1
|
Caritá AC, Cavalcanti RRM, Oliveira MSS, Riske KA. Solubilization of biomimetic lipid mixtures by some commonly used non-ionic detergents. Chem Phys Lipids 2023; 255:105327. [PMID: 37442532 DOI: 10.1016/j.chemphyslip.2023.105327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023]
Abstract
Detergents are amphiphilic molecules often used to solubilize biological membranes and separate their components. Here we investigate the solubilization of lipid vesicles by the commonly used non-ionic detergents polyoxyethylene (20) oleyl ether (Brij 98), n-octyl-β-D-glucoside (OG), and n-dodecyl β-D maltoside (DDM) and compare the results with the standard detergent Triton X-100 (TX-100). The vesicles were composed of palmitoyl oleoyl phosphatidylcholine (POPC) or of a biomimetic ternary mixture of POPC, egg sphingomyelin (SM) and cholesterol (2:1:2 molar ratio). To follow the solubilization profile of large unilamellar vesicles (LUVs), 90° light scattering measurements were done along the titration of LUVs with the detergents. Then, giant unilamellar vesicles (GUVs) were observed with optical microscopy during exposure to the detergents, to allow direct visualization of the solubilization process. Isothermal titration calorimetry (ITC) was used to assess the binding constant of the detergents in POPC bilayers. The results show that the incorporation of TX-100, Brij 98 and, to a lesser extent, OG in the pure POPC liposomes leads to an increase in the vesicle area, which indicates their ability to redistribute between the two leaflets of the membrane in a short scale of time. On the other hand, DDM incorporates mainly in the external leaflet causing an increase in vesicle curvature/tension leading ultimately to vesicle burst. Only TX-100 and OG were able to completely solubilize the POPC vesicles, whereas the biomimetic ternary mixture was partially insoluble in all detergents tested. TX-100 and OG were able to incorporate in the bilayer of the ternary mixture and induce macroscopic phase separation of liquid-ordered (Lo) and liquid-disordered (Ld) domains, with selective solubilization of the latter. Combination of ITC data with turbidity results showed that TX-100 and OG can be incorporated up to almost 0.3 detergent/lipid, significantly more than Brij 98 and DDM. This fact seems to be directly related to their higher capacity to solubilize POPC membranes and their ability to induce macroscopic phase separation in the biomimetic lipid mixture.
Collapse
Affiliation(s)
- Amanda C Caritá
- Universidade Federal de São Paulo, Department of Biophysics, São Paulo, Brazil
| | | | | | - Karin A Riske
- Universidade Federal de São Paulo, Department of Biophysics, São Paulo, Brazil.
| |
Collapse
|
2
|
Steigenberger J, Verleysen Y, Geudens N, Madder A, Martins JC, Heerklotz H. Complex electrostatic effects on the selectivity of membrane-permeabilizing cyclic lipopeptides. Biophys J 2023; 122:950-963. [PMID: 35927958 PMCID: PMC10111218 DOI: 10.1016/j.bpj.2022.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/04/2022] [Accepted: 07/28/2022] [Indexed: 11/28/2022] Open
Abstract
Cyclic lipopeptides (CLiPs) have many biological functions, including the selective permeabilization of target membranes, and technical and medical applications. We studied the anionic CLiP viscosin from Pseudomonas along with a neutral analog, pseudodesmin A, and the cationic viscosin-E2K to better understand electrostatic effects on target selectivity. Calcein leakage from liposomes of anionic phosphatidylglycerol (PG) and phosphatidylethanolamine (PE) is measured in comparison with net-neutral phosphatidylcholine by time-resolved fluorescence. By contrast to the typical selectivity of cationic peptides against anionic membranes, we find viscosin more active against PG/PE at 30 μM lipid than viscosin-E2K. At very low lipid concentration, the selectivity is reversed. An equi-activity analysis reveals the reciprocal partition coefficients, 1/K, and the CLiP-to-lipid mole ratio within the membrane as leakage after 1 h reaches 50%, Re50. As expected, 1/K to PG/PE is much lower (higher affinity) for viscosin-E2K (3 μM) than viscosin (15 μM). However, the local damage to the PG/PE membrane caused by a viscosin molecule is much stronger than that of viscosin-E2K. This can be explained by the strong membrane expansion due to PG/viscosin repulsion inducing asymmetry stress between the two leaflets and, ultimately, transient limited leakage at Re50 = 0.08. PG/viscosin-E2K attraction opposes expansion and leakage starts only as the PG charges in the outer leaflet are essentially compensated by the cationic peptide (Re50 = 0.32). In the high-lipid regime (at lipid concentrations cL ≫ 1/K), virtually all CLiP is membrane bound anyway and Re50 governs selectivity, favoring viscosin. In the low-lipid regime at cL ≪ 1/K, virtually all CLiP is in solution, 1/K becomes important and the "cation attacks anionic membrane" selectivity gets restored. Overall, activity and selectivity data can only properly be interpreted if the lipid regime is known and predictions for other lipid concentrations or cell counts require knowledge of 1/K and Re50.
Collapse
Affiliation(s)
- Jessica Steigenberger
- Department of Pharmaceutics, Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany.
| | - Yentl Verleysen
- NMR and Structure Analysis Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium; Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Niels Geudens
- NMR and Structure Analysis Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - José C Martins
- NMR and Structure Analysis Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Heiko Heerklotz
- Department of Pharmaceutics, Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada; Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
3
|
Steigenberger J, Mergen C, De Roo V, Geudens N, Martins JC, Heerklotz H. The effect of membrane thickness on the membrane permeabilizing activity of the cyclic lipopeptide tolaasin II. Front Mol Biosci 2022; 9:1064742. [PMID: 36619163 PMCID: PMC9817028 DOI: 10.3389/fmolb.2022.1064742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/21/2022] [Indexed: 12/25/2022] Open
Abstract
Tolaasin II is an amphiphilic, membrane-active, cyclic lipopeptide produced by Pseudomonas tolaasii and is responsible for brown blotch disease in mushroom. To better understand the mode of action and membrane selectivity of tolaasin II and related lipopeptides, its permeabilizing effect on liposomes of different membrane thickness was characterized. An equi-activity analysis served to distinguish between the effects of membrane partitioning and the intrinsic activity of the membrane-bound peptide. It was found that thicker membranes require higher local peptide concentrations to become leaky. More specifically, the mole ratio of membrane-bound peptide per lipid needed to induce 50% leakage of calcein within 1 h, Re 50, increased monotonically with membrane thickness from 0.0016 for the 14:1 to 0.0070 for the 20:1 lipid-chains. Moreover, fast but limited leakage kinetics in the low-lipid regime were observed implying a mode of action based on membrane asymmetry stress in this time and concentration window. While the assembly of the peptide to oligomeric pores of defined length along the bilayer z-axis can in principle explain inhibition by increasing membrane thickness, it cannot account for the observed limited leakage. Therefore, reduced intrinsic membrane-permeabilizing activity with increasing membrane thickness is attributed here to the increased mechanical strength and order of thicker membranes.
Collapse
Affiliation(s)
- Jessica Steigenberger
- Department of Pharmaceutics, Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany,*Correspondence: Jessica Steigenberger, ; Heiko Heerklotz,
| | - Catherine Mergen
- Department of Pharmaceutics, Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany
| | - Vic De Roo
- NMR and Structure Analysis Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Niels Geudens
- NMR and Structure Analysis Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - José C. Martins
- NMR and Structure Analysis Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Heiko Heerklotz
- Department of Pharmaceutics, Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany,Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada,Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany,*Correspondence: Jessica Steigenberger, ; Heiko Heerklotz,
| |
Collapse
|
4
|
Steigenberger J, Verleysen Y, Geudens N, Martins JC, Heerklotz H. The Optimal Lipid Chain Length of a Membrane-Permeabilizing Lipopeptide Results From the Balance of Membrane Partitioning and Local Damage. Front Microbiol 2021; 12:669709. [PMID: 34594308 PMCID: PMC8476953 DOI: 10.3389/fmicb.2021.669709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 08/20/2021] [Indexed: 11/13/2022] Open
Abstract
Pseudodesmin A (PSD) is a cyclic lipodepsipeptide produced by Pseudomonas that kills certain bacteria at MIC1/2 in the single micromolar range, probably by permeabilizing their cellular membranes. Synthetic PSD variants, where the native decanoic (C10) acyl chain is varied in length from C4 to C8 and C12 to C14 carbons, were described to be not or less active against a panel of gram-positive strains, as compared to native PSD-C10. Here, we test the membrane-permeabilizing activity of PSD-C4 through PSD-C14 in terms of calcein release from liposomes, which is characterized in detail by the fluorescence-lifetime based leakage assay. Antagonistic concentrations and their chain length dependence agree well for liposome leakage and antimicrobial activity. The optimal chain length is governed by a balance between membrane partitioning (favoring longer chains) and the local perturbation or “damage” inflicted by a membrane-bound molecule (weakening for longer chains). Local perturbation, in turn, may involve at least two modes of action. Asymmetry stress between outer and inner leaflet builds up as the lipopeptides enter the outer leaflet and when it reaches a system-specific stability threshold, it causes a transient membrane failure that allows for the flip of some molecules from the outer to the inner leaflet. This cracking-in may be accompanied by transient, incomplete leakage from the aqueous cores of the liposomes observed, typically, for some seconds or less. The mismatch of the lipopeptide with the lipid leaflet geometry, expressed for example in terms of a spontaneous curvature, has two effects. First, it affects the threshold for transient leakage as described. Second, it controls the rate of equilibrium leakage proceeding as the lipopeptide has reached sufficient local concentrations in both leaflets to form quasi-toroidal defects or pores. Both modes of action, transient and equilibrium leakage, synergize for intermediate chain lengths such as the native, i.e., for PSD-C10. These mechanisms may also account for the reported chain-length dependent specificities of antibiotic action against the target bacteria.
Collapse
Affiliation(s)
- Jessica Steigenberger
- Department of Pharmaceutical Technology and Biopharmacy, University of Freiburg, Freiburg, Germany
| | - Yentl Verleysen
- NMR and Structure Analysis Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Niels Geudens
- NMR and Structure Analysis Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - José C Martins
- NMR and Structure Analysis Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Heiko Heerklotz
- Department of Pharmaceutical Technology and Biopharmacy, University of Freiburg, Freiburg, Germany.,Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada.,Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| |
Collapse
|
5
|
Dietel L, Kalie L, Heerklotz H. Lipid Scrambling Induced by Membrane-Active Substances. Biophys J 2020; 119:767-779. [PMID: 32738218 DOI: 10.1016/j.bpj.2020.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 11/26/2022] Open
Abstract
The functional roles of the lipid asymmetry of biomembranes are attracting increasing attention. This study characterizes the activity of surfactants to induce transmembrane flip-flop of lipids and thus "scramble" this asymmetry. Detergent-induced lipid scrambling of liposomes mimicking the charge asymmetry of bacterial membranes with 20 mol % of 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-rac-glycerol in the outer leaflet only was quantified by ζ-potential measurements for octaethylene glycol dodecyl ether (C12EO8), octyl glucoside (OG), and dodecyl maltoside. Membrane leakage was separately measured by the fluorescence lifetime-based calcein leakage assay and the onset of the membrane-to-micelle transition by isothermal titration calorimetry. Partition coefficients and partial molar areas were obtained as well. For the quickly membrane-permeant C12EO8 and OG, leakage proceeds at a rather sharp threshold content in the membrane, which is well below the onset of solubilization and little dependent on incubation time; it is accompanied by fast lipid scrambling. However, unlike leakage, flip-flop is a relaxation process that speeds up gradually from taking weeks in the detergent-free membrane to minutes or less in the leaking membrane. Hence, after 24 h of incubation, 10 mol % of C12EO8 or 50 mol % of OG in the membrane suffice for virtually complete lipid scrambling, whereas leakage remains below 10% for up to 14 mol % of C12EO8 and 88 mol % of OG. There is thus a concentration window in which lipid scrambling proceeds without leakage. This implies that lipid scrambling must be considered a possible mode of action of antimicrobial peptides and other membrane-active drugs or biomolecules. A related, detergent-based protocol for scrambling the lipid asymmetry of liposomes and maybe cells without compromising their overall integrity would be a very valuable tool to study functions of lipid asymmetry.
Collapse
Affiliation(s)
- Lisa Dietel
- Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany.
| | - Louma Kalie
- Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany
| | - Heiko Heerklotz
- Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany; Signaling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
6
|
Lactobionamide-based fluorinated detergent for functional and structural stabilization of membrane proteins. Methods 2020; 180:19-26. [DOI: 10.1016/j.ymeth.2020.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 12/28/2022] Open
|
7
|
Liposomal membrane permeability assessment by fluorescence techniques: Main permeabilizing agents, applications and challenges. Int J Pharm 2020; 580:119198. [PMID: 32169353 DOI: 10.1016/j.ijpharm.2020.119198] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/19/2020] [Accepted: 03/02/2020] [Indexed: 01/08/2023]
Abstract
Liposomes are lipid vesicles made of one or multiple lipid bilayers surrounding an internal aqueous core. They are broadly employed as models to study membrane structure and properties. Among these properties, liposome membrane permeability is crucial and widely assessed by fluorescence techniques. The first part of this review is devoted to describe the various techniques used for membrane permeability assessment. Attention is paid to fluorescence techniques based on vesicle leakage of self-quenching probes, dye/quencher pair or cation/ligand pair. Secondly, the membrane-active agents inducing membrane permeabilization is presented and details on their mechanisms of action are given. Emphasis is also laid on the intrinsic and extrinsic factors that can modulate the membrane permeability. Hence, a suitable liposomal membrane should be formulated according to the aim of the study and its application.
Collapse
|
8
|
Choice of cuvette material can influence spectroscopic leakage and permeability experiments with liposomes. Chem Phys Lipids 2018; 215:63-70. [DOI: 10.1016/j.chemphyslip.2018.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 07/30/2018] [Accepted: 07/30/2018] [Indexed: 11/27/2022]
|
9
|
Filipović M, Lukić M, Krstonošić V, Đorđević S, Pantelić I, Gledović A, Vuleta G, Savić S. Feasibility of a Natural Surfactant as a Stabilizer for Cosmetics with Liposome-Encapsulated Plant Stem Cells: Pre-Formulation and Formulation Through Stability Studies. TENSIDE SURFACT DET 2016. [DOI: 10.3139/113.110426] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
During the formulation of liposome-containing products different problems can occur and the selection of a suitable carrier remains the greatest challenge. To estimate feasibility of a novel alkyl polyglucoside surfactant (hydroxystearyl alcohol and hydroxystearyl glucoside) as an emulsifier for cosmetics with liposome-encapsulated plant stem cells, we performed a two-phase study. In the first, the pre-formulation phase, the emulsifier's critical micelle concentration (CMC) and liposome-encapsulated active-emulsifier interactions were determined. The second phase was carried out to develop and characterize a cosmetic emulsion suitable to serve as a carrier for liposomes. The investigated emulsifier, with the obtained CMC value of 0.0085 wt.%, could be classified as liposome-friendly and can be used to develop stable and aesthetically acceptable cosmetics or even prospective pharmaceutical liposome-containing emulsions.
Collapse
Affiliation(s)
- Mila Filipović
- Higher Education School of Professional Health Studies , Belgrade , Serbia
| | - Milica Lukić
- University of Belgrade-Faculty of Pharmacy , Department of Pharmaceutical Technology and Cosmetology , Serbia
| | - Veljko Krstonošić
- Faculty of Medicine , Department of Pharmacy, University of Novi Sad , Serbia
| | - Sanela Đorđević
- University of Belgrade-Faculty of Pharmacy , Department of Pharmaceutical Technology and Cosmetology , Serbia
| | - Ivana Pantelić
- University of Belgrade-Faculty of Pharmacy , Department of Pharmaceutical Technology and Cosmetology , Serbia
| | - Ana Gledović
- University of Belgrade-Faculty of Pharmacy , Department of Pharmaceutical Technology and Cosmetology , Serbia
| | - Gordana Vuleta
- University of Belgrade-Faculty of Pharmacy , Department of Pharmaceutical Technology and Cosmetology , Serbia
| | - Snežana Savić
- University of Belgrade-Faculty of Pharmacy , Department of Pharmaceutical Technology and Cosmetology , Serbia
| |
Collapse
|
10
|
Vázquez-González ML, Calpena AC, Domènech Ò, Montero MT, Borrell JH. Enhanced topical delivery of hyaluronic acid encapsulated in liposomes: A surface-dependent phenomenon. Colloids Surf B Biointerfaces 2015; 134:31-9. [DOI: 10.1016/j.colsurfb.2015.06.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/05/2015] [Accepted: 06/12/2015] [Indexed: 01/30/2023]
|
11
|
Hong YJ, Kim JC. Complexation-triggerable liposome mixed with silk protein and chitosan. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2015; 26:766-79. [DOI: 10.1080/09205063.2015.1058574] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Olguín Y, Carrascosa LG, Lechuga LM, Young M. The effects of lipids and surfactants on TLR5-proteoliposome functionality for flagellin detection using surface plasmon resonance biosensing. Talanta 2014; 126:136-44. [PMID: 24881544 DOI: 10.1016/j.talanta.2014.03.065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/25/2014] [Accepted: 03/27/2014] [Indexed: 12/15/2022]
Abstract
The use of proteoliposomes as affinity elements in conjunction with a surface plasmon resonance sensor is a high-sensitivity alternative for the detection of multiple analytes. However, one of the most important aspects of these conformations is maintaining the functionality of the immobilized protein, which is determined by the choice of lipids and surfactants employed in the reconstitutions. Previously, we demonstrated the functionality of TLR5-proteoliposomes as screening affinity elements of bacterial flagellin. In this new study we change the conditions of immobilization of TLR5 and evaluate how the fluidity of the membrane and the final size of the liposomes affect the functionality of the construct and thus increase their utility as an affinity element for design of new biosensors. In particular, we used reconstructions into preformed liposomes composed of the lipids POPC, POPC-DMPC and POPC-POPE mediated by the use of surfactants OG, Triton X100, and DDM, respectively. The affinity results were evaluated by SPR technology proteoliposomes and were correlated with the anisotropic change in the membrane status; the final sizes of the proteoliposomes were estimated. Our results clearly show the dependence of fluidity and final size of the proteoliposomes with surface plasmon resonance affinity measurements.
Collapse
Affiliation(s)
- Y Olguín
- Biotechnology Center, Federico Santa Maria Technical University, Valparaíso, Chile.
| | - L G Carrascosa
- Nanobiosensor and Bioanalytical Applications Group, Institut Catàla de Nanociencia i Nanotecnología (ICN2), CSIC and CIBER-BBN, Bellaterra, Barcelona, Spain
| | - L M Lechuga
- Nanobiosensor and Bioanalytical Applications Group, Institut Catàla de Nanociencia i Nanotecnología (ICN2), CSIC and CIBER-BBN, Bellaterra, Barcelona, Spain
| | - M Young
- Biotechnology Center, Federico Santa Maria Technical University, Valparaíso, Chile
| |
Collapse
|
13
|
Sabato V, Boita M, Shubber S, Bridts CH, Shibuya A, De Clerck LS, Falcone FH, Ebo DG. Mechanism of phosphatidylserine inhibition of IgE/FcεRI-dependent anaphylactic human basophil degranulation via CD300a. J Allergy Clin Immunol 2014; 134:734-737.e3. [PMID: 24815424 DOI: 10.1016/j.jaci.2014.03.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/10/2014] [Accepted: 03/21/2014] [Indexed: 10/25/2022]
Affiliation(s)
- Vito Sabato
- Faculty of Medicine and Health Sciences, Department of Immunology - Allergology - Rheumatology, University of Antwerp, Antwerp, Belgium; Immunology - Allergology - Rheumatology, Antwerp University Hospital, Antwerp, Belgium
| | - Monica Boita
- Allergology and Clinical Immunology, University of Torino, Turin, Italy
| | - Saif Shubber
- Division of Drug Delivery and Tissue Engineering, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Chris H Bridts
- Faculty of Medicine and Health Sciences, Department of Immunology - Allergology - Rheumatology, University of Antwerp, Antwerp, Belgium; Immunology - Allergology - Rheumatology, Antwerp University Hospital, Antwerp, Belgium
| | - Akira Shibuya
- Faculty of Medicine, Division of Biomedical Sciences, Department of Immunology, University of Tsukuba, Tsukuba, Japan
| | - Luc S De Clerck
- Faculty of Medicine and Health Sciences, Department of Immunology - Allergology - Rheumatology, University of Antwerp, Antwerp, Belgium; Immunology - Allergology - Rheumatology, Antwerp University Hospital, Antwerp, Belgium
| | - Franco H Falcone
- Division of Molecular and Cellular Science, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Didier G Ebo
- Faculty of Medicine and Health Sciences, Department of Immunology - Allergology - Rheumatology, University of Antwerp, Antwerp, Belgium; Immunology - Allergology - Rheumatology, Antwerp University Hospital, Antwerp, Belgium.
| |
Collapse
|
14
|
Murray D, Griffin J, Cross TA. Detergent optimized membrane protein reconstitution in liposomes for solid state NMR. Biochemistry 2014; 53:2454-63. [PMID: 24665863 PMCID: PMC4004220 DOI: 10.1021/bi500144h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 03/24/2014] [Indexed: 12/18/2022]
Abstract
For small helical membrane proteins, their structures are highly sensitive to their environment, and solid state NMR is a structural technique that can characterize these membrane proteins in native-like lipid bilayers and proteoliposomes. To date, a systematic method by which to evaluate the effect of the solubilizing detergent on proteoliposome preparations for solid state NMR of membrane proteins has not been presented in the literature. A set of experiments are presented aimed at determining the conditions most amenable to dialysis mediated reconstitution sample preparation. A membrane protein from M. tuberculosis is used to illustrate the method. The results show that a detergent that stabilizes the most protein is not always ideal and sometimes cannot be removed by dialysis. By focusing on the lipid and protein binding properties of the detergent, proteoliposome preparations can be readily produced, which provide double the signal-to-noise ratios for both the oriented sample and magic angle spinning solid state NMR. The method will allow more membrane protein drug targets to be structurally characterized in lipid bilayer environments.
Collapse
Affiliation(s)
- Dylan
T. Murray
- Institute
for Molecular Biophysics, Florida State
University, 91 Chieftan
Way, Tallahassee, Florida 32306, United States
- The
National High Magnetic Field Laboratory, 1800 E. Paul Dirac Dr., Tallahassee, Florida 32310, United States
| | - James Griffin
- The
National High Magnetic Field Laboratory, 1800 E. Paul Dirac Dr., Tallahassee, Florida 32310, United States
- Department
of Chemistry and Biochemistry, Florida State
University, 95 Chieftan
Way, Tallahassee, Florida 32306, United States
| | - Timothy A. Cross
- Institute
for Molecular Biophysics, Florida State
University, 91 Chieftan
Way, Tallahassee, Florida 32306, United States
- The
National High Magnetic Field Laboratory, 1800 E. Paul Dirac Dr., Tallahassee, Florida 32310, United States
- Department
of Chemistry and Biochemistry, Florida State
University, 95 Chieftan
Way, Tallahassee, Florida 32306, United States
| |
Collapse
|
15
|
Altered sphingoid base profiles predict compromised membrane structure and permeability in atopic dermatitis. J Dermatol Sci 2013; 72:296-303. [PMID: 24070864 DOI: 10.1016/j.jdermsci.2013.08.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 07/24/2013] [Accepted: 08/01/2013] [Indexed: 01/16/2023]
Abstract
BACKGROUND Ceramide hydrolysis by ceramidase in the stratum corneum (SC) yields both sphingoid bases and free fatty acids (FFA). While FFA are key constituents of the lamellar bilayers that mediate the epidermal permeability barrier, whether sphingoid bases influence permeability barrier homeostasis remains unknown. Pertinently, alterations of lipid profile, including ceramide and ceramidase activities occur in atopic dermatitis (AD). OBJECT We investigated alterations in sphingoid base levels and/or profiles (sphingosine to sphinganine ratio) in the SC of normal vs. AD mice, a model that faithfully replicates human AD, and then whether altered sphingoid base levels and/or profiles influence(s) membrane stability and/or structures. METHODS Unilamellar vesicles (LV), incorporating the three major SC lipids (ceramides/FFA/cholesterol) and different ratios of sphingosine/sphinganine, encapsulating carboxyfluorescein, were used as the model of SC lipids. Membrane stability was measured as release of carboxyfluorescein. Thermal analysis of LV was conducted by differential scanning calorimetry (DSC). RESULTS LV containing AD levels of sphingosine/sphinganine (AD-LV) displayed altered membrane permeability vs. normal-LV. DSC analyses revealed decreases in orthorhombic structures that form tightly packed lamellar structures in AD-LV. CONCLUSION Sphingoid base composition influences lamellar membrane architecture in SC, suggesting that altered sphingoid base profiles could contribute to the barrier abnormality in AD.
Collapse
|
16
|
Vllasaliu D, Shubber S, Fowler R, Garnett M, Alexander C, Stolnik S. Epithelial Toxicity of Alkylglycoside Surfactants. J Pharm Sci 2013; 102:114-25. [DOI: 10.1002/jps.23340] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 08/23/2012] [Accepted: 09/24/2012] [Indexed: 11/12/2022]
|
17
|
Hassanzadeh A, Ma HK, Dixon SJ, Mittler S. Visualization of the solubilization process of the plasma membrane of a living cell by waveguide evanescent field fluorescence microscopy. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:076025. [PMID: 22894508 DOI: 10.1117/1.jbo.17.7.076025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Waveguide evanescent field fluorescence microscopy (WEFF) is a novel microscopy technology that allows imaging of a cell's plasma membrane in the vicinity of a glass substrate with high axial resolution, low background and little photobleaching. Time-lapse imaging can be performed to investigate changes in cell morphology in the presence or absence of chemical agents. WEFF microscopy provides a method to investigate plasma membranes of living cells and allows a comparison to simplified model membranes immobilized on planar substrates. The interaction of the nonionic detergent Triton X-100 with plasma membranes of osteoblasts in an aqueous environment was investigated. Solubilization of the membranes very close to the waveguide surface was visualized and related to the three-stage solubilisation model proposed for liposomes and supported lipid bilayers. Findings for the plasma membranes of cells are in excellent agreement with results reported for these artificial model systems.
Collapse
Affiliation(s)
- Abdollah Hassanzadeh
- Western University, London, Department of Physics and Astronomy, Ontario, Canada
| | | | | | | |
Collapse
|
18
|
Kumar K, Isa L, Egner A, Schmidt R, Textor M, Reimhult E. Formation of nanopore-spanning lipid bilayers through liposome fusion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:10920-10928. [PMID: 21749115 DOI: 10.1021/la2019132] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Self-assembly of nanopore-spanning lipid bilayers (npsLBs) paves the way toward chip-based integrated membrane protein biosensing. We present a novel approach to analyze the formation of npsLB at individual nanopores using quantitative analysis of high-resolution microscopy images. From this analysis we derive necessary conditions for the formation of npsLBs on nanopore arrays by liposome fusion and discuss the limitations of the process as a function of nanopore geometry, lipid membrane properties, and surface interaction. Most importantly, applying liposomes with diameters larger than the nanopore is demonstrated to be a necessary but not sufficient condition for npsLB formation. A theoretical model is used to discuss and explain this experimental finding.
Collapse
Affiliation(s)
- Karthik Kumar
- Department of Materials, Laboratory for Surface Science and Technology, Swiss Federal Institute of Technology (ETH Zürich), CH-8093 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
19
|
Mukherjee D, May M, Khomami B. Detergent–protein interactions in aqueous buffer suspensions of Photosystem I (PS I). J Colloid Interface Sci 2011; 358:477-84. [DOI: 10.1016/j.jcis.2011.03.070] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 03/18/2011] [Accepted: 03/18/2011] [Indexed: 11/27/2022]
|
20
|
Beck A, Li-Blatter X, Seelig A, Seelig J. On the interaction of ionic detergents with lipid membranes. Thermodynamic comparison of n-alkyl-+N(CH₃)₃ and n-alkyl-SO₄⁻. J Phys Chem B 2010; 114:15862-71. [PMID: 21067191 DOI: 10.1021/jp107088d] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ionic detergents find widespread commercial applications as disinfectants, fungicides, or excipients in drug formulations and cosmetics. One mode of action is their ease of insertion into biological membranes. Very little quantitative information on this membrane-binding process is available to date. Using isothermal titration calorimetry (ITC) and dynamic light scattering (DLS), we have made a systematic comparison of the binding of cationic and anionic detergents to neutral and negatively charged lipid membranes. The detergents investigated were n-alkyl chains carrying either the trimethylammonium chloride (-(+)N(CH₃)₃Cl⁻) or the sodium sulfate (-SO₄⁻Na(+)) headgroup with chain lengths of n = 10-16. The titration of lipid vesicles into detergent solutions provided the binding enthalpy and the binding isotherm in a model-independent manner. At 25 °C the membrane binding enthalpies, ΔH(mem)(0), were small (-0.4 to -4.2 kcal/mol) and showed little correlation with the length of the alkyl chains. The ITC binding isotherms were analyzed in terms of a surface partition model. To this purpose, the surface concentration, cM, of detergent immediately above the plane of binding was calculated with the Gouy-Chapman theory. The surface concentration corrects for electrostatic attraction or repulsion and can be larger or smaller than the bulk detergent concentration, c(eq), at equilibrium. The analysis provides the chemical or hydrophobic binding constant, K(D)(0), of the detergent and the corresponding free energy. The free energies of binding, ΔG(mem)(0), vary between -4 and -10 kcal/mol. They show a linear dependence on the chain length, which can be used to separate the contributions of the polar group and the hydrocarbon tail in membrane binding. The neutral maltose and the cationic (+)N(CH₃)₃ headgroup show steric repulsion energies of about 2.5 kcal/mol counteracting the hydrophobic binding of the alkyl tail, whereas the anionic SO₄⁻ headgroup makes almost no contribution to membrane binding. The chemical nature of the headgroup influences the packing density of the hydrocarbon chains in the lipid bilayer with (+)N(CH₃)₃ eliciting the weakest chain-chain interaction. The minimum repulsive interaction of the SO₄⁻ polar group makes the sodium n-alkyl-sulfates much stronger detergents than the nonionic or cationic counterparts, the binding constants, K(D)(0), being 10-50 times larger than those of the corresponding n-alkyl-trimethylammonium chlorides. The membrane insertion was further compared with micelle formation of the same detergent. A cooperative aggregation model which includes all possible aggregation states is proposed to analyze micelle formation. The partition function can be defined in closed form, and it is straightforward to predict the thermodynamic properties of the micellar system. When aggregated in micelles, the detergent polar groups are in direct interaction and are not separated by lipid molecules. Under these conditions the SO₄⁻ group exhibits a strong electrostatic repulsive effect of 3.2 kcal/mol, while the contributions of the maltose and (+)N(CH₃)₃ headgroups are very similar to those in the lipid bilayer.
Collapse
Affiliation(s)
- Andreas Beck
- Biozentrum, University of Basel, Division of Biophysical Chemistry, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | | | | | | |
Collapse
|
21
|
Tixador P, Herzog L, Reine F, Jaumain E, Chapuis J, Le Dur A, Laude H, Béringue V. The physical relationship between infectivity and prion protein aggregates is strain-dependent. PLoS Pathog 2010; 6:e1000859. [PMID: 20419156 PMCID: PMC2855332 DOI: 10.1371/journal.ppat.1000859] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 03/16/2010] [Indexed: 11/18/2022] Open
Abstract
Prions are unconventional infectious agents thought to be primarily composed of PrP(Sc), a multimeric misfolded conformer of the ubiquitously expressed host-encoded prion protein (PrP(C)). They cause fatal neurodegenerative diseases in both animals and humans. The disease phenotype is not uniform within species, and stable, self-propagating variations in PrP(Sc) conformation could encode this 'strain' diversity. However, much remains to be learned about the physical relationship between the infectious agent and PrP(Sc) aggregation state, and how this varies according to the strain. We applied a sedimentation velocity technique to a panel of natural, biologically cloned strains obtained by propagation of classical and atypical sheep scrapie and BSE infectious sources in transgenic mice expressing ovine PrP. Detergent-solubilized, infected brain homogenates were used as starting material. Solubilization conditions were optimized to separate PrP(Sc) aggregates from PrP(C). The distribution of PrP(Sc) and infectivity in the gradient was determined by immunoblotting and mouse bioassay, respectively. As a general feature, a major proteinase K-resistant PrP(Sc) peak was observed in the middle part of the gradient. This population approximately corresponds to multimers of 12-30 PrP molecules, if constituted of PrP only. For two strains, infectivity peaked in a markedly different region of the gradient. This most infectious component sedimented very slowly, suggesting small size oligomers and/or low density PrP(Sc) aggregates. Extending this study to hamster prions passaged in hamster PrP transgenic mice revealed that the highly infectious, slowly sedimenting particles could be a feature of strains able to induce a rapidly lethal disease. Our findings suggest that prion infectious particles are subjected to marked strain-dependent variations, which in turn could influence the strain biological phenotype, in particular the replication dynamics.
Collapse
Affiliation(s)
- Philippe Tixador
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Laëtitia Herzog
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Fabienne Reine
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Emilie Jaumain
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Jérôme Chapuis
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Annick Le Dur
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Hubert Laude
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
- * E-mail: (HL); (VB)
| | - Vincent Béringue
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
- * E-mail: (HL); (VB)
| |
Collapse
|
22
|
Abstract
Surfactants are surface-active, amphiphilic compounds that are water-soluble in the micro- to millimolar range, and self-assemble to form micelles or other aggregates above a critical concentration. This definition comprises synthetic detergents as well as amphiphilic peptides and lipopeptides, bile salts and many other compounds. This paper reviews the biophysics of the interactions of surfactants with membranes of insoluble, naturally occurring lipids. It discusses structural, thermodynamic and kinetic aspects of membrane-water partitioning, changes in membrane properties induced by surfactants, membrane solubilisation to micelles and other phases formed by lipid-surfactant systems. Each section defines and derives key parameters, mentions experimental methods for their measurement and compiles and discusses published data. Additionally, a brief overview is given of surfactant-like effects in biological systems, technical applications of surfactants that involve membrane interactions, and surfactant-based protocols to study biological membranes.
Collapse
|
23
|
Ohta A, Miyazato Y, Sasaki H, Yasuhara K, Asakawa T. Effect of Functional Groups on Incorporation Behavior of Amino Acid-Type Surfactant into Phospholipid Vesicle Membrane. J Oleo Sci 2009; 58:607-15. [DOI: 10.5650/jos.58.607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Akio Ohta
- School of Chemistry, College of Science and Engineering, Kanazawa University
| | - Yuya Miyazato
- School of Chemistry, College of Science and Engineering, Kanazawa University
| | - Hiroyasu Sasaki
- School of Chemistry, College of Science and Engineering, Kanazawa University
| | - Kazuma Yasuhara
- Graduate School of Material Science, Nara Institute of Science and Technology
| | - Tsuyoshi Asakawa
- School of Chemistry, College of Science and Engineering, Kanazawa University
| |
Collapse
|
24
|
Beck A, Tsamaloukas AD, Jurcevic P, Heerklotz H. Additive action of two or more solutes on lipid membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:8833-8840. [PMID: 18646725 DOI: 10.1021/la800682q] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A wide variety of biological processes, pharmaceutical applications, and technical procedures is based on the combined action of two or more soluble compounds to perturb, permeabilize, or lyse biological membranes. Here we present a general model describing the additive action of solutes on the properties of membranes or micelles. The onset and completion of membrane solubilization induced by two surfactants (lauryl maltoside, with nonyl maltoside, octyl glucoside, or CHAPS, respectively) are very well described by our model on the basis of their individual partition coefficients, cmc's, and critical mole ratios R e sat and R e sol as detected by isothermal titration calorimetry. This suggests that the thermodynamic phase transition is governed by a single parameter (e.g., spontaneous curvature) in spite of the complexity of structural changes. Such surfactant mixtures show unique features such as nonlinear solubilization boundaries and concentration-dependent effective partition coefficients. Other phenomena such as membrane leakage are predicted to obey additive action if the solutes act via the same mechanism (e.g., toroidal pore formation) but deviate from the model in the case of independent, synergistic, or antagonistic action.
Collapse
Affiliation(s)
- Andreas Beck
- Department of Biophysical Chemistry, Biozentrum of the University of Basel, Basel, Switzerland
| | | | | | | |
Collapse
|
25
|
Fontaine P, Fauré MC, Muller F, Poujade M, Micha JS, Rieutord F, Goldmann M. Unexpected stability of phospholipid langmuir monolayers deposited on Triton X-100 aqueous solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:12959-12965. [PMID: 18020463 DOI: 10.1021/la701293n] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We studied at the molecular level the interaction between neutral detergent Triton X-100 aqueous solution and a phospholipid Langmuir monolayer deposited on top using surface pressure measurement and grazing incidence X-ray diffraction (GIXD). Macroscopically, the detergent-phospholipid system follows the Gibbs law. However, GIXD shows that the detergent and the phospholipid segregate at the interface. The molecular organization of pure phospholipid domains is imposed by the detergent through surface pressure. Compression and expansion of the surface monolayer system in its final state reveal the stability of the phospholipids domains against dissolution by the detergent in the subphase, even above the detergent cmc. This resistance to dissolution is suppressed by an expansion of the monolayer.
Collapse
Affiliation(s)
- Philippe Fontaine
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin, BP48, 91192 Gif sur Yvette Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
26
|
Unique incorporation behavior of amino acid-type surfactant into phospholipid vesicle membrane. Colloid Polym Sci 2005. [DOI: 10.1007/s00396-004-1252-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
27
|
Kogan MJ, López O, Cocera M, López-Iglesias C, De La Maza A, Giralt E. Exploring the interaction of the surfactant N-terminal domain of gamma-Zein with soybean phosphatidylcholine liposomes. Biopolymers 2004; 73:258-68. [PMID: 14755582 DOI: 10.1002/bip.10578] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Zeins are maize storage proteins that accumulate inside large vesicles called protein bodies. gamma-Zein lines the inner surface of the protein body membrane, and its N-terminal, proline-rich, repetitive domain with the sequence (VHLPPP)(8) appears to be necessary for the accumulation of the protein within the organelle. Synthetic (VHLPPP)(8) adopts an amphipathic polyproline II conformation and forms cylindrical micelles in aqueous solution. Here we explore the interaction of (VHLPPP)(8) with soybean phosphatidylcholine unilamellar lipid vesicles and examine its effect on the stability and permeability of the liposome membrane. The amphipathic N-terminal domain of gamma-zein interacts with the membrane and assembles to form extended domains over the phospholipid membrane. The interaction between the peptide and the membrane increases the stability and permeability of the liposome membrane. The spontaneous amphipathic aggregation of (VHLPPP)(8) on the membrane suggests a mechanism of gamma-zein deposition inside maize protein bodies.
Collapse
Affiliation(s)
- Marcelo J Kogan
- Institut de Recerca Biomédica de Barcelona, PCB, Josep Samitier 1, E-08028-Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
28
|
López O, Cócera M, Parra J, de la Maza A. Influence of the alkyl chain length of alkyl glucosides on their ability to solubilize phosphatidylcholine liposomes. Colloids Surf A Physicochem Eng Asp 2001. [DOI: 10.1016/s0927-7757(01)00698-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
López O, Cócera M, Coderch L, Parra JL, Barsukov L, de la Maza A. Octyl Glucoside-Mediated Solubilization and Reconstitution of Liposomes: Structural and Kinetic Aspects. J Phys Chem B 2001. [DOI: 10.1021/jp010273w] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Olga López
- Departamento de Tensioactivos, Instituto de Investigaciones Químicas y Ambientales de Barcelona (IIQAB), Consejo Superior de Investigaciones Científicas (CSIC), C/ Jordi Girona, 18-26, 08034 Barcelona, Spain, and Shemyakin-Ovchinnikov Institute of Biorganic Chemistry, Russian Academy of Sciences, UI. Miklukho-Maklaya, 16/10, 117871 Moscow V-437, Russia
| | - Mercedes Cócera
- Departamento de Tensioactivos, Instituto de Investigaciones Químicas y Ambientales de Barcelona (IIQAB), Consejo Superior de Investigaciones Científicas (CSIC), C/ Jordi Girona, 18-26, 08034 Barcelona, Spain, and Shemyakin-Ovchinnikov Institute of Biorganic Chemistry, Russian Academy of Sciences, UI. Miklukho-Maklaya, 16/10, 117871 Moscow V-437, Russia
| | - Luisa Coderch
- Departamento de Tensioactivos, Instituto de Investigaciones Químicas y Ambientales de Barcelona (IIQAB), Consejo Superior de Investigaciones Científicas (CSIC), C/ Jordi Girona, 18-26, 08034 Barcelona, Spain, and Shemyakin-Ovchinnikov Institute of Biorganic Chemistry, Russian Academy of Sciences, UI. Miklukho-Maklaya, 16/10, 117871 Moscow V-437, Russia
| | - Jose Luis Parra
- Departamento de Tensioactivos, Instituto de Investigaciones Químicas y Ambientales de Barcelona (IIQAB), Consejo Superior de Investigaciones Científicas (CSIC), C/ Jordi Girona, 18-26, 08034 Barcelona, Spain, and Shemyakin-Ovchinnikov Institute of Biorganic Chemistry, Russian Academy of Sciences, UI. Miklukho-Maklaya, 16/10, 117871 Moscow V-437, Russia
| | - Leonid Barsukov
- Departamento de Tensioactivos, Instituto de Investigaciones Químicas y Ambientales de Barcelona (IIQAB), Consejo Superior de Investigaciones Científicas (CSIC), C/ Jordi Girona, 18-26, 08034 Barcelona, Spain, and Shemyakin-Ovchinnikov Institute of Biorganic Chemistry, Russian Academy of Sciences, UI. Miklukho-Maklaya, 16/10, 117871 Moscow V-437, Russia
| | - Alfonso de la Maza
- Departamento de Tensioactivos, Instituto de Investigaciones Químicas y Ambientales de Barcelona (IIQAB), Consejo Superior de Investigaciones Científicas (CSIC), C/ Jordi Girona, 18-26, 08034 Barcelona, Spain, and Shemyakin-Ovchinnikov Institute of Biorganic Chemistry, Russian Academy of Sciences, UI. Miklukho-Maklaya, 16/10, 117871 Moscow V-437, Russia
| |
Collapse
|
30
|
Tortech L, Jaxel C, Vincent M, Gallay J, de Foresta B. The polar headgroup of the detergent governs the accessibility to water of tryptophan octyl ester in host micelles. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1514:76-86. [PMID: 11513806 DOI: 10.1016/s0005-2736(01)00370-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Many attempts have been made to rationalize the use of detergents for membrane protein studies [J. Biol. Chem. 264 (1989) 4907]. The barrier properties of the detergent headgroup may be one parameter critically involved in protein protection. In this paper, we analyzed these properties using a model system, by comparing the accessibility of tryptophan octyl ester (TOE) to water-soluble collisional quenchers (iodide and acrylamide) in three detergent micelles. The detergents used differed only in the chemical nature of their polar headgroups, zwitterionic for dodecylphosphocholine (DPC) and nonionic for octa(ethylene glycol) dodecyl monoether (C(12)E(8)) and dodecylmaltoside (DM). In all cases, in phosphate buffer at pH 7.5, the binding of 5 microM TOE was complete in the presence of a slight excess of detergent micelles over TOE molecules, resulting in a significant blue shift and greater intensity of TOE fluorescence emission. The resulting quantum yield of bound TOE was between 0.08 (in DPC) and 0.12 (in DM) with an emission maximum (lambda(max)) of approximately 335 nm whatever the detergent micelle. Time-resolved fluorescence intensity decays of TOE at lambda(max) were heterogeneous in all micelles (3-4 lifetime populations), with mean lifetimes of 1.7 ns in DPC, and 2 ns in both C(12)E(8) and DM. TOE fluorescence quenching by iodide, in detergent micelles, yielded linear Stern-Volmer plots characteristic of a dynamic quenching process. The accessibility of TOE to this ion was the greatest with C(12)E(8), followed by DPC and finally DM (Stern-Volmer quenching constants K(sv) of 2 to 5.5 M(-1)). In contrast, the accessibility of TOE to acrylamide was greatest with DPC, followed by C(12)E(8) and finally DM (K(sv)=2.7-7.1 M(-1)). TOE also presents less rotational mobility in DM than in the other two detergents, as shown from anisotropy decay measurements. These results, together with previous TOE quenching measurements with brominated detergents [Biophys. J. 77 (1999) 3071] provide reference data for analyzing Trp characteristics in peptide (and more indirectly protein)-detergent complexes. The main finding of this study was that TOE was less accessible (to soluble quenchers) in DM than in DPC and C(12)E(8), the cohesion of DM headgroup region being suggested to play a role in the ability of this detergent to protect function and stability of solubilized membrane proteins.
Collapse
Affiliation(s)
- L Tortech
- Département de Biologie Cellulaire et Moléculaire et URA 2096 (CNRS), CEA Saclay, Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
31
|
Abstract
The area balance or imbalance between the inner and outer monolayer of biological membranes is a key parameter for driving shape changes (including exo and endocytosis) and controlling the bilayer curvature stress. The asymmetric incorporation of a drug or biological agent interferes with these processes, and the subsequent stress may lead to a membrane permeation or permeabilization. A main goal of this study is to introduce new methods to characterize such phenomena using isothermal titration calorimetry. POPC unilamellar vesicles and a series of alkyl maltosides are used as model systems; the unilamellarity was checked by NMR with the shift reagent Pr(3+). The free energy, enthalpy, and entropy associated with the asymmetry stress are estimated by comparing partitioning data of uptake versus release assays. The asymmetry stress is of enthalpic nature and somewhat reduced by entropic effects. Stimulated membrane permeation occurs at a mean maltoside-to-lipid ratio of approximately 0.2, which corresponds to an apparent area asymmetry of approximately 30% and a limiting free energy of the order of 2 kJ/mol of maltoside. Membrane solubilization to coexisting micelles proceeds at mole ratios of approximately 0.73, 0.81, and 0.88 (C(12)-, C(13)-, and C(14)-maltoside, respectively). Experiments with vesicles pre-loaded with surfactant in both monolayers provide evidence that the translocation threshold is controlled by the asymmetrically incorporated surfactant, whereas the onset of solubilization depends on the total surfactant content in the membrane. Free copies of the uptake and release fitting script including instructions are available upon request to heerklotz@gmx.net.
Collapse
Affiliation(s)
- H Heerklotz
- Department of Biophysical Chemistry, Biocenter of the University of Basel, CH-4056 Basel, Switzerland.
| |
Collapse
|
32
|
Cócera M, López O, Coderch L, Parra J, de la Maza A. Solubilization of stratum corneum lipid liposomes by Triton X-100. Influence of the level of cholesteryl sulfate in the process. Colloids Surf A Physicochem Eng Asp 2001. [DOI: 10.1016/s0927-7757(00)00818-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
33
|
Nomura F, Nagata M, Inaba T, Hiramatsu H, Hotani H, Takiguchi K. Capabilities of liposomes for topological transformation. Proc Natl Acad Sci U S A 2001; 98:2340-5. [PMID: 11226241 PMCID: PMC30140 DOI: 10.1073/pnas.041419098] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dynamic behaviors of liposomes caused by interactions between liposomal membranes and surfactant were studied by direct real-time observation by using high-intensity dark-field microscopy. Solubilization of liposomes by surfactants is thought to be a catastrophic event akin to the explosion of soap bubbles in the air; however, the actual process has not been clarified. We studied this process experimentally and found that liposomes exposed to various surfactants exhibited unusual behavior, namely continuous shrinkage accompanied by intermittent quakes, release of encapsulated liposomes, opening up, and inside-out topological inversion.
Collapse
Affiliation(s)
- F Nomura
- Department of Molecular Biology, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Almgren M. Mixed micelles and other structures in the solubilization of bilayer lipid membranes by surfactants. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1508:146-63. [PMID: 11090823 DOI: 10.1016/s0005-2736(00)00309-6] [Citation(s) in RCA: 192] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The solubilization of lipid bilayers by surfactants is accompanied by morphological changes of the bilayer and the emergence of mixed micelles. From a phase equilibrium perspective, the lipid/surfactant/water system is in a two-phase area during the solubilization: a phase containing mixed micelles is in equilibrium with bilayer structures of the lamellar phase. In some cases three phases are present, the single micelle phase replaced by a concentrated and a dilute solution phase. In the case of non-ionic surfactants, the lipid bilayers reach saturation when mixed micelles, often flexible rod-like or thread-like, start to form in the aqueous solution, at a constant chemical potential of the surfactant. The composition of the bilayers also remains fixed during the dissolution. The phase behavior encountered with many charged surfactants is different. The lamellar phase becomes destabilized at a certain content of surfactant in the membrane, and then disintegrates, forming mixed micelles, or a hexagonal phase, or an intermediate phase. Defective bilayer intermediates, such as perforated vesicles, have been found in several systems, mainly with charged surfactants. The perforated membranes, in some systems, go over into thread-like micelles via lace-like structures, often without a clear two-phase region. Intermediates in the form of disks, either micelles or bilayer fragments, have been observed in several cases. Most noteworthy are the planar and circular disks found in systems containing a large fraction of cholesterol in the bilayer. Bile salts are a special class of surfactants that seem to break down the bilayer at low additions. Originally, disk-like mixed micelles were conjectured, with polar membrane lipids building the disk, and the bile salts covering the hydrophobic rim. Later work has shown that flexible cylinders are the dominant intermediates also in these systems, even if the disk-like structures have been re-established as transients in the transformation from mixed micelles to vesicles.
Collapse
Affiliation(s)
- M Almgren
- Department of Physical Chemistry, Uppsala University, Box 532, S-751 21, Uppsala, Sweden.
| |
Collapse
|
35
|
le Maire M, Champeil P, Moller JV. Interaction of membrane proteins and lipids with solubilizing detergents. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1508:86-111. [PMID: 11090820 DOI: 10.1016/s0304-4157(00)00010-1] [Citation(s) in RCA: 734] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Detergents are indispensable in the isolation of integral membrane proteins from biological membranes to study their intrinsic structural and functional properties. Solubilization involves a number of intermediary states that can be studied by a variety of physicochemical and kinetic methods; it usually starts by destabilization of the lipid component of the membranes, a process that is accompanied by a transition of detergent binding by the membrane from a noncooperative to a cooperative interaction already below the critical micellar concentration (CMC). This leads to the formation of membrane fragments of proteins and lipids with detergent-shielded edges. In the final stage of solubilization membrane proteins are present as protomers, with the membrane inserted sectors covered by detergent. We consider in detail the nature of this interaction and conclude that in general binding as a monolayer ring, rather than as a micelle, is the most probable mechanism. This mode of interaction is supported by neutron diffraction investigations on the disposition of detergent in 3-D crystals of membrane proteins. Finally, we briefly discuss the use of techniques such as analytical ultracentrifugation, size exclusion chromatography, and mass spectrometry relevant for the structural investigation of detergent solubilized membrane proteins.
Collapse
Affiliation(s)
- M le Maire
- Unite de recherche Associée 2096 (Centre National de la Recherche Scientifique et Commissariat a l'Energie Atomique), Cedex, France.
| | | | | |
Collapse
|
36
|
Heerklotz H, Seelig J. Correlation of membrane/water partition coefficients of detergents with the critical micelle concentration. Biophys J 2000; 78:2435-40. [PMID: 10777739 PMCID: PMC1300832 DOI: 10.1016/s0006-3495(00)76787-7] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The membrane/water partition coefficients, K, of 15 electrically neutral (non-charged or zwitterionic) detergents were measured with phospholipid vesicles by using isothermal titration calorimetry, and were compared to the corresponding critical micellar concentrations, cmc. The detergents measured were oligo(ethylene oxide) alkyl ethers (C(m)EO(n) with m = 10/n = 3, 7 and m = 12/n = 3.8); alkylglucosides (octyl, decyl); alkylmaltosides (octyl, decyl, dodecyl); diheptanoylphosphatidylcholine; Tritons (X-100, X-114) and CHAPS. A linear relation between the free energies of partitioning into the membrane and micelle formation was found such that K. CMC approximately 1. The identity K. CMC = 1 was used to classify detergents with respect to their membrane disruption potency. "Strong" detergents are characterized by K. CMC < 1 and solubilize lipid membranes at detergent-to-lipid ratios X(b) < 1 (alkylmaltosides, tritons, heptaethylene glycol alkyl ethers). "Weak" detergents are characterized by K. CMC > 1 and accumulate in the membrane- to detergent-to-lipid ratios X(b) > 1 before the bilayer disintegrates (alkylglucosides, pentaethylene glycol dodecyl ether).
Collapse
Affiliation(s)
- H Heerklotz
- Department of Biophysical Chemistry, Biocenter of the University of Basel, Basel, Switzerland
| | | |
Collapse
|
37
|
Lopez O, Cócera M, Parra J, de la Maza A. Solubilization of stratum corneum lipid liposomes by C14-betaine/sodium dodecyl sulfate mixtures. Influence of the level of ceramides in the solubilization process. Colloids Surf A Physicochem Eng Asp 2000. [DOI: 10.1016/s0927-7757(99)00246-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
38
|
Ejjiyar S, Saluzzo C, Massoui M, Amouroux R, Terry N, Coleman AW. Synthesis and assembly properties of a series of chiral amphiphilic dihydroxytetrahydrofuran derivatives. J PHYS ORG CHEM 2000. [DOI: 10.1002/1099-1395(200101)14:1<1::aid-poc325>3.0.co;2-c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
39
|
Lopez O, Cócera M, Parra JL, Coderch L, de la Maza A. Influence of ceramides in the solubilization of stratum corneum lipid liposomes by C(12)-betaine/sodium dodecyl sulfate mixtures. Int J Pharm 1999; 187:231-41. [PMID: 10502629 DOI: 10.1016/s0378-5173(99)00188-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The solubilization of liposomes modeling the stratum corneum (SC) lipid composition and those obtained varying the proportion of ceramides by means of dodecyl betaine (C(12)-Bet)/sodium dodecyl sulfate (SDS) mixtures was studied. The surfactant/lipid molar ratios (Re) and the bilayer/aqueous phase partition coefficients (K) were determined by monitoring the changes in the static light scattering of the system during solubilization. The fact that the free surfactant concentration was always similar to its critical micelle concentration (CMC) indicates that the liposome solubilization was mainly ruled by the formation of mixed micelles. The mole fraction of the zwitterionic component (X(zwitter)) of 0.4 showed the lowest ability to saturate or solubilize liposomes, although exhibiting the highest degree of partitioning into liposomes. This X(zwitter) corresponded to the highest derivation of the CMCs of these mixtures (negative synergism) and to the highest reduction in the skin irritation with respect to the anionic component. Higher and lower proportion of ceramides in the mixture led to a fall and to a rise in both the activity and the partitioning of a specific surfactant mixture (X(zwitter)=0.4). This finding could be related to the recently reported dependences of the level of ceramides in skin and function barrier abnormalities. Comparison of the present Re and K values with those reported for phosphatidylcholine (PC) liposomes shows that, although SC liposomes were more resistant to the action of surfactant mixtures, the surfactant partitioning into SC bilayers was similar to that reported for PC ones in all cases.
Collapse
Affiliation(s)
- O Lopez
- Departamento de Tensioactivos, Centro de Investigación y Desarrollo (C.I.D.), Consejo Superior de Investigaciones Científicas (C.S.I.C. ), Calle Jorge Girona 18-26, 08034, Barcelona, Spain
| | | | | | | | | |
Collapse
|
40
|
López O, Cócera M, Wehrli E, Parra JL, de la Maza A. Solubilization of liposomes by sodium dodecyl sulfate: new mechanism based on the direct formation of mixed micelles. Arch Biochem Biophys 1999; 367:153-60. [PMID: 10395730 DOI: 10.1006/abbi.1999.1267] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The vesicle-to-micelle structural transitions that occurred in the interaction of sodium dodecyl sulfate with phosphatidylcholine vesicles were studied at the equilibrium by means of dynamic light scattering (at different scattering angles) and freeze-fracture electron microscopy techniques. The incorporation of surfactant monomers in the bilayers resulted in an initial contraction of the mixed vesicles formed up to their saturation (size reduction of about 10%). Then, a progressive relaxation of these structures (growth from 170 to 225 nm) and a simultaneous formation of mixed micelles (particles of about 6 nm) occurred. Hence, in this interval "relaxed mixed vesicles" and mixed micelles coexisted in different proportions without formation of intermediate complex aggregates (bimodal size distribution curves). Freeze-fracture electron microscopy showed a direct formation of mixed micelles within the bilayer and their subsequent separation from the vesicle surface without formation of complex intermediate aggregates. This simple process progressed up to the complete vesicle solubilization.
Collapse
Affiliation(s)
- O López
- Centro de Investigación y Desarrollo, Consejo Superior de Investigaciones Científicas, C/ Jordi Girona 18-26, Barcelona, 08034, Spain
| | | | | | | | | |
Collapse
|
41
|
de la Maza A, Lopez O, Cócera M, Coderch L, Parra J. Alkyl sulfate surfactants as solubilizing agents of liposomes modeling the composition of the stratum corneum lipids. Colloids Surf A Physicochem Eng Asp 1999. [DOI: 10.1016/s0927-7757(98)00707-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
42
|
Abstract
The efficiency of reconstitution of the lactose transport protein (LacS) of Streptococcus thermophilus is markedly higher with Triton X-100 than with other detergents commonly employed to mediate the membrane insertion. To rationalize these differences, the lipid/detergent structures that are formed in the reconstitution process were studied by cryotransmission electron microscopy. Surprisingly, the two nonionic detergents Triton X-100 and n-dodecyl beta-D-maltoside (DDM) affected the liposome structures in a completely different manner. Preformed liposomes titrated with Triton X-100 maintained their bilayer structure far beyond the onset of solubilization, and transport activity was maximal when LacS was inserted into these structures. With DDM the vesicular structures were already disrupted at the onset of solubilization and these membrane sheets were converted into long threadlike micelles at higher DDM to lipid ratios. Triton X-100 allowed the protein to be reconstituted with the hydrophilic surface exposed to the outside, whereas LacS was incorporated randomly when DDM was used. These differences in orientation are readily explained by the different lipid-detergent structures formed by Triton X-100 and DDM. The orientation of the reconstituted LacS protein is a critical factor for the activity of the protein as the kinetics of translocation is very different for opposite directions of transport.
Collapse
Affiliation(s)
- J Knol
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands
| | | | | |
Collapse
|
43
|
Carion-Taravella B, Lesieur S, Ollivon M, Chopineau J. Enzyme-Mediated Formation of Vesicles from DPPC−Dodecyl Maltoside Mixed Micelles. J Am Chem Soc 1998. [DOI: 10.1021/ja980400a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Brigitte Carion-Taravella
- Contribution from the Laboratoire de Technologie Enzymatique, CNRS UPRES A 6022, 60205 Compiègne, France, and Equipe Physicochimie des Systèmes Polyphasés, CNRS URA 1218, 92296 Châtenay-Malabry, France
| | - Sylviane Lesieur
- Contribution from the Laboratoire de Technologie Enzymatique, CNRS UPRES A 6022, 60205 Compiègne, France, and Equipe Physicochimie des Systèmes Polyphasés, CNRS URA 1218, 92296 Châtenay-Malabry, France
| | - Michel Ollivon
- Contribution from the Laboratoire de Technologie Enzymatique, CNRS UPRES A 6022, 60205 Compiègne, France, and Equipe Physicochimie des Systèmes Polyphasés, CNRS URA 1218, 92296 Châtenay-Malabry, France
| | - Joël Chopineau
- Contribution from the Laboratoire de Technologie Enzymatique, CNRS UPRES A 6022, 60205 Compiègne, France, and Equipe Physicochimie des Systèmes Polyphasés, CNRS URA 1218, 92296 Châtenay-Malabry, France
| |
Collapse
|
44
|
de la Maza A, Coderch L, Lopez O, Gonzalez P, Baucells J, Parra JL. Solubilization of model stratum corneum liposomes by quaternary ammonium surfactants. J SURFACTANTS DETERG 1998. [DOI: 10.1007/s11743-998-0047-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
45
|
Permeability changes in liposomes modeling the stratum corneum lipid composition due to C12-alkyl betaine/sodium dodecyl sulfate mixtures. Int J Pharm 1998. [DOI: 10.1016/s0378-5173(98)00153-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
de la Maza A, Lopez O, Baucells J, Gonzalez P, Parra JL. Solubilization of phosphatidylcholine unilamellar liposomes caused by alkyl glucosides. J SURFACTANTS DETERG 1998. [DOI: 10.1007/s11743-998-0039-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
López O, de la Maza A, Coderch L, López-Iglesias C, Wehrli E, Parra JL. Direct formation of mixed micelles in the solubilization of phospholipid liposomes by Triton X-100. FEBS Lett 1998; 426:314-8. [PMID: 9600258 DOI: 10.1016/s0014-5793(98)00363-9] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The vesicle to micelle transition which results in the interaction of the Triton X-100 surfactant with phosphatidylcholine vesicles was studied by means of dynamic light scattering (at different reading angles) and by freeze-fracture electron microscopy techniques. Vesicle solubilization was produced by the direct formation of mixed micelles without the formation of complex intermediate aggregates. Thus, vesicle to micelle transformation was mainly governed by the progressive formation of mixed micelles within the bilayer. A subsequent separation of these micelles from the liposome surface (vesicle perforation by the formation of surfactant-stabilized holes on the vesicle surface) led to a complete solubilization of liposomes.
Collapse
Affiliation(s)
- O López
- Departamento de Tensioactivos, Centro de Investigación y Desarrollo, Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
48
|
de la Maza A, Coderch L, Gonzalez P, Parra JL. Subsolubilizing alterations caused by alkyl glucosides in phosphatidylcholine liposomes. J Control Release 1998; 52:159-68. [PMID: 9685946 DOI: 10.1016/s0168-3659(97)00205-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The subsolubilizing alterations caused by a series of alkyl glucosides (alkyl chain lengths ranging from C8 to C12) in unilamellar phosphatidylcholine (PC) liposomes were investigated. The surfactant to phospholipid molar ratios (RE) and the normalized bilayer/aqueous phase partition coefficients (K) were determined by monitoring the increase of the fluorescence intensity of liposome suspensions due to the 5(6)-carboxyfluorescein (CF) released from the interior of vesicles to the bulk aqueous phase. Given that the free surfactant concentrations was always lower than the critical micelle concentration (CMC) of the surfactant tested we may assume that the surfactant-liposome interactions were mainly ruled by the action of surfactant monomers. In general terms, the decrease in the surfactant alkyl chain length (or the rise in the surfactant CMC) resulted in an increase in the ability of these surfactants to alter the permeability of liposomes and, inversely, in an abrupt decrease in their affinity with these bilayers structures. The overall balance of these opposite tendencies shows that at the two interaction levels studied (50 and 100% of CF release) the nonyl and the octyl glucoside showed, respectively, the highest ability to alter the release of the CF trapped in bilayers (lowest RE values), whereas the dodecyl glucoside showed the highest degree of partitioning into liposomes or affinity with these bilayer structures (highest K values).
Collapse
Affiliation(s)
- A de la Maza
- Departamento de Tensioactivos, C.I.D-C.S.I.C., Barcelona, Spain
| | | | | | | |
Collapse
|
49
|
de la Maza A, Baucells J, Gonzalez P, Parra J. Sublytic effects caused by C14alkyl betaine/sodium dodecyl sulfate mixtures in liposomes modeling the stratum corneum lipid composition. Colloids Surf A Physicochem Eng Asp 1998. [DOI: 10.1016/s0927-7757(97)00206-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Lambert O, Levy D, Ranck JL, Leblanc G, Rigaud JL. A new "gel-like" phase in dodecyl maltoside-lipid mixtures: implications in solubilization and reconstitution studies. Biophys J 1998; 74:918-30. [PMID: 9533703 PMCID: PMC1302571 DOI: 10.1016/s0006-3495(98)74015-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The interaction of dodecyl maltoside with lipids was investigated through the studies of solubilization and reconstitution processes. The solubilization of large unilamellar liposomes was analyzed through changes in turbidity and cryo-transmission electron microscopy. Solubilization was well described by the three-stage model previously reported for other detergents, and the critical detergent/phospholipid ratios at which lamellar-to-micellar transition occurred (Rsat = 1 mol/mol) and finished (Rsol = 1.6 mol/mol) were determined. The vesicle-micelle transition was further observed in the vitrified hydrated state by cryo-transmission electron microscopy. A striking feature of the solubilization process by dodecyl maltoside was the discovery of a new phase consisting of a very viscous "gel-like" sample. It is shown that this equilibrium cohesive phase is composed of long filamentous thread-like micelles, over microns in length. Similar structures were observed upon solubilization of sonicated liposomes, multilamellar liposomes, or biological Ca2+ ATPase membranes. This "gel-like" phase was also visualized during the process of liposome reconstitution after detergent removal from lipid-dodecyl maltoside micelles. The rate of detergent removal, controlled through the use of SM2 Bio-Beads, was demonstrated to drastically influence the morphology of reconstituted liposomes with a propensity for multilamellar liposome formation upon slow transition through the "gel-like" phase. Finally, on the basis of these observations, the mechanisms of dodecyl maltoside-mediated reconstitution of bacteriorhodopsin were analyzed, and optimal conditions for reconstitution were defined.
Collapse
Affiliation(s)
- O Lambert
- Institut Curie, Section de Recherche, UMR-CNRS168 and LCR-CEA 8, Paris, France
| | | | | | | | | |
Collapse
|