1
|
Clarke J, Melcher L, Crowell AD, Cavanna F, Houser JR, Graham K, Green AM, Stachowiak JC, Truskett TM, Milliron DJ, Rosales AM, Das M, Alvarado J. Morphological control of bundled actin networks subject to fixed-mass depletion. J Chem Phys 2024; 161:074905. [PMID: 39166892 DOI: 10.1063/5.0197269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024] Open
Abstract
Depletion interactions are thought to significantly contribute to the organization of intracellular structures in the crowded cytosol. The strength of depletion interactions depends on physical parameters such as the depletant number density and the depletant size ratio. Cells are known to dynamically regulate these two parameters by varying the copy number of proteins of a wide distribution of sizes. However, mammalian cells are also known to keep the total protein mass density remarkably constant, to within 0.5% throughout the cell cycle. We thus ask how the strength of depletion interactions varies when the total depletant mass is held fixed, a.k.a. fixed-mass depletion. We answer this question via scaling arguments, as well as by studying depletion effects on networks of reconstituted semiflexible actin in silico and in vitro. We examine the maximum strength of the depletion interaction potential U∗ as a function of q, the size ratio between the depletant and the matter being depleted. We uncover a scaling relation U∗ ∼ qζ for two cases: fixed volume fraction φ and fixed mass density ρ. For fixed volume fraction, we report ζ < 0. For the fixed mass density case, we report ζ > 0, which suggests that the depletion interaction strength increases as the depletant size ratio is increased. To test this prediction, we prepared our filament networks at fixed mass concentrations with varying sizes of the depletant molecule poly(ethylene glycol) (PEG). We characterize the depletion interaction strength in our simulations via the mesh size. In experiments, we observe two distinct actin network morphologies, which we call weakly bundled and strongly bundled. We identify a mass concentration where different PEG depletant sizes lead to weakly bundled or strongly bundled morphologies. For these conditions, we find that the mesh size and intra-bundle spacing between filaments across the different morphologies do not show significant differences, while the dynamic light scattering relaxation time and storage modulus between the two states do show significant differences. Our results demonstrate the ability to tune actin network morphology and mechanics by controlling depletant size and give insights into depletion interaction mechanisms under the fixed-depletant-mass constraint relevant to living cells.
Collapse
Affiliation(s)
- James Clarke
- UT Austin Department of Physics, 2515 Speedway, Austin, Texas 78712, USA
| | - Lauren Melcher
- School of Mathematical Sciences, Rochester Institute of Technology, Rochester, New York 14623, USA
| | - Anne D Crowell
- UT Austin McKetta Department of Chemical Engineering, E 24th St., Austin, Texas 78712, USA
| | - Francis Cavanna
- UT Austin Department of Physics, 2515 Speedway, Austin, Texas 78712, USA
| | - Justin R Houser
- UT Austin Department of Biomedical Engineering, Austin, Texas 78712, USA
| | - Kristin Graham
- UT Austin Department of Biomedical Engineering, Austin, Texas 78712, USA
| | - Allison M Green
- UT Austin McKetta Department of Chemical Engineering, E 24th St., Austin, Texas 78712, USA
| | - Jeanne C Stachowiak
- UT Austin McKetta Department of Chemical Engineering, E 24th St., Austin, Texas 78712, USA
- UT Austin Department of Biomedical Engineering, Austin, Texas 78712, USA
| | - Thomas M Truskett
- UT Austin McKetta Department of Chemical Engineering, E 24th St., Austin, Texas 78712, USA
| | - Delia J Milliron
- UT Austin McKetta Department of Chemical Engineering, E 24th St., Austin, Texas 78712, USA
| | - Adrianne M Rosales
- UT Austin McKetta Department of Chemical Engineering, E 24th St., Austin, Texas 78712, USA
| | - Moumita Das
- School of Mathematical Sciences, Rochester Institute of Technology, Rochester, New York 14623, USA
- School of Physics and Astronomy, Rochester Institute of Technology, Rochester, New York 14623, USA
| | - José Alvarado
- UT Austin Department of Physics, 2515 Speedway, Austin, Texas 78712, USA
| |
Collapse
|
2
|
Gu Q, An Y, Xu M, Huang X, Chen X, Li X, Shan H, Zhang M. Disulfidptosis, A Novel Cell Death Pathway: Molecular Landscape and Therapeutic Implications. Aging Dis 2024:AD.2024.0083. [PMID: 38739940 DOI: 10.14336/ad.2024.0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
Programmed cell death is pivotal for several physiological processes, including immune defense. Further, it has been implicated in the pathogenesis of developmental disorders and the onset of numerous diseases. Multiple modes of programmed cell death, including apoptosis, pyroptosis, necroptosis, and ferroptosis, have been identified, each with their own unique characteristics and biological implications. In February 2023, Liu Xiaoguang and his team discovered "disulfidptosis," a novel pathway of programmed cell death. Their findings demonstrated that disulfidptosis is triggered in glucose-starved cells exhibiting high expression of a protein called SLC7A11. Furthermore, disulfidptosis is marked by a drastic imbalance in the NADPH/NADP+ ratio and the abnormal accumulation of disulfides like cystine. These changes ultimately lead to the destabilization of the F-actin network, causing cell death. Given that high SLC7A11 expression is a key feature of certain cancers, these findings indicate that disulfidptosis could serve as the basis of innovative anti-cancer therapies. Hence, this review delves into the discovery of disulfidptosis, its underlying molecular mechanisms and metabolic regulation, and its prospective applications in disease treatment.
Collapse
Affiliation(s)
- Qiuyang Gu
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, China
| | - Yumei An
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, China
| | - Mingyuan Xu
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, China
| | - Xinqi Huang
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, China
| | - Xueshi Chen
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, China
| | - Xianzhe Li
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, China
| | - Haiyan Shan
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Mingyang Zhang
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, China
| |
Collapse
|
3
|
Limatola N, Chun JT, Chiba K, Santella L. Dithiothreitol Affects the Fertilization Response in Immature and Maturing Starfish Oocytes. Biomolecules 2023; 13:1659. [PMID: 38002342 PMCID: PMC10669828 DOI: 10.3390/biom13111659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Immature starfish oocytes isolated from the ovary are susceptible to polyspermy due to the structural organization of the vitelline layer covering the oocyte plasma membrane, as well as the distribution and biochemical properties of the actin cytoskeleton of the oocyte cortex. After the resumption of the meiotic cycle of the oocyte triggered by the hormone 1-methyladenine, the maturing oocyte reaches fertilizable conditions to be stimulated by only one sperm with a normal Ca2+ response and cortical reaction. This cytoplasmic ripening of the oocyte, resulting in normal fertilization and development, is due to the remodeling of the cortical actin cytoskeleton and germinal vesicle breakdown (GVBD). Since disulfide-reducing agents such as dithiothreitol (DTT) are known to induce the maturation and GVBD of oocytes in many species of starfish, we analyzed the pattern of the fertilization response displayed by Astropecten aranciacus oocytes pre-exposed to DTT with or without 1-MA stimulation. Short treatment of A. aranciacus immature oocytes with DTT reduced the rate of polyspermic fertilization and altered the sperm-induced Ca2+ response by changing the morphology of microvilli, cortical granules, and biochemical properties of the cortical F-actin. At variance with 1-MA, the DTT treatment of immature starfish oocytes for 70 min did not induce GVBD. On the other hand, the DTT treatment caused an alteration in microvilli morphology and a drastic depolymerization of the cortical F-actin, which impaired the sperm-induced Ca2+ response at fertilization and the subsequent embryonic development.
Collapse
Affiliation(s)
- Nunzia Limatola
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| | - Jong Tai Chun
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy;
| | - Kazuyoshi Chiba
- Department of Biological Sciences, Ochanomizu University, Tokyo 112-8610, Japan;
| | - Luigia Santella
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| |
Collapse
|
4
|
Beldarrain LR, Sentandreu E, Aldai N, Sentandreu MÁ, Miller I. Application of 2-D DIGE to study the effect of ageing on horse meat myofibrillar sub-proteome. J Proteomics 2023; 272:104770. [PMID: 36455832 DOI: 10.1016/j.jprot.2022.104770] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/21/2022] [Accepted: 10/31/2022] [Indexed: 11/30/2022]
Abstract
Considering the high relevance of meat tenderness for consumer acceptability, the aim of this study was to investigate post-mortem changes in myofibrillar sub-proteome in steaks from longissimus thoracis et lumborum muscle of six Hispano-Bretón horses. Indeed, the ageing process that leads to meat tenderization has been scarcely studied in this species. Steaks (n = 24) were aged (4 °C) in the dark under vacuum for 0, 7, 14 and 21 days and the myofibrillar sub-proteome was extracted. Using 2-D DIGE minimal labelling, 35 spots that were differentially abundant between 0 and 21 days aged meat were detected. Of them, 24 were analysed by LC-MS/MS, identifying a total of 29 equine proteins. These were structural and metabolic proteins, and among them, four (Actin, Troponin T and Myosin binding proteins 1 and 2) were selected for Western blot analysis, reporting changes in their abundance after 0, 7, 14 and 21 days of ageing. Results revealed that they should be further studied as potential protein biomarkers of horse meat tenderization. Additionally, several protein fragments increased after ageing, as was the case of glyceraldehyde-3-phosphate dehydrogenase. Fragments of this protein were present in four protein spots, and their study could be useful for monitoring horse meat tenderization. SIGNIFICANCE: Tenderization during ageing has been widely studied in meat from several farm animal species; however, both research and standardized ageing practices are lacking for the particular case of horse meat. In this regard, this study presents novel proteomic findings related to post-mortem evolution of horse muscle proteins. Acquired knowledge would support the development and optimization of efficient ageing practices by horse meat industry.
Collapse
Affiliation(s)
- Lorea R Beldarrain
- Lactiker Research Group, Department of Pharmacy & Food Sciences, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain.; Instituto de Agroquímica y Tecnología de Alimentos (CSIC), 46980 Paterna, Spain
| | - Enrique Sentandreu
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), 46980 Paterna, Spain
| | - Noelia Aldai
- Lactiker Research Group, Department of Pharmacy & Food Sciences, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | | | - Ingrid Miller
- Institute of Medical Biochemistry, University of Veterinary Medicine Vienna, 1210 Wien, Austria.
| |
Collapse
|
5
|
Alva E, George A, Brancaleon L, Marucho M. Hydrodynamic and Polyelectrolyte Properties of Actin Filaments: Theory and Experiments. Polymers (Basel) 2022; 14:polym14122438. [PMID: 35746014 PMCID: PMC9230757 DOI: 10.3390/polym14122438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/07/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022] Open
Abstract
Actin filament’s polyelectrolyte and hydrodynamic properties, their interactions with the biological environment, and external force fields play an essential role in their biological activities in eukaryotic cellular processes. In this article, we introduce a unique approach that combines dynamics and electrophoresis light-scattering experiments, an extended semiflexible worm-like chain model, and an asymmetric polymer length distribution theory to characterize the polyelectrolyte and hydrodynamic properties of actin filaments in aqueous electrolyte solutions. A fitting approach was used to optimize the theories and filament models for hydrodynamic conditions. We used the same sample and experimental conditions and considered several g-actin and polymerization buffers to elucidate the impact of their chemical composition, reducing agents, pH values, and ionic strengths on the filament translational diffusion coefficient, electrophoretic mobility, structure factor, asymmetric length distribution, effective filament diameter, electric charge, zeta potential, and semiflexibility. Compared to those values obtained from molecular structure models, our results revealed a lower value of the effective G-actin charge and a more significant value of the effective filament diameter due to the formation of the double layer of the electrolyte surrounding the filaments. Contrary to the data usually reported from electron micrographs, the lower values of our results for the persistence length and average contour filament length agree with the significant difference in the association rates at the filament ends that shift to sub-micro lengths, which is the maximum of the length distribution.
Collapse
|
6
|
Rouyère C, Serrano T, Frémont S, Echard A. Oxidation and reduction of actin: Origin, impact in vitro and functional consequences in vivo. Eur J Cell Biol 2022; 101:151249. [PMID: 35716426 DOI: 10.1016/j.ejcb.2022.151249] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/13/2022] [Accepted: 06/06/2022] [Indexed: 11/15/2022] Open
Abstract
Actin is among the most abundant proteins in eukaryotic cells and assembles into dynamic filamentous networks regulated by many actin binding proteins. The actin cytoskeleton must be finely tuned, both in space and time, to fulfill key cellular functions such as cell division, cell shape changes, phagocytosis and cell migration. While actin oxidation by reactive oxygen species (ROS) at non-physiological levels are known for long to impact on actin polymerization and on the cellular actin cytoskeleton, growing evidence shows that direct and reversible oxidation/reduction of specific actin amino acids plays an important and physiological role in regulating the actin cytoskeleton. In this review, we describe which actin amino acid residues can be selectively oxidized and reduced in many different ways (e.g. disulfide bond formation, glutathionylation, carbonylation, nitration, nitrosylation and other oxidations), the cellular enzymes at the origin of these post-translational modifications, and the impact of actin redox modifications both in vitro and in vivo. We show that the regulated balance of oxidation and reduction of key actin amino acid residues contributes to the control of actin filament polymerization and disassembly at the subcellular scale and highlight how improper redox modifications of actin can lead to pathological conditions.
Collapse
Affiliation(s)
- Clémentine Rouyère
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Membrane Traffic and Cell Division Unit, 25-28 rue du Dr Roux, F-75015 Paris, France; Sorbonne Université, Collège Doctoral, F-75005 Paris, France
| | - Thomas Serrano
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Membrane Traffic and Cell Division Unit, 25-28 rue du Dr Roux, F-75015 Paris, France
| | - Stéphane Frémont
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Membrane Traffic and Cell Division Unit, 25-28 rue du Dr Roux, F-75015 Paris, France
| | - Arnaud Echard
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Membrane Traffic and Cell Division Unit, 25-28 rue du Dr Roux, F-75015 Paris, France.
| |
Collapse
|
7
|
Limatola N, Chun JT, Cherraben S, Schmitt JL, Lehn JM, Santella L. Effects of Dithiothreitol on Fertilization and Early Development in Sea Urchin. Cells 2021; 10:3573. [PMID: 34944081 PMCID: PMC8700669 DOI: 10.3390/cells10123573] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/11/2021] [Accepted: 12/15/2021] [Indexed: 01/20/2023] Open
Abstract
The vitelline layer (VL) of a sea urchin egg is an intricate meshwork of glycoproteins that intimately ensheathes the plasma membrane. During fertilization, the VL plays important roles. Firstly, the receptors for sperm reside on the VL. Secondly, following cortical granule exocytosis, the VL is elevated and transformed into the fertilization envelope (FE), owing to the assembly and crosslinking of the extruded materials. As these two crucial stages involve the VL, its alteration was expected to affect the fertilization process. In the present study, we addressed this question by mildly treating the eggs with a reducing agent, dithiothreitol (DTT). A brief pretreatment with DTT resulted in partial disruption of the VL, as judged by electron microscopy and by a novel fluorescent polyamine probe that selectively labelled the VL. The DTT-pretreated eggs did not elevate the FE but were mostly monospermic at fertilization. These eggs also manifested certain anomalies at fertilization: (i) compromised Ca2+ signaling, (ii) blocked translocation of cortical actin filaments, and (iii) impaired cleavage. Some of these phenotypic changes were reversed by restoring the DTT-exposed eggs in normal seawater prior to fertilization. Our findings suggest that the FE is not the decisive factor preventing polyspermy and that the integrity of the VL is nonetheless crucial to the egg's fertilization response.
Collapse
Affiliation(s)
- Nunzia Limatola
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy;
| | - Jong Tai Chun
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| | - Sawsen Cherraben
- Laboratory of Supramolecular Chemistry, Institut de Science et d’Ingénierie Supramoléculaires ISIS—Université de Strasbourg, 8 allée Gaspard Monge, 67000 Strasbourg, France; (S.C.); (J.-L.S.); (J.-M.L.)
| | - Jean-Louis Schmitt
- Laboratory of Supramolecular Chemistry, Institut de Science et d’Ingénierie Supramoléculaires ISIS—Université de Strasbourg, 8 allée Gaspard Monge, 67000 Strasbourg, France; (S.C.); (J.-L.S.); (J.-M.L.)
| | - Jean-Marie Lehn
- Laboratory of Supramolecular Chemistry, Institut de Science et d’Ingénierie Supramoléculaires ISIS—Université de Strasbourg, 8 allée Gaspard Monge, 67000 Strasbourg, France; (S.C.); (J.-L.S.); (J.-M.L.)
| | - Luigia Santella
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy;
| |
Collapse
|
8
|
Balta E, Kramer J, Samstag Y. Redox Regulation of the Actin Cytoskeleton in Cell Migration and Adhesion: On the Way to a Spatiotemporal View. Front Cell Dev Biol 2021; 8:618261. [PMID: 33585453 PMCID: PMC7875868 DOI: 10.3389/fcell.2020.618261] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
The actin cytoskeleton of eukaryotic cells is a dynamic, fibrous network that is regulated by the concerted action of actin-binding proteins (ABPs). In particular, rapid polarization of cells in response to internal and external stimuli is fundamental to cell migration and invasion. Various isoforms of ABPs in different tissues equip cells with variable degrees of migratory and adhesive capacities. In addition, regulation of ABPs by posttranslational modifications (PTM) is pivotal to the rapid responsiveness of cells. In this context, phosphorylation of ABPs and its functional consequences have been studied extensively. However, the study of reduction/oxidation (redox) modifications of oxidation-sensitive cysteine and methionine residues of actin, ABPs, adhesion molecules, and signaling proteins regulating actin cytoskeletal dynamics has only recently emerged as a field. The relevance of such protein oxidations to cellular physiology and pathophysiology has remained largely elusive. Importantly, studying protein oxidation spatiotemporally can provide novel insights into localized redox regulation of cellular functions. In this review, we focus on the redox regulation of the actin cytoskeleton, its challenges, and recently developed tools to study its physiological and pathophysiological consequences.
Collapse
Affiliation(s)
- Emre Balta
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Johanna Kramer
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| | - Yvonne Samstag
- Section Molecular Immunology, Institute of Immunology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
9
|
Hegde S, Poojary KK, Rasquinha R, Crasta DN, Gopalan D, Mutalik S, Siddiqui S, Adiga SK, Kalthur G. Epigallocatechin-3-gallate (EGCG) protects the oocytes from methyl parathion-induced cytoplasmic deformities by suppressing oxidative and endoplasmic reticulum stress. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 167:104588. [PMID: 32527428 DOI: 10.1016/j.pestbp.2020.104588] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/21/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Methyl parathion (MP) is a commonly used organophosphorus insecticide in commercial farming. It is well known that MP exposure can affect the function of nervous, respiratory, cardiovascular and reproductive systems. In our previous report we have demonstrated that MP exposure results in poor oocyte maturation and defective embryo development which is mainly mediated through oxidative stress. The present investigation was designed to explore whether using a potent free radical scavenger like Epigallocatechin-3-gallate (EGCG) can help in reducing the detrimental effects of MP on the oocytes. For the study, germinal vesicle (GV) stage oocytes collected from the ovaries of adult Swiss albino mice were subjected to in vitro maturation (IVM) in the presence or absence of MP (100 μg/mL) and/or EGCG (0.25 μM). MP significantly reduced the nuclear maturation rate, and resulted in poor cytoplasmic organization which was evident from the altered distribution pattern of mitochondria, endoplasmic reticulum and abnormal spindle organization. These changes were associated with significant elevation in oxidative stress and expression of ER stress markers such as 78 kDa Glucose regulated protein (GRP78) as well as X-box binding protein-1 (XBP1) in the oocytes. Further, the oocytes exposed to MP had lower activation rate and developmental potential. Supplementation of EGCG during IVM not only improved the nuclear maturation rate but also reduced the cytoplasmic abnormalities. These beneficial effects appear to be due to mitigation of oxidative and ER stress in oocytes. In conclusion, results of our study indicate that EGCG can help in alleviating MP-induced oocyte abnormalities.
Collapse
Affiliation(s)
- Shweta Hegde
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Keerthana Karunakar Poojary
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Rhea Rasquinha
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Daphne Norma Crasta
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Divya Gopalan
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sazada Siddiqui
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Satish Kumar Adiga
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Guruprasad Kalthur
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
10
|
Wilson C, Terman JR, González-Billault C, Ahmed G. Actin filaments-A target for redox regulation. Cytoskeleton (Hoboken) 2016; 73:577-595. [PMID: 27309342 DOI: 10.1002/cm.21315] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/03/2016] [Accepted: 06/13/2016] [Indexed: 12/21/2022]
Abstract
Actin and its ability to polymerize into dynamic filaments is critical for the form and function of cells throughout the body. While multiple proteins have been characterized as affecting actin dynamics through noncovalent means, actin and its protein regulators are also susceptible to covalent modifications of their amino acid residues. In this regard, oxidation-reduction (Redox) intermediates have emerged as key modulators of the actin cytoskeleton with multiple different effects on cellular form and function. Here, we review work implicating Redox intermediates in post-translationally altering actin and discuss what is known regarding how these alterations affect the properties of actin. We also focus on two of the best characterized enzymatic sources of these Redox intermediates-the NADPH oxidase NOX and the flavoprotein monooxygenase MICAL-and detail how they have both been identified as altering actin, but share little similarity and employ different means to regulate actin dynamics. Finally, we discuss the role of these enzymes and redox signaling in regulating the actin cytoskeleton in vivo and highlight their importance for neuronal form and function in health and disease. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Carlos Wilson
- Department of Biology, Faculty of Sciences, Universidad De Chile, Las Palmeras 3425, Santiago, 7800024, Chile.,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Jonathan R Terman
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390. .,Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390.
| | - Christian González-Billault
- Department of Biology, Faculty of Sciences, Universidad De Chile, Las Palmeras 3425, Santiago, 7800024, Chile. .,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile. .,The Buck Institute for Research on Aging, Novato, California 94945.
| | - Giasuddin Ahmed
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390.,Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390
| |
Collapse
|
11
|
Silván U, Hyotyla J, Mannherz HG, Ringler P, Müller SA, Aebi U, Maier T, Schoenenberger CA. Contributions of the lower dimer to supramolecular actin patterning revealed by TIRF microscopy. J Struct Biol 2016; 195:159-166. [PMID: 27189866 DOI: 10.1016/j.jsb.2016.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/13/2016] [Accepted: 05/14/2016] [Indexed: 11/25/2022]
Abstract
Two distinct dimers are formed during the initial steps of actin polymerization. The first one, referred to as the 'lower dimer' (LD) was discovered many years ago by means of chemical crosslinking. Owing to its transient nature, a biological relevance had long been precluded when, using LD-specific antibodies, we detected LD-like contacts in actin assemblies that are associated with the endolysosomal compartment in a number of different cell lines. Moreover, immunofluorescence showed the presence of LD-related structures at the cell periphery of migrating fibroblasts, in the nucleus, and in association with the centrosome of interphase cells. Here, we explore contributions of the LD to the assembly of supramolecular actin structures in real time by total internal reflection fluorescence (TIRF) microscopy. Our data shows that while LD on its own cannot polymerize under filament forming conditions, it is able to incorporate into growing F-actin filaments. This incorporation of LD triggers the formation of X-shaped filament assemblies with barbed ends that are pointing in the same direction in the majority of cases. Similarly, an increased frequency of junction sites was observed when filaments were assembled in the presence of oxidized actin. This data suggests that a disulfide bridge between Cys374 residues might stabilize LD-contacts. Based on our findings, we propose two possible models for the molecular mechanism underlying the supramolecular actin patterning in LD-related structures.
Collapse
Affiliation(s)
- Unai Silván
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Janne Hyotyla
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Hans-Georg Mannherz
- Department of Anatomy and Molecular Embryology, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - Philippe Ringler
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Shirley A Müller
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Ueli Aebi
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Timm Maier
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | |
Collapse
|
12
|
Tang JX. Measurements of fluid viscosity using a miniature ball drop device. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2016; 87:054301. [PMID: 27250443 DOI: 10.1063/1.4948314] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This paper describes measurement of fluid viscosity using a small ball drop device. It requires as little as 100 μl of fluid. Each measurement can be performed in seconds. The experiment is designed to yield reliable viscosity values by operating at properly chosen tilt angles and with calibration using well-characterized Newtonian fluids such as mixtures of glycerol and water. It also yields dynamical viscosity of non-Newtonian fluids at moderate shear rates. The device is easy to assemble and it allows for the measurement of viscosity even when the fluid samples are too small to measure using most commercial viscometers or rheometers. Therefore, the technique is particularly useful in characterizing biological fluids such as solutions of proteins, DNA, and polymers frequently used in biomaterial applications.
Collapse
Affiliation(s)
- Jay X Tang
- Physics Department, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
13
|
Trendowski M. Using cytochalasins to improve current chemotherapeutic approaches. Anticancer Agents Med Chem 2015; 15:327-35. [PMID: 25322987 PMCID: PMC4485394 DOI: 10.2174/1871520614666141016164335] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 09/23/2014] [Accepted: 09/26/2014] [Indexed: 01/26/2023]
Abstract
Although the amount of progress cancer therapy has made in recent years is commendable, considerable limitations still remain. Most agents preferentially target rapidly proliferating cells, thereby destroying tumorigenic growths. Unfortunately, there are many labile cells in the patient that are also rapidly dividing, ultimately perpetuating significant side effects, including immunosuppression. Cytochalasins are microfilament-directed agents most commonly known for their use in basic research to understand cytoskeletal mechanisms. However, such agents also exhibit profound anticancer activity, as indicated by numerous in vitro and in vivo studies. Cytochalasins appear to preferentially damage malignant cells, as shown by their minimal effects on normal epithelial and immune cells. Further, cytochalasins influence the end stages of mitosis, suggesting that such agents could be combined with microtubule-directed agents to elicit a profound synergistic effect on malignant cells. Therefore, it is likely that cytochalasins could be used to supplement current chemotherapeutic measures to improve efficacy rates, as well as decrease the prevalence of drug resistance in the clinical setting.
Collapse
Affiliation(s)
- Matthew Trendowski
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244, USA.
| |
Collapse
|
14
|
Tsai FC, Koenderink GH. Shape control of lipid bilayer membranes by confined actin bundles. SOFT MATTER 2015; 11:8834-8847. [PMID: 26395896 DOI: 10.1039/c5sm01583a] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In living cells, lipid membranes and biopolymers determine each other's conformation in a delicate force balance. Cellular polymers such as actin filaments are strongly confined by the plasma membrane in cell protrusions such as lamellipodia and filopodia. Conversely, protrusion formation is facilitated by actin-driven membrane deformation and these protrusions are maintained by dense actin networks or bundles of actin filaments. Here we investigate the mechanical interplay between actin bundles and lipid bilayer membranes by reconstituting a minimal model system based on cell-sized liposomes with encapsulated actin filaments bundled by fascin. To address the competition between the deformability of the membrane and the enclosed actin bundles, we tune the bundle stiffness (through the fascin-to-actin molar ratio) and the membrane rigidity (through protein decoration). Using confocal microscopy and quantitative image analysis, we show that actin bundles deform the liposomes into a rich set of morphologies. For liposomes having a small membrane bending rigidity, the actin bundles tend to generate finger-like membrane protrusions that resemble cellular filopodia. Stiffer bundles formed at high crosslink density stay straight in the liposome body, whereas softer bundles formed at low crosslink density are bent and kinked. When the membrane has a large bending rigidity, membrane protrusions are suppressed. In this case, membrane enclosure forces the actin bundles to organize into cortical rings, to minimize the energy cost associated with filament bending. Our results highlight the importance of taking into account mechanical interactions between the actin cytoskeleton and the membrane to understand cell shape control.
Collapse
Affiliation(s)
- Feng-Ching Tsai
- FOM Institute AMOLF, Systems Biophysics Department, Science Park 104, 1098 XG Amsterdam, The Netherlands.
| | - Gijsje Hendrika Koenderink
- FOM Institute AMOLF, Systems Biophysics Department, Science Park 104, 1098 XG Amsterdam, The Netherlands.
| |
Collapse
|
15
|
Maier T, Haraszti T. Reversibility and Viscoelastic Properties of Micropillar Supported and Oriented Magnesium Bundled F-Actin. PLoS One 2015; 10:e0136432. [PMID: 26322783 PMCID: PMC4556452 DOI: 10.1371/journal.pone.0136432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 08/04/2015] [Indexed: 11/19/2022] Open
Abstract
Filamentous actin is one of the most important cytoskeletal elements. Not only is it responsible for the elastic properties of many cell types, but it also plays a vital role in cellular adhesion and motility. Understanding the bundling kinetics of actin filaments is important in the formation of various cytoskeletal structures, such as filopodia and stress fibers. Utilizing a unique pillar-structured microfluidic device, we investigated the time dependence of bundling kinetics of pillar supported free-standing actin filaments. Microparticles attached to the filaments allowed the measurement of thermal motion, and we found that bundling takes place at lower concentrations than previously found in 3-dimensional actin gels, i.e. actin filaments formed bundles in the presence of 5-12 mM of magnesium chloride in a time-dependent manner. The filaments also displayed long term stability for up to hours after removing the magnesium ions from the buffer, which suggests that there is an extensive hysteresis between cation induced crosslinking and decrosslinking.
Collapse
Affiliation(s)
- Timo Maier
- Max Planck Institute for Intelligent Systems, Department of New Materials and Biosystems, Heisenberg str. 3, D-70569 Stuttgart, Germany
- University of Heidelberg, Institute of Physical Chemistry, Department of Biophysical Chemistry, Im Neuenheimer Feld 253, D-69120 Heidelberg, Germany
| | - Tamás Haraszti
- Max Planck Institute for Intelligent Systems, Department of New Materials and Biosystems, Heisenberg str. 3, D-70569 Stuttgart, Germany
- University of Heidelberg, Institute of Physical Chemistry, Department of Biophysical Chemistry, Im Neuenheimer Feld 253, D-69120 Heidelberg, Germany
| |
Collapse
|
16
|
Abstract
The actin-myosin cytoskeleton allows cells to move, change shape, and exert forces. These fascinating functions involve active contraction of cross-linked networks of actin filaments by myosin II motor proteins. Unlike muscle cells, where actin and myosin form ordered bundles that contract homogeneously, nonmuscle cells have a variety of more disordered types of actin-myosin meshworks. Active gels reconstituted from purified actin and myosin proteins offer a useful in vitro model system to systematically and quantitatively investigate the mechanisms of contraction and the role of physical parameters like motor activity and network connectivity. In order to quantify the effect of these physical parameters on contraction, time-lapse microscopy combined with quantitative image analysis is required. Here we describe an assay that we developed specifically to record contraction events of entire biomimetic active gels in contraction chambers, which enables one to systematically quantify the dependence of contraction time and length scales on experimental parameters such as protein concentrations, adenosine triphosphate concentration, ionic strength, and surface adhesion.
Collapse
|
17
|
Gellert M, Hanschmann EM, Lepka K, Berndt C, Lillig CH. Redox regulation of cytoskeletal dynamics during differentiation and de-differentiation. Biochim Biophys Acta Gen Subj 2014; 1850:1575-87. [PMID: 25450486 DOI: 10.1016/j.bbagen.2014.10.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/24/2014] [Accepted: 10/27/2014] [Indexed: 01/03/2023]
Abstract
BACKGROUND The cytoskeleton, unlike the bony vertebrate skeleton or the exoskeleton of invertebrates, is a highly dynamic meshwork of protein filaments that spans through the cytosol of eukaryotic cells. Especially actin filaments and microtubuli do not only provide structure and points of attachments, but they also shape cells, they are the basis for intracellular transport and distribution, all types of cell movement, and--through specific junctions and points of adhesion--join cells together to form tissues, organs, and organisms. SCOPE OF REVIEW The fine tuned regulation of cytoskeletal dynamics is thus indispensible for cell differentiation and all developmental processes. Here, we discussed redox signalling mechanisms that control this dynamic remodeling. Foremost, we emphasised recent discoveries that demonstrated reversible thiol and methionyl switches in the regulation of actin dynamics. MAJOR CONCLUSIONS Thiol and methionyl switches play an essential role in the regulation of cytoskeletal dynamics. GENERAL SIGNIFICANCE The dynamic remodeling of the cytoskeleton is controlled by various redox switches. These mechanisms are indispensible during development and organogenesis and might contribute to numerous pathological conditions. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation.
Collapse
Affiliation(s)
- Manuela Gellert
- Institut für Biochemie und Molekularbiologie, Universitätsmedizin Greifswald, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | - Eva-Maria Hanschmann
- Institut für Biochemie und Molekularbiologie, Universitätsmedizin Greifswald, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | - Klaudia Lepka
- Klinik für Neurologie, Medizinische Fakultät, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Carsten Berndt
- Klinik für Neurologie, Medizinische Fakultät, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Christopher Horst Lillig
- Institut für Biochemie und Molekularbiologie, Universitätsmedizin Greifswald, Ernst-Moritz-Arndt-Universität, Greifswald, Germany.
| |
Collapse
|
18
|
Sobierajska K, Skurzynski S, Stasiak M, Kryczka J, Cierniewski CS, Swiatkowska M. Protein disulfide isomerase directly interacts with β-actin Cys374 and regulates cytoskeleton reorganization. J Biol Chem 2014; 289:5758-73. [PMID: 24415753 DOI: 10.1074/jbc.m113.479477] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Recent studies support the role of cysteine oxidation in actin cytoskeleton reorganization during cell adhesion. The aim of this study was to explain whether protein disulfide isomerase (PDI) is responsible for the thiol-disulfide rearrangement in the β-actin molecule of adhering cells. First, we showed that PDI forms a disulfide-bonded complex with β-actin with a molecular mass of 110 kDa. Specific interaction of both proteins was demonstrated by a solid phase binding assay, surface plasmon resonance analysis, and immunoprecipitation experiments. Second, using confocal microscopy, we found that both proteins colocalized when spreading MEG-01 cells on fibronectin. Colocalization of PDI and β-actin could be abolished by the membrane-permeable sulfhydryl blocker, N-ethylmaleimide, by the RGD peptide, and by anti-αIIbβ3 antibodies. Consequently, down-regulation of PDI expression by antisense oligonucleotides impaired the spreading of cells and initiated reorganization of the cytoskeleton. Third, because of transfection experiments followed by immunoprecipitation and confocal analysis, we provided evidence that PDI binds to the β-actin Cys(374) thiol. Formation of the β-actin-PDI complex was mediated by integrin-dependent signaling in response to the adhesion of cells to the extracellular matrix. Our data suggest that PDI is released from subcellular compartments to the cytosol and translocated toward the periphery of the cell, where it forms a disulfide bond with β-actin when MEG-01 cells adhere via the αIIbβ3 integrin to fibronectin. Thus, PDI appears to regulate cytoskeletal reorganization by the thiol-disulfide exchange in β-actin via a redox-dependent mechanism.
Collapse
Affiliation(s)
- Katarzyna Sobierajska
- From the Department of Molecular and Medical Biophysics, Medical University of Lodz, 92-215 Lodz, Poland and
| | | | | | | | | | | |
Collapse
|
19
|
Lallana E, Tirelli N. Oxidation-Responsive Polymers: Which Groups to Use, How to Make Them, What to Expect From Them (Biomedical Applications). MACROMOL CHEM PHYS 2012. [DOI: 10.1002/macp.201200502] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Li G, Brown PJB, Tang JX, Xu J, Quardokus EM, Fuqua C, Brun YV. Surface contact stimulates the just-in-time deployment of bacterial adhesins. Mol Microbiol 2011; 83:41-51. [PMID: 22053824 DOI: 10.1111/j.1365-2958.2011.07909.x] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The attachment of bacteria to surfaces provides advantages such as increasing nutrient access and resistance to environmental stress. Attachment begins with a reversible phase, often mediated by surface structures such as flagella and pili, followed by a transition to irreversible attachment, typically mediated by polysaccharides. Here we show that the interplay between pili and flagellum rotation stimulates the rapid transition between reversible and polysaccharide-mediated irreversible attachment. We found that reversible attachment of Caulobacter crescentus cells is mediated by motile cells bearing pili and that their contact with a surface results in the rapid pili-dependent arrest of flagellum rotation and concurrent stimulation of polar holdfast adhesive polysaccharide. Similar stimulation of polar adhesin production by surface contact occurs in Asticcacaulis biprosthecum and Agrobacterium tumefaciens. Therefore, single bacterial cells respond to their initial contact with surfaces by triggering just-in-time adhesin production. This mechanism restricts stable attachment to intimate surface interactions, thereby maximizing surface attachment, discouraging non-productive self-adherence, and preventing curing of the adhesive.
Collapse
Affiliation(s)
- Guanglai Li
- Physics Department, Brown University, Providence, RI 02912, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Hung RJ, Terman JR. Extracellular inhibitors, repellents, and semaphorin/plexin/MICAL-mediated actin filament disassembly. Cytoskeleton (Hoboken) 2011; 68:415-33. [PMID: 21800438 PMCID: PMC3612987 DOI: 10.1002/cm.20527] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Accepted: 07/21/2011] [Indexed: 01/29/2023]
Abstract
Multiple extracellular signals have been identified that regulate actin dynamics within motile cells, but how these instructive cues present on the cell surface exert their precise effects on the internal actin cytoskeleton is still poorly understood. One particularly interesting class of these cues is a group of extracellular proteins that negatively alter the movement of cells and their processes. Over the years, these types of events have been described using a variety of terms and herein we provide an overview of inhibitory/repulsive cellular phenomena and highlight the largest known protein family of repulsive extracellular cues, the Semaphorins. Specifically, the Semaphorins (Semas) utilize Plexin cell-surface receptors to dramatically collapse the actin cytoskeleton and we summarize what is known of the direct molecular and biochemical mechanisms of Sema-triggered actin filament (F-actin) disassembly. We also discuss new observations from our lab that reveal that the multidomain oxidoreductase (Redox) enzyme Molecule Interacting with CasL (MICAL), an important mediator of Sema/Plexin repulsion, is a novel F-actin disassembly factor. Our results indicate that MICAL triggers Sema/Plexin-mediated reorganization of the F-actin cytoskeleton and suggest a role for specific Redox signaling events in regulating actin dynamics.
Collapse
Affiliation(s)
- Ruei-Jiun Hung
- Departments of Neuroscience and Pharmacology, and Neuroscience Graduate Program, Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jonathan R. Terman
- Departments of Neuroscience and Pharmacology, and Neuroscience Graduate Program, Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
22
|
Amberg D, Leadsham JE, Kotiadis V, Gourlay CW. Cellular ageing and the actin cytoskeleton. Subcell Biochem 2011; 57:331-52. [PMID: 22094429 DOI: 10.1007/978-94-007-2561-4_15] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
For some time the view that the actin cytoskeleton acts primarily as a scaffold, to be assembled in response to a signaling cascade as an end point in the pathway, has prevailed. However, it is now clear that the dynamic nature of the cytoskeleton is linked to downstream signaling events that further modulate cellular activity, and which can determine cell fate. Examples of this lie within the regulation of programmed cell death, the maintenance of homeostasis and the process of cellular ageing. In yeast the actin cytoskeleton has been shown to interact directly with signaling pathways known to be important in the regulation of both ageing and cell death. For example it has been discovered that the level of damage sustained by the actin cytoskeleton under conditions of oxidative stressoxidative stress is directly linked to apoptosis. Further evidence comes from the finding that actin based propulsion mechanisms are required for the inheritance of mitochondria and anti-ageing factors into newly formed cells. In addition to this actin is known to directly influence the formation of protein aggregations. In this chapter we will discuss these points and postulate as to their significance with respect to the maintenance of cellular homeostasis.
Collapse
Affiliation(s)
- David Amberg
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA,
| | | | | | | |
Collapse
|
23
|
Mechanical properties of cells and ageing. Ageing Res Rev 2011; 10:16-25. [PMID: 19897057 DOI: 10.1016/j.arr.2009.10.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 10/21/2009] [Accepted: 10/28/2009] [Indexed: 11/23/2022]
Abstract
Mechanical properties are fundamental properties of the cells and tissues of living organisms. The mechanical properties of a single cell as a biocomposite are determined by the interdependent combination of cellular components mechanical properties. Quantitative estimate of the cell mechanical properties depends on a cell state, method of measurement, and used theoretical model. Predominant tendency for the majority of cells with ageing is an increase of cell stiffness and a decrease of cell ability to undergo reversible large deformations. The mechanical signal transduction in old cells becomes less effective than that in young cells, and with ageing, the cells lose the ability of the rapid functional rearrangements of cellular skeleton. The article reviews the theoretical and experimental facts touching the age-related changes of the mechanical properties of cellular components and cells in the certain systems of an organism (the blood, the vascular system, the musculoskeletal system, the lens, and the epithelium). In fact, the cell mechanical parameters (including elastic modulii) can be useful as specific markers of cell ageing.
Collapse
|
24
|
Abstract
Vascular smooth muscle cell migration is important during vascular development and contributes to lesion formation in the adult vasculature. The mechanisms regulating migration of this cell type are therefore of great interest. Recent work has shown that reactive oxygen species (ROS) derived from NADPH oxidases are important mediators of promigratory signaling pathways. ROS regulate the intracellular signals responsible for lamellipodia formation, actin cytoskeleton remodeling, focal adhesion turnover, and contraction of the cell body. In addition, they contribute to matrix remodeling, a critical step to initiate and support vascular smooth muscle cell motility. Despite these recent advances in our understanding of the redox mechanisms that contribute to migration, additional work is needed to evaluate fully the potential of ROS-sensitive molecular signals as therapeutic targets to prevent inappropriate smooth muscle cell migration.
Collapse
|
25
|
Vikhoreva NN, Vikhorev PG, Fedorova MA, Hoffmann R, Månsson A, Kuleva NV. The in vitro motility assay parameters of actin filaments from Mytilus edulis exposed in vivo to copper ions. Arch Biochem Biophys 2009; 491:32-8. [DOI: 10.1016/j.abb.2009.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 09/22/2009] [Accepted: 09/24/2009] [Indexed: 11/26/2022]
|
26
|
Kang H, Carlsson AE, Tang JX. Kinetic overshoot in actin network assembly induced jointly by branching and capping proteins. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 80:041913. [PMID: 19905348 DOI: 10.1103/physreve.80.041913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Indexed: 05/28/2023]
Abstract
We report an experimental study of the kinetics of actin assembly mediated by branching and capping proteins. Our findings confirm the recent prediction of a "branching explosion" occurring during polymerization. Fluorescence imaging shows a number of actin filaments with branches within a few minutes of polymerization, induced by the activated branching protein complex Arp2/3, but the number of visible branches decreases over time. The light-scattering intensity displays an overshoot as a function of time, which we attribute to the formation of highly branched clusters early in polymerization. Furthermore, the overshoot occurs over a limited range of the ratio of concentrations of branching and capping proteins, also consistent with the theoretical model. These results establish a natural link between the kinetic theory of actin assembly in vitro and the cytoskeletal structure and actin dynamics in motile cells.
Collapse
Affiliation(s)
- Hyeran Kang
- Physics Department, Brown University, Providence, Rhode Island 02912, USA
| | | | | |
Collapse
|
27
|
Lassing I, Schmitzberger F, Björnstedt M, Holmgren A, Nordlund P, Schutt CE, Lindberg U. Molecular and structural basis for redox regulation of beta-actin. J Mol Biol 2007; 370:331-48. [PMID: 17521670 DOI: 10.1016/j.jmb.2007.04.056] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Revised: 04/18/2007] [Accepted: 04/18/2007] [Indexed: 12/20/2022]
Abstract
An essential consequence of growth factor-mediated signal transduction is the generation of intracellular H(2)O(2). It operates as a second messenger in the control of actin microfilament dynamics, causing rapid and dramatic changes in the morphology and motile activity of stimulated cells. Little is understood about the molecular mechanisms causing these changes in the actin system. Here, it is shown that H(2)O(2) acts directly upon several levels of this system, and some of the mechanistic effects are detailed. We describe the impact of oxidation on the polymerizability of non-muscle beta/gamma-actin and compare with that of muscle alpha-actin. Oxidation of beta/gamma-actin can cause a complete loss of polymerizability, crucially, reversible by the thioredoxin system. Further, oxidation of the actin impedes its interaction with profilin and causes depolymerization of filamentous actin. The effects of oxidation are critically dependent on the nucleotide state and the concentration of Ca(2+). We have determined the crystal structure of oxidized beta-actin to a resolution of 2.6 A. The arrangement in the crystal implies an antiparallel homodimer connected by an intermolecular disulfide bond involving cysteine 374. Our data indicate that this dimer forms under non-polymerizing and oxidizing conditions. We identify oxidation of cysteine 272 in the crystallized actin dimer, likely to a cysteine sulfinic acid. In beta/gamma-actin, this is the cysteine residue most reactive towards H(2)O(2) in solution, and we suggest plausible structural determinants for its reactivity. No other oxidative modification was obvious in the structure, highlighting the specificity of the oxidation by H(2)O(2). Possible consequences of the observed effects in a cellular context and their potential relevance are discussed.
Collapse
Affiliation(s)
- Ingrid Lassing
- Department of Microbiology, Tumor Biology, and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
28
|
Agutter PS. Cell mechanics and stress: from molecular details to the ‘universal cell reaction’ and hormesis. Bioessays 2007; 29:324-33. [PMID: 17373655 DOI: 10.1002/bies.20550] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The 'universal cell reaction' (UCR), a coordinated biphasic response to external (noxious and other) stimuli observed in all living cells, was described by Nasonov and his colleagues in the mid-20th century. This work has received no attention from cell biologists in the West, but the UCR merits serious consideration. Although it is non-specific, it is likely to be underpinned by precise mechanisms and, if these mechanisms were characterized and their relationship to the UCR elucidated, then our understanding of the integration of cellular function could be improved. As a step towards identifying such mechanisms, I review some recent advances in understanding cell mechanics and the stress response and I suggest potentially testable hypotheses. There is a particular need for time-course studies of cellular responses to different stimulus doses or intensities. I also suggest a correspondence with hormesis; re-investigation of the UCR using modern biophysical and molecular-biological techniques might throw light on this much-discussed phenomenon.
Collapse
Affiliation(s)
- Paul S Agutter
- Theoretical and Cell Biology Consultancy, 26 Castle Hill, Glossop, Derbyshire, SK13 7RR, UK.
| |
Collapse
|
29
|
Usatyuk PV, Parinandi NL, Natarajan V. Redox regulation of 4-hydroxy-2-nonenal-mediated endothelial barrier dysfunction by focal adhesion, adherens, and tight junction proteins. J Biol Chem 2006; 281:35554-66. [PMID: 16982627 DOI: 10.1074/jbc.m607305200] [Citation(s) in RCA: 320] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
4-Hydroxy-2-nonenal (4-HNE), one of the major biologically active aldehydes formed during inflammation and oxidative stress, has been implicated in a number of cardiovascular and pulmonary disorders. 4-HNE has been shown to increase vascular endothelial permeability; however, the underlying mechanisms are unclear. Hence, in the current study, we tested our hypothesis that 4-HNE-induced changes in cellular thiol redox status may contribute to modulation of cell signaling pathways that lead to endothelial barrier dysfunction. Exposure of bovine lung microvascular endothelial cells (BLMVECs) to 4-HNE induced reactive oxygen species generation, depleted intracellular glutathione, and altered cell-cell adhesion as measured by transendothelial electrical resistance. Pretreatment of BLM-VECs with thiol protectants, N-acetylcysteine and mercaptopropionyl glycine, attenuated 4-HNE-induced decrease in transendothelial electrical resistance, reactive oxygen species generation, Michael protein adduct formation, protein tyrosine phosphorylation, activation of ERK, JNK, and p38 MAPK, and actin cytoskeletal rearrangement. Treatment of BLMVECs with 4-HNE resulted in the redistribution of FAK, paxillin, VE-cadherin, beta-catenin, and ZO-1, and intercellular gap formation. Western blot analyses confirmed the formation of 4-HNE-derived Michael adducts with the focal adhesion and adherens junction proteins. Also, 4-HNE decreased tyrosine phosphorylation of FAK without affecting total cellular FAK contents, suggesting the modification of integrins, which are natural FAK receptors. 4-HNE caused a decrease in the surface integrin in a time-dependent manner without altering total alpha5 and beta3 integrins. These results, for the first time, revealed that 4-HNE in redox-dependent fashion affected endothelial cell permeability by modulating cell-cell adhesion through focal adhesion, adherens, and tight junction proteins as well as integrin signal transduction that may lead dramatic alteration in endothelial cell barrier dysfunction during heart infarction, brain stroke, and lung diseases.
Collapse
Affiliation(s)
- Peter V Usatyuk
- Section of Pulmonary and Critical Care Medicine, Division of Biological Sciences, University of Chicago, Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
30
|
Broughton-Head VJ, Smith JR, Shur J, Shute JK. Actin limits enhancement of nanoparticle diffusion through cystic fibrosis sputum by mucolytics. Pulm Pharmacol Ther 2006; 20:708-17. [PMID: 17055310 DOI: 10.1016/j.pupt.2006.08.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Revised: 08/17/2006] [Accepted: 08/22/2006] [Indexed: 10/24/2022]
Abstract
BACKGROUND The secretions in the cystic fibrosis (CF) airways contains high concentrations of polymers, including the respiratory mucins and varying amounts of DNA and actin, the debris of an aggressive neutrophilic inflammatory response to infection. Physical and chemical interactions between these polymers contribute to the viscoelastic nature of a material that is hard to clear without the use of mucolytics. Secretions retained in the CF airway not only restrict airflow and invite infection, but also act as a barrier to the delivery of inhaled drugs and gene therapy vectors to the underlying airway epithelium. The aim of this investigation was to develop a simple, sensitive, assay to measure the diffusion of nanospheres the size of liposomal gene therapy vectors through CF sputum, and to model the polymer interactions that limit diffusion and the diffusion-enhancing activity of mucolytics. METHODS The diffusion of 200 nm fluorescent carboxylated nanospheres through CF sputum was investigated using a diffusion assay based on the micro-Boyden chamber. Atomic force microscopy (AFM) was used to visualise and measure the pore diameter in CF sputum. The effect of the mucolytics deoxyribonuclease (DNase), N-acetylcysteine and gelsolin on the diffusion of nanospheres though synthetic biogels comprising mixtures of DNA, mucin and F-actin was also investigated. RESULTS CF sputum significantly retarded the diffusion of 200 nm nanospheres. Pore diameter in CF sputum was highly variable, with a mean greater than 200 nm. At concentrations found in the CF airway, DNA (1-10 mg/ml) and mucin (25-50 mg/ml) also significantly reduced the diffusion of nanospheres. The barrier effects of DNA and mucin were not additive, and the additional presence of F-actin (5 mg/ml) did not influence diffusion of the nanospheres. However, actin (5mg/ml) completely inhibited the ability of DNase (2.9 microg/ml) and N-acetylcysteine (5 mM) to enhance diffusion. The activity of the mucolytics, DNase and N-acetylcysteine, was not restored by the addition of the actin depolymerising agent gelsolin (250nM). CONCLUSION Actin does not contribute to the barrier properties of CF sputum, but is a key determinant of the ability of mucolytics to enhance drug diffusion through synthetic and biological mucus.
Collapse
Affiliation(s)
- Victoria J Broughton-Head
- School of Pharmacy and Biomedical Sciences, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK
| | | | | | | |
Collapse
|
31
|
Sayed AA, Cook SK, Williams DL. Redox balance mechanisms in Schistosoma mansoni rely on peroxiredoxins and albumin and implicate peroxiredoxins as novel drug targets. J Biol Chem 2006; 281:17001-17010. [PMID: 16606626 DOI: 10.1074/jbc.m512601200] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Schistosoma mansoni, a causative agent of schistosomiasis, resides in the hepatic portal circulation of their human host up to 30 years without being eliminated by the host immune attack. Production of an antioxidant "firewall," which would neutralize the oxidative assault generated by host immune defenses, is one proposed survival mechanism of the parasite. Schistosomes lack catalase, the main H2O2-neutralizing enzyme of many organisms, and their glutathione peroxidases are in the phospholipid class with poor reactivity toward H2O2. Evidence implicates peroxiredoxins (Prx) as providing the main enzymatic activity to reduce H2O2 in the parasite. Quantitative monitoring of Prx mRNAs during parasite life cycle indicated that Prx proteins are differentially expressed, with highest expression occurring in adult stages (oxidative resistant stages). Incubation of schistosomula with Prx1 double-stranded RNA knocked down total Prx enzymatic activity and resulted in lowered survival of cultured parasites compared with controls demonstrating that Prx are essential parasite proteins. These results represent the first report of lethal gene silencing in Schistosoma. Investigation of downstream effects of Prx silencing revealed an abrupt increase of lipid peroxides and the generation of several oxidized proteins. Using mass spectrometry, parasite albumin and actin were identified as the main oxidized proteins. Gene expression analysis showed that schistosome albumin was induced by oxidative stress. This study highlights Prx proteins as essential parasite proteins and potential new targets for anti-schistosome drug development and albumin as a novel, sacrificial oxidant scavenging protein in parasite redox regulation.
Collapse
Affiliation(s)
- Ahmed A Sayed
- Department of Biological Sciences, Illinois State University, Normal, Illinois 61790
| | - Shawna K Cook
- Department of Biological Sciences, Illinois State University, Normal, Illinois 61790
| | - David L Williams
- Department of Biological Sciences, Illinois State University, Normal, Illinois 61790.
| |
Collapse
|
32
|
Nadella M, Bianchet MA, Gabelli SB, Barrila J, Amzel LM. Structure and activity of the axon guidance protein MICAL. Proc Natl Acad Sci U S A 2005; 102:16830-5. [PMID: 16275926 PMCID: PMC1277968 DOI: 10.1073/pnas.0504838102] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Indexed: 01/01/2023] Open
Abstract
During development, neurons are guided to their targets by short- and long-range attractive and repulsive cues. MICAL, a large multidomain protein, is required for the combined action of semaphorins and plexins in axon guidance. Here, we present the structure of the N-terminal region of MICAL (MICAL(fd)) determined by x-ray diffraction to 2.0 A resolution. The structure shows that MICAL(fd) is an FAD-containing module structurally similar to aromatic hydroxylases and amine oxidases. In addition, we present biochemical data that show that MICAL(fd) is a flavoenzyme that in the presence of NADPH reduces molecular oxygen to H(2)O(2) (K(m,NAPDH) = 222 microM; k(cat) = 77 sec(-1)), a molecule with known signaling properties. We propose that the H(2)O(2) produced by this reaction may be one of the signaling molecules involved in axon guidance by MICAL.
Collapse
Affiliation(s)
- Mythili Nadella
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
33
|
Möller W, Brown DM, Kreyling WG, Stone V. Ultrafine particles cause cytoskeletal dysfunctions in macrophages: role of intracellular calcium. Part Fibre Toxicol 2005; 2:7. [PMID: 16202162 PMCID: PMC1262770 DOI: 10.1186/1743-8977-2-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Accepted: 10/04/2005] [Indexed: 11/25/2022] Open
Abstract
Background Particulate air pollution is reported to cause adverse health effects in susceptible individuals. Since most of these particles are derived form combustion processes, the primary composition product is carbon with a very small diameter (ultrafine, less than 100 nm in diameter). Besides the induction of reactive oxygen species and inflammation, ultrafine particles (UFP) can cause intracellular calcium transients and suppression of defense mechanisms of alveolar macrophages, such as impaired migration or phagocytosis. Methods In this study the role of intracellular calcium transients caused by UFP was studied on cytoskeleton related functions in J774A.1 macrophages. Different types of fine and ultrafine carbon black particles (CB and ufCB, respectively), such as elemental carbon (EC90), commercial carbon (Printex 90), diesel particulate matter (DEP) and urban dust (UD), were investigated. Phagosome transport mechanisms and mechanical cytoskeletal integrity were studied by cytomagnetometry and cell viability was studied by fluorescence microscopy. Macrophages were exposed in vitro with 100 and 320 μg UFP/ml/million cells for 4 hours in serum free medium. Calcium antagonists Verapamil, BAPTA-AM and W-7 were used to block calcium channels in the membrane, to chelate intracellular calcium or to inhibit the calmodulin signaling pathways, respectively. Results Impaired phagosome transport and increased cytoskeletal stiffness occurred at EC90 and P90 concentrations of 100 μg/ml/million cells and above, but not with DEP or UD. Verapamil and W-7, but not BAPTA-AM inhibited the cytoskeletal dysfunctions caused by EC90 or P90. Additionally the presence of 5% serum or 1% bovine serum albumin (BSA) suppressed the cytoskeletal dysfunctions. Cell viability showed similar results, where co-culture of ufCB together with Verapamil, W-7, FCS or BSA produced less cell dead compared to the particles only.
Collapse
Affiliation(s)
- Winfried Möller
- GSF National Research Center for Environment and Health, Clinical research group 'Inflammatory Lung Diseases', Robert Koch Allee 29, D-82131 Munich-Gauting, Germany
- GSF National Research Center for Environment and Health, Institute for Inhalation Biology, and Focus Network Aerosols and Health, Ingolstädter Landstr. 1, D-85746 Neuherberg/München, Germany
| | - David M Brown
- Napier University, School of Life Sciences, Edinburgh EH10 5DT, UK
| | - Wolfgang G Kreyling
- GSF National Research Center for Environment and Health, Institute for Inhalation Biology, and Focus Network Aerosols and Health, Ingolstädter Landstr. 1, D-85746 Neuherberg/München, Germany
| | - Vicki Stone
- Napier University, School of Life Sciences, Edinburgh EH10 5DT, UK
| |
Collapse
|
34
|
Schäfer A, Radmacher M. Influence of myosin II activity on stiffness of fibroblast cells. Acta Biomater 2005; 1:273-80. [PMID: 16701806 DOI: 10.1016/j.actbio.2005.02.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2004] [Revised: 02/04/2005] [Accepted: 02/04/2005] [Indexed: 11/25/2022]
Abstract
Myosin II is responsible for establishing cytoskeleton tension within eukaryotic cells. We used an atomic force microscope to quantify the cells mechanical properties as a function of myosin activity. In two fibroblast cell lines, the elastic modulus of the cytoskeleton decrease by a factor of 3-5 regardless of location and cell type after inhibition of myosin II light chain kinase. We used two different inhibitors (BDM and ML-7) and observed the effects on two different fibroblast cell lines (3T3 and NRK). The cells stopped migration, retracted their lamellipodia, and softened by a factor of 3 in peripheral and in nuclear regions. The observed effect was concentration dependent. Application of the inhibitor at very low concentration had no effect on morphology or mechanical properties, whereas application of high concentration was usually lethal. At an intermediate range of concentrations, retraction of lamellipodia and softening of cells occurred, from which the cells recovered within an hour.
Collapse
Affiliation(s)
- Arne Schäfer
- Institut für Biophysik, Universität Bremen, Otto-Hahn Allee 1, 28359 Bremen, Germany
| | | |
Collapse
|
35
|
Felty Q, Roy D. Estrogen, mitochondria, and growth of cancer and non-cancer cells. J Carcinog 2005; 4:1. [PMID: 15651993 PMCID: PMC548143 DOI: 10.1186/1477-3163-4-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Accepted: 01/15/2005] [Indexed: 02/07/2023] Open
Abstract
In this review, we discuss estrogen actions on mitochondrial function and the possible implications on cell growth. Mitochondria are important targets of estrogen action. Therefore, an in-depth analysis of interaction between estrogen and mitochondria; and mitochondrial signaling to nucleus are pertinent to the development of new therapy strategies for the treatment of estrogen-dependent diseases related to mitochondrial disorders, including cancer.
Collapse
Affiliation(s)
- Quentin Felty
- Department of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, AL, 35294-0022 USA
| | - Deodutta Roy
- Department of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, AL, 35294-0022 USA
| |
Collapse
|
36
|
Abstract
Here we review studies of the physical, material properties of animal cells and their cytoskeleton, such as elastic stiffness and fluid viscosity, that determine how they respond to, and are shaped by, forces inside and out. Currently and historically, most such studies have reported a single value for a cell property and/or propose a single broad structural model based on nonliving materials. We believe that such physical studies would be of more interest to most cell biologists if greater emphasis were placed on the well-established regional differences within a cell and the ability of the cell to quickly change its mechanical behaviors
Collapse
Affiliation(s)
- Steven R Heidemann
- Department of Physiology, Michigan State University, East Lansing, MI 48824-3320, USA
| | | |
Collapse
|
37
|
Tseng Y, An KM, Esue O, Wirtz D. The Bimodal Role of Filamin in Controlling the Architecture and Mechanics of F-actin Networks. J Biol Chem 2004; 279:1819-26. [PMID: 14594947 DOI: 10.1074/jbc.m306090200] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Reconstituted actin filament networks have been used extensively to understand the mechanics of the actin cortex and decipher the role of actin cross-linking proteins in the maintenance and deformation of cell shape. However, studies of the mechanical role of the F-actin cross-linking protein filamin have led to seemingly contradictory conclusions, in part due to the use of ill-defined mechanical assays. Using quantitative rheological methods that avoid the pitfalls of previous studies, we systematically tested the complex mechanical response of reconstituted actin filament networks containing a wide range of filamin concentrations and compared the mechanical function of filamin with that of the cross-linking/bundling proteins alpha-actinin and fascin. At steady state and within a well defined linear regime of small non-destructive deformations, F-actin solutions behave as highly dynamic networks (actin polymers are still sufficiently mobile to relax the stress) below the cross-linking-to-bundling threshold filamin concentration, and they behave as covalently cross-linked gels above that threshold. Under large deformations, F-actin networks soften at low filamin concentrations and strain-harden at high filamin concentrations. Filamin cross-links F-actin into networks that are more resilient, stiffer, more solid-like, and less dynamic than alpha-actinin and fascin. These results resolve the controversy by showing that F-actin/filamin networks can adopt diametrically opposed rheological behaviors depending on the concentration in cross-linking proteins.
Collapse
Affiliation(s)
- Yiider Tseng
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | | | | | | |
Collapse
|
38
|
Morot-Gaudry-Talarmain Y, Rezaei H, Guermonprez L, Treguer E, Grosclaude J. Selective prion protein binding to synaptic components is modulated by oxidative and nitrosative changes induced by copper(II) and peroxynitrite in cholinergic synaptosomes, unveiling a role for calcineurin B and thioredoxin. J Neurochem 2003; 87:1456-70. [PMID: 14713301 DOI: 10.1046/j.1471-4159.2003.02111.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Choline acetyltransferase (ChAT) and choline transport are decreased after nitrosative stress. ChAT activity is altered in scrapie-infected neurons, where oxidative stress develops. Cellular prion protein (PrPc) may play a neuroprotective function in participating in the redox control of neuronal environment and regulation of copper metabolism, a role impaired when PrPc is transformed into PrPSc in prion pathologies. The complex cross-talk between PrPc and cholinergic neurons was analyzed in vitro using peroxynitrite and Cu2+ treatments on nerve endings isolated from Torpedo marmorata, a model of the motoneuron pre-synaptic element. Specific interactions between solubilized synaptic components and recombinant ovine prion protein (PrPrec) could be demonstrated by Biacore technology. Peroxynitrite abolished this interaction in a concentration-dependent way and induced significant alterations of neuronal targets. Interaction was restored by prior addition of peroxynitrite trapping agents. Cu2+ (in the form of CuSO4) treatment of synaptosomes triggered a milder oxidative effect leading to a bell-shaped increase of PrPrec binding to synaptosomal components, counteracted by the natural thiol agents, glutathione and thioredoxin. Copper(II)-induced modifications of thiols in several neuronal proteins. A positive correlation was observed between PrPrec binding and immunoreactive changes for calcineurin B and its partners, suggesting a synergy between calcineurin complex and PrP for copper regulation.
Collapse
|
39
|
Viamontes J, Tang JX. Continuous isotropic-nematic liquid crystalline transition of F-actin solutions. PHYSICAL REVIEW E 2003; 67:040701. [PMID: 12786338 DOI: 10.1103/physreve.67.040701] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2002] [Indexed: 11/07/2022]
Abstract
The phase transition from the isotropic (I) to nematic (N) liquid crystalline suspension of F-actin of average length ł> or =3 microm was studied by local measurements of optical birefringence and protein concentration. Both parameters were detected to be continuous in the transition region, suggesting that the I-N transition is higher than first order. Thus we report experimental evidence for a continuous I-N transition for a suspension of rodlike macromolecules. Our findings are consistent with a recent theory by Lammert, Rokhsar, and Toner [Phys. Rev. Lett. 70, 1650 (1993)], predicting that the I-N transition may become continuous due to suppression of disclinations.
Collapse
Affiliation(s)
- Jorge Viamontes
- Physics Department, Brown University, 184 Hope Street, Providence, Rhode Island 02912, USA
| | | |
Collapse
|
40
|
Abstract
Actin, through its various forms of assembly, provides the basic framework for cell motility, cell shape and intracellular organization in all eukaryotic cells. Many other cellular processes, for example endocytosis and cytokinesis, are also associated with dynamic changes of the actin cytoskeleton. Important prerequisites for actin's functional diversity are its intrinsic ability to rapidly assemble and disassemble filaments and its spatially and temporally well-controlled supramolecular organization. A large number of proteins that interact with actin, collectively referred to as actin-binding proteins (ABPs), carefully orchestrate different scenarios. Since its isolation in 1994 [Machesky, L.M. et al. (1994) J. Cell Biol. 127, 107-115], the Arp2/3 complex containing the actin-related proteins Arp2 and Arp3 has evolved to be one of the main players in the assembly and maintenance of many actin-based structures in the cell (for review see [Borths, E.L. and Welch, M.D. (2002) Structure 10, 131-135; May, R.C. (2001) Cell Mol. Life Sci. 58, 1607-1626; Pollard, T.D. et al. (2000) Rev. Biophys. Biomol. Struct. 29, 545-576; Welch, M.D. (1999) Trends Cell Biol. 11, 423-427]). In particular, when it comes to the assembly of the intricate branched actin network at the leading edge of lamellipodia, the Arp2/3 complex seems to have received all the attention in recent years. In parallel, but not so much in the spotlight, several reports showed that actin on its own can assume different conformations [Bubb, M.R. et al. (2002) J. Biol. Chem. 277, 20999-21006; Schoenenberger, C.-A. et al. (1999) Microsc. Res. Tech. 47, 38-50; Steinmetz, M.O. et al. (1998) J. Mol. Biol. 278, 793-811; Steinmetz, M.O. et al. (1997) J. Cell Biol. 138, 559-574; Millonig, R., Salvo, H. and Aebi, U. (1988) J. Cell Biol. 106, 785-796] through which it drives its supramolecular patterning, and which ultimately generate its functional diversity.
Collapse
Affiliation(s)
- Cora-Ann Schoenenberger
- M.E. Müller Institute for Structural Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056, Basel, Switzerland.
| | | | | | | |
Collapse
|
41
|
Tseng Y, An KM, Wirtz D. Microheterogeneity controls the rate of gelation of actin filament networks. J Biol Chem 2002; 277:18143-50. [PMID: 11889122 DOI: 10.1074/jbc.m110868200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rapid sol-gel transitions of the actin cytoskeleton are required for many key cellular processes, including cell spreading and cell locomotion. Actin monomers assemble into semiflexible polymers that rapidly intertwine into a network, a process that in vitro takes approximately 1 min for an actin concentration of 1 mg/ml. The same actin filament network, however, takes approximately 1 h to exhibit a steady-state elasticity. We hypothesize that the slow gelation of F-actin is due to the slow establishment of a homogeneous meshwork. Using a novel method, time-resolved multiple particle tracking, which monitors the range of thermally excited displacements of microspheres imbedded in the network, we show that the increase in elasticity in a polymerizing solution of actin parallels the progressive decline of the network microheterogeneity. The rates of gelation and network homogenization slightly decrease with actin concentration and in the presence of the F-actin cross-linking proteins alpha-actinin and fascin, whereas the rate of actin polymerization increases dramatically with actin concentration. Our measurements show that the slow spatial homogenization of the actin filament network, not actin polymerization or the formation of polymer overlaps, is the rate-limiting step in the establishment of an elastic actin network and suggest that a new activity of F-actin binding proteins may be required for the rapid formation of a homogeneous stiff gel.
Collapse
Affiliation(s)
- Yiider Tseng
- Department of Chemical Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | |
Collapse
|
42
|
Nakamura F, Osborn E, Janmey PA, Stossel TP. Comparison of filamin A-induced cross-linking and Arp2/3 complex-mediated branching on the mechanics of actin filaments. J Biol Chem 2002; 277:9148-54. [PMID: 11786548 DOI: 10.1074/jbc.m111297200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We compared the effects of human filamin A (FLNa) and the activated human Arp2/3 complex on mechanical properties of actin filaments. As little as 1 FLNa to 800 polymerizing actin monomers induces a sharp concentration-dependent increase in the apparent viscosity of 24 microm actin, a parameter classically defined as a gel point. The activated Arp2/3 complex, at concentrations up to 1:25 actins had no detectable actin gelation activity, even in the presence of phalloidin, to stabilize actin filaments against debranching. Increasing the activated Arp2/3 complex to actin ratio raises the FLNa concentration required to induce actin gelation, an effect ascribable to Arp2/3-mediated actin nucleation resulting in actin filament length diminution. Time lapse video microscopy of microparticles attached to actin filaments or photoactivation of fluorescence revealed actin filament immobilization by FLNa in contrast to diffusion of Arp2/3-branched actin filaments. The experimental results support theories predicting that polymer branching absent cross-linking does not lead to polymer gelation and are consistent with the observation that cells deficient in actin filament cross-linking activity have unstable surfaces. They suggest complementary roles for actin branching and cross-linking in cellular actin mechanics in vivo.
Collapse
Affiliation(s)
- Fumihiko Nakamura
- Hematology Division, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
43
|
Le Goff L, Amblard F, Furst EM. Motor-driven dynamics in actin-myosin networks. PHYSICAL REVIEW LETTERS 2002; 88:018101. [PMID: 11800991 DOI: 10.1103/physrevlett.88.018101] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2001] [Indexed: 05/23/2023]
Abstract
The effect of myosin motor protein activity on the filamentous actin (F-actin) rheological response is studied using diffusing wave spectroscopy. Under conditions of saturating motor activity, we find an enhancement of longitudinal filament fluctuations corresponding to a scaling of the viscoelastic shear modulus G(d)(omega) approximately omega(7/8). As the adenosine tri-phosphate reservoir sustaining motor activity is depleted, we find an abrupt transient to a passive, "rigor state" and a return to dissipation dominated by transverse filament modes. Single-filament measurements of the apparent persistence length support the notion that motor activity leads to an increase in the effective temperature for tangential motion.
Collapse
Affiliation(s)
- Loïc Le Goff
- Institut Curie, Physico-Chimie Curie, UMR CNRS/IC 168, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | | | | |
Collapse
|
44
|
Carlson K, Ehrich M. Organophosphorus compounds alter intracellular F-actin content in SH-SY5Y human neuroblastoma cells. Neurotoxicology 2001; 22:819-27. [PMID: 11829415 DOI: 10.1016/s0161-813x(01)00073-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cytoskeletal components, especially f-actin (filamentous actin), are responsible for neurite extension and maintenance. Alterations in neurite length and quality precede in vitro cell death induced by organophosphorus (OP) compounds and implicate f-actin proteins in this process. We, therefore, investigated changes in f-actin in SH-SY5Y human neuroblastoma cells exposed to 0.1 and 1 mM paraoxon, parathion, phenyl saligenin phosphate (PSP), tri-ortho-tolyl phosphate (TOTP), triphenyl phosphite (TPPi), and di-isopropyl phosphorofluoridate (DFP) for 0-48 h. The f-actin was measured by flow cytometry in cells labeled with Alexa 488 phalloidin. The relative amount off-actin was compared to total protein levels as determined by spectrophotometry. The cellular content of f-actin significantly decreasedfollowing exposure to PSP (0.1 mM, >30 min; 1 mM, >15 min), TOTP (0.1 mM, 16 h; 1 mM, >15 min), TPPi (1 mM, >4 h), paraoxon (1 mM, >24 h), and parathion (1 mM, 48 h). Exposure to DFP (0.1 and 1 mM) did not significantly alter f-actin content at any time point. Exposure to parathion (0.1 mM, 48 h) significantly increased the amount of cellular f-actin. Total protein was significantly decreased after exposure to PSP (0.1 and 1 mM, >8 h) and TPPi (1 mM, 48 h). Significant increases in total protein were observed following exposure to parathion (0.1 mM, >3 h). Consistent alterations in the protein content of DFP-exposed samples were not observed. These results suggest that the loss off-actin is an early event following OP compound exposure and that this loss significantly precedes a loss of protein content for some OP compounds (PSP, TPPi). Results also imply that under other exposure conditions (TOTP, paraoxon, parathion) alterations in the f-actin content are independent of protein content.
Collapse
Affiliation(s)
- K Carlson
- Laboratory of Neurotoxicity Studies, Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA 24061, USA
| | | |
Collapse
|
45
|
Dalle-Donne I, Rossi R, Giustarini D, Gagliano N, Lusini L, Milzani A, Di Simplicio P, Colombo R. Actin carbonylation: from a simple marker of protein oxidation to relevant signs of severe functional impairment. Free Radic Biol Med 2001; 31:1075-83. [PMID: 11677040 DOI: 10.1016/s0891-5849(01)00690-6] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The number of protein-bound carbonyl groups is an established marker of protein oxidation. Recent evidence indicates a significant increase in actin carbonyl content in both Alzheimer's disease brains and ischemic hearts. The enhancement of actin carbonylation, causing the disruption of the actin cytoskeleton and the loss of the barrier function, has also been found in human colonic cells after exposure to hypochlorous acid (HOCl). Here, the effects of oxidation induced by HOCl on purified actin are presented. Results show that HOCl causes a rapidly increasing yield of carbonyl groups. However, when carbonylation becomes evident, some Cys and Met residues have been already oxidized. Covalent intermolecular cross-linking as well as some noncovalent aggregation of carbonylated actin have been found. The covalent cross-linking, unaffected by reducing and denaturing agents, parallels an increase in dityrosine fluorescence. Moreover, HOCl-mediated oxidation induces the progressive disruption of actin filaments and the inhibition of F-actin formation. The molar ratios of HOCl to actin that lead to inhibition of actin polymerization seem to have effect only on cysteines and methionines. The process that involves oxidation of amino acid side chains with formation of a carbonyl group would occur at an extent of oxidative insult higher than that causing the oxidation of some critical amino acid residues. Therefore, the increase in actin content of carbonyl groups found in vivo would indicate drastic oxidative modification leading to drastic functional impairments.
Collapse
Affiliation(s)
- I Dalle-Donne
- Department of Biology, Laboratory of Biochemistry and Biophysics of the Cytoskeleton, University of Milan, Milan, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Affiliation(s)
- P A Janmey
- Hematology Division, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Ave., LMRC 301, Boston, Massachussetts 02115, USA
| | | | | | | |
Collapse
|
47
|
Morse DC. Tube diameter in tightly entangled solutions of semiflexible polymers. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2001; 63:031502. [PMID: 11308652 DOI: 10.1103/physreve.63.031502] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/1999] [Revised: 07/10/2000] [Indexed: 05/23/2023]
Abstract
A statistical mechanical treatment is given of the confinement of a wormlike polymer in an entangled solution to a tube, yielding quantitative predictions for the average tube diameter D(e) and macroscopic plateau modulus G, in the tightly entangled regime in which D(e) is much less than the persistence length L(p). Three approaches are pursued. A self-consistent binary collision approximation, which explicitly describes the topological constraints imposed by neighboring chains, yields predictions consistent with the scaling laws D(e)proportional to rho(-3/5) and G proportional to rho(7/5) proposed previously, where rho is the contour length per unit volume. An effective medium approximation, which treats the network as a continuum with a modulus G, instead yields D(e) proportional to rho(-1/3) and G proportional to rho(4/3), which is found to be the correct scaling in the limit rhoL(2)(p)>>1. An elastic network approximation treats the displacement of a test chain as the sum of a collective displacement of the network, which is treated as a continuum, plus a local displacement, which is treated in a binary collision approximation. Predictions are compared to measurements of both D(e) and G in actin protein filament (F-actin) solutions.
Collapse
Affiliation(s)
- D C Morse
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
48
|
McGrath JL, Hartwig JH, Kuo SC. The mechanics of F-actin microenvironments depend on the chemistry of probing surfaces. Biophys J 2000; 79:3258-66. [PMID: 11106629 PMCID: PMC1301200 DOI: 10.1016/s0006-3495(00)76558-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To understand the microscopic mechanical properties of actin networks, we monitor the motion of embedded particles with controlled surface properties. The highly resolved Brownian motions of these particles reveal the viscoelastic character of the microenvironments around them. In both non-cross-linked and highly cross-linked actin networks, particles that bind F-actin report viscoelastic moduli comparable to those determined by macroscopic rheology experiments. By contrast, particles modified to prevent actin binding have weak microenvironments that are surprisingly insensitive to the introduction of filament cross-links. Even when adjacent in the same cross-linked gel, actin-binding and nonbinding particles report viscoelastic moduli that differ by two orders of magnitude at low frequencies (0.5-1.5 rad/s) but converge at high frequencies (> 10(4) rad/s). For all particle chemistries, electron and light microscopies show no F-actin recruitment or depletion, so F-actin microheterogeneities cannot explain the deep penetration (approximately 100 nm) of nonbinding particles. Instead, we hypothesize that a local depletion of cross-linking around nonbinding particles explains the phenomena. With implications for organelle mobility in cells, our results show that actin binding is required for microenvironments to reflect macroscopic properties, and conversely, releasing actin enhances particle mobility beyond the effects of mere biochemical untethering.
Collapse
Affiliation(s)
- J L McGrath
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore Maryland 21205, USA
| | | | | |
Collapse
|
49
|
Xu J, Tseng Y, Wirtz D. Strain hardening of actin filament networks. Regulation by the dynamic cross-linking protein alpha-actinin. J Biol Chem 2000; 275:35886-92. [PMID: 10954703 DOI: 10.1074/jbc.m002377200] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mechanical stresses applied to the plasma membrane of an adherent cell induces strain hardening of the cytoskeleton, i.e. the elasticity of the cytoskeleton increases with its deformation. Strain hardening is thought to mediate the transduction of mechanical signals across the plasma membrane through the cytoskeleton. Here, we describe the strain dependence of a model system consisting of actin filaments (F-actin), a major component of the cytoskeleton, and the F-actin cross-linking protein alpha-actinin, which localizes along contractile stress fibers and at focal adhesions. We show that the amplitude and rate of shear deformations regulate the resilience of F-actin networks. At low temperatures, for which the lifetime of binding of alpha-actinin to F-actin is long, F-actin/alpha-actinin networks exhibit strong strain hardening at short time scales and soften at long time scales. For F-actin networks in the absence of alpha-actinin or for F-actin/alpha-actinin networks at high temperatures, strain hardening appears only at very short time scales. We propose a model of strain hardening for F-actin networks, based on both the intrinsic rigidity of F-actin and dynamic topological constraints formed by the cross-linkers located at filaments entanglements. This model offers an explanation for the origin of strain hardening observed when shear stresses are applied against the cellular membrane.
Collapse
Affiliation(s)
- J Xu
- Department of Chemical Engineering and Interdepartmental Program in Molecular Biophysics, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | |
Collapse
|
50
|
Schmidt FG, Hinner B, Sackmann E, Tang JX. Viscoelastic properties of semiflexible filamentous bacteriophage fd. PHYSICAL REVIEW. E, STATISTICAL PHYSICS, PLASMAS, FLUIDS, AND RELATED INTERDISCIPLINARY TOPICS 2000; 62:5509-17. [PMID: 11089110 DOI: 10.1103/physreve.62.5509] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2000] [Indexed: 11/07/2022]
Abstract
The cytoskeletal protein filament F-actin has been treated in a number of recent studies as a model physical system for semiflexible filaments. In this work, we studied the viscoelastic properties of entangled solutions of the filamentous bacteriophage fd as an alternative to F-actin with similar physical parameters. We present both microrheometric and macrorheometric measurements of the viscoelastic storage and loss moduli, G'(f ) and G"(f ), respectively, in a frequency range 0.01<f<4 Hz, for fd solutions in the concentration range 5<c<15 mg/ml. The onset of a narrow and slanted plateaulike region of G'(f ) is located at around 2 Hz. The variation of the plateau modulus with concentration obeys a power law G(')(N) approximately c(1.4+/-0.3), similar to that found for entangled solutions of F-actin. In the low-frequency regime, the frequency dependence of the viscoelastic moduli can be described by power laws G'(f ) approximately f(0.9-1.2) and G"(f ) approximately f(0.7-0.9), which deviate significantly from the simple theoretical predictions of G'(f ) approximately f(2) and G"(f ) approximately f(1). The latter behavior cannot yet be understood within the framework of current theories of semiflexible filament networks. For the dynamic viscosity at the low shear rate limit, a concentration dependence of eta(0) approximately c(2.6) was found. Finally, a linear scaling of the terminal relaxation time with concentration, tau(d) approximately c, was observed.
Collapse
Affiliation(s)
- F G Schmidt
- Technische Universität München, Institut für Biophysik E22, James-Franck- Strasse, D-85747 München, Germany
| | | | | | | |
Collapse
|