1
|
Cheung E, Xia Y, Caporini MA, Gilmore JL. Tools shaping drug discovery and development. BIOPHYSICS REVIEWS 2022; 3:031301. [PMID: 38505278 PMCID: PMC10903431 DOI: 10.1063/5.0087583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/21/2022] [Indexed: 03/21/2024]
Abstract
Spectroscopic, scattering, and imaging methods play an important role in advancing the study of pharmaceutical and biopharmaceutical therapies. The tools more familiar to scientists within industry and beyond, such as nuclear magnetic resonance and fluorescence spectroscopy, serve two functions: as simple high-throughput techniques for identification and purity analysis, and as potential tools for measuring dynamics and structures of complex biological systems, from proteins and nucleic acids to membranes and nanoparticle delivery systems. With the expansion of commercial small-angle x-ray scattering instruments into the laboratory setting and the accessibility of industrial researchers to small-angle neutron scattering facilities, scattering methods are now used more frequently in the industrial research setting, and probe-less time-resolved small-angle scattering experiments are now able to be conducted to truly probe the mechanism of reactions and the location of individual components in complex model or biological systems. The availability of atomic force microscopes in the past several decades enables measurements that are, in some ways, complementary to the spectroscopic techniques, and wholly orthogonal in others, such as those related to nanomechanics. As therapies have advanced from small molecules to protein biologics and now messenger RNA vaccines, the depth of biophysical knowledge must continue to serve in drug discovery and development to ensure quality of the drug, and the characterization toolbox must be opened up to adapt traditional spectroscopic methods and adopt new techniques for unraveling the complexities of the new modalities. The overview of the biophysical methods in this review is meant to showcase the uses of multiple techniques for different modalities and present recent applications for tackling particularly challenging situations in drug development that can be solved with the aid of fluorescence spectroscopy, nuclear magnetic resonance spectroscopy, atomic force microscopy, and small-angle scattering.
Collapse
Affiliation(s)
- Eugene Cheung
- Moderna, 200 Technology Square, Cambridge, Massachusetts 02139, USA
| | - Yan Xia
- Moderna, 200 Technology Square, Cambridge, Massachusetts 02139, USA
| | - Marc A. Caporini
- Moderna, 200 Technology Square, Cambridge, Massachusetts 02139, USA
| | - Jamie L. Gilmore
- Moderna, 200 Technology Square, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
2
|
Imaging and Force Spectroscopy of Single Transmembrane Proteins with the Atomic Force Microscope. Methods Mol Biol 2020. [PMID: 31218616 DOI: 10.1007/978-1-4939-9512-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The atomic force microscope (AFM) has opened avenues and provided opportunities to investigate biological soft matter and processes ranging from nanometer (nm) to millimeter (mm). The high temporal (millisecond) and spatial (nanometer) resolutions of the AFM are suited for studying many biological processes in their native conditions. The AFM cantilever-aptly termed as a "lab on a tip"-can be used as an imaging tool as well as a handle to manipulate single bonds and proteins. Recent examples have convincingly established AFM as a tool to study the mechanical properties and monitor processes of single proteins and cells with high sensitivity, thus affording insight into important mechanistic details. This chapter specifically focuses on practical and analytical protocols of single-molecule AFM methodologies related to high-resolution imaging and single-molecule force spectroscopy of transmembrane proteins in a lipid bilayer (reconstituted or native). Both these techniques are operator oriented, and require specialized working knowledge of the instrument, theory and practical skills.
Collapse
|
3
|
Ungai-Salánki R, Peter B, Gerecsei T, Orgovan N, Horvath R, Szabó B. A practical review on the measurement tools for cellular adhesion force. Adv Colloid Interface Sci 2019; 269:309-333. [PMID: 31128462 DOI: 10.1016/j.cis.2019.05.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/05/2019] [Accepted: 05/06/2019] [Indexed: 01/03/2023]
Abstract
Cell-cell and cell-matrix adhesions are fundamental in all multicellular organisms. They play a key role in cellular growth, differentiation, pattern formation and migration. Cell-cell adhesion is substantial in the immune response, pathogen-host interactions, and tumor development. The success of tissue engineering and stem cell implantations strongly depends on the fine control of live cell adhesion on the surface of natural or biomimetic scaffolds. Therefore, the quantitative and precise measurement of the adhesion strength of living cells is critical, not only in basic research but in modern technologies, too. Several techniques have been developed or are under development to quantify cell adhesion. All of them have their pros and cons, which has to be carefully considered before the experiments and interpretation of the recorded data. Current review provides a guide to choose the appropriate technique to answer a specific biological question or to complete a biomedical test by measuring cell adhesion.
Collapse
|
4
|
Visualization of internal in situ cell structure by atomic force microscopy. Histochem Cell Biol 2018; 150:521-527. [PMID: 30206694 DOI: 10.1007/s00418-018-1721-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2018] [Indexed: 12/30/2022]
Abstract
Light and electron microscopy have been used to study cell structure for many years, but atomic force microscopy is a more recent technique used to analyze cells, mainly due to the absence of techniques to prepare the samples. Isolated molecules or organelles, whole cells, and to a lesser extent in situ cell structure have been observed by different atomic force microscopy imaging modes. Here, we review efforts intended to analyze in situ the cell structures using approaches involving imaging of the surface of semithin sections of samples embedded in resin and sections prepared with an ultramicrotome. The results of such studies are discussed in relation to their implications to analyze the fine structure of organelles at the nanoscale in situ at enhanced resolution compared to light microscopy.
Collapse
|
5
|
In vitro single-cell dissection revealing the interior structure of cable bacteria. Proc Natl Acad Sci U S A 2018; 115:8517-8522. [PMID: 30082405 DOI: 10.1073/pnas.1807562115] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Filamentous Desulfobulbaceae bacteria were recently discovered as long-range transporters of electrons from sulfide to oxygen in marine sediments. The long-range electron transfer through these cable bacteria has created considerable interests, but it has also raised many questions, such as what structural basis will be required to enable micrometer-sized cells to build into centimeter-long continuous filaments? Here we dissected cable bacteria cells in vitro by atomic force microscopy and further explored the interior, which is normally hidden behind the outer membrane. Using nanoscale topographical and mechanical maps, different types of bacterial cell-cell junctions and strings along the cable length were identified. More important, these strings were found to be continuous along the bacterial cells passing through the cell-cell junctions. This indicates that the strings serve an important function in maintaining integrity of individual cable bacteria cells as a united filament. Furthermore, ridges in the outer membrane are found to envelop the individual strings at cell-cell junctions, and they are proposed to strengthen the junctions. Finally, we propose a model for the division and growth of the cable bacteria, which illustrate the possible structural requirements for the formation of centimeter-length filaments in the recently discovered cable bacteria.
Collapse
|
6
|
Oligomeric states of microbial rhodopsins determined by high-speed atomic force microscopy and circular dichroic spectroscopy. Sci Rep 2018; 8:8262. [PMID: 29844455 PMCID: PMC5974397 DOI: 10.1038/s41598-018-26606-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/15/2018] [Indexed: 01/05/2023] Open
Abstract
Oligomeric assembly is a common feature of membrane proteins and often relevant to their physiological functions. Determining the stoichiometry and the oligomeric state of membrane proteins in a lipid bilayer is generally challenging because of their large size, complexity, and structural alterations under experimental conditions. Here, we use high-speed atomic force microscopy (HS-AFM) to directly observe the oligomeric states in the lipid membrane of various microbial rhodopsins found within eubacteria to archaea. HS-AFM images show that eubacterial rhodopsins predominantly exist as pentamer forms, while archaeal rhodopsins are trimers in the lipid membrane. In addition, circular dichroism (CD) spectroscopy reveals that pentameric rhodopsins display inverted CD couplets compared to those of trimeric rhodopsins, indicating different types of exciton coupling of the retinal chromophore in each oligomer. The results clearly demonstrate that the stoichiometry of the fundamental oligomer of microbial rhodopsins strongly correlate with the phylogenetic tree, providing a new insight into the relationship between the oligomeric structure and function-structural evolution of microbial rhodopsins.
Collapse
|
7
|
Laskowski PR, Pfreundschuh M, Stauffer M, Ucurum Z, Fotiadis D, Müller DJ. High-Resolution Imaging and Multiparametric Characterization of Native Membranes by Combining Confocal Microscopy and an Atomic Force Microscopy-Based Toolbox. ACS NANO 2017; 11:8292-8301. [PMID: 28745869 DOI: 10.1021/acsnano.7b03456] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
To understand how membrane proteins function requires characterizing their structure, assembly, and inter- and intramolecular interactions in physiologically relevant conditions. Conventionally, such multiparametric insight is revealed by applying different biophysical methods. Here we introduce the combination of confocal microscopy, force-distance curve-based (FD-based) atomic force microscopy (AFM), and single-molecule force spectroscopy (SMFS) for the identification of native membranes and the subsequent multiparametric analysis of their membrane proteins. As a well-studied model system, we use native purple membrane from Halobacterium salinarum, whose membrane protein bacteriorhodopsin was His-tagged to bind nitrilotriacetate (NTA) ligands. First, by confocal microscopy we localize the extracellular and cytoplasmic surfaces of purple membrane. Then, we apply AFM to image single bacteriorhodopsins approaching sub-nanometer resolution. Afterwards, the binding of NTA ligands to bacteriorhodopsins is localized and quantified by FD-based AFM. Finally, we apply AFM-based SMFS to characterize the (un)folding of the membrane protein and to structurally map inter- and intramolecular interactions. The multimethodological approach is generally applicable to characterize biological membranes and membrane proteins at physiologically relevant conditions.
Collapse
Affiliation(s)
- Pawel R Laskowski
- Department of Biosystems Science and Engineering, ETH Zurich , 4058 Basel, Switzerland
| | - Moritz Pfreundschuh
- Department of Biosystems Science and Engineering, ETH Zurich , 4058 Basel, Switzerland
| | - Mirko Stauffer
- Institute of Biochemistry and Molecular Medicine, University of Bern , 3012 Bern, Switzerland
| | - Zöhre Ucurum
- Institute of Biochemistry and Molecular Medicine, University of Bern , 3012 Bern, Switzerland
| | - Dimitrios Fotiadis
- Institute of Biochemistry and Molecular Medicine, University of Bern , 3012 Bern, Switzerland
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, ETH Zurich , 4058 Basel, Switzerland
| |
Collapse
|
8
|
Yamada Y, Konno H, Shimabukuro K. Demonstration of correlative atomic force and transmission electron microscopy using actin cytoskeleton. Biophys Physicobiol 2017; 14:111-117. [PMID: 28828286 PMCID: PMC5551270 DOI: 10.2142/biophysico.14.0_111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 06/29/2017] [Indexed: 12/01/2022] Open
Abstract
In this study, we present a new technique called correlative atomic force and transmission electron microscopy (correlative AFM/TEM) in which a targeted region of a sample can be observed under AFM and TEM. The ultimate goal of developing this new technique is to provide a technical platform to expand the fields of AFM application to complex biological systems such as cell extracts. Recent advances in the time resolution of AFM have enabled detailed observation of the dynamic nature of biomolecules. However, specifying molecular species, by AFM alone, remains a challenge. Here, we demonstrate correlative AFM/TEM, using actin filaments as a test sample, and further show that immuno-electron microscopy (immuno-EM), to specify molecules, can be integrated into this technique. Therefore, it is now possible to specify molecules, captured under AFM, by subsequent observation using immuno-EM. In conclusion, correlative AFM/TEM can be a versatile method to investigate complex biological systems at the molecular level.
Collapse
Affiliation(s)
- Yutaro Yamada
- Department of Chemical and Biological Engineering, National College of Technology, Ube College, Ube, Yamaguchi 755-8555, Japan
| | - Hiroki Konno
- Bio-AFM Frontier Research Center, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Katsuya Shimabukuro
- Department of Chemical and Biological Engineering, National College of Technology, Ube College, Ube, Yamaguchi 755-8555, Japan
| |
Collapse
|
9
|
Pfreundschuh M, Harder D, Ucurum Z, Fotiadis D, Müller DJ. Detecting Ligand-Binding Events and Free Energy Landscape while Imaging Membrane Receptors at Subnanometer Resolution. NANO LETTERS 2017; 17:3261-3269. [PMID: 28361535 DOI: 10.1021/acs.nanolett.7b00941] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Force-distance curve-based atomic force microscopy has emerged into a sophisticated technique for imaging cellular membranes and for detecting specific ligand-binding events of native membrane receptors. However, so far the resolution achieved has been insufficient to structurally map ligand-binding sites onto membrane proteins. Here, we introduce experimental and theoretical approaches for overcoming this limitation. To establish a structurally and functionally well-defined reference sample, we engineer a ligand-binding site to the light-driven proton pump bacteriorhodopsin of purple membrane. Functionalizing the AFM stylus with an appropriate linker-system tethering the ligand and optimizing the AFM conditions allows for imaging the engineered bacteriorhodopsin at subnanometer resolution while structurally mapping the specific ligand-receptor binding events. Improved data analysis allows reconstructing the ligand-binding free energy landscape from the experimental data, thus providing thermodynamic and kinetic insight into the ligand-binding process. The nanoscopic method introduced is generally applicable for imaging receptors in native membranes at subnanometer resolution and for systematically mapping and quantifying the free energy landscape of ligand binding.
Collapse
Affiliation(s)
- Moritz Pfreundschuh
- Department of Biosystems Science and Engineering, ETH Zürich , 4058 Basel, Switzerland
| | - Daniel Harder
- Institute of Biochemistry and Molecular Medicine, University of Bern , 3012 Bern, Switzerland
| | - Zöhre Ucurum
- Institute of Biochemistry and Molecular Medicine, University of Bern , 3012 Bern, Switzerland
| | - Dimitrios Fotiadis
- Institute of Biochemistry and Molecular Medicine, University of Bern , 3012 Bern, Switzerland
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, ETH Zürich , 4058 Basel, Switzerland
| |
Collapse
|
10
|
Medalsy ID, Müller DJ. Nanomechanical properties of proteins and membranes depend on loading rate and electrostatic interactions. ACS NANO 2013; 7:2642-2650. [PMID: 23442147 DOI: 10.1021/nn400015z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Knowing the dynamic mechanical response of tissue, cells, membranes, proteins, nucleic acids, and carbohydrates to external perturbations is important to understand various biological and biotechnological problems. Atomic force microscopy (AFM)-based approaches are the most frequently used nanotechnologies to determine the mechanical properties of biological samples that range in size from microscopic to (sub)nanoscopic. However, the dynamic nature of biomechanical properties has barely been addressed by AFM imaging. In this work, we characterizethe viscoelastic properties of the native light-driven proton pump bacteriorhodopsin of the purple membrane of Halobacterium salinarum. Using force-distance curve (F-D)-based AFM we imaged purple membranes while force probing their mechanical response over a wide range of loading rates (from ∼0.5 to 100 μN/s). Our results show that the mechanical stiffness of protein and membrane increases with the loading rate up to a factor of 10 (from ∼0.3 to 3.2 N/m). In addition, the electrostatic repulsion between AFM tip and sample can alter the mechanical stiffness measured by AFM up to ∼60% (from ∼0.8 to 1.3 N/m).These findings indicate that the mechanical response of membranes and proteins and probably of other biomolecular systems should be determined at different loading rates to fully understand their properties.
Collapse
Affiliation(s)
- Izhar D Medalsy
- Department of Biosystems Science and Engineering, ETH Zurich, CH-4058 Basel, Switzerland
| | | |
Collapse
|
11
|
Sapra KT. Atomic force microscopy and spectroscopy to probe single membrane proteins in lipid bilayers. Methods Mol Biol 2013; 974:73-110. [PMID: 23404273 DOI: 10.1007/978-1-62703-275-9_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The atomic force microscope (AFM) has opened vast avenues hitherto inaccessible to the biological scientist. The high temporal (millisecond) and spatial (nanometer) resolutions of the AFM are suited for studying many biological processes in their native conditions. The AFM cantilever stylus is aptly termed as a "lab on a tip" owing to its versatility as an imaging tool as well as a handle to manipulate single bonds and proteins. Recent examples assert that the AFM can be used to study the mechanical properties and monitor processes of single proteins and single cells, thus affording insight into important mechanistic details. This chapter specifically focuses on practical and analytical protocols of single-molecule AFM methodologies related to high-resolution imaging and single-molecule force spectroscopy of membrane proteins. Both these techniques are operator oriented, and require specialized working knowledge of the instrument, theoretical, and practical skills.
Collapse
Affiliation(s)
- K Tanuj Sapra
- Department of Chemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
12
|
Atomic force microscopy imaging of lipid rafts of human breast cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2943-9. [DOI: 10.1016/j.bbamem.2012.07.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 07/25/2012] [Accepted: 07/26/2012] [Indexed: 11/20/2022]
|
13
|
Block S, Glöckl G, Weitschies W, Helm CA. Direct visualization and identification of biofunctionalized nanoparticles using a magnetic atomic force microscope. NANO LETTERS 2011; 11:3587-3592. [PMID: 21819124 DOI: 10.1021/nl201312w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Because of its outstanding ability to image and manipulate single molecules, atomic force microscopy (AFM) established itself as a fundamental technique in nanobiotechnology. (1) We present a new modality that distinguishes single nanoparticles by the surrounding magnetic field gradient. Diamagnetic gold and superparamagnetic iron oxide nanoparticles become discernible under ambient conditions. Images of proteins, magnetolabeled with nanoparticles, demonstrate the first steps toward a magnetic analogue to fluorescence microscopy, which combines nanoscale lateral resolution of AFM with unambiguous detection of magnetic markers.
Collapse
Affiliation(s)
- Stephan Block
- Department of Physics, Ernst-Moritz-Arndt University of Greifswald, Felix-Hausdorff-Strasse 6, D-17489 Greifswald, Germany.
| | | | | | | |
Collapse
|
14
|
Su C, Hu S, Hu Y, Erina N, Slade A. Quantitative Mechanical Mapping of Biomolecules in Fluid. ACTA ACUST UNITED AC 2011. [DOI: 10.1557/proc-1261-u01-05] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AbstractThough atomic force microscopy (AFM) interrogates biological materials through mechanical interactions, achieving quantitative mechanical information such as modulus and adhesion at high resolution has been a challenging task. A technology for nanometer scale mechanical property mapping, peak force tapping (PFT), was developed to achieve high resolution imaging and quantitative mechanical measurements simultaneously. PFT controls instantaneous interaction force and record force spectroscopy at each pixel to calculate mechanical properties. A feedback loop maintains a constant peak force, a local maximum point in the force spectroscopy, at the level of Pico Newtons throughout the imaging process. Such high precision force controls enable application of ultra-sharp probe to image biological samples in vitro and achieve molecular resolution in protein membranes. More importantly a full suite of mechanical properties, modulus, adhesion, energy dissipation and deformation are mapped concurrent with topographic imaging. To calculate nanomechanical properties reliably cantilever spring constant and tip shape were calibrated systematically. A method to accurately determine cantilever spring constant, capable of wafer scale cantilever calibration, was developed and tested against traceable force methods. With the knowledge of tip shape, derived from morphological dilation method using a reference sample, mechanical properties measured at the nanometer scale was compared with bench mark materials ranging from 0.7 MPa to 70 GPa. The same method was also applied to OmpG membranes, Lambda DNA strings, as well as live cells. The limitation of the measurement accuracy in biology samples will be discussed.
Collapse
|
15
|
Yamashita H, Voïtchovsky K, Uchihashi T, Contera SA, Ryan JF, Ando T. Dynamics of bacteriorhodopsin 2D crystal observed by high-speed atomic force microscopy. J Struct Biol 2009; 167:153-8. [DOI: 10.1016/j.jsb.2009.04.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 04/28/2009] [Indexed: 10/20/2022]
|
16
|
Plomp M, Malkin AJ. Mapping of proteomic composition on the surfaces of bacillus spores by atomic force microscopy-based immunolabeling. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:403-409. [PMID: 19063625 DOI: 10.1021/la803129r] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Atomic force microscopy (AFM) provides a unique capability to image high-resolution architecture and structural dynamics of pathogens (e.g., viruses, bacteria, and bacterial spores) at near-molecular resolution in native conditions. Further development of atomic force microscopy to enable the correlation of pathogen protein surface structures with specific gene products is essential to understand the mechanisms of the pathogen life cycle. We applied an AFM-based immunolabeling technique for the proteomic mapping of macromolecular structures through the visualization of the binding of antibodies, conjugated with nanogold particles, to specific epitopes on Bacillus spore surfaces. This information is generated while simultaneously acquiring the surface morphology of the pathogen. The immunospecificity of this labeling method was established through the utilization of specific polyclonal and monoclonal antibodies that target spore coat and exosporium epitopes of Bacillus atrophaeus and Bacillus anthracis spores.
Collapse
Affiliation(s)
- Marco Plomp
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, L-233, Livermore, California 94551, USA
| | | |
Collapse
|
17
|
Cheung JWC, Walker GC. Immuno-atomic force microscopy characterization of adsorbed fibronectin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:13842-9. [PMID: 19360949 DOI: 10.1021/la802452v] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The fibronectin (Fn) binding conformation on mica and ultraflat poly(D,L-lactide-co-glycolide) (UPLGA) was characterized using atomic force microscopy (AFM). AFM topographic images showed that Fn was in an extended form on mica and in a compact structure on UPLGA. With immuno-AFM, an antibody (Ab(hep)) was used to characterize the Fn binding conformation. When Fn opens its binding site for an antibody upon adsorption to a surface, the resulting Fn-antibody complex creates an additional peak in the sample's height distribution. Immuno-AFM uses this change to detect antigen-antibody binding. In this letter, height histograms (distributions) were generated using the mean true height of molecules, which was measured by examining the histogram for each individual molecule and subtracting the mica background. Mean true height values were obtained from the histograms and showed that Fn and Ab(hep) formed complexes on mica, signifying that one of the heparin binding sites on Fn was open when Fn was adsorbed to mica. The mean true height of the Fn-antibody complex from the histogram is greater than expected, suggesting that the antibody had pulled the extended "arms" of Fn together and caused an Fn conformation change upon binding. The height histograms can illustrate the Fn binding conformation and other antigen-antibody binding.
Collapse
Affiliation(s)
- Jane W C Cheung
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6.
| | | |
Collapse
|
18
|
Barsanti L, Coltelli P, Evangelista V, Passarelli V, Frassanito AM, Vesentini N, Gualtieri P. Low-resolution characterization of the 3D structure of the Euglena gracilis photoreceptor. Biochem Biophys Res Commun 2008; 375:471-6. [DOI: 10.1016/j.bbrc.2008.08.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Accepted: 08/12/2008] [Indexed: 11/24/2022]
|
19
|
Affiliation(s)
- Daniel J. Muller
- Biotechnology Center, Technische Universität Dresden, D-01307 Dresden, Germany
| |
Collapse
|
20
|
Zhong S, Li H, Chen XY, Cao EH, Jin G, Hu KS. Different interactions between the two sides of purple membrane with atomic force microscope tip. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:4486-93. [PMID: 17358085 DOI: 10.1021/la0631062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Atomic force microscopy (AFM) is known to be capable of measuring local surface charge density based on the DLVO model. However, it has failed to distinguish charge density difference between the extracellular and cytoplasmic sides of purple membrane (PM) in previous studies. In this paper, tapping-mode AFM with thioglycolate-modified tips was used to image PM in buffers of different salt concentrations. When imaged in 25 mM KCl buffer, the topography of membranes appeared to be of two different types, one flat and the other domelike. Such a difference was not observed in buffers of high salt concentrations. This suggests that the topography variation results from differences in electrostatic interaction between the AFM tip and the different membrane surfaces. With images of papain-digested PM and high-resolution images of membrane surface structure, we proved that the membrane surfaces with flat topography were on the extracellular side while the surfaces with domelike topography were on the cytoplasmic side. Hence, this provides a straightforward method to distinguish the two sides of PM without the requirement of high-resolution imaging. Force-distance curves clearly demonstrated the different tip-sample interactions. The force curves recorded on the extracellular side of PM were consistent with the DLVO model, so its surface charge density can be estimated well. However, the curves recorded on the cytoplasmic side had a much longer decay length, which is supposed to be relevant to the flexibility of the C-terminus of bacteriorhodopsin (bR).
Collapse
Affiliation(s)
- Sheng Zhong
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | | | | | | | | | | |
Collapse
|
21
|
Wen CK, Goh MC. Fibrous long spacing type collagen fibrils have a hierarchical internal structure. Proteins 2006; 64:227-33. [PMID: 16609970 DOI: 10.1002/prot.20949] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nanodissection of single fibrous long spacing (FLS) type collagen fibrils by atomic force microscopy (AFM) reveals hierarchical internal structure: Fibrillar subcomponents with diameters of approximately 10 to 20 nm were observed to be running parallel to the long axis of the fibril in which they are found. The fibrillar subcomponent displayed protrusions with characteristic approximately 270 nm periodicity, such that protrusions on neighboring subfibrils were aligned in register. Hence, the banding pattern of mature FLS-type collagen fibrils arises from the in-register alignment of these fibrillar subcomponents. This hierarchical organization observed in FLS-type collagen fibrils is different from that previously reported for native-type collagen fibrils, displaying no supercoiling at the level of organization observed.
Collapse
Affiliation(s)
- Chuck K Wen
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
22
|
Lee I, Greenbaum E, Budy S, Hillebrecht JR, Birge RR, Stuart JA. Photoinduced Surface Potential Change of Bacteriorhodopsin Mutant D96N Measured by Scanning Surface Potential Microscopy. J Phys Chem B 2006; 110:10982-90. [PMID: 16771351 DOI: 10.1021/jp052948r] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report the direct measurement of photoinduced surface potential differences of wild-type (WT) and mutant D96N bacteriorhodopsin (BR) membranes at pH 7 and 10.5. Atomic force microscopy (AFM) and scanning surface potential microscopy (SSPM) were used to measure the BR membrane with the extracellular side facing up. We present AFM and SSPM images of WT and mutant D96N in which the light-dark transition occurred in the mid-scan of a single BR membrane. Photosteady-state populations of the M state were generated to facilitate measurement in each sample. The photoinduced surface potential of D96N is 63 mV (peak to valley) at pH 10.5 and is 48 mV at pH 7. The photoinduced surface potential of WT is 37 mV at pH 10.5 and approximately 0 at pH 7. Signal magnitudes are proportional to the amount of M produced at each pH. The results indicated that the surface potentials were generated by photoformation of surface charges on the extracellular side of the membrane. Higher surface potential correlated with a longer lifetime of the charges. A mechanistic basis for these signals is proposed, and it is concluded that they represent a steady-state measurement of the B2 photovoltage.
Collapse
Affiliation(s)
- Ida Lee
- Department of Electrical and Computer Engineering, University of Tennessee, Knoxville, Tennessee 37996-2100, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Braun T, Backmann N, Vögtli M, Bietsch A, Engel A, Lang HP, Gerber C, Hegner M. Conformational change of bacteriorhodopsin quantitatively monitored by microcantilever sensors. Biophys J 2006; 90:2970-7. [PMID: 16443650 PMCID: PMC1414560 DOI: 10.1529/biophysj.105.072934] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacteriorhodopsin proteoliposomes were used as a model system to explore the applicability of micromechanical cantilever arrays to detect conformational changes in membrane protein patches. The three main results of our study concern: 1), reliable functionalization of micromechanical cantilever arrays with proteoliposomes using ink jet spotting; 2), successful detection of the prosthetic retinal removal (bleaching) from the bacteriorhodopsin protein by measuring the induced nanomechanical surface stress change; and 3), the quantitative response thereof, which depends linearly on the amount of removed retinal. Our results show this technique to be a potential tool to measure membrane protein-based receptor-ligand interactions and conformational changes.
Collapse
Affiliation(s)
- Thomas Braun
- National Center of Competence for Research in Nanoscale Science, Institute of Physics, and Maurice E. Müller Institute, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Voïtchovsky K, Antoranz Contera S, Kamihira M, Watts A, Ryan JF. Differential stiffness and lipid mobility in the leaflets of purple membranes. Biophys J 2005; 90:2075-85. [PMID: 16387758 PMCID: PMC1386785 DOI: 10.1529/biophysj.105.072405] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Purple membranes (PM) are two-dimensional crystals formed by bacteriorhodopsin and a variety of lipids. The lipid composition and density in the cytoplasmic (CP) leaflet differ from those of the extracellular (EC) leaflet. A new way of differentiating the two sides of such asymmetric membranes using the phase signal in alternate contact atomic force microscopy is presented. This method does not require molecular resolution and is applied to study the stiffness and intertrimer lipid mobility in both leaflets of the PM independently over a broad range of pH and salt concentrations. PM stiffens with increasing salt concentration according to two different regimes. At low salt concentration, the membrane Young's normal modulus grows quickly but differentially for the EC and CP leaflets. At higher salt concentration, both leaflets behave similarly and their stiffness converges toward the native environment value. Changes in pH do not affect PM stiffness; however, the crystal assembly is less pronounced at pH > or = 10. Lipid mobility is high in the CP leaflet, especially at low salt concentration, but negligible in the EC leaflet regardless of pH or salt concentration. An independent lipid mobility study by solid-state NMR confirms and quantifies the atomic force microscopy qualitative observations.
Collapse
Affiliation(s)
- Kislon Voïtchovsky
- Interdisciplinary Research Collaboration in Bionanotechnology, Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, United Kingdom.
| | | | | | | | | |
Collapse
|
25
|
O'Hagan BMG, Doyle P, Allen JM, Sutton K, McKerr G. The effects of atomic force microscopy upon nominated living cells. Ultramicroscopy 2004; 102:1-5. [PMID: 15556694 DOI: 10.1016/j.ultramic.2004.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2003] [Revised: 06/21/2004] [Accepted: 06/28/2004] [Indexed: 11/20/2022]
Abstract
This work describes a system for precise re-location of cells within a monolayer after atomic force imaging. As we know little about probe interaction with soft biological surfaces any corroborative evidence is of great importance. For example, it is of paramount importance in living cell force microscopy that interrogated cells can be re-located and imaged by other corroborative technologies. Methodologies expressed here have shown that non-invasive force parameters can be established for specific cell types. Additionally, we show that the same sample can be transferred reliably to an SEM. Results here indicate that further work with live cells should initially establish appropriate prevailing force parameters and that cell damage should be checked for before and after an imaging experiment.
Collapse
|
26
|
Kienberger F, Mueller H, Pastushenko V, Hinterdorfer P. Following single antibody binding to purple membranes in real time. EMBO Rep 2004; 5:579-83. [PMID: 15143343 PMCID: PMC1299069 DOI: 10.1038/sj.embor.7400149] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2003] [Revised: 03/17/2004] [Accepted: 03/17/2004] [Indexed: 11/08/2022] Open
Abstract
Antibody binding to surface antigens in membranes is the primary event in the specific immune defence of vertebrates. Here we used force microscopy to study the dynamics of antibody recognition of mutant purple membranes from Halobacterium salinarum containing a genetically appended anti-Sendai recognition epitope. Ligation of individual anti-Sendai antibodies to their antigenic epitopes was observed over time. Their increase in number within a small selected area revealed an apparent kinetic on-rate. The membrane-bound antibodies showed many different conformations that ranged from globular to V- and Y-like shapes. The maximum distance of two Fab fragments of the same antibody was observed to be approximately 18 nm, indicating an overall strong intrinsic flexibility of the antibody hinge region. Fab fragments of bound anti-Sendai antibodies were allocated to antigenic sites of the purple membrane, allowing the identification and localization of individual recognition epitopes on the surface of purple membranes.
Collapse
Affiliation(s)
- Ferry Kienberger
- Institute for Biophysics, J. Kepler University of Linz, Altenbergerstr. 69, A-4040 Linz, Austria
| | - Harald Mueller
- Department of Microbiology, University of Kassel, Heinrich Plett Strasse 40, D-34132 Kassel, Germany
| | - Vassili Pastushenko
- Institute for Biophysics, J. Kepler University of Linz, Altenbergerstr. 69, A-4040 Linz, Austria
| | - Peter Hinterdorfer
- Institute for Biophysics, J. Kepler University of Linz, Altenbergerstr. 69, A-4040 Linz, Austria
- Tel: +43 732 2468 9265; Fax: +43 732 2468 9280; E-mail:
| |
Collapse
|
27
|
Müller DJ, Engel A. Conformations, flexibility, and interactions observed on individual membrane proteins by atomic force microscopy. Methods Cell Biol 2003; 68:257-99. [PMID: 12053734 DOI: 10.1016/s0091-679x(02)68014-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Daniel J Müller
- M. E. Müller Institute, Biocenter, University of Basel, CH-4056 Basel, Switzerland
| | | |
Collapse
|
28
|
|
29
|
Müller DJ, Janovjak H, Lehto T, Kuerschner L, Anderson K. Observing structure, function and assembly of single proteins by AFM. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2002; 79:1-43. [PMID: 12225775 DOI: 10.1016/s0079-6107(02)00009-3] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Single molecule experiments provide insight into the individuality of biological macromolecules, their unique function, reaction pathways, trajectories and molecular interactions. The exceptional signal-to-noise ratio of the atomic force microscope allows individual proteins to be imaged under physiologically relevant conditions at a lateral resolution of 0.5-1nm and a vertical resolution of 0.1-0.2nm. Recently, it has become possible to observe single molecule events using this technique. This capability is reviewed on various water-soluble and membrane proteins. Examples of the observation of function, variability, and assembly of single proteins are discussed. Statistical analysis is important to extend conclusions derived from single molecule experiments to protein species. Such approaches allow the classification of protein conformations and movements. Recent developments of probe microscopy techniques allow simultaneous measurement of multiple signals on individual macromolecules, and greatly extend the range of experiments possible for probing biological systems at the molecular level. Biologists exploring molecular mechanisms will benefit from a burgeoning of scanning probe microscopes and of their future combination with molecular biological experiments.
Collapse
Affiliation(s)
- Daniel J Müller
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauer Str. 108, D-01307 Dresden, Germany.
| | | | | | | | | |
Collapse
|
30
|
Knapp HF, Mesquida P, Stemmer A. Imaging the surface potential of active purple membrane. SURF INTERFACE ANAL 2002. [DOI: 10.1002/sia.1172] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
31
|
Tang L, Sun Q, Li Q, Huang Y, Wei Q, Zhang Y, Hu J, Zhang Z, Li M, Yang F. Imaging bacteriorhodopsinlike molecules of claretmembranes from Tibet halobacteria xz515 by atomic force microscope. ACTA ACUST UNITED AC 2001. [DOI: 10.1007/bf02901167] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Dufrêne YF. Application of atomic force microscopy to microbial surfaces: from reconstituted cell surface layers to living cells. Micron 2001; 32:153-65. [PMID: 10936459 DOI: 10.1016/s0968-4328(99)00106-7] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The application of atomic force microscopy (AFM) to probe the ultrastructure and physical properties of microbial cell surfaces is reviewed. The unique capabilities of AFM can be summarized as follows: imaging surface topography with (sub)nanometer lateral resolution; examining biological specimens under physiological conditions; measuring local properties and interaction forces. AFM is being used increasingly for: (i) visualizing the surface ultrastructure of microbial cell surface layers, including bacterial S-layers, purple membranes, porin OmpF crystals and fungal rodlet layers; (ii) monitoring conformational changes of individual membrane proteins; (iii) examining the morphology of bacterial biofilms, (iv) revealing the nanoscale structure of living microbial cells, including fungi, yeasts and bacteria, (v) mapping interaction forces at microbial surfaces, such as van der Waals and electrostatic forces, solvation forces, and steric/bridging forces; and (vi) probing the local mechanical properties of cell surface layers and of single cells.
Collapse
Affiliation(s)
- Y F Dufrêne
- Unité de chimie des interfaces, Université catholique de Louvain, Place Croix du Sud 2/18, 1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
33
|
Changes in the surface structure of purple membrane upon illumination measured by atomic force microscopy. Colloids Surf B Biointerfaces 2000; 19:325-332. [PMID: 11064255 DOI: 10.1016/s0927-7765(00)00141-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacteriorhodopsin (BR) patches with a diameter of 1 to 3 µm were investigated in their native state by atomic force microscopy (AFM) in buffer solution. The patches were immobilized deposited and investigated on mica in 150 mM KCl and 10 mM Tris-buffer at pH 8. Under this buffer condition they adsorb preferred with their extracellular side to the solid support mica. The structure of the two-dimensional light adapted crystals was resolved with an imaging force of about 100 pN up to a resolution of 13 Å. The topography of the surface gets smoother if an imaging force of 1000 pN was applied indicating that protruding structures are compressed. Upon illumination with white light, during imaging with a force of 200 pN, the surface structure of the BR lattice changed. The force- and light-induced structural changes were reversible.
Collapse
|
34
|
Müller DJ, Heymann JB, Oesterhelt F, Möller C, Gaub H, Büldt G, Engel A. Atomic force microscopy of native purple membrane. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1460:27-38. [PMID: 10984588 DOI: 10.1016/s0005-2728(00)00127-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Atomic force microscopy (AFM) allows the observation of surface structures of purple membrane (PM) in buffer solution with subnanometer resolution. This offers the possibility to classify the major conformations of the native bacteriorhodopsin (BR) surfaces and to map the variability of individual polypeptide loops connecting transmembrane alpha-helices of BR. The position, the variability and the flexibility of these loops depend on the packing arrangement of BR molecules in the lipid bilayer with significant differences observed between the trigonal and orthorhombic crystal forms. Cleavage of the Schiff base bond leads to a disassembly of the trigonal PM crystal, which is restored by regenerating the bleached PM. The combination of single molecule AFM imaging and single molecule force-spectroscopy provides an unique insight into the interactions between individual BR molecules and the PM, and between secondary structure elements within BR.
Collapse
Affiliation(s)
- D J Müller
- M.E. Müller-Institute for Structural Biology, Biozentrum, University of Basel, Klingelkbergstr. 70, CH-4056 Basel, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
35
|
Möller C, Büldt G, Dencher NA, Engel A, Müller DJ. Reversible loss of crystallinity on photobleaching purple membrane in the presence of hydroxylamine. J Mol Biol 2000; 301:869-79. [PMID: 10966792 DOI: 10.1006/jmbi.2000.3995] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Structural changes of purple membrane during photobleaching in the presence of hydroxylamine were monitored using atomic force microscopy (AFM). The process of bleaching was associated with the disassembly of the purple membrane crystal into smaller crystals. Imaging steps of the photobleaching progress showed that disassembly proceeds until the sample is fully bleached and its crystallinity is almost lost. As revealed from high resolution AFM topographs, the loss of crystallinity was initiated by loss of lattice forming contact between the individual bacteriorhodopsin trimers. The bacteriorhodopsin molecules, however, remained assembled into trimers during the entire photobleaching process. Regeneration of the photobleached sample into intact purple membrane resulted in the reassembly of the bacteriorhodopsin trimers into the trigonal lattice of purple membrane. The data provide novel insights into factors triggering purple membrane formation and structure.
Collapse
Affiliation(s)
- C Möller
- M. E. Müller Institute for Structural Biology, Biozentrum, Klingelbergstr. 70, Basel, CH-4056, Switzerland
| | | | | | | | | |
Collapse
|
36
|
Scheuring S, Tittmann P, Stahlberg H, Ringler P, Borgnia M, Agre P, Gross H, Engel A. The aquaporin sidedness revisited. J Mol Biol 2000; 299:1271-8. [PMID: 10873451 DOI: 10.1006/jmbi.2000.3811] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aquaporins are transmembrane water channel proteins, which play important functions in the osmoregulation and water balance of micro-organisms, plants, and animal tissues. All aquaporins studied to date are thought to be tetrameric assemblies of four subunits each containing its own aqueous pore. Moreover, the subunits contain an internal sequence repeat forming two obversely symmetric hemichannels predicted to resemble an hour-glass. This unique arrangement of two highly related protein domains oriented at 180 degrees to each other poses a significant challenge in the determination of sidedness. Aquaporin Z (AqpZ) from Escherichia coli was reconstituted into highly ordered two-dimensional crystals. They were freeze-dried and metal-shadowed to establish the relationship between surface structure and underlying protein density by electron microscopy. The shadowing of some surfaces was prevented by protruding aggregates. Thus, images collected from freeze-dried crystals that exhibited both metal-coated and uncoated regions allowed surface relief reconstructions and projection maps to be obtained from the same crystal. Cross-correlation peak searches along lattices crossing metal-coated and uncoated regions allowed an unambiguous alignment of the surface reliefs to the underlying density maps. AqpZ topographs previously determined by AFM could then be aligned with projection maps of AqpZ, and finally with human erythrocyte aquaporin-1 (AQP1). Thereby features of the AqpZ topography could be interpreted by direct comparison to the 6 A three-dimensional structure of AQP1. We conclude that the sidedness we originally proposed for aquaporin density maps was inverted.
Collapse
Affiliation(s)
- S Scheuring
- M. E. Müller Institute for Microscopy at the Biozentrum, University of Basel, Klingelbergstr. 70, Basel, CH-4056, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Heymann JB, Pfeiffer M, Hildebrandt V, Kaback HR, Fotiadis D, Groot B, Engel A, Oesterhelt D, Müller DJ. Conformations of the rhodopsin third cytoplasmic loop grafted onto bacteriorhodopsin. Structure 2000; 8:643-53. [PMID: 10873864 DOI: 10.1016/s0969-2126(00)00151-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND The third cytoplasmic loop of rhodopsin (Rho EF) is important in signal transduction from the retinal in rhodopsin to its G protein, transducin. This loop also interacts with rhodopsin kinase, which phosphorylates light-activated rhodopsin, and arrestin, which displaces transducin from light-activated phosphorylated rhodopsin. RESULTS We replaced eight residues of the EF loop of bacteriorhodopsin (BR) with 24 residues from the third cytoplasmic loop of bovine Rho EF. The surfaces of purple membrane containing the mutant BR (called IIIN) were imaged by atomic force microscopy (AFM) under physiological conditions to a resolution of 0.5-0.7 nm. The crystallinity and extracellular surface of IIIN were not perturbed, and the cytoplasmic surface of IIIN increased in height compared with BR, consistent with the larger loop. Ten residues of Rho EF were excised by V8 protease, revealing helices E and F in the AFM topographs. Rho EF was modeled onto the BR structure, and the envelope derived from the AFM data of IIIN was used to select probable models. CONCLUSIONS A likely conformation of Rho EF involves some extension of helices E and F, with the tip of the loop lying over helix C and projecting towards the C terminus. This is consistent with mutagenesis data showing the TTQ transducin-binding motif close to loop CD, and cysteine cross-linking data indicating the C-terminal part of Rho EF to be close to the CD loop.
Collapse
Affiliation(s)
- J B Heymann
- M.E. Müller-Institute for Structural Biology, Biozentrum, University of Basel, Basel, CH-4056, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Robichon D, Girard JC, Cenatiempo Y, Cavellier JF. Atomic force microscopy imaging of dried or living bacteria. COMPTES RENDUS DE L'ACADEMIE DES SCIENCES. SERIE III, SCIENCES DE LA VIE 1999; 322:687-93. [PMID: 10505241 DOI: 10.1016/s0764-4469(99)80108-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Atomic force microscopy (AFM) was used to obtain micrographs of dried bacteria in air, and of living ones in their culture medium. Images of dried bacteria were very similar to images obtained elsewhere by the much more complicated cryoetching preparation technique for transmission electron microscopy. Living bacteria were immobilized on a poly-L-lysine film, and directly observed in their culture medium at a resolution unattainable by any other technique applicable to living material. The images were similar to those obtained in scanning electron microscopy where the specimen must be fixed, dried and coated with conductive material, and as a result, no longer viable.
Collapse
Affiliation(s)
- D Robichon
- Laboratoire de biologie moléculaire, IBMIG, ESA CNRS 6031, Poitiers, France
| | | | | | | |
Collapse
|
39
|
Möller C, Allen M, Elings V, Engel A, Müller DJ. Tapping-mode atomic force microscopy produces faithful high-resolution images of protein surfaces. Biophys J 1999; 77:1150-8. [PMID: 10423460 PMCID: PMC1300406 DOI: 10.1016/s0006-3495(99)76966-3] [Citation(s) in RCA: 213] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Compared to contact-mode atomic force microscopy (CMAFM), tapping-mode atomic force microscopy (TMAFM) has the advantage of allowing imaging surfaces of macromolecules, even when they are only weakly attached to the support. In this study, TMAFM is applied to two different regular protein layers whose structures are known to great detail, the purple membrane from Halobacterium salinarum and the hexagonally packed intermediate (HPI) layer from Deinococcus radiodurans, to assess the faithfulness of high-resolution TMAFM images. Topographs exhibited a lateral resolution between 1.1 and 1. 5 nm and a vertical resolution of approximately 0.1 nm. For all protein surfaces, TMAFM and CMAFM topographs were in excellent agreement. TMAFM was capable of imaging the fragile polypeptide loop connecting the transmembrane alpha-helices E and F of bacteriorhodopsin in its native extended conformation. The standard deviation (SD) of averages calculated from TMAFM topographs exhibited an enhanced minimum (between 0.1 and 0.9 nm) that can be assigned to the higher noise of the raw data. However, the SD difference, indicating the flexibility of protein subunits, exhibited an excellent agreement between the two imaging modes. This demonstrates that the recently invented imaging-mode TMAFM has the ability to faithfully record high-resolution images and has sufficient sensitivity to contour individual peptide loops without detectable deformations.
Collapse
Affiliation(s)
- C Möller
- M. E. Müller Institute for Structural Biology, Biozentrum, CH-4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
40
|
Müller DJ, Sass HJ, Müller SA, Büldt G, Engel A. Surface structures of native bacteriorhodopsin depend on the molecular packing arrangement in the membrane. J Mol Biol 1999; 285:1903-9. [PMID: 9925773 DOI: 10.1006/jmbi.1998.2441] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacteriorhodopsin is the one of the best-studied models of an ion pump. Five atomic models are now available, yet their comparison reveals differences of some loops connecting the seven transmembrane alpha-helices. In an attempt to resolve this enigma, topographs were recorded in aqueous solution with the atomic force microscope (AFM) to reveal the most native surface structure of bacteriorhodopsin molecules in the purple membrane. Individual peptide loops were observed with a lateral resolution of between 4.5 A and 5.8 A, and a vertical resolution of about 1 A. The AFM images demonstrate for the first time, that the shape, the position, and the flexibility of individual polypeptide loops depend on the packing arrangement of bacteriorhodopsin molecules in the lipid bilayer.
Collapse
Affiliation(s)
- D J Müller
- M. E. Müller-Institute for Microscopic Structural Biology, Biozentrum University of Basel, Klingelbergstrasse 70, Basel, CH-4056, Switzerland.
| | | | | | | | | |
Collapse
|
41
|
Müller DJ, Fotiadis D, Scheuring S, Müller SA, Engel A. Electrostatically balanced subnanometer imaging of biological specimens by atomic force microscope. Biophys J 1999; 76:1101-11. [PMID: 9916042 PMCID: PMC1300060 DOI: 10.1016/s0006-3495(99)77275-9] [Citation(s) in RCA: 217] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To achieve high-resolution topographs of native biological macromolecules in aqueous solution with the atomic force microscope (AFM) interactions between AFM tip and sample need to be considered. Short-range forces produce the submolecular information of high-resolution topographs. In contrast, no significant high-resolution information is provided by the long-range electrostatic double-layer force. However, this force can be adjusted by pH and electrolytes to distribute the force applied to the AFM tip over a large sample area. As demonstrated on fragile biological samples, adjustment of the electrolyte solution results in a local reduction of both vertical and lateral forces between the AFM tip and proteinous substructures. Under such electrostatically balanced conditions, the deformation of the native protein is minimized and the sample surface can be reproducibly contoured at a lateral resolution of 0.6 nm.
Collapse
Affiliation(s)
- D J Müller
- M.E. Muller-Institute for Microscopic Structural Biology, Biozentrum, University of Basel, Basel, Switzerland.
| | | | | | | | | |
Collapse
|
42
|
Ziegler U, Vinckier A, Kernen P, Zeisel D, Biber J, Semenza G, Murer H, Groscurth P. Preparation of basal cell membranes for scanning probe microscopy. FEBS Lett 1998; 436:179-84. [PMID: 9781674 DOI: 10.1016/s0014-5793(98)01118-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Scanning probe microscopy has the potential for investigating membranes in a physiological environment. We prepared with a lysis-squirting protocol basal cell membranes, that are suitable for scanning probe microscopy. Investigations using atomic force microscopy under liquid revealed cellular filaments which correlated perfectly with fluorescently stained actin filaments. Globular structures with a diameter as little as 10 nm could be resolved by stripping cytoplasmic components from the membranes. Therefore, cytoplasmic sides of supported basal cell membranes prove useful to gain high resolution with scanning probe microscopy in studies of plasma membrane associated structures and processes under buffer solution.
Collapse
Affiliation(s)
- U Ziegler
- Institute of Anatomy, University of Zurich, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Grandbois M, Clausen-Schaumann H, Gaub H. Atomic force microscope imaging of phospholipid bilayer degradation by phospholipase A2. Biophys J 1998; 74:2398-404. [PMID: 9591666 PMCID: PMC1299582 DOI: 10.1016/s0006-3495(98)77948-2] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We have investigated the time course of the degradation of a supported dipalmitoylphosphatidylcholine bilayer by phospholipase A2 in aqueous buffer with an atomic force microscope. Contact mode imaging allows visualization of enzyme activity on the substrate with a lateral resolution of less than 10 nm. Detailed analysis of the micrographs reveals a dependence of enzyme activity on the phospholipid organization and orientation in the bilayer. These experiments suggest that it is possible to observe single enzymes at work in small channels, which are created by the hydrolysis of membrane phospholipids. Indeed, the measured rate of hydrolysis of phospholipids corresponds very well with the enzyme activity found in kinetic studies. It was also possible to correlate the number of enzymes at the surface, as calculated from the binding constant to the number of starting points of the hydrolysis. In addition, the width of the channels was found to be comparable to the diameter of a single phospholipase A2 and thus further supports the single-enzyme hypothesis.
Collapse
Affiliation(s)
- M Grandbois
- Lehrstuhl für Angewandte Physik, Ludwig Maximilians Universität München, Munich, Germany
| | | | | |
Collapse
|
44
|
Abstract
Merely ten years after its invention, the scanning force microscope is becoming a powerful method to investigate the structure and dynamics of biological molecules under aqueous environments. From the visualization of transcription in real time to the mechanical manipulation of individual proteins, the advances made during the past year open up a vast number of exciting applications of this technique in biology.
Collapse
Affiliation(s)
- C Bustamante
- Howard Hughes Medical Institute, Chemistry Department, University of Oregon, Eugene 97403, USA.
| | | | | |
Collapse
|
45
|
Abstract
During the past year, scanning probe microscopy, especially atomic force microscopy (AFM), has taken root in the biological sciences community, as is evident from the large number of publications and from the variety of specialized journals in which these papers appear. Furthermore, there is a strong indication that the technique is evolving from a qualitative imaging tool to a probe of the critical dimensions and properties of biomolecules and living cells. The next stage of the evolution involves the development of microinstruments for process control and sensing applications. Recent advances have been reported in AFM instrumentation and method. For example, the tapping mode of operation is becoming the method of choice to image biological molecules; work to extend tapping-mode operation in liquids has been reported. Biological molecules can also be imaged at low temperature in a cryo-AFM with improved resolution. The measurement of recognition forces between individual molecules continues to attract much attention and has spawned new concepts for ultra-sensitive biosensors. The AFM is being used increasingly for property measurements such as determining the viscoelastic properties of biological molecules. Finally, structural studies using the AFM abound. Some specific highlights include the mapping of DNA using restriction enzymes, imaging during DNA transcription and determining the mode of drug binding to DNA.
Collapse
Affiliation(s)
- R J Colton
- Chemistry Division, Code 6177 Naval Research Laboratory, Washington, DC 20375-5342, USA.
| | | | | | | | | |
Collapse
|
46
|
Nock S, Spudich JA, Wagner P. Reversible, site-specific immobilization of polyarginine-tagged fusion proteins on mica surfaces. FEBS Lett 1997; 414:233-8. [PMID: 9315692 DOI: 10.1016/s0014-5793(97)01040-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A large variety of genes is expressed as fusion proteins for the purpose of characterization and purification in molecular biology. We have used this strategy to append polyarginine peptides in order to achieve specific binding of the Arg-tag to atomically flat, negatively charged mica surfaces. We show that the model protein, hexaarginine-tagged green fluorescent protein (GFP), binds to mica via its Arg-tag based on ion exchange of naturally occurring potassium cations. Only non-specific binding was observed with the control protein that is free of the Arg-tag. This novel technology will be widely applicable to orient functional proteins on flat surfaces.
Collapse
Affiliation(s)
- S Nock
- Department of Biochemistry, Beckman Center B405, Stanford University Medical Center, CA 94305-5307, USA
| | | | | |
Collapse
|
47
|
Thimonier J, Montixi C, Chauvin JP, He HT, Rocca-Serra J, Barbet J. Thy-1 immunolabeled thymocyte microdomains studied with the atomic force microscope and the electron microscope. Biophys J 1997; 73:1627-32. [PMID: 9284329 PMCID: PMC1181061 DOI: 10.1016/s0006-3495(97)78194-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The atomic force microscope (AFM) and the transmission electron microscope (TEM) have been used to study the morphology of isolated mouse thymocyte microdomains and Thy-1 antigen distribution at the surface of these structures. AFM images were recorded in air in the contact mode on membrane vesicles deposited on previously heated tissue culture plastic sheets and indirectly immunolabeled for Thy-1 expression with colloidal gold-conjugated secondary antibodies. AFM images of untreated plastic plates showed a very characteristic network of streaks 20-200 nm wide. Heating the plastic removed the streaks and provided flat surfaces (r.m.s. 1 nm). This substrate allowed strong adsorption and homogeneous spreading of the vesicles and easy manipulations during immunolabeling experiments. Vesicles flattened on the substrate without losing their morphology. The 10-nm membrane-bound gold beads were reproducibly imaged without degradation by repeated tip scanning. The observed microdomains had a mean diameter of 184 +/- 76 nm, and 65% of them were specifically labeled. Images obtained with the TEM on the same vesicles, deposited on carbon-coated grids and negatively stained, confirmed the AFM observations. The size distribution of the microdomains was quite similar, but the number of beads per vesicle was significantly higher, and 76% of the vesicles were labeled. The difference may be explained 1) by removal of beads from the vesicles in the additional washing step with water, which was necessary for the AFM; 2) by tip-sample convolution; and 3) by statistical fluctuations.
Collapse
Affiliation(s)
- J Thimonier
- Centre National de la Recherche Scientifique GDR 976, Parc Scientifique et Technologique de Luminy, Marseille, France.
| | | | | | | | | | | |
Collapse
|
48
|
Müller DJ, Engel A. The height of biomolecules measured with the atomic force microscope depends on electrostatic interactions. Biophys J 1997; 73:1633-44. [PMID: 9284330 PMCID: PMC1181062 DOI: 10.1016/s0006-3495(97)78195-5] [Citation(s) in RCA: 186] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In biological applications of atomic force microscopy, the different surface properties of the biological sample and its support become apparent. Observed height differences between the biomolecule and its supporting surface are thus not only of structural origin, but also depend on the different sample-tip and support-tip interactions. This can result in negative or positive contributions to the measured height, effects that are described by the DLVO (Derjaguin, Landau, Verwey, Overbeek) theory. Experimental verification shows that the electrostatic interactions between tip and sample can strongly influence the result obtained. To overcome this problem, pH and electrolyte concentration of the buffer solution have to be adjusted to screen out electrostatic forces. Under these conditions, the tip comes into direct contact with the surface of support and biological system, even when low forces required to prevent sample deformation are applied. In this case, the measured height can be related to the thickness of the native biological structure. The observed height dependence of the macromolecules on electrolyte concentration makes it possible to estimate surface charge densities.
Collapse
Affiliation(s)
- D J Müller
- M. E. Muller Institute for Microscopic Structural Biology, Biozentrum, University of Basel, Switzerland
| | | |
Collapse
|
49
|
Heymann JB, Müller DJ, Mitsuoka K, Engel A. Electron and atomic force microscopy of membrane proteins. Curr Opin Struct Biol 1997; 7:543-9. [PMID: 9266177 DOI: 10.1016/s0959-440x(97)80120-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Electron crystallography is becoming a powerful tool for the resolution of membrane protein structures. The past year has seen the production of a bacteriorhodopsin model at 3.5 A and the structure of aquaporin 1 approaching atomic resolution. Determination of surface topographies of 2D crystals using the atomic force microscope is similarly advancing to a level that reveals submolecular details. As the latter is operated in solution, membrane proteins can be observed at work.
Collapse
Affiliation(s)
- J B Heymann
- ME Müller-Institute for Microscopic Structural Biology at the Biozentrum, University of Basel, Switzerland
| | | | | | | |
Collapse
|
50
|
Müller DJ, Engel A, Amrein M. Preparation techniques for the observation of native biological systems with the atomic force microscope. Biosens Bioelectron 1997. [DOI: 10.1016/s0956-5663(97)00051-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|