1
|
Mihashi S, Watanabe M. Effects of cytochalasin D on relaxation process of skinned taenia cecum and carotid artery from guinea pig. J Physiol Sci 2024; 74:24. [PMID: 38600445 PMCID: PMC11007923 DOI: 10.1186/s12576-024-00918-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
Actin linked regulatory mechanisms are known to contribute contraction/relaxation in smooth muscle. In order to clarify whether modulation of polymerization/depolymerization of actin filaments affects relaxation process, we examined the effects of cytochalasin D on relaxation process by Ca2+ removal after Ca2+-induced contraction of β-escin skinned (cell membrane permeabilized) taenia cecum and carotid artery preparations from guinea pigs. Cytochalasin D, an inhibitor of actin polymerization, significantly suppressed the force during relaxation both in skinned taenia cecum and carotid artery. The data fitting analysis of the relaxation processes indicates that cytochalasin D accelerates slow (latch-like) bridge dissociation. Cytochalasin D seems to directly disrupts actin filament organization or its length, resulting in modulation of actin filament structure that prevents myosin binding.
Collapse
Affiliation(s)
- Satoko Mihashi
- Department of Frontier Health Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashiogu, Arakawa-Ku, Tokyo, 116-8551, Japan
| | - Masaru Watanabe
- Department of Frontier Health Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashiogu, Arakawa-Ku, Tokyo, 116-8551, Japan.
| |
Collapse
|
2
|
Hojjatian A, Taylor DW, Daneshparvar N, Fagnant PM, Trybus KM, Taylor KA. Double-headed binding of myosin II to F-actin shows the effect of strain on head structure. J Struct Biol 2023; 215:107995. [PMID: 37414375 PMCID: PMC10544818 DOI: 10.1016/j.jsb.2023.107995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/25/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Force production in muscle is achieved through the interaction of myosin and actin. Strong binding states in active muscle are associated with Mg·ADP bound to the active site; release of Mg·ADP allows rebinding of ATP and dissociation from actin. Thus, Mg·ADP binding is positioned for adaptation as a force sensor. Mechanical loads on the lever arm can affect the ability of myosin to release Mg·ADP but exactly how this is done is poorly defined. Here we use F-actin decorated with double-headed smooth muscle myosin fragments in the presence of Mg·ADP to visualize the effect of internally supplied tension on the paired lever arms using cryoEM. The interaction of the paired heads with two adjacent actin subunits is predicted to place one lever arm under positive and the other under negative strain. The converter domain is believed to be the most flexible domain within myosin head. Our results, instead, point to the segment of heavy chain between the essential and regulatory light chains as the location of the largest structural change. Moreover, our results suggest no large changes in the myosin coiled coil tail as the locus of strain relief when both heads bind F-actin. The method would be adaptable to double-headed members of the myosin family. We anticipate that the study of actin-myosin interaction using double-headed fragments enables visualization of domains that are typically noisy in decoration with single-headed fragments.
Collapse
Affiliation(s)
- Alimohammad Hojjatian
- Inst. of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, United States
| | - Dianne W Taylor
- Inst. of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, United States
| | - Nadia Daneshparvar
- Inst. of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, United States
| | - Patricia M Fagnant
- Dept of Molecular Physiology & Biophysics, University of Vermont College of Medicine, Burlington, VT 05405, United States
| | - Kathleen M Trybus
- Dept of Molecular Physiology & Biophysics, University of Vermont College of Medicine, Burlington, VT 05405, United States
| | - Kenneth A Taylor
- Inst. of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, United States.
| |
Collapse
|
3
|
Mihashi S, Ishida Y, Watanabe M. Accelerating effects of blebbistatin on relaxation process of cell membrane permeabilized trachea and taenia cecum from guinea pig. J Smooth Muscle Res 2020; 56:19-28. [PMID: 32350168 PMCID: PMC7184228 DOI: 10.1540/jsmr.56.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Blebbistatin, a potent inhibitor of myosin II, is known to suppress smooth muscle
contraction without affecting myosin light chain phosphorylation level. In order to
clarify the regulatory mechanisms of blebbistatin on phasic and tonic smooth muscles in
detail, we examined the effects of blebbistatin on relaxation process by Ca2+
removal after Ca2+-induced contraction of β-escin skinned (cell membrane
permeabilized) trachea and taenia cecum preparations from guinea pigs. Blebbistatin
significantly suppressed the force during relaxation both in skinned trachea and taenia
cecum. The data fitting analysis of the relaxation processes indicates that blebbistatin
accelerates slow (latch-like) bridge dissociation.
Collapse
Affiliation(s)
- Satoko Mihashi
- Department of Frontier Health Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashiogu, Arakawa-ku, Tokyo 116-8551, Japan
| | - Yukisato Ishida
- Department of Frontier Health Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashiogu, Arakawa-ku, Tokyo 116-8551, Japan
| | - Masaru Watanabe
- Department of Frontier Health Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashiogu, Arakawa-ku, Tokyo 116-8551, Japan
| |
Collapse
|
4
|
Cheng YS, de Souza Leite F, Rassier DE. The load dependence and the force-velocity relation in intact myosin filaments from skeletal and smooth muscles. Am J Physiol Cell Physiol 2020; 318:C103-C110. [PMID: 31618078 PMCID: PMC6985831 DOI: 10.1152/ajpcell.00339.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/11/2019] [Accepted: 10/12/2019] [Indexed: 11/22/2022]
Abstract
In the present study we evaluated the load dependence of force produced by isolated muscle myosin filaments interacting with fluorescently labeled actin filaments, using for the first time whole native myosin filaments. We used a newly developed approach that allowed the use of physiological levels of ATP. Single filaments composed of either skeletal or smooth muscle myosin and single filaments of actin were attached between pairs of nano-fabricated cantilevers of known stiffness. The filaments were brought into contact to produce force, which caused sliding of the actin filaments over the myosin filaments. We applied load to the system by either pushing or pulling the filaments during interactions and observed that increasing the load increased the force produced by myosin and decreasing the load decreased the force. We also performed additional experiments in which we clamped the filaments at predetermined levels of force, which caused the filaments to slide to adjust the different loads, allowing us to measure the velocity of length changes to construct a force-velocity relation. Force values were in the range observed previously with myosin filaments and molecules. The force-velocity curves for skeletal and smooth muscle myosins resembled the relations observed for muscle fibers. The technique can be used to investigate many issues of interest and debate in the field of muscle biophysics.
Collapse
Affiliation(s)
- Yu-Shu Cheng
- Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
| | - Felipe de Souza Leite
- Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
| | - Dilson E Rassier
- Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Abstract
Vascular smooth muscle (VSM; see Table 1 for a list of abbreviations) is a heterogeneous biomaterial comprised of cells and extracellular matrix. By surrounding tubes of endothelial cells, VSM forms a regulated network, the vasculature, through which oxygenated blood supplies specialized organs, permitting the development of large multicellular organisms. VSM cells, the engine of the vasculature, house a set of regulated nanomotors that permit rapid stress-development, sustained stress-maintenance and vessel constriction. Viscoelastic materials within, surrounding and attached to VSM cells, comprised largely of polymeric proteins with complex mechanical characteristics, assist the engine with countering loads imposed by the heart pump, and with control of relengthening after constriction. The complexity of this smart material can be reduced by classical mechanical studies combined with circuit modeling using spring and dashpot elements. Evaluation of the mechanical characteristics of VSM requires a more complete understanding of the mechanics and regulation of its biochemical parts, and ultimately, an understanding of how these parts work together to form the machinery of the vascular tree. Current molecular studies provide detailed mechanical data about single polymeric molecules, revealing viscoelasticity and plasticity at the protein domain level, the unique biological slip-catch bond, and a regulated two-step actomyosin power stroke. At the tissue level, new insight into acutely dynamic stress-strain behavior reveals smooth muscle to exhibit adaptive plasticity. At its core, physiology aims to describe the complex interactions of molecular systems, clarifying structure-function relationships and regulation of biological machines. The intent of this review is to provide a comprehensive presentation of one biomachine, VSM.
Collapse
Affiliation(s)
- Paul H Ratz
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
6
|
Nagwekar J, Duggal D, Midde K, Rich R, Liang J, Kazmierczak K, Huang W, Fudala R, Gryczynski I, Gryczynski Z, Szczesna-Cordary D, Borejdo J. A Novel Method of Determining the Functional Effects of a Minor Genetic Modification of a Protein. Front Cardiovasc Med 2015; 2:35. [PMID: 26664906 PMCID: PMC4671333 DOI: 10.3389/fcvm.2015.00035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/30/2015] [Indexed: 11/17/2022] Open
Abstract
Contraction of muscles results from the ATP-coupled cyclic interactions of the myosin cross-bridges with actin filaments. Macroscopic parameters of contraction, such as maximum tension, speed of shortening, or ATPase activity, are unlikely to reveal differences between the wild-type and mutated (MUT) proteins when the level of transgenic protein expression is low. This is because macroscopic measurements are made on whole organs containing trillions of actin and myosin molecules. An average of the information collected from such a large assembly is bound to conceal any differences imposed by a small fraction of MUT molecules. To circumvent the averaging problem, the measurements were done on isolated ventricular myofibril (MF) in which thin filaments were sparsely labeled with a fluorescent dye. We isolated a single MF from a ventricle, oriented it vertically (to be able measure the orientation), and labeled 1 in 100,000 actin monomers with a fluorescent dye. We observed the fluorescence from a small confocal volume containing approximately three actin molecules. During the contraction of a ventricle actin constantly changes orientation (i.e., the transition moment of rigidly attached fluorophore fluctuates in time) because it is repetitively being "kicked" by myosin cross-bridges. An autocorrelation functions (ACFs) of these fluctuations are remarkably sensitive to the mutation of myosin. We examined the effects of Alanine to Threonine (A13T) mutation in the myosin regulatory light chain shown by population studies to cause hypertrophic cardiomyopathy. This is an appropriate example, because mutation is expressed at only 10% in the ventricles of transgenic mice. ACFs were either "Standard" (Std) (decaying monotonically in time) or "Non-standard" (NStd) (decaying irregularly). The sparse labeling of actin also allowed the measurement of the spatial distribution of actin molecules. Such distribution reflects the interaction of actin with myosin cross-bridges and is also remarkably sensitive to myosin mutation. The result showed that the A13T mutation caused 9% ACFs and 9% of spatial distributions of actin to be NStd, while the remaining 91% were Std, suggesting that the NStd performances were executed by the MUT myosin heads and that the Std performances were executed by non-MUT myosin heads. We conclude that the method explored in this study is a sensitive and valid test of the properties of low prevalence mutations in sarcomeric proteins.
Collapse
Affiliation(s)
- Janhavi Nagwekar
- Department of Cell Biology, Center for Commercialization of Fluorescence Technologies, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Divya Duggal
- Department of Cell Biology, Center for Commercialization of Fluorescence Technologies, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Krishna Midde
- Department of Cell Biology, Center for Commercialization of Fluorescence Technologies, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Ryan Rich
- Department of Mathematics, Computer Science, and Physics, Texas Wesleyan University, Fort Worth, TX, USA
| | - Jingsheng Liang
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Katarzyna Kazmierczak
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Wenrui Huang
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Rafal Fudala
- Department of Cell Biology, Center for Commercialization of Fluorescence Technologies, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Ignacy Gryczynski
- Department of Cell Biology, Center for Commercialization of Fluorescence Technologies, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Zygmunt Gryczynski
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX, USA
| | - Danuta Szczesna-Cordary
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Julian Borejdo
- Department of Cell Biology, Center for Commercialization of Fluorescence Technologies, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
7
|
Minozzo FC, Altman D, Rassier DE. MgADP activation contributes to force enhancement during fast stretch of isolated skeletal myofibrils. Biochem Biophys Res Commun 2015; 463:1129-34. [PMID: 26095850 DOI: 10.1016/j.bbrc.2015.06.070] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 06/08/2015] [Indexed: 11/26/2022]
Abstract
BACKGROUND When an activated muscle is rapidly stretched, force rises and peaks while muscle lengthens. The peak force is normally called critical-force (Pc). The mechanism behind this increase in force is not well understood, but it has been associated with crossbridges operating in different states. METHODS Myofibrils were attached between a cantilever and a micro-needle, and activated with Ca(2+) or MgADP. During activation, the myofibrils were stretched by 3% SLo at 10 SLo·s(-1). A crossbridge model was developed to better understand the effects of MgADP in myofibrils activation. RESULTS Despite a similar stretch magnitude, MgADP activation produced a higher Pc (1.37 ± 0.07 P/Po) than Ca(2+) activation (Pc = 1.23 ± 0.03 P/Po). These results suggest that myofibrils activated with MgADP become stiffer than myofibrils activated with Ca(2+). CONCLUSIONS MgADP induces a fraction of crossbridges to form a "rigor-like" state that precedes ADP release, and that may not contribute to isometric forces. Such interpretation was strengthened by the results obtained with the developed crossbridge model, which showed that MgADP bias crossbridges into the rigor-like state. This state would be crucial to initiate a cooperative activation of crossbridges and actin, and to resist to unbinding from actin when the myofibrils are stretched. SIGNIFICANCE Our results suggest a new mechanism contributing for force output during stretch, which underlies basic mechanisms of muscle contraction.
Collapse
Affiliation(s)
- Fábio C Minozzo
- Department of Kinesiology and Physical Education, McGill University, Canada
| | - David Altman
- Department of Physics, Willamette University, Salem, OR, USA
| | - Dilson E Rassier
- Department of Kinesiology and Physical Education, McGill University, Canada; Department of Physics, McGill University, Canada; Department of Physiology, McGill University, Canada.
| |
Collapse
|
8
|
The effects of Ca2+ and MgADP on force development during and after muscle length changes. PLoS One 2013; 8:e68866. [PMID: 23874795 PMCID: PMC3712921 DOI: 10.1371/journal.pone.0068866] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 06/07/2013] [Indexed: 11/19/2022] Open
Abstract
The goal of this study was to compare the effects of Ca2+ and MgADP activation on force development in skeletal muscles during and after imposed length changes. Single fibres dissected from the rabbit psoas were (i) activated in pCa2+4.5 and pCa2+6.0, or (ii) activated in pCa2+4.5 before and after administration of 10 mM MgADP. Fibres were activated in sarcomere lengths (SL) of 2.65 µm and 2.95 µm, and subsequently stretched or shortened (5%SL at 1.0 SL.s−1) to reach a final SL of 2.80 µm. The kinetics of force during stretch were not altered by pCa2+ or MgADP, but the fast change in the slope of force development (P1) observed during shortening and the corresponding SL extension required to reach the change (L1) were higher in pCa2+6.0 (P1 = 0.22±0.02 Po; L1 = 5.26±0.24 nm.HS.1) than in pCa2+4.5 (P1 = 0.15±0.01 Po; L1 = 4.48±0.25 nm.HS.1). L1 was also increased by MgADP activation during shortening. Force enhancement after stretch was lower in pCa2+4.5 (14.9±5.4%) than in pCa2+6.0 (38.8±7.5%), while force depression after shortening was similar in both Ca2+ concentrations. The stiffness accompanied the force behavior after length changes in all situations. MgADP did not affect the force behavior after length changes, and stiffness did not accompany the changes in force development after stretch. Altogether, these results suggest that the mechanisms of force generation during and after stretch are different from those obtained during and after shortening.
Collapse
|
9
|
Rosenfeld EV. The interrelation between mechanical characteristics of contracting muscle, cross-bridge internal structure, and the mechanism of chemomechanical energy transduction. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2012; 41:733-53. [PMID: 22930317 DOI: 10.1007/s00249-012-0849-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 06/01/2012] [Accepted: 08/03/2012] [Indexed: 11/28/2022]
Abstract
The cross-bridge working stroke is regarded as a continuous (without jumps) change of myosin head internal state under the action of a force exerted within the nucleotide-binding site. Involvement of a concept of continuous cross-bridge conformation enables discussion of the nature of the force propelling muscle, and the Coulomb repulsion of like-charged adenosine triphosphate (ATP) fragments ADP(2-) and P (i) (2-) can quite naturally be considered as the source of this force. Two entirely different types of working stroke termination are considered. Along with the fluctuation mechanism, which controls the working stroke duration t (w) at isometric contraction, another interrupt mechanism is initially taken into account. It is triggered when the lever arm shift amounts to the maximal value S ≈ 11 nm, the back door opens, and P(i) crashes out. As a result, t (w) becomes inversely proportional to the velocity v of sliding filaments t (w) ≈ S/v for a wide range of values of v. Principal features of the experimentally observed dependences of force, efficiency, and rate of heat production on velocity and ATP concentration can then be reproduced by fitting a single parameter: the velocity-independent time span t (r) between the termination of the last and beginning of the next working stroke. v becomes the principal variable of the model, and the muscle force changes under external load are determined by variations in v rather than in the tension of filaments. The Boltzmann equation for an ensemble of cross-bridges is obtained, and some collective effects are discussed.
Collapse
Affiliation(s)
- E V Rosenfeld
- Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia.
| |
Collapse
|
10
|
Myosin IC generates power over a range of loads via a new tension-sensing mechanism. Proc Natl Acad Sci U S A 2012; 109:E2433-40. [PMID: 22908250 DOI: 10.1073/pnas.1207811109] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Myosin IC (myo1c), a widely expressed motor protein that links the actin cytoskeleton to cell membranes, has been associated with numerous cellular processes, including insulin-stimulated transport of GLUT4, mechanosensation in sensory hair cells, endocytosis, transcription of DNA in the nucleus, exocytosis, and membrane trafficking. The molecular role of myo1c in these processes has not been defined, so to better understand myo1c function, we utilized ensemble kinetic and single-molecule techniques to probe myo1c's biochemical and mechanical properties. Utilizing a myo1c construct containing the motor and regulatory domains, we found the force dependence of the actin-attachment lifetime to have two distinct regimes: a force-independent regime at forces < 1 pN, and a highly force-dependent regime at higher loads. In this force-dependent regime, forces that resist the working stroke increase the actin-attachment lifetime. Unexpectedly, the primary force-sensitive transition is the isomerization that follows ATP binding, not ADP release as in other slow myosins. This force-sensing behavior is unique amongst characterized myosins and clearly demonstrates mechanochemical diversity within the myosin family. Based on these results, we propose that myo1c functions as a slow transporter rather than a tension-sensitive anchor.
Collapse
|
11
|
Iwamoto H, Oiwa K, Kovács M, Sellers JR, Suzuki T, Wakayama J, Tamura T, Yagi N, Fujisawa T. Diversity of structural behavior in vertebrate conventional myosins complexed with actin. J Mol Biol 2007; 369:249-64. [PMID: 17433365 PMCID: PMC1997293 DOI: 10.1016/j.jmb.2007.03.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 03/12/2007] [Accepted: 03/13/2007] [Indexed: 11/28/2022]
Abstract
Low-resolution three-dimensional structures of acto-myosin subfragment-1 (S1) complexes were retrieved from X-ray fiber diffraction patterns, recorded either in the presence or absence of ADP. The S1 was obtained from various myosin-II isoforms from vertebrates, including rabbit fast-skeletal and cardiac, chicken smooth and human non-muscle IIA and IIB species, and was diffused into an array of overstretched, skinned skeletal muscle fibers. The S1 attached to the exposed actin filaments according to their helical symmetry. Upon addition of ADP, the diffraction patterns from acto-S1 showed an increasing magnitude of response in the order as listed above, with features of a lateral compression of the whole diffraction pattern (indicative of increased radius of the acto-S1 complex) and an enhancement of the fifth layer-line reflection. The structure retrieval indicates that these changes are mainly due to the swing of the light chain (LC) domain in the direction consistent with the cryo-electron microscopic results. In the non-muscle isoforms, the swing is large enough to affect the manner of quasi-crystal packing of the S1-decorated actin filaments and their lattice dimension, with a small change in the twist of actin filaments. Variations also exist in the behavior of the 50K-cleft, which apparently opens upon addition of ADP to the non-muscle isoforms but not to other isoforms. The fast-skeletal S1 remains as the only isoform that does not clearly exhibit either of the structural changes. The results indicate that the "conventional" myosin-II isoforms exhibit a wide variety of structural behavior, possibly depending on their functions and/or the history of molecular evolution.
Collapse
Affiliation(s)
- Hiroyuki Iwamoto
- Research and Utilization Division, SPring-8, Japan Synchrotron Radiation Research Institute, Hyogo 679-6198, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Warshaw DM. Lever arms and necks: a common mechanistic theme across the myosin superfamily. J Muscle Res Cell Motil 2005; 25:467-74. [PMID: 15630611 DOI: 10.1007/s10974-004-1767-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- David M Warshaw
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405, USA.
| |
Collapse
|
13
|
Somlyo AV, Khromov AS, Webb MR, Ferenczi MA, Trentham DR, He ZH, Sheng S, Shao Z, Somlyo AP. Smooth muscle myosin: regulation and properties. Philos Trans R Soc Lond B Biol Sci 2005; 359:1921-30. [PMID: 15647168 PMCID: PMC1693473 DOI: 10.1098/rstb.2004.1562] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The relationship of the biochemical states to the mechanical events in contraction of smooth muscle cross-bridges is reviewed. These studies use direct measurements of the kinetics of Pi and ADP release. The rate of release of Pi from thiophosphorylated cycling cross-bridges held isometric was biphasic with turnovers of 1.8 s-1 and 0.3 s-1, reflecting properties and forces directly acting on cross-bridges through mechanisms such as positive strain and inhibition by high-affinity MgADP binding. Fluorescent transients reporting release of an ADP analogue 3'-deac-edaADP were significantly faster in phasic than in tonic smooth muscles. Thiophosphorylation of myosin regulatory light chains (RLCs) increased and positive strain decreased the release rate around twofold. The rates of ADP release from rigor cross-bridges and the steady-state Pi release from cycling isometric cross-bridges are similar, indicating that the ADP-release step or an isomerization preceding it may limit the ATPase rate. Thus ADP release in phasic and tonic smooth muscles is a regulated step with strain- and dephosphorylation-dependence. High affinity of cross-bridges for ADP and slow ADP release prolong the fraction of the duty cycle occupied by strongly bound AM.ADP state(s) and contribute to the high economy of force that is characteristic of smooth muscle. RLC thiophosphorylation led to structural changes in smooth muscle cross-bridges consistent with our findings that thiophosphorylation and strain modulate product release.
Collapse
Affiliation(s)
- Avril V Somlyo
- Molecular Physiology and Biological Physics, University of Virginia, PO Box 800736, 1300 Jefferson Park Avenue, Charlottesville, VA 22908-0736, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Khromov AS, Webb MR, Ferenczi MA, Trentham DR, Somlyo AP, Somlyo AV. Myosin regulatory light chain phosphorylation and strain modulate adenosine diphosphate release from smooth muscle Myosin. Biophys J 2004; 86:2318-28. [PMID: 15041670 PMCID: PMC1304081 DOI: 10.1016/s0006-3495(04)74289-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effects of myosin regulatory light chain (RLC) phosphorylation and strain on adenosine diphosphate (ADP) release from cross-bridges in phasic (rabbit bladder (Rbl)) and tonic (femoral artery (Rfa)) smooth muscle were determined by monitoring fluorescence transients of the novel ADP analog, 3'-deac-eda-ADP (deac-edaADP). Fluorescence transients reporting release of 3'-deac-eda-ADP were significantly faster in phasic (0.57 +/- 0.06 s(-1)) than tonic (0.29 +/- 0.03 s(-1)) smooth muscles. Thiophosphorylation of regulatory light chains increased and strain decreased the release rate approximately twofold. The calculated (k-ADP/k+ADP) dissociation constant, Kd of unstrained, unphosphorylated cross-bridges for ADP was 0.6 microM for rabbit bladder and 0.3 microM for femoral artery. The rates of ADP release from rigor bridges and reported values of Pi release (corresponding to the steady-state adenosine triphosphatase (ATPase) rate of actomyosin (AM)) from cross-bridges during a maintained isometric contraction are similar, indicating that the ADP-release step or an isomerization preceding it may be limiting the adenosine triphosphatase rate. We conclude that the strain- and dephosphorylation-dependent high affinity for and slow ADP release from smooth muscle myosin prolongs the fraction of the duty cycle occupied by strongly bound actomyosin.ADP state(s) and contributes to the high economy of force.
Collapse
Affiliation(s)
- Alexander S Khromov
- Molecular Physiology and Biological Physics, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | |
Collapse
|
15
|
Andersson KE, Arner A. Urinary bladder contraction and relaxation: physiology and pathophysiology. Physiol Rev 2004; 84:935-86. [PMID: 15269341 DOI: 10.1152/physrev.00038.2003] [Citation(s) in RCA: 634] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The detrusor smooth muscle is the main muscle component of the urinary bladder wall. Its ability to contract over a large length interval and to relax determines the bladder function during filling and micturition. These processes are regulated by several external nervous and hormonal control systems, and the detrusor contains multiple receptors and signaling pathways. Functional changes of the detrusor can be found in several clinically important conditions, e.g., lower urinary tract symptoms (LUTS) and bladder outlet obstruction. The aim of this review is to summarize and synthesize basic information and recent advances in the understanding of the properties of the detrusor smooth muscle, its contractile system, cellular signaling, membrane properties, and cellular receptors. Alterations in these systems in pathological conditions of the bladder wall are described, and some areas for future research are suggested.
Collapse
Affiliation(s)
- Karl-Erik Andersson
- Dept. of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | | |
Collapse
|
16
|
Karagiannis P, Brozovich FV. The kinetic properties of smooth muscle: how a little extra weight makes myosin faster. J Muscle Res Cell Motil 2004; 24:157-63. [PMID: 14609027 DOI: 10.1023/a:1026049429858] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The contractile properties of smooth muscle (SM) are often described as fast and slow, but the molecular basis for the diversity in contractile properties has yet to be fully elucidated. Studies have shown that the differences in the contractile parameters are seen at the level of the contractile proteins. Experiments have implicated both the splicing of the SM myosin heavy chain (MHC) and the SM myosin essential myosin light chain as possible molecular determinants of the contractile properties of SM. This communication will focus on the role of the 7 aa insert in the smooth muscle MHC in determining the contractile properties of SM and the possible mechanism by which this insert could alter the kinetics of the SM actomyosin ATPase.
Collapse
Affiliation(s)
- Peter Karagiannis
- Department of Physiology and Biophysics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-4970, USA
| | | |
Collapse
|
17
|
Chakrabarty T, Yengo C, Baldacchino C, Chen LQ, Sweeney HL, Selvin PR. Does the S2 rod of myosin II uncoil upon two-headed binding to actin? A leucine-zippered HMM study. Biochemistry 2004; 42:12886-92. [PMID: 14596602 DOI: 10.1021/bi035144f] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Myosin II, like many molecular motors, is a two-headed dimer held together by a coiled-coil rod. The stability of the (S2) rod has implications for head-head interactions, force generation, and possibly regulation. Whether S2 uncoils has been controversial. To test the stability of S2, we constructed a series of "zippered" dimeric smooth muscle myosin II compounds, containing a high-melting temperature 32-amino acid GCN4 leucine zipper in the S2 rod beginning 0, 1, 2, or 15 heptads from the head-rod junction. We then assessed the ability of these and wild-type myosin to bind strongly via two heads to an actin filament by measuring the fluorescence quenching of pyrene-labeled actin induced by myosin binding. Such two-headed binding is expected to exert a large strain that tends to uncoil S2, and hence provide a robust test of S2 stability. We find that wild-type and zippered heavy meromyosin (HMM) are able to bind by both heads to actin under both nucleotide-free and saturating ADP conditions. In addition, we compared the actin affinity and rates for the 0- and 15-zippered HMMs in the phosphorylated "on" state and found them to be very similar. These results strongly suggest that S2 uncoiling is not necessary for two-headed binding of myosin to actin, presumably due to a compliant point in the myosin head(s). We conclude that S2 likely remains intact during the catalytic cycle.
Collapse
Affiliation(s)
- Tania Chakrabarty
- Center for Biophysics and Computational Biology and Physics Department, University of Illinois, Urbana, Illinois 61801, USA
| | | | | | | | | | | |
Collapse
|
18
|
Veigel C, Molloy JE, Schmitz S, Kendrick-Jones J. Load-dependent kinetics of force production by smooth muscle myosin measured with optical tweezers. Nat Cell Biol 2003; 5:980-6. [PMID: 14578909 DOI: 10.1038/ncb1060] [Citation(s) in RCA: 253] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2003] [Accepted: 09/29/2003] [Indexed: 11/09/2022]
Abstract
Muscle contraction is driven by the cyclical interaction of myosin with actin, coupled with ATP hydrolysis. Myosin attaches to actin, forming a crossbridge that produces force and movement as it tilts or rocks into subsequent bound states before finally detaching. It has been hypothesized that the kinetics of one or more of these mechanical transitions are dependent on load, allowing muscle to shorten quickly under low load, but to sustain tension economically, with slowly cycling crossbridges under high load conditions. The idea that muscle biochemistry depends on mechanical output is termed the 'Fenn effect'. However, the molecular details of how load affects the kinetics of a single crossbridge are unknown. Here, we describe a new technique based on optical tweezers to rapidly apply force to a single smooth muscle myosin crossbridge. The crossbridge produced movement in two phases that contribute 4 nm + 2 nm of displacement. Duration of the first phase depended in an exponential manner on the amplitude of applied load. Duration of the second phase was much less affected by load, but was significantly shorter at high ATP concentration. The effect of load on the lifetime of the bound crossbridge is to prolong binding when load is high, but to accelerate release when load is low or negative.
Collapse
Affiliation(s)
- Claudia Veigel
- Division of Physical Biochemistry, NIMR, The Ridgeway Mill Hill, London NW7 1AA, UK.
| | | | | | | |
Collapse
|
19
|
Baker JE, Brosseau C, Fagnant P, Warshaw DM. The unique properties of tonic smooth muscle emerge from intrinsic as well as intermolecular behaviors of Myosin molecules. J Biol Chem 2003; 278:28533-9. [PMID: 12756257 DOI: 10.1074/jbc.m303583200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To better understand the molecular basis for some of the unique mechanical properties of tonic smooth muscle, we use a laser trap to assay the mechanochemistry of single smooth muscle heavy meromyosin molecules lacking a seven-amino acid insert in the nucleotide binding loop (minus insert). We measured a second-order ATP-induced actin dissociation rate, kT, of 2.2 x 10(6) m(-1) s(-1), an ADP release rate, k-D, of 19 s(-1), a second-order ADP binding rate, kD, of 60 x 10(5) m(-1) s(-1), and an ADP affinity, KD, of 3.2 microm, which is more than 100-fold greater than that measured for skeletal muscle myosin. By performing in vitro motility studies under nearly identical conditions, we show that the relatively slow actin velocity generated by minus-insert heavy meromyosin is significantly influenced, but not limited, by k-D. Our results support a model in which two separate intermediate steps in the actin-myosin catalyzed ATP hydrolysis reaction are energetically coupled through mechanical interactions, and we discuss this model in the context of the ability of tonic muscle to maintain high forces at low energetic cost (latch).
Collapse
Affiliation(s)
- Josh E Baker
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405, USA
| | | | | | | |
Collapse
|
20
|
Takeuchi T, Fujita A, Kushida M, Hata F. The site where newly synthesized ATP is necessary for tension development in alpha-toxin permeabilized preparations of rat proximal colon. J Pharmacol Sci 2003; 91:277-84. [PMID: 12719656 DOI: 10.1254/jphs.91.277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Since it was suggested in our previous study that ATP newly synthesized from ADP and phosphocreatine (PCr) by creatine kinase had an important role in Ca2+-induced phasic contraction in alpha-toxin permeabilized smooth muscle of rat proximal colon, we studied the role of newly synthesized ATP on myosin ATPase activity, by assessing a rate of force development as an index of myosin ATPase activity. The alpha-toxin-permeabilized preparations were thiophosphorylated by treatment with ATPgammaS. After the thiophosphorylation, the contraction induced by ATP plus PCr in the absence of Ca2+ reached the maximum at 30 s. When PCr was omitted from the bathing solution, the initial rate of the contraction was significantly slower, while the level of myosin light chain thiophosphorylation remained unchanged. An inhibitor of creatine kinase slowed the initial contractile rate to a rate similar to that induced by ATP alone. ADPbetaS had no effect on ATP plus PCr-induced contraction, suggesting that accumulation of ADP does not affect the initial rate of the contraction. PCr alone did not contract the thiophosphorylated-preparations. However, in the presence of ADP, PCr induced contraction at the initial rate which was slower than that induced by ATP plus PCr. These results indicate that newly synthesized ATP together with preexisting ATP is utilized as a substrate for myosin ATPase.
Collapse
Affiliation(s)
- Tadayoshi Takeuchi
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Science, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka 599-8531, Japan.
| | | | | | | |
Collapse
|
21
|
Volkmann N, Ouyang G, Trybus KM, DeRosier DJ, Lowey S, Hanein D. Myosin isoforms show unique conformations in the actin-bound state. Proc Natl Acad Sci U S A 2003; 100:3227-32. [PMID: 12612343 PMCID: PMC152274 DOI: 10.1073/pnas.0536510100] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Crystallographic data for several myosin isoforms have provided evidence for at least two conformations in the absence of actin: a prehydrolysis state that is similar to the original nucleotide-free chicken skeletal subfragment-1 (S1) structure, and a transition-state structure that favors hydrolysis. These weak-binding states differ in the extent of closure of the cleft that divides the actin-binding region of the myosin and the position of the light chain binding domain or lever arm that is believed to be associated with force generation. Previously, we provided insights into the interaction of smooth-muscle S1 with actin by computer-based fitting of crystal structures into three-dimensional reconstructions obtained by electron cryomicroscopy. Here, we analyze the conformations of actin-bound chicken skeletal muscle S1. We conclude that both myosin isoforms in the nucleotide-free, actin-bound state can achieve a more tightly closed cleft, a more downward position of the lever arm, and more stable surface loops than those seen in the available crystal structures, indicating the existence of unique actin-bound conformations.
Collapse
|
22
|
Ellison PA, DePew ZS, Cremo CR. Both heads of tissue-derived smooth muscle heavy meromyosin bind to actin in the presence of ADP. J Biol Chem 2003; 278:4410-5. [PMID: 12464606 DOI: 10.1074/jbc.m211016200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The effect of ADP and phosphorylation upon the actin binding properties of heavy meromyosin was investigated using three fluorescence methods that monitor the number of heavy meromyosin heads that bind to pyrene-actin: (i) amplitudes of ATP-induced dissociation, (ii) amplitudes of ADP-induced dissociation of the pyrene-actin-heavy meromyosin complex, and (iii) amplitudes of the association of heavy meromyosin with pyrene-actin. Both heads bound to pyrene-actin, irrespective of regulatory light chain phosphorylation or the presence of ADP. This behavior was found for native regulated heavy meromyosin prepared by proteolytic digestion of chicken gizzard myosin with between 5 and 95% heavy chain cleavage at the actin-binding loop, showing that two-head binding is a property of heavy meromyosin with uncleaved heavy chains. These data are in contrast to a previous study using an uncleaved expressed preparation (Berger, C. E., Fagnant, P. M., Heizmann, S., Trybus, K. M., and Geeves, M. A. (2001) J. Biol. Chem. 276, 23240-23245), which showed that one head of the unphosphorylated heavy meromyosin-ADP complex bound to actin and that the partner head either did not bind or bound weakly. Possible explanations for the differences between the two studies are discussed. We have shown that unphosphorylated heavy meromyosin appears to adopt a special state in the presence of ADP based upon analysis of actin-heavy meromyosin association rate constants. Data were consistent with one head binding rapidly and the second head binding more slowly in the presence of ADP. Both heads bound to actin at the same rate for all other states.
Collapse
Affiliation(s)
- Patricia A Ellison
- Department of Biochemistry, University of Nevada, Reno, Nevada 89557, USA
| | | | | |
Collapse
|
23
|
Löfgren M, Malmqvist U, Arner A. Substrate and product dependence of force and shortening in fast and slow smooth muscle. J Gen Physiol 2001; 117:407-18. [PMID: 11331350 PMCID: PMC2233665 DOI: 10.1085/jgp.117.5.407] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To explore the molecular mechanisms responsible for the variation in smooth muscle contractile kinetics, the influence of MgATP, MgADP, and inorganic phosphate (P(i)) on force and shortening velocity in thiophosphorylated "fast" (taenia coli: maximal shortening velocity Vmax = 0.11 ML/s) and "slow" (aorta: Vmax = 0.015 ML/s) smooth muscle from the guinea pig were compared. P(i) inhibited active force with minor effects on the V(max). In the taenia coli, 20 mM P(i) inhibited force by 25%. In the aorta, the effect was markedly less (< 10%), suggesting differences between fast and slow smooth muscles in the binding of P(i) or in the relative population of P(i) binding states during cycling. Lowering of MgATP reduced force and V(max). The aorta was less sensitive to reduction in MgATP (Km for Vmax: 80 microM) than the taenia coli (Km for Vmax: 350 microM). Thus, velocity is controlled by steps preceding the ATP binding and cross-bridge dissociation, and a weaker binding of ATP is not responsible for the lower V(max) in the slow muscle. MgADP inhibited force and V(max). Saturating concentrations of ADP did not completely inhibit maximal shortening velocity. The effect of ADP on Vmax was observed at lower concentrations in the aorta compared with the taenia coli, suggesting that the ADP binding to phosphorylated and cycling cross-bridges is stronger in slow compared with fast smooth muscle.
Collapse
Affiliation(s)
- Mia Löfgren
- Department of Physiological Sciences, Lund University, Tornavägen 10, BMC F11, S-22184 Lund, Sweden
| | - Ulf Malmqvist
- Department of Physiological Sciences, Lund University, Tornavägen 10, BMC F11, S-22184 Lund, Sweden
| | - Anders Arner
- Department of Physiological Sciences, Lund University, Tornavägen 10, BMC F11, S-22184 Lund, Sweden
| |
Collapse
|
24
|
Abstract
Photolytic release of MgADP (25-300 microM) from caged ADP in permeabilized tonic (rabbit femoral artery-Rfa) and phasic (rabbit bladder-Rbl) smooth muscle in high-tension rigor state, in the absence of Ca(2+), caused an exponential decline (approximately 1.5% in Rfa and approximately 6% in Rbl) of rigor force, with the rate proportional to the liberated [MgADP]. The apparent second-order rate constant of MgADP binding was estimated as approximately 1.0 x 10(6) M(-1) s(-1) for both smooth muscles. In control experiments, designed to test the specificity of MgADP, photolysis of caged ADP in the absence of Mg(2+) did not decrease rigor force in either smooth muscle, but rigor force decreased after photolytic release of Mg(2+) in the presence of ADP. The effects of photolysis of caged ADP were similar in smooth muscles containing thiophosphorylated or non-phosphorylated regulatory myosin light chains. Stretching or releasing (within range of 0.1-1.2% of initial Ca(2+)-activated force) did not affect the rate or relative amplitude of the force decrease. The effect of additions of MgADP to rigor cross-bridges could result from rotation of the lever arm of smooth muscle myosin, but this need not imply that ADP-release is a significant force-producing step of the physiological cross-bridge cycle.
Collapse
Affiliation(s)
- A S Khromov
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville 22906, USA
| | | | | |
Collapse
|
25
|
Butler TM, Narayan SR, Mooers SU, Hartshorne DJ, Siegman MJ. The myosin cross-bridge cycle and its control by twitchin phosphorylation in catch muscle. Biophys J 2001; 80:415-26. [PMID: 11159412 PMCID: PMC1301243 DOI: 10.1016/s0006-3495(01)76024-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The anterior byssus retractor muscle of Mytilus edulis was used to characterize the myosin cross-bridge during catch, a state of tonic force maintenance with a very low rate of energy utilization. Addition of MgATP to permeabilized muscles in high force rigor at pCa > 8 results in a rapid loss of some force followed by a very slow rate of relaxation that is characteristic of catch. The fast component is slowed 3-4-fold in the presence of 1 mM MgADP, but the distribution between the fast and slow (catch) components is not dependent on [MgADP]. Phosphorylation of twitchin results in loss of the catch component. Fewer than 4% of the myosin heads have ADP bound in rigor, and the time course (0.2-10 s) of ADP formation following release of ATP from caged ATP is similar whether or not twitchin is phosphorylated. This suggests that MgATP binding to the cross-bridge and subsequent splitting are independent of twitchin phosphorylation, but detachment occurs only if twitchin is phosphorylated. A similar dependence of detachment on twitchin phosphorylation is seen with AMP-PNP and ATPgammaS. Single turnover experiments on bound ADP suggest an increase in the rate of release of ADP from the cross-bridge when catch is released by phosphorylation of twitchin. Low [Ca(2+)] and unphosphorylated twitchin appear to cause catch by 1) markedly slowing ADP release from attached cross-bridges and 2) preventing detachment following ATP binding to the rigor cross-bridge.
Collapse
Affiliation(s)
- T M Butler
- Department of Physiology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | | | | | | | |
Collapse
|
26
|
Abstract
The long-standing swinging crossbridge or lever arm hypothesis for the motor action of myosin heads finds support in recent results from 3-D tomograms of insect flight muscle (IFM) fast frozen during active contraction and from both fluorescence polarization and X-ray diffraction during rapid stretches or releases of isometrically contracting fibers. The latter provide direct evidence for lever arm movements synchronous with force changes. Rebuilding the atomic model of nucleotide-free subfragment 1 (S1) to fit fast-frozen, active IFM crossbridges suggests a two-stage power stroke in which the catalytic domain rolls on actin from weak to strong binding; this is followed by a 5-nm lever arm swing of the light chain domain, which gives a total interaction distance of approx. 12 nm. Comparison of S1 crystal structures with in situ myosin heads suggests that actin binding may be necessary in order to view the full repertoire of myosin motor action. The differing positions of the catalytic domains of actin-attached myosin heads in contracting IFM suggest that both the actin-myosin binding energy and the hydrolysis of ATP may be used to cock the crossbridge and drive the power stroke.
Collapse
Affiliation(s)
- M C Reedy
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
27
|
Rhee AY, Brozovich FV. The smooth muscle cross-bridge cycle studied using sinusoidal length perturbations. Biophys J 2000; 79:1511-23. [PMID: 10969012 PMCID: PMC1301044 DOI: 10.1016/s0006-3495(00)76402-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The mechanical characteristics of smooth muscle can be broadly defined as either phasic, or fast contracting, and tonic, or slow contracting (, Pharmacol. Rev. 20:197-272). To determine if differences in the cross-bridge cycle and/or distribution of the cross-bridge states could contribute to differences in the mechanical properties of smooth muscle, we determined force and stiffness as a function of frequency in Triton-permeabilized strips of rabbit portal vein (phasic) and aorta (tonic). Permeabilized muscle strips were mounted between a piezoelectric length driver and a piezoresistive force transducer. Muscle length was oscillated from 1 to 100 Hz, and the stiffness was determined as a function of frequency from the resulting force response. During calcium activation (pCa 4, 5 mM MgATP), force and stiffness increased to steady-state levels consistent with the attachment of actively cycling cross-bridges. In smooth muscle, because the cross-bridge states involved in force production have yet to be elucidated, the effects of elevation of inorganic phosphate (P(i)) and MgADP on steady-state force and stiffness were examined. When portal vein strips were transferred from activating solution (pCa 4, 5 mM MgATP) to activating solution with 12 mM P(i), force and stiffness decreased proportionally, suggesting that cross-bridge attachment is associated with P(i) release. For the aorta, elevating P(i) decreased force more than stiffness, suggesting the existence of an attached, low-force actin-myosin-ADP- P(i) state. When portal vein strips were transferred from activating solution (pCa 4, 5 mM MgATP) to activating solution with 5 mM MgADP, force remained relatively constant, while stiffness decreased approximately 50%. For the aorta, elevating MgADP decreased force and stiffness proportionally, suggesting for tonic smooth muscle that a significant portion of force production is associated with ADP release. These data suggest that in the portal vein, force is produced either concurrently with or after P(i) release but before MgADP release, whereas in aorta, MgADP release is associated with a portion of the cross-bridge powerstroke. These differences in cross-bridge properties could contribute to the mechanical differences in properties of phasic and tonic smooth muscle.
Collapse
Affiliation(s)
- A Y Rhee
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4970 USA
| | | |
Collapse
|
28
|
Rosenfeld SS, Xing J, Whitaker M, Cheung HC, Brown F, Wells A, Milligan RA, Sweeney HL. Kinetic and spectroscopic evidence for three actomyosin:ADP states in smooth muscle. J Biol Chem 2000; 275:25418-26. [PMID: 10827085 DOI: 10.1074/jbc.m002685200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Smooth muscle myosin II undergoes an additional movement of the regulatory domain with ADP release that is not seen with fast skeletal muscle myosin II. In this study, we have examined the interactions of smooth muscle myosin subfragment 1 with ADP to see if this additional movement corresponds to an identifiable state change. These studies indicate that for this myosin:ADP, both the catalytic site and the actin-binding site can each assume one of two conformations. Relatively loose coupling between these two binding sites leads to three discrete actin-associated ADP states. Following an initial, weakly bound state, binding of myosin:ADP to actin shifts the equilibrium toward a mixture of two states that each bind actin strongly but differ in the conformation of their catalytic sites. By contrast, fast myosins, including Dictyostelium myosin II, have reciprocal coupling between the actin- and ADP-binding sites, so that either actin or nucleotide, but not both, can be tightly bound. This uncoupling, which generates a second strongly bound actomyosin ADP state in smooth muscle, would prolong the fraction of the ATPase cycle time that this actomyosin spends in a force-generating conformation and may be central to explaining the physiologic differences between this and other myosins.
Collapse
Affiliation(s)
- S S Rosenfeld
- Department of Neurology, University of Alabama at Birmingham, 35294, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
The crystal structures of smooth muscle and scallop striated muscle myosin have both been completed in the past 18 months. Structural studies of unconventional myosins, in particular the stunning discovery that myosin VI moves backwards on actin, are starting to have deep impact on the field and have induced new ways of thinking about actin-based motility. Sophisticated genetic, biochemical and biophysical studies were used to test and refine hypotheses of the molecular mechanism of motility that were developed in the past. Although all these studies confirmed some aspects of these hypotheses, they also raised many new unresolved questions. Much of the evidence points to the importance of the actin-myosin binding process and an associated disorder-to-order transition.
Collapse
Affiliation(s)
- N Volkmann
- The Burnham Institute, La Jolla, 92037, USA.
| | | |
Collapse
|
30
|
Conibear PB. Kinetic studies on the effects of ADP and ionic strength on the interaction between myosin subfragment-1 and actin: implications for load-sensitivity and regulation of the crossbridge cycle. J Muscle Res Cell Motil 1999; 20:727-42. [PMID: 10730576 DOI: 10.1023/a:1005696017544] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The dynamics of the interaction of fast skeletal muscle myosin subfragment-1 with pyrene-labelled actin were examined using both stopped-flow and pressure relaxation methods. The data suggest a four-step model i.e.: A + M.(N)(K0)<-->A approximately M.(N)(K1)<-->A - M.(N)(K2)<-->A.M.(N)(K3)<-->A.M.(N)#. ADP weakens the acto-S1 affinity via a reduction in Ko, with no apparent effect on K1 and no effect on K2, whilst k(+2) and k(-2) are both markedly reduced. Increased ionic strength reduces both K0 and k(+2) with no major effect on k(+1). Step 3 represents an extension to previous models and is ADP-dependent. The present work is discussed in relation to earlier studies which led to somewhat different conclusions (Taylor EW (1991) J Biol Chem 266: 294-302; Geeves MA (1989) Biochemistry 28: 5864-5871). It is likely that the interaction proceeds via formation of a disordered complex stabilised by ionic interactions (corresponding to step 0), followed by a disordered-to-ordered transition involving additional hydrophobic contacts (step 1) after which further contacts of both types are made coupled to internal conformational changes (steps 2 and 3). Step 3 could have a role in extending the lifetime of force-generating crossbridges and limiting ATP turnover during contraction against a load, and may be equivalent to a structural change observed in recent cryo-EM studies on the smooth muscle system (Whittaker M, Wilsonkubalek EM, Smith JE, Faust L, Milligan RA and Sweeney HL (1995) Nature 378: 748-751). Cooperative interactions between the two myosin heads also appear to have a role in this putative latch mechanism.
Collapse
Affiliation(s)
- P B Conibear
- Department of Biochemistry, University of Leicester, UK.
| |
Collapse
|