of Water-Soluble Biopolymers. Biomacromolecules 2009; 10:2344-50. [DOI: 10.1021/bm900455e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hiromi Sakai
- Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, and Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, Tokyo 169-8555, Japan
| | - Atsushi Sato
- Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, and Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, Tokyo 169-8555, Japan
| | - Shinji Takeoka
- Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, and Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, Tokyo 169-8555, Japan
| | - Eishun Tsuchida
- Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, and Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, Tokyo 169-8555, Japan
| |
Collapse
|
16
|
Sato T, Sakai H, Sou K, Medebach M, Glatter O, Tsuchida E. Static Structures and Dynamics of Hemoglobin Vesicle (HbV) Developed as a Transfusion Alternative. J Phys Chem B 2009; 113:8418-28. [DOI: 10.1021/jp9002142] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Takaaki Sato
- International Young Researchers Empowerment Center, Shinshu University, Tokida 3-15-1, Ueda 386-8567, Japan, Research Institute for Science and Engineering, Waseda University, Okubo 3-4-1, Shinjuku-ku, Tokyo 169-8555, Japan, and Physical Chemistry, Institute of Chemistry, University of Graz, Graz A-8010, Austria
| | - Hiromi Sakai
- International Young Researchers Empowerment Center, Shinshu University, Tokida 3-15-1, Ueda 386-8567, Japan, Research Institute for Science and Engineering, Waseda University, Okubo 3-4-1, Shinjuku-ku, Tokyo 169-8555, Japan, and Physical Chemistry, Institute of Chemistry, University of Graz, Graz A-8010, Austria
| | - Keitaro Sou
- International Young Researchers Empowerment Center, Shinshu University, Tokida 3-15-1, Ueda 386-8567, Japan, Research Institute for Science and Engineering, Waseda University, Okubo 3-4-1, Shinjuku-ku, Tokyo 169-8555, Japan, and Physical Chemistry, Institute of Chemistry, University of Graz, Graz A-8010, Austria
| | - Martin Medebach
- International Young Researchers Empowerment Center, Shinshu University, Tokida 3-15-1, Ueda 386-8567, Japan, Research Institute for Science and Engineering, Waseda University, Okubo 3-4-1, Shinjuku-ku, Tokyo 169-8555, Japan, and Physical Chemistry, Institute of Chemistry, University of Graz, Graz A-8010, Austria
| | - Otto Glatter
- International Young Researchers Empowerment Center, Shinshu University, Tokida 3-15-1, Ueda 386-8567, Japan, Research Institute for Science and Engineering, Waseda University, Okubo 3-4-1, Shinjuku-ku, Tokyo 169-8555, Japan, and Physical Chemistry, Institute of Chemistry, University of Graz, Graz A-8010, Austria
| | - Eishun Tsuchida
- International Young Researchers Empowerment Center, Shinshu University, Tokida 3-15-1, Ueda 386-8567, Japan, Research Institute for Science and Engineering, Waseda University, Okubo 3-4-1, Shinjuku-ku, Tokyo 169-8555, Japan, and Physical Chemistry, Institute of Chemistry, University of Graz, Graz A-8010, Austria
| |
Collapse
|
17
|
Kinematic viscosity of therapeutic pulmonary surfactants with added polymers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:632-7. [PMID: 19366601 DOI: 10.1016/j.bbamem.2009.01.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 01/05/2009] [Accepted: 01/12/2009] [Indexed: 11/23/2022]
Abstract
The addition of various polymers to pulmonary surfactants improves surface activity in experiments both in vitro and in vivo. Although the viscosity of surfactants has been investigated, the viscosity of surfactant polymer mixtures has not. In this study, we have measured the viscosities of Survanta and Infasurf with and without the addition of polyethylene glycol, dextran or hyaluronan. The measurements were carried out over a range of surfactant concentrations using two concentrations of polymers at two temperatures. Our results indicate that at lower surfactant concentrations, the addition of any polymers increased the viscosity. However, the addition of polyethylene glycol and dextran to surfactants at clinically used concentrations can substantially lower viscosity. Addition of hyaluronan at clinical surfactant concentrations slightly increased Infasurf viscosity and produced little change in Survanta viscosity. Effects of polymers on viscosity correlate with changes in size and distribution of surfactant aggregates and the apparent free volume of liquid as estimated by light microscopy. Aggregation of surfactant vesicles caused by polymers may therefore not only improve surface activity as previously shown, but may also affect viscosity in ways that could improve surfactant distribution in vivo.
Collapse
|
18
|
Tsuchida E, Sou K, Nakagawa A, Sakai H, Komatsu T, Kobayashi K. Artificial Oxygen Carriers, Hemoglobin Vesicles and Albumin−Hemes, Based on Bioconjugate Chemistry. Bioconjug Chem 2009; 20:1419-40. [DOI: 10.1021/bc800431d] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Eishun Tsuchida
- Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan, PRESTO, Japan Science and Technology Agency (JST), and Department of General Thoracic Surgery, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Keitaro Sou
- Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan, PRESTO, Japan Science and Technology Agency (JST), and Department of General Thoracic Surgery, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Akito Nakagawa
- Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan, PRESTO, Japan Science and Technology Agency (JST), and Department of General Thoracic Surgery, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Hiromi Sakai
- Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan, PRESTO, Japan Science and Technology Agency (JST), and Department of General Thoracic Surgery, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Teruyuki Komatsu
- Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan, PRESTO, Japan Science and Technology Agency (JST), and Department of General Thoracic Surgery, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Koichi Kobayashi
- Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan, PRESTO, Japan Science and Technology Agency (JST), and Department of General Thoracic Surgery, School of Medicine, Keio University, Tokyo 160-8582, Japan
| |
Collapse
|
19
|
Sakai H, Sou K, Tsuchida E. Chapter 19 Hemoglobin-Vesicles as an Artificial Oxygen Carrier. Methods Enzymol 2009; 465:363-84. [DOI: 10.1016/s0076-6879(09)65019-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
20
|
Luo Y, Alvarez M, Xia L, Casadevall A. The outcome of phagocytic cell division with infectious cargo depends on single phagosome formation. PLoS One 2008; 3:e3219. [PMID: 18795151 PMCID: PMC2535564 DOI: 10.1371/journal.pone.0003219] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 08/23/2008] [Indexed: 01/06/2023] Open
Abstract
Given that macrophages can proliferate and that certain microbes survive inside phagocytic cells, the question arises as to the post-mitotic distribution of microbial cargo. Using macrophage-like cells we evaluated the post-mitotic distribution of intracellular Cryptococcus yeasts and polystyrene beads by comparing experimental data to a stochastic model. For beads, the post-mitotic distribution was that expected from chance alone. However, for yeast cells the post-mitotic distribution was unequal, implying preferential sorting to one daughter cell. This mechanism for unequal distribution was phagosomal fusion, which effectively reduced the intracellular particle number. Hence, post-mitotic intracellular particle distribution is stochastic, unless microbial and/or host factors promote unequal distribution into daughter cells. In our system unequal cargo distribution appeared to benefit the microbe by promoting host cell exocytosis. Post-mitotic infectious cargo distribution is a new parameter to consider in the study of intracellular pathogens since it could potentially define the outcome of phagocytic-microbial interactions.
Collapse
Affiliation(s)
- Yong Luo
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America.
| | | | | | | |
Collapse
|
21
|
Bronchoalveolar lavage with pulmonary surfactant/dextran mixture improves meconium clearance and lung functions in experimental meconium aspiration syndrome. Eur J Pediatr 2008; 167:851-7. [PMID: 17952467 DOI: 10.1007/s00431-007-0596-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2007] [Accepted: 08/21/2007] [Indexed: 10/22/2022]
Abstract
Surfactant lung lavage is a promising approach in the treatment of meconium aspiration syndrome (MAS). We hypothesise that the enrichment of modified natural surfactant with dextran will enhance meconium clearance from the airspaces during lung lavage and improve lung function in experimental MAS. Human meconium (30 mg/ml; 4 ml/kg) was instilled into the tracheal cannula of anaesthetised and paralysed adult rabbits to induce respiratory failure. The animals were then lavaged with saline (Sal), surfactant without (Surf) and with dextran (Surf+dex). Lung lavage (10 ml/kg in three portions) was performed with diluted surfactant (Curosurf, 10 mg/ml, 100 mg/kg) without or with dextran (3 mg/mg of surfactant phospholipids) or saline and the animals were conventionally ventilated with 100% O(2) for an additional hour. Lung functions were measured prior to and after meconium instillation, and 10, 30 and 60 min after lavage. The recovery of meconium in bronchoalveolar lavage (BAL) fluid was quantified. More meconium solids was recovered in the surfactant-lavaged than in the saline-lavaged groups (Surf: 12.4 +/- 3.9% and Surf+dex: 17.5 +/- 3.5% vs. Sal: 4.8 +/- 1.0%; both P < 0.01). Moreover, more meconium solids was obtained by Curosurf/dextran than by Curosurf-only lavage (P < 0.05). In the Surf group, the values for PaO(2)/FiO(2) were significantly higher than in the controls (at 60 min: 24.5 +/- 4.2 kPa vs.9.1 +/- 2.2 kPa, P < 0.01). An additional increase in oxygenation was seen in the Surf+dex group (at 60 min: 34.2 +/- 8.1 kPa, P vs. Surf group <0.01). The lung-thorax compliance was higher in the Surf+dex group in comparison with the Sal and Surf groups (at 60 min: 9.6 +/- 0.9 vs.7.6 +/- 1.2, P < 0.01 and 8.0 +/- 0.7 ml/kPa/kg, P < 0.05). The enrichment of Curosurf with dextran improves meconium clearance and lung functions in surfactant-lavaged rabbits with meconium aspiration.
Collapse
|
22
|
Kasuya Y, Ohtaka M, Tsukamoto K, Ikeda Y, Matsumura K. Liposome Immobilization on Peptide-modified Quartz Crystal Microbalance Electrodes for Kinetic Analysis of Interactions on Membrane Surfaces. CHEM LETT 2008. [DOI: 10.1246/cl.2008.588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
23
|
Therapeutic effects of exogenous surfactant enriched with dextran in newborn rabbits with respiratory failure induced by airway instillation of albumin. Pulm Pharmacol Ther 2008; 21:393-400. [DOI: 10.1016/j.pupt.2007.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 10/04/2007] [Accepted: 10/12/2007] [Indexed: 11/19/2022]
|
24
|
Yao J, Feng Y, Zhao Y, Li Z, Huang J, Fu H. Vesicle aggregation in aqueous mixtures of negatively charged polyelectrolyte and conventional cationic surfactant. J Colloid Interface Sci 2007; 314:523-30. [PMID: 17604041 DOI: 10.1016/j.jcis.2007.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Revised: 06/05/2007] [Accepted: 06/05/2007] [Indexed: 10/23/2022]
Abstract
Vesicle aggregation induced by different environmental factors, including the addition of divalent metal ions, decrease of pH, and increase of temperature--was investigated through turbidity measurement, fluorescence measurement, and transmission electron microscope observation in aqueous solutions of hydrolyzed styrene-maleic anhydride copolymer (HSMA) mixed with dodecyltriethylammonium bromide (C(12)Et(3)). The vesicle aggregation can be explained by the dehydration of the vesicle surface through cations addition or temperature increase based on an analysis of the interaction between vesicles. Moreover, the steric repulsion was introduced to the system and the control of vesicle aggregation was achieved.
Collapse
Affiliation(s)
- Jingxia Yao
- Beijing National Laboratory for Molecular Science (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | | | | | | | | | | |
Collapse
|
25
|
Yin H, Lin Y, Huang J, Ye J. Temperature-induced vesicle aggregation in catanionic surfactant systems: the effects of the headgroup and counterion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:4225-30. [PMID: 17371059 DOI: 10.1021/la063221c] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The peculiar nature of temperature-induced vesicle aggregation (TIVA) in some catanionic surfactant systems is systematically investigated. On the basis of a general analysis of the intervesicular interactions, the main driving force for this phenomenon is considered to be the intervesicular hydrophobic interaction among the exposed hydrophobic part of the surfactant headgroups. The addition of an oppositely charged hydrophobic salt to the catanionic vesicle systems is also found to promote the occurrence of TIVA. In fact, TIVA can be induced in ordinary catanionic vesicle systems by the addition of an oppositely charged hydrophobic counterion.
Collapse
Affiliation(s)
- Haiqing Yin
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | | | | | | |
Collapse
|
26
|
Zuo YY, Alolabi H, Shafiei A, Kang N, Policova Z, Cox PN, Acosta E, Hair ML, Neumann AW. Chitosan enhances the in vitro surface activity of dilute lung surfactant preparations and resists albumin-induced inactivation. Pediatr Res 2006; 60:125-30. [PMID: 16864690 DOI: 10.1203/01.pdr.0000227558.14024.57] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Chitosan is a natural, cationic polysaccharide derived from fully or partially deacetylated chitin. Chitosan is capable of inducing large phospholipid aggregates, closely resembling the function of nonionic polymers tested previously as additives to therapeutic lung surfactants. The effects of chitosan on improving the surface activity of a dilute lung surfactant preparation, bovine lipid extract surfactant (BLES), and on resisting albumin-induced inactivation were studied using a constrained sessile drop (CSD) method. Also studied in parallel were the effects of polyethylene glycol (PEG, 10 kD) and hyaluronan (HA, 1240 kD). Both adsorption and dynamic cycling studies showed that chitosan is able to significantly enhance the surface activity of 0.5 mg/mL BLES and to resist albumin-induced inactivation at an extremely low concentration of 0.05 mg/mL, 1000 times smaller than the usual concentration of PEG and 20 times smaller than HA. Optical microscopy found that chitosan induced large surfactant aggregates even in the presence of albumin. Cytotoxicity tests confirmed that chitosan has no deleterious effect on the viability of lung epithelial cells. The experimental results suggest that chitosan may be a more effective polymeric additive to lung surfactant than the other polymers tested so far.
Collapse
Affiliation(s)
- Yi Y Zuo
- Department of Mechanical and Industrial Engineering, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Dehority W, Lu KW, Clements J, Goerke J, Pittet JF, Allen L, Taeusch HW. Polyethylene glycol-surfactant for lavage lung injury in rats. Pediatr Res 2005; 58:913-8. [PMID: 16183815 DOI: 10.1203/01.pdr.0000182581.39561.01] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Addition of ionic and nonionic water-soluble polymers to pulmonary surfactants in the presence of inactivating substances prevents surfactant inactivation in vitro and improves lung function in several models of lung injury. However, a recent report found opposite effects when surfactant plus polyethylene glycol (PEG) was used to treat lung injury caused by saline lung lavage. Therefore, we examined the reasons why the polymer effect is less evident in the saline lung lavage lung injury model. We treated rats with lavage lung injury with a commercial lung surfactant extract derived from bovine lung (Survanta) with or without addition of PEG. Groups treated with Survanta + PEG had significantly higher static post mortem lung volumes than groups treated with Survanta. However, groups treated with Survanta + PEG had more tracheal fluid and no significant benefit in arterial oxygenation compared with the group treated with Survanta, despite our use of measures to reduce pulmonary edema. Measurements after intravascular injections of (125)I-labeled albumin confirmed that addition of PEG increased extravascular lung water and that this effect is mitigated by furosemide. We conclude that surfactant + PEG mixtures are less effective in lavage injury than in other forms of lung injury because of increased extravascular lung water.
Collapse
Affiliation(s)
- Walter Dehority
- Department of Pediatrics, San Francisco General Hospital/University of California-San Francisco, San Francisco, California 94110, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Lu KW, Robertson B, Taeusch HW. Dextran or Polyethylene Glycol Added to Curosurf for Treatment of Meconium Lung Injury in Rats. Neonatology 2005; 88:46-53. [PMID: 15767742 DOI: 10.1159/000084458] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Accepted: 12/23/2004] [Indexed: 11/19/2022]
Abstract
BACKGROUND In experimental lung injuries, improvement of lung function after treatment with surfactant/polymer mixtures may depend on both type of polymer and the specific surfactant. In vitro studies suggest that dextran is more effective when mixed with Curosurf, and polyethylene glycol (PEG) is more effective when mixed with Survanta. We therefore wanted to find out whether these results held true in an animal model of acute lung injury. OBJECTIVE To compare the response to therapy of PEG vs. dextran when added to Curosurf after meconium lung injury. METHODS Lung injury was produced by intratracheal instillation of meconium (30 and 4 ml/kg). One hour after injury, Curosurf (35 mg/ml) with or without 5% dextran (68 kDa) or 5% PEG (10 kDa) was given. Arterial blood gases and peak inspiratory pressures were measured for 3 h after treatment while animals were supported by volume-regulated ventilation. Then animals were sacrificed and pressure volume relationships, lung wet/dry weights, and histology were assessed. RESULTS Initially, improved PaO2 and inspiratory pressure occurred for both Curosurf/PEG and Curosurf/dextran groups compared with Curosurf, but at three hours, peak inspiratory pressure and PaO2 remained significantly improved for the Curosurf/dextran but not for Curosurf/PEG groups when compared with Curosurf alone. Total lung capacity at the end of the experiment was also significantly increased in the Curosurf/dextran group, but not the Curosurf/PEG group when compared with Curosurf. CONCLUSION Under these experimental conditions, Curosurf/dextran mixtures provided a better therapeutic response than Curosurf/PEG or Curosurf.
Collapse
Affiliation(s)
- Karen W Lu
- Department of Pediatrics, University of California-San Francisco, San Franscisco, Calif. 94110, USA
| | | | | |
Collapse
|
29
|
Lu JJ, Yu LMY, Cheung WWY, Goldthorpe IA, Zuo YY, Policova Z, Cox PN, Neumann AW. Poly(ethylene glycol) (PEG) enhances dynamic surface activity of a bovine lipid extract surfactant (BLES). Colloids Surf B Biointerfaces 2005; 41:145-51. [PMID: 15737540 DOI: 10.1016/j.colsurfb.2004.11.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2004] [Accepted: 11/28/2004] [Indexed: 11/30/2022]
Abstract
Shortage or malfunction of pulmonary surfactant in alveolar space leads to a critical condition termed respiratory distress syndrome (RDS). Surfactant replacement therapy, the major method to treat RDS, is an expensive treatment. In this paper, the effect of poly(ethylene glycol) (PEG) to improve dynamic surface activity of a bovine lipid extract surfactant (BLES) was studied by axisymmetric drop shape analysis (ADSA) and a captive bubble method. The activity of BLES+PEG mixtures was compared to that of a natural surfactant containing surfactant proteins A and D. When PEG was added into BLES mixtures, the surface tension hysteresis of BLES films was minimized when the films were compressed by more than 50%. PEG also helps to quickly restore surfactant films after film collapse. Thus, as far as surface tension effects go, the findings suggest that PEG might be used as a substitute for surfactant-associated protein SP-A in therapeutic surfactant products, and might also be used to reduce the amount of BLES required in clinical applications.
Collapse
Affiliation(s)
- James J Lu
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ont., Canada M5S 3G8
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Zuo Y, Ding M, Bateni A, Hoorfar M, Neumann A. Improvement of interfacial tension measurement using a captive bubble in conjunction with axisymmetric drop shape analysis (ADSA). Colloids Surf A Physicochem Eng Asp 2004. [DOI: 10.1016/j.colsurfa.2004.04.081] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Zuo YY, Ding M, Li D, Neumann AW. Further development of Axisymmetric Drop Shape Analysis-Captive Bubble for pulmonary surfactant related studies. Biochim Biophys Acta Gen Subj 2004; 1675:12-20. [PMID: 15535963 DOI: 10.1016/j.bbagen.2004.08.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2004] [Revised: 07/23/2004] [Accepted: 08/03/2004] [Indexed: 11/20/2022]
Abstract
The methodology combining Axisymmetric Drop Shape Analysis (ADSA) with a captive bubble (ADSA-CB) facilitates pulmonary surfactant related studies. The accuracy of ADSA-CB is crucially dependent on the quality of the bubble profile extracted from the raw image. In a previous paper, an image analysis scheme featuring a Canny edge detector and a Axisymmetric Liquid Fluid Interfaces-Smoothing (ALFI-S) algorithm was developed to process captive bubble images under a variety of conditions, including images with extensive noise and/or lack of contrast. A new version of ADSA-CB based on that image analysis scheme is developed and applied to pulmonary surfactant and pulmonary surfactant-polymer systems. The new version is found to be highly noise-resistant and well self-adjusting.
Collapse
Affiliation(s)
- Y Y Zuo
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON, Canada, M5S 3G8
| | | | | | | |
Collapse
|
32
|
Yu LMY, Lu JJ, Chiu IWY, Leung KS, Chan YW, Zhang L, Policova Z, Hair ML, Neumann AW. Poly(ethylene glycol) enhances the surface activity of a pulmonary surfactant. Colloids Surf B Biointerfaces 2004; 36:167-76. [PMID: 15276633 DOI: 10.1016/j.colsurfb.2004.06.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2003] [Accepted: 06/08/2004] [Indexed: 11/15/2022]
Abstract
The primary role of lung surfactant is to reduce surface tension at the air-liquid interface of alveoli during respiration. Axisymmetric drop shape analysis (ADSA) was used to study the effect of poly(ethylene glycol) (PEG) on the rate of surface film formation of a bovine lipid extract surfactant (BLES), a therapeutic lung surfactant preparation. PEG of molecular weights 3,350; 8,000; 10,000; 35,000; and 300,000 in combination with a BLES mixture of 0.5 mg/mL was studied. The adsorption rate of BLES alone at 0.5 mg/mL was much slower than that of a natural lung surfactant at the same concentration; more than 200 s are required to reach the equilibrium surface tension of 25 mJ/m(2). PEG, while not surface active itself, enhances the adsorption of BLES to an extent depending on its concentration and molecular weight. These findings suggest that depletion attraction induced by higher molecular weight PEG (in the range of 8,000 to 35,000) may be responsible for increasing the adsorption rate of BLES at low concentration. The results provide a basis for using PEG as an additive to BLES to reduce its required concentration in clinical treatment, thus reducing the cost for surfactant replacement therapy.
Collapse
Affiliation(s)
- Laura M Y Yu
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ont. M5S 3G8, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Georgiev G, Lalchev Z. Model study of interactions of high-molecular dextran sulfate with lipid monolayers and foam films. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2004; 33:742-8. [PMID: 15205836 DOI: 10.1007/s00249-004-0421-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Revised: 04/15/2004] [Accepted: 05/17/2004] [Indexed: 11/25/2022]
Abstract
The interaction of high-molecular dextran sulfate (DS-5000) with dimyristoylphosphatidylcholine (DMPC) monolayers and foam films (FF) at the air-water interface in the presence of Ca2+ and Na+ ions was studied. DS-5000 was added in monolayer films (MF) and in FF as monomer molecules and in liposomal form. When added in liposomal form in FF, DS-5000 decreased the stability of DMPC common black films (CBF), and no formation of Newton black films (NBF) was observed. However, when included as monomer molecules in FF, DS-5000 caused film thinning, and drastically decreased the expansion rate of the black spots and transition of thick films to NBF, thus avoiding formation of CBF. The above effects were observed in both gel and liquid-crystalline phase states of DMPC in the presence of Ca2+ ions only, and not in the presence of Na+ ions. We postulate that the interaction of DMPC with DS-5000 in the plane of FF is mediated by Ca2+ bridges and results in dehydration of the DMPC polar heads. The interaction between DMPC and DS-5000 in monolayers resulted in slower adsorption and spreading of DMPC molecules at the interface, lower monolayer surface pressure, and penetration of DS-5000 molecules to DMPC monolayers when surface lipid density was higher than 50 A2 per DMPC molecule. The applicability of the FF model for studying the interactions of phospholipids with polysaccharides at interfaces surrounded by bulk solution, and for modeling such interactions in biological systems, e.g. LDL adhesion to the arterial walls, aggregation and fusion of liposomes, etc., is discussed.
Collapse
Affiliation(s)
- Georgi Georgiev
- Faculty of Biology, Department of Biochemistry, Sofia University, St. Kliment Ohridski, 8 Dragan Tsankov Str., 1164, Sofia, Bulgaria
| | | |
Collapse
|
34
|
|
35
|
Koster KL, Maddocks KJ, Bryant G. Exclusion of maltodextrins from phosphatidylcholine multilayers during dehydration: effects on membrane phase behaviour. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2003; 32:96-105. [PMID: 12734697 DOI: 10.1007/s00249-003-0277-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2002] [Revised: 12/04/2002] [Accepted: 12/05/2002] [Indexed: 11/30/2022]
Abstract
The effect of increasing solute size on phosphatidylcholine phase behaviour at a range of hydrations was investigated using differential scanning calorimetry. Dehydration of phospholipid membranes gives rise to a compressive stress within the bilayers that promotes fluid-to-gel phase transitions. According to the Hydration Forces Explanation, sugars in the intermembrane space minimize the compressive stress and limit increases in the fluid-gel transition temperature, T(m), by acting as osmotic and volumetric spacers that hinder the close approach of membranes. However, the sugars must remain between the bilayers in order to limit the rise in T(m). Large polymers are excluded from the interlamellar space during dehydration and do not limit the dehydration-induced rise in T(m). In this study, we used maltodextrins with a range of molecular weights to investigate the size-exclusion limit for polymers between phosphatidylcholine bilayers. Solutes with sizes ranging from glucose to dextran 1000 limited the rise in lipid T(m) during dehydration, suggesting that they remain between dehydrated bilayers. At the lowest hydrations the solutions vitrified, and T(m) was further depressed to about 20 degrees C below the transition temperature for the lipid in excess water, T(o). The depression of T(m) below T(o) occurs when the interlamellar solution vitrifies between fluid phase bilayers. The larger maltodextrins, dextran 5000 and 12,000, had little effect on the T(m) of the PCs at any hydration, nor did vitrification of these larger polymers affect the lipid phase behaviour. This suggests that the larger maltodextrins are excluded from the interlamellar region during dehydration.
Collapse
Affiliation(s)
- Karen L Koster
- Department of Biology, The University of South Dakota, Vermillion, SD 57069, USA.
| | | | | |
Collapse
|
36
|
Tashiro K, Ohta K, Cui X, Nishizuka K, Yamamoto K, Konzaki T, Kobayashi T, Suzuki Y. Effects of various forms of surfactant protein C on tidal volume in ventilated immature newborn rabbits. J Appl Physiol (1985) 2003; 94:1519-26. [PMID: 12433871 DOI: 10.1152/japplphysiol.00059.2001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Surfactant protein (SP)-C is characterized by alpha-helix structure and palmitoyl groups attached to two cysteine residues. We examined the function of palmitoylation and dimerization in promotion of tidal volume in immature newborn rabbits. Reconstituted surfactants were made from a mixture of synthetic phospholipids and porcine SP-B (basic mixture) by adding various forms of SP-Cs: normal SP-C isolated from porcine lungs and monomeric or dimeric forms of SP-C. These latter two were isolated from patients with pulmonary alveolar proteinosis and were less palmitoylated. Animals were ventilated at an inspiratory pressure of 25 cmH2O. Median tidal volumes were <2 ml/kg in nontreated controls, 7.7 ml/kg in animals receiving the basic mixture without SP-C, and >18 ml/kg in animals treated with reconstituted surfactants containing 3% normal or 2% dimeric SP-C (P < 0.05 vs. basic mixture). The physiological effect of basic mixture was not improved by monomeric SP-C. We conclude that palmitoyl groups are important for the physiological effects of SP-C and that the dimeric form also improves physiological effects.
Collapse
Affiliation(s)
- Katsumi Tashiro
- Department of Anesthesiology and Intensive Care Medicine, Graduate School of Medicine, Kanazawa University, Kanazawa 920-8641, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Hu K, Carroll J, Fedorovich S, Rickman C, Sukhodub A, Davletov B. Vesicular restriction of synaptobrevin suggests a role for calcium in membrane fusion. Nature 2002; 415:646-50. [PMID: 11832947 DOI: 10.1038/415646a] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Release of neurotransmitter occurs when synaptic vesicles fuse with the plasma membrane. This neuronal exocytosis is triggered by calcium and requires three SNARE (soluble-N-ethylmaleimide-sensitive factor attachment protein receptors) proteins: synaptobrevin (also known as VAMP) on the synaptic vesicle, and syntaxin and SNAP-25 on the plasma membrane. Neuronal SNARE proteins form a parallel four-helix bundle that is thought to drive the fusion of opposing membranes. As formation of this SNARE complex in solution does not require calcium, it is not clear what function calcium has in triggering SNARE-mediated membrane fusion. We now demonstrate that whereas syntaxin and SNAP-25 in target membranes are freely available for SNARE complex formation, availability of synaptobrevin on synaptic vesicles is very limited. Calcium at micromolar concentrations triggers SNARE complex formation and fusion between synaptic vesicles and reconstituted target membranes. Although calcium does promote interaction of SNARE proteins between opposing membranes, it does not act by releasing synaptobrevin from synaptic vesicle restriction. Rather, our data suggest a mechanism in which calcium-triggered membrane apposition enables syntaxin and SNAP-25 to engage synaptobrevin, leading to membrane fusion.
Collapse
Affiliation(s)
- Kuang Hu
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | | | | | | | |
Collapse
|
38
|
Lu KW, Taeusch HW, Robertson B, Goerke J, Clements JA. Polyethylene glycol/surfactant mixtures improve lung function after HCl and endotoxin lung injuries. Am J Respir Crit Care Med 2001; 164:1531-6. [PMID: 11704608 DOI: 10.1164/ajrccm.164.8.2104016] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Addition of nonionic polymers such as polyethylene glycol (PEG) and dextran ameliorates inactivation of Survanta by a variety of substances in vitro. Addition of polymers to Survanta also improves pulmonary function when used to treat rats with lung injury caused by instillation of human meconium. To find whether this approach is effective in lung injuries that more closely resemble adult respiratory distress syndrome (ARDS), we have compared the use of Survanta with Survanta + PEG in two additional models of lung injury caused by either lipopolysaccharide (LPS) or HCl in adult rats. Significant improvement of serial measures for arterial oxygenation and of postmortem pressure-volume measurements were found after treatment with Survanta + PEG compared with Survanta alone. PEG added to Survanta increased resistance to inactivation caused by tracheal fluid taken from animals injured with HCl. Other work suggests that PEG promotes surfactant aggregation, separates surfactant from surfactant inhibitors, and enhances access of surfactant to the gas-liquid interface. The addition of polymers to surfactants may also be useful in the treatment of lung injury where inactivation of surfactant has already occurred.
Collapse
Affiliation(s)
- K W Lu
- Department of Pediatrics, University of California-San Francisco, San Francisco, California, USA.
| | | | | | | | | |
Collapse
|
39
|
Trivedi VD, Yu C, Veeramuthu B, Francis S, Chang DK. Fusion induced aggregation of model vesicles studied by dynamic and static light scattering. Chem Phys Lipids 2000; 107:99-106. [PMID: 10974234 DOI: 10.1016/s0009-3084(00)00155-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Membrane fusion is a key step in the virus mediated cell fusion. The vesicular dispersion serves as a model system to study the membrane fusion. We employed dynamic and static light scattering to study the fusion of phosphatidylcholine vesicles in the presence of model fusion peptide fragments from the hemagglutinin HA2 protein. The fusion-induced aggregation under the present experimental setup exhibited strong pH dependence, similar to the parental viral protein. Replacement of the glycine residue at the extreme amino terminus by glutamic acid (G1E) abolished fusion activity. The average molecular mass and diameter of vesicular dispersion obtained from static and dynamic light scattering measurements respectively at neutral and acidic pH showed about three fold increase in acidic solution containing wild type fusion peptide. The light scattering data are consistent with lipid mixing results. The present work demonstrates the utility of light scattering as a facile means to monitor the fusion process.
Collapse
Affiliation(s)
- V D Trivedi
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan, ROC
| | | | | | | | | |
Collapse
|
40
|
Lu KW, William Taeusch H, Robertson B, Goerke J, Clements JA. Polymer-surfactant treatment of meconium-induced acute lung injury. Am J Respir Crit Care Med 2000; 162:623-8. [PMID: 10934097 DOI: 10.1164/ajrccm.162.2.9909099] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Substances (for example, serum proteins or meconium) that interfere with the activity of pulmonary surfactant in vitro may also be important in the pathogenesis or progression of acute lung injury. Addition of polymers such as dextran or polyethylene glycol (PEG) to surfactants prevents and reverses surfactant inactivation. The purpose of this study was to find out whether surfactant/polymer mixtures are more effective for treating one form of acute lung injury than is surfactant alone. Acute lung injury in adult rats was created by tracheal instillation of human meconium. Injured animals, which were anesthetized, paralyzed, and ventilated with 100% oxygen and not treated with surfactant mixtures, remained hypoxic and required high ventilator pressures to maintain Pa(CO(2)) in the normal range over the 3 h of the experiment. Uninjured animals maintained normal values for oxygen and compliance of the respiratory system. The greatest improvement in both oxygenation (178%) and compliance (42%) occurred in animals with lung injury that were treated with Survanta and PEG (versus untreated control animals; p < 0.01), whereas little improvement was found after treatment with Survanta alone. Similar results were found when postmortem pulmonary pressure-volume curves and histology were examined. We conclude that adding PEG to Survanta improves gas exchange, pulmonary mechanics, and histologic appearance of the lungs in a rat model of acute lung injury caused by meconium.
Collapse
Affiliation(s)
- K W Lu
- Department of Pediatrics and Physiology, and the Cardiovascular Research Institute, University of California-San Francisco, San Francisco, California, USA.
| | | | | | | | | |
Collapse
|
41
|
Milhaud J, Michels B. Binding of nystatin and amphotericin B with sterol-free L-dilauroylphosphatidylcholine bilayers resulting in the formation of dichroic lipid superstructures. Chem Phys Lipids 1999; 101:223-35. [PMID: 10533264 DOI: 10.1016/s0009-3084(99)00062-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Interactions of multilamellar vesicles (MLV) of dilauroylphosphatidylcholine (DLPC) with the polyene antibiotics, amphotericin B (AmB) and nystatin (Ny), were followed by circular dichroism (CD). These interactions proceed with both antibiotics through a slow association with high [DLPC]/[antibiotic] stoichiometric molar ratios (> or = 130), at room temperature for which DLPC membranes are in a fluid state. Microscopic investigations of the spatial distributions of the antibiotic and the MLV in the mixtures revealed that MLV form clusters inside which the antibiotic is strongly concentrated and lipid superstructures appear. Concomitantly with the appearance of these superstructures a DLPC dichroic signal emerges. This observation indicates that the chiral properties of antibiotic oligomers can induce a chirality of the DLPC molecules which are bound to them. These results support the hypothesis of a recent molecular modeling of AmB oligomers which postulates that their chiral properties result from a chiral assemblage of antibiotic molecules (Millié et al., J. Phys. Chem. B, in press).
Collapse
Affiliation(s)
- J Milhaud
- Laboratoire de Physicochimie Biomoleculaire et cellulaire (ESA 7033), Université Paris VI, France
| | | |
Collapse
|
42
|
Kobayashi T, Ohta K, Tashiro K, Nishizuka K, Chen WM, Ohmura S, Yamamoto K. Dextran restores albumin-inhibited surface activity of pulmonary surfactant extract. J Appl Physiol (1985) 1999; 86:1778-84. [PMID: 10368337 DOI: 10.1152/jappl.1999.86.6.1778] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined the effect of dextran (molecular weight 71,000) in counteracting the surfactant inhibitory action of plasma albumin. The surface adsorption time of 0.5 mg/ml modified natural surfactant (MNS; porcine lung extract consisting of phospholipids and hydrophobic surfactant proteins) with 7.5 mg/ml albumin decreased from 681 to 143 s by addition of dextran at a concentration of 10 mg/ml (P < 0.01). The minimum surface tension of 2.0 mg/ml MNS with 30 mg/ml albumin decreased from over 21 mN/m to below 3 mN/m when dextran was added at a concentration of 10 mg/ml (P < 0.01). Surfactant-deficient newborn rabbits given 10 ml/kg of a liquid containing 2.0 mg/ml MNS with 30 mg/ml albumin had a mean tidal volume </=5 ml/kg after 5 min of mechanical ventilation, but, in those animals given the liquid containing 10 mg/ml dextran also, the volume was >13 ml/kg (P < 0.05). Although the underlying mechanism remains to be elucidated, we conclude that dextran restores the albumin-inhibited surface activity of MNS.
Collapse
Affiliation(s)
- T Kobayashi
- Department of Anesthesiology and Intensive Care Medicine, School of Medicine, Kanazawa University, Kanazawa 920-8641, Japan.
| | | | | | | | | | | | | |
Collapse
|
43
|
William Taeusch H, Lu KW, Goerke J, Clements JA. Nonionic polymers reverse inactivation of surfactant by meconium and other substances. Am J Respir Crit Care Med 1999; 159:1391-5. [PMID: 10228100 DOI: 10.1164/ajrccm.159.5.9808047] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A variety of substances including human meconium have been found to affect adversely the surface tension-lowering activity of pulmonary surfactants, and this effect may be important in the pathogenesis of a number of human diseases. To find whether inactivation of surfactant could be prevented or reduced by nonionic polymers, we added dextrans, polyethylene glycols (PEGs), or polyvinylpyrrolidones (PVPs) of various molecular weights to pulmonary surfactants. One to 3% human meconium or other inactivating substances were then added to the mixtures, which were tested in a modified pulsating bubble surfactometer. Polymers (3.3-500 kD) in 1-10% concentrations enhanced the ability of a commercial surfactant replacement (Survanta) to lower the minimum surface tension in the presence of meconium, serum, or lysophosphatidylcholine. Similar effects were seen when polymers were added after mixing of surfactant and meconium or other inhibitors, indicating that polymers are capable of reversing the inactivation. Results from rat experiments indicate that total lung capacity is increased when PEG is first added to the Survanta, then mixed with meconium and instilled into the lungs. We postulate that polymers separate meconium-surfactant complexes, permitting surfactant components better access to the air-liquid interface. Taeusch HW, Lu KW, Goerke J, Clements JA. Nonionic polymers reverse inactivation of surfactant by meconium and other substances.
Collapse
Affiliation(s)
- H William Taeusch
- Departments of Pediatrics and Physiology, Cardiovascular Research Institute, University of California-San Francisco, San Francisco, California, USA.
| | | | | | | |
Collapse
|
44
|
|
45
|
Käsbauer M, Lasic D, Winterhalter M. Polymer induced fusion and leakage of small unilamellar phospholipid vesicles: effect of surface grafted polyethylene-glycol in the presence of free PEG. Chem Phys Lipids 1997. [DOI: 10.1016/s0009-3084(97)02665-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Meyuhas D, Lichtenberg D. Effect of water-soluble polymers on the state of aggregation, vesicle size, and phase transformations in mixtures of phosphatidylcholine and sodium cholate. Biophys J 1996; 71:2613-22. [PMID: 8913599 PMCID: PMC1233748 DOI: 10.1016/s0006-3495(96)79453-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The state of aggregation and the steady-state size of mixed aggregates made of phospholipids and surfactants are both determined by the surfactant/lipid ratio in the mixed aggregates (Re). Water-soluble polymers, such as dextrans and polyethylene glycols (PEGs) of different molecular weights, induce reversible aggregation of phospholipid vesicles, mostly due to dehydration of the vesicle surface and depletion forces, and only at much higher concentrations, PEGs (but not dextran) also induce irreversible size growth of the vesicles. Here we show that the water-soluble polymers dextrans and PEGs do not affect the vesicle-micelle phase boundaries in mixtures of phosphatidylcholine and the anionic surfactant sodium cholate. By contrast, these polymers affect markedly the steady-state size of cholate-containing vesicles. As compared with pure phosphatidylcholine vesicles, the cholate-containing vesicles have a lower tendency to undergo polymer-induced aggregation, probably due to the electrostatic repulsion between the negatively charged vesicles, but a higher tendency to undergo irreversible size growth at relatively low polymer concentrations. Such irreversible size growth was observed not only for PEG but also for dextran, which in the absence of cholate is incapable of inducing vesicle size growth. These findings are consistent with the prevailing concept that the polymer-induced size growth is due to the effect of large structural fluctuations in the bilayers of deformed aggregated vesicles, the surface of which is dehydrated by the polymer. The presence of cholate in the bilayers at sufficiently high concentrations induces such fluctuations, yielding irreversible size growth within the clusters of dehydrated vesicles formed upon mixing with polymers.
Collapse
Affiliation(s)
- D Meyuhas
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Ramat-Aviv, Israel
| | | |
Collapse
|