1
|
Foreman-Ortiz IU, Liang D, Laudadio ED, Calderin JD, Wu M, Keshri P, Zhang X, Schwartz MP, Hamers RJ, Rotello VM, Murphy CJ, Cui Q, Pedersen JA. Anionic nanoparticle-induced perturbation to phospholipid membranes affects ion channel function. Proc Natl Acad Sci U S A 2020; 117:27854-27861. [PMID: 33106430 PMCID: PMC7668003 DOI: 10.1073/pnas.2004736117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding the mechanisms of nanoparticle interaction with cell membranes is essential for designing materials for applications such as bioimaging and drug delivery, as well as for assessing engineered nanomaterial safety. Much attention has focused on nanoparticles that bind strongly to biological membranes or induce membrane damage, leading to adverse impacts on cells. More subtle effects on membrane function mediated via changes in biophysical properties of the phospholipid bilayer have received little study. Here, we combine electrophysiology measurements, infrared spectroscopy, and molecular dynamics simulations to obtain insight into a mode of nanoparticle-mediated modulation of membrane protein function that was previously only hinted at in prior work. Electrophysiology measurements on gramicidin A (gA) ion channels embedded in planar suspended lipid bilayers demonstrate that anionic gold nanoparticles (AuNPs) reduce channel activity and extend channel lifetimes without disrupting membrane integrity, in a manner consistent with changes in membrane mechanical properties. Vibrational spectroscopy indicates that AuNP interaction with the bilayer does not perturb the conformation of membrane-embedded gA. Molecular dynamics simulations reinforce the experimental findings, showing that anionic AuNPs do not directly interact with embedded gA channels but perturb the local properties of lipid bilayers. Our results are most consistent with a mechanism in which anionic AuNPs disrupt ion channel function in an indirect manner by altering the mechanical properties of the surrounding bilayer. Alteration of membrane mechanical properties represents a potentially important mechanism by which nanoparticles induce biological effects, as the function of many embedded membrane proteins depends on phospholipid bilayer biophysical properties.
Collapse
Affiliation(s)
| | - Dongyue Liang
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
- Department of Chemistry, Boston University, Boston, MA 02215
| | | | - Jorge D Calderin
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Meng Wu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Puspam Keshri
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003
| | - Xianzhi Zhang
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003
| | - Michael P Schwartz
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Robert J Hamers
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003
| | - Catherine J Murphy
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Qiang Cui
- Department of Chemistry, Boston University, Boston, MA 02215
- Department of Physics, Boston University, Boston, MA 02215
- Department of Biomedical Engineering, Boston University, Boston, MA 02215
| | - Joel A Pedersen
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706;
- Department of Soil Science, University of Wisconsin-Madison, Madison, WI 53706
- Department of Civil & Environmental Engineering, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
2
|
Wylie BJ, Dzikovski BG, Pawsey S, Caporini M, Rosay M, Freed JH, McDermott AE. Dynamic nuclear polarization of membrane proteins: covalently bound spin-labels at protein-protein interfaces. JOURNAL OF BIOMOLECULAR NMR 2015; 61:361-7. [PMID: 25828256 PMCID: PMC4819240 DOI: 10.1007/s10858-015-9919-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 03/05/2015] [Indexed: 05/07/2023]
Abstract
We demonstrate that dynamic nuclear polarization of membrane proteins in lipid bilayers may be achieved using a novel polarizing agent: pairs of spin labels covalently bound to a protein of interest interacting at an intermolecular interaction surface. For gramicidin A, nitroxide tags attached to the N-terminal intermolecular interface region become proximal only when bimolecular channels forms in the membrane. We obtained signal enhancements of sixfold for the dimeric protein. The enhancement effect was comparable to that of a doubly tagged sample of gramicidin C, with intramolecular spin pairs. This approach could be a powerful and selective means for signal enhancement in membrane proteins, and for recognizing intermolecular interfaces.
Collapse
Affiliation(s)
- Benjamin J Wylie
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | | | | | | | | | | | | |
Collapse
|
3
|
|
4
|
Boucher J, Trudel E, Méthot M, Desmeules P, Salesse C. Organization, structure and activity of proteins in monolayers. Colloids Surf B Biointerfaces 2007; 58:73-90. [PMID: 17509839 DOI: 10.1016/j.colsurfb.2007.03.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 03/24/2007] [Accepted: 03/26/2007] [Indexed: 12/17/2022]
Abstract
Many different processes take place at the cell membrane interface. Indeed, for instance, ligands bind membrane proteins which in turn activate peripheral membrane proteins, some of which are enzymes whose action is also located at the membrane interface. Native cell membranes are difficult to use to gain information on the activity of individual proteins at the membrane interface because of the large number of different proteins involved in membranous processes. Model membrane systems, such as monolayers at the air-water interface, have thus been extensively used during the last 50 years to reconstitute proteins and to gain information on their organization, structure and activity in membranes. In the present paper, we review the recent work we have performed with membrane and peripheral proteins as well as enzymes in monolayers at the air-water interface. We show that the structure and orientation of gramicidin has been determined by combining different methods. Furthermore, we demonstrate that the secondary structure of rhodopsin and bacteriorhodopsin is indistinguishable from that in native membranes when appropriate conditions are used. We also show that the kinetics and extent of monolayer binding of myristoylated recoverin is much faster than that of the nonmyristoylated form and that this binding is highly favored by the presence polyunsaturated phospholipids. Moreover, we show that the use of fragments of RPE65 allow determine which region of this protein is most likely involved in membrane binding. Monomolecular films were also used to further understand the hydrolysis of organized phospholipids by phospholipases A2 and C.
Collapse
Affiliation(s)
- Julie Boucher
- Unité de recherche en ophtalmologie, Centre de Recherche du Centre Hospitalier Universitaire de Québec and Département d'Ophtalmologie, Faculté de médecine, Université Laval, Québec, Que. G1V 4G2, Canada
| | | | | | | | | |
Collapse
|
5
|
Gallagher GJ, Hong M, Thompson LK. Solid-State NMR Spin Diffusion for Measurement of Membrane-Bound Peptide Structure: Gramicidin A. Biochemistry 2004; 43:7899-906. [PMID: 15196034 DOI: 10.1021/bi0356101] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A recently developed solid-state NMR method for measurement of depths in membrane systems is applied to gramicidin A, a membrane-bound peptide of known structure, to investigate the potential of this method. (15)N-detected, (1)H spin diffusion experiments demonstrate the resolution of the technique by measuring the 4-5 A depth differences between three (15)N-labeled backbone sites (Trp13, Val7, Gly2) in gramicidin A. We also show that (13)C-detected, (1)H spin diffusion experiments on unlabeled gramicidin A are sufficient to discriminate between the end-to-end dimer and double-helix structures of gramicidin A. Thus, spin diffusion solid-state NMR experiments can provide a simple approach, which does not require labeled samples, for testing structural models of membrane-bound peptides.
Collapse
Affiliation(s)
- Greg J Gallagher
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003-9336, USA
| | | | | |
Collapse
|
6
|
Besanger TR, Brennan JD. Ion sensing and inhibition studies using the transmembrane ion channel peptide gramicidin A entrapped in sol-gel-derived silica. Anal Chem 2003; 75:1094-101. [PMID: 12641228 DOI: 10.1021/ac026258k] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The development of new, targeted drugs relies heavily on innovative technologies that allow for high-throughput screening of drug libraries against biologically relevant targets, particularly membrane-associated receptors. Therefore, immobilization of natural receptors is of the utmost importance to allow for screening of small molecule libraries. Herein, we describe the immobilization of liposomes containing the transmembrane peptide ion-channel gramicidin A into sol-gel-derived silicate materials. Steady-state fluorescence measurements of the intrinsic tryptophan residues of reconstituted gramicidin A in phospholipid vesicles consisting of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) were obtained in solution and following entrapment in diglyceryl silane (DGS)-derived silicate to examine the effects of entrapment on the conformation of the ion channel. Only minor deviations were observed in the fluorescence properties of gramicidin following entrapment in DGS-derived silicate. DOPC vesicles containing a 50 microM internal solution of the potential sensitive fluorescent dye safranine O were used to study ion flux through the membrane ion channel. The dependence of ion flux on both ion concentration and amount of gramicidin embedded in the membrane were examined before and after entrapment in sol-gel-derived silicate. It was found that ion channel activity upon entrapment in DGS-derived silicate mirrored very closely that observed in solution. Moreover, the ability to inhibit ion flux through gramicidin A due to blockage by calcium ions was retained after the immobilization procedure. The implications for development of drug-screening and -sensing platforms are discussed.
Collapse
Affiliation(s)
- Travis R Besanger
- Department of Chemistry, McMaster University, 1280 Main St. West, Hamilton, Ontario, L8S 4M1
| | | |
Collapse
|
7
|
Lavoie H, Blaudez D, Vaknin D, Desbat B, Ocko BM, Salesse C. Spectroscopic [correction of eSpectroscopic] and structural properties of valine gramicidin A in monolayers at the air-water interface. Biophys J 2002; 83:3558-69. [PMID: 12496123 PMCID: PMC1302431 DOI: 10.1016/s0006-3495(02)75356-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Monomolecular films of valine gramicidin A (VGA) were investigated in situ at the air-water interface by x-ray reflectivity and x-ray grazing incidence diffraction as well as polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS). These techniques were combined to obtain information on the secondary structure and the orientation of VGA and to characterize the shoulder observed in its pi-A isotherm. The thickness of the film was obtained by x-ray reflectivity, and the secondary structure of VGA was monitored using the frequency position of the amide I band. The PM-IRRAS spectra were compared with the simulated ones to identify the conformation adopted by VGA in monolayer. At large molecular area, VGA shows a disordered secondary structure, whereas at smaller molecular areas, VGA adopts an anti-parallel double-strand intertwined beta(5.6) helical conformation with 30 degrees orientation with respect to the normal with a thickness of 25 A. The interface between bulk water and the VGA monolayer was investigated by x-ray reflectivity as well as by comparing the experimental and the simulated PM-IRRAS spectra on D(2)O and H(2)O, which suggested the presence of oriented water molecules between the bulk and the monolayer.
Collapse
Affiliation(s)
- Hugo Lavoie
- Département de Chimie-Biologie, Université du Québec à Trois-Rivières, Trois-Rivières, Québec G9A 5H7, Canada
| | | | | | | | | | | |
Collapse
|
8
|
Fahsel S, Pospiech EM, Zein M, Hazlet TL, Gratton E, Winter R. Modulation of concentration fluctuations in phase-separated lipid membranes by polypeptide insertion. Biophys J 2002; 83:334-44. [PMID: 12080124 PMCID: PMC1302151 DOI: 10.1016/s0006-3495(02)75173-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The lateral membrane organization and phase behavior of the binary lipid mixture DMPC (1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine) - DSPC (1,2-distearoyl-sn-glycero-3-phosphatidylcholine) without and with incorporated gramicidin D (GD) as a model biomembrane polypeptide was studied by small-angle neutron scattering, Fourier-transform infrared spectroscopy, and by two-photon excitation fluorescence microscopy on giant unilamellar vesicles. The small-angle neutron scattering method allows the detection of concentration fluctuations in the range from 1 to 200 nm. Fluorescence microscopy was used for direct visualization of the lateral lipid organization and domain shapes on a micrometer length scale including information of the lipid phase state. In the fluid-gel coexistence region of the pure binary lipid system, large-scale concentration fluctuations appear. Infrared spectral parameters were used to determine the peptide conformation adopted in the different lipid phases. The data show that the structure of the temperature-dependent lipid phases is significantly altered by the insertion of 2 to 5 mol% GD. At temperatures corresponding to the gel-fluid phase coexistence region the concentration fluctuations drastically decrease, and we observe domains in the giant unilamellar vesicles, which mainly disappear by the incorporation of 2 to 5 mol% GD. Further, the lipid matrix has the ability to modulate the conformation of the inserted polypeptide. The balance between double-helical and helical dimer structures of GD depends on the phospholipid chain length and phase state. A large hydrophobic mismatch, such as in gel phase one-component DSPC bilayers, leads to an increase in population of double-helical structures. Using an effective molecular sorting mechanism, a large hydrophobic mismatch can be avoided in the DMPC-DSPC lipid mixture, which leads to significant changes in the heterogeneous lipid structure and in polypeptide conformation.
Collapse
Affiliation(s)
- S Fahsel
- University of Dortmund, Department of Chemistry, Physical Chemistry I, D-44221 Dortmund, Germany
| | | | | | | | | | | |
Collapse
|