1
|
Manganese-induced cellular disturbance in the baker's yeast, Saccharomyces cerevisiae with putative implications in neuronal dysfunction. Sci Rep 2019; 9:6563. [PMID: 31024033 PMCID: PMC6484083 DOI: 10.1038/s41598-019-42907-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 04/09/2019] [Indexed: 12/24/2022] Open
Abstract
Manganese (Mn) is an essential element, but in humans, chronic and/or acute exposure to this metal can lead to neurotoxicity and neurodegenerative disorders including Parkinsonism and Parkinson’s Disease by unclear mechanisms. To better understand the effects that exposure to Mn2+ exert on eukaryotic cell biology, we exposed a non-essential deletion library of the yeast Saccharomyces cerevisiae to a sub-inhibitory concentration of Mn2+ followed by targeted functional analyses of the positive hits. This screen produced a set of 43 sensitive deletion mutants that were enriched for genes associated with protein biosynthesis. Our follow-up investigations demonstrated that Mn reduced total rRNA levels in a dose-dependent manner and decreased expression of a β-galactosidase reporter gene. This was subsequently supported by analysis of ribosome profiles that suggested Mn-induced toxicity was associated with a reduction in formation of active ribosomes on the mRNAs. Altogether, these findings contribute to the current understanding of the mechanism of Mn-triggered cytotoxicity. Lastly, using the Comparative Toxicogenomic Database, we revealed that Mn shared certain similarities in toxicological mechanisms with neurodegenerative disorders including amyotrophic lateral sclerosis, Alzheimer’s, Parkinson’s and Huntington’s diseases.
Collapse
|
2
|
Pannexin 1 is required for full activation of insulin-stimulated glucose uptake in adipocytes. Mol Metab 2015; 4:610-8. [PMID: 26413467 PMCID: PMC4563021 DOI: 10.1016/j.molmet.2015.06.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 06/27/2015] [Indexed: 02/08/2023] Open
Abstract
Objective Defective glucose uptake in adipocytes leads to impaired metabolic homeostasis and insulin resistance, hallmarks of type 2 diabetes. Extracellular ATP-derived nucleotides and nucleosides are important regulators of adipocyte function, but the pathway for controlled ATP release from adipocytes is unknown. Here, we investigated whether Pannexin 1 (Panx1) channels control ATP release from adipocytes and contribute to metabolic homeostasis. Methods We assessed Panx1 functionality in cultured 3T3-L1 adipocytes and in adipocytes isolated from murine white adipose tissue by measuring ATP release in response to known activators of Panx1 channels. Glucose uptake in cultured 3T3-L1 adipocytes was measured in the presence of Panx1 pharmacologic inhibitors and in adipocytes isolated from white adipose tissue from wildtype (WT) or adipocyte-specific Panx1 knockout (AdipPanx1 KO) mice generated in our laboratory. We performed in vivo glucose uptake studies in chow fed WT and AdipPanx1 KO mice and assessed insulin resistance in WT and AdipPanx1 KO mice fed a high fat diet for 12 weeks. Panx1 channel function was assessed in response to insulin by performing electrophysiologic recordings in a heterologous expression system. Finally, we measured Panx1 mRNA in human visceral adipose tissue samples by qRT-PCR and compared expression levels with glucose levels and HOMA-IR measurements in patients. Results Our data show that adipocytes express functional Pannexin 1 (Panx1) channels that can be activated to release ATP. Pharmacologic inhibition or selective genetic deletion of Panx1 from adipocytes decreased insulin-induced glucose uptake in vitro and in vivo and exacerbated diet-induced insulin resistance in mice. Further, we identify insulin as a novel activator of Panx1 channels. In obese humans Panx1 expression in adipose tissue is increased and correlates with the degree of insulin resistance. Conclusions We show that Panx1 channel activity regulates insulin-stimulated glucose uptake in adipocytes and thus contributes to control of metabolic homeostasis. Adipocytes express Pannexin 1 channels that can be activated to release ATP. Inhibition of Pannexin 1 decreased insulin-induced glucose uptake in adipocytes. Adipocyte Pannexin 1 knockout mice are more insulin resistant on high fat diet. We identify insulin as a novel activator of Pannexin 1 channels. Pannexin 1 expression in human adipose tissue correlates with insulin resistance.
Collapse
|
3
|
Hamida ZH, Comtois AS, Portmann M, Boucher JP, Savard R. Effect of electrical stimulation on lipolysis of human white adipocytes. Appl Physiol Nutr Metab 2011; 36:271-5. [PMID: 21609289 DOI: 10.1139/h11-011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The goal of the present study was to investigate the effect of 30 min of electrical stimulation on the activation of lipolysis in human white adipocytes. Two stimulation protocols (S1, S2) were conducted in vitro on isolated human white adipocytes. Subcutaneous adipose tissue was obtained from female subjects undergoing abdominal adipose tissue reduction. Adipose tissue of 10 female subjects (mean age, 38.7 ± 9.1 years) and 6 female subjects (mean age, 37.2 ± 11.3 years) was obtained for S1 and S2, respectively. All subjects fasted overnight before tissue removal. The control conditions were a basal and a β-adrenergic stimulation (isoproterenol (ISO), 10(-6) mol·L(-1)) of lipolysis. For S1, the 3 electrostimulation conditions consisted of a monopolar square-wave pulse current for 30 min at intensities of 4, 8, and 20 mA, respectively. In S2, the 2 electrostimulation conditions consisted of a bipolar square-wave alternating current for 30 min at intensities of 4 and 6 mA, respectively. Fat cell lipolysis was measured by quantifying the release of glycerol from adipocytes for 3 trials in each experimental condition. For S1, 4 mA significantly increased lipolysis 1.5 times over basal values (p ≤ 0.01), 8 mA and 20 mA did not increase lipolysis significantly, and no significant difference (p > 0.05) was found between ISO and 4 mA. For S2, 4 mA (p ≤ 0.05) and 6 mA (p ≤ 0.01) significantly increased lipolysis by 1.8 and 2.3 times above basal, respectively. Our results demonstrate that both monopolar (4 mA) and bipolar (4 and 6 mA) electrical stimulations significantly activated in vitro lipolysis. Our findings suggest the existence of a new lipolytic pathway that may involve K(v) channels shown to exist in human white adipocytes.
Collapse
Affiliation(s)
- Zied Haj Hamida
- Département de Kinanthropologie, Université du Québec à Montréal, C. P. 8888, succ. Centre-Ville, Montréal, QC H3C 3P8, Canada
| | | | | | | | | |
Collapse
|
4
|
Lee SC, Vielhauer NS, Leaver EV, Pappone PA. Differential Regulation of Ca2+ Signaling and Membrane Trafficking by Multiple P2 Receptors in Brown Adipocytes. J Membr Biol 2005; 207:131-42. [PMID: 16550484 DOI: 10.1007/s00232-005-0808-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Revised: 11/02/2005] [Indexed: 10/24/2022]
Abstract
Extracellular ATP triggers changes in intracellular Ca(2+), ion channel function, and membrane trafficking in adipocytes. The aim of the present study was to determine which P2 receptors might mediate the Ca(2+) signaling and membrane trafficking responses to ATP in brown fat cells. RT-PCR was used to determine which P2 receptors are expressed in brown fat cells. Responses to nucleotide agonists and antagonists were characterized using fura-2 fluorescence imaging of Ca(2+) responses, and FM 1-43 fluorescence imaging and membrane capacitance measurements to assess membrane trafficking. The pharmacology of the Ca(2+) responses fits the properties of the P2Y receptors for which mRNA is expressed, but the agonist and antagonist sensitivity of the membrane-trafficking response was not consistent with any P2 receptor described to date. Brown adipocytes expressed mRNA for P2Y(2), P2Y(6), and P2Y(12) metabotropic receptors and P2X(1), P2X(2), P2X(3), P2X(4), P2X(5), and P2X(7) ionotropic receptors. The agonists ATP, ADP, UTP, UDP and 2', 3'-(benzoylbenzoyl) ATP (BzATP) increased intracellular Ca(2+), while 100 microM: suramin, pyridoxal-phosphate-6-azophenyl-2' 4'-disulfonic acid (PPADS), or Reactive Blue 2 partially blocked Ca(2+) responses. ATP, but not ADP, UTP, UDP or BzATP activated membrane trafficking. The membrane response could be blocked completely with 1 microM: PPADS but not by the antagonist MRS2179. We conclude that multiple P2 receptors mediate the ATP responses of brown fat cells, and that membrane trafficking is regulated by a P2 receptor showing unusual properties.
Collapse
Affiliation(s)
- S C Lee
- Section of Neurobiology, Physiology, and Behavior, University of California, One Shields Avenue, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
5
|
Lee H, Jun DJ, Suh BC, Choi BH, Lee JH, Do MS, Suh BS, Ha H, Kim KT. Dual roles of P2 purinergic receptors in insulin-stimulated leptin production and lipolysis in differentiated rat white adipocytes. J Biol Chem 2005; 280:28556-63. [PMID: 15955812 DOI: 10.1074/jbc.m411253200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATP is co-localized with norepinephrine at the sympathetic nerve terminals and may be released simultaneously upon neuronal stimulation, which results in activation of purinergic receptors. To examine whether leptin synthesis and lipolysis are influenced by P2 purinergic receptor activation, the effects of ATP and other nucleotides on leptin secretion and glycerol release have been investigated in differentiated rat white adipocytes. Firstly, insulin-induced leptin secretion was inhibited by nucleotide treatment with the following efficacy order: 3'-O-(4-benzoyl)benzoyl ATP (BzATP) > ATP >> UTP. Secondly, treatment of adipocytes with ATP increased both intracellular Ca(2+) concentration and cAMP content. Intracellular calcium concentration was increased by ATP and UTP, but not BzATP, an effect attributed to phospholipase C-coupled P2Y(2). On the other hand, cAMP was generated by treatment with BzATP and ATPgammaS, but not UTP, indicating functional expression of adenylyl cyclase-coupled P2Y(11) receptors in white adipocytes. Thirdly, lipolysis was significantly activated by BzATP and ATP, which correlated with the characteristics of the P2Y(11) subtype. Taken together, the data presented here suggest that white adipocytes express at least two different types of P2Y receptors and that activation of P2Y(11) receptor might be involved in inhibition of leptin production and stimulation of lipolysis, suggesting that purinergic transmission can play an important role in white adipocyte physiology.
Collapse
Affiliation(s)
- Hyun Lee
- Department of Life Science, Pohang University of Science and Technology, Pohang 790-784, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Kochukov MY, Ritchie AK. A P2X7 receptor stimulates plasma membrane trafficking in the FRTL rat thyrocyte cell line. Am J Physiol Cell Physiol 2004; 287:C992-C1002. [PMID: 15189815 DOI: 10.1152/ajpcell.00538.2003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thyroid cells express a variety of P2Y and P2X purinergic receptor subtypes. G protein-coupled P2Y receptors influence a wide variety of thyrocyte-specific functions; however, functional P2X receptor-gated channels have not been observed. In this study, we used whole cell patch-clamp recording and fluorescence imaging of the plasma membrane marker FM1-43 to examine the effects of extracellular ATP on membrane permeability and trafficking in the Fisher rat thyroid cell line FRTL. We found a cation-selective current that was gated by ATP and 2',3'-O-(4-benzoylbenzoyl)-ATP but not by UTP. The ATP-evoked currents were inhibited by pyridoxal phosphate 6-azophenyl-2',4'-disulfonic acid, adenosine 5'-triphosphate-2',3'-dialdehyde, 100 microM Zn(2+), and 50 microM Cu(2+). Fluorescence imaging revealed pronounced, temperature-sensitive stimulation of exocytosis and membrane internalization by ATP with the same pharmacological profile as observed for activation of current. The EC(50) for ATP stimulation of internalization was 440 microM in saline containing 2 mM Ca(2+) and 2 mM Mg(2+), and 33 microM in low-Mg(2+), nominally Ca(2+)-free saline. Overall, the results are most consistent with activation of a P2X(7) receptor by ATP(4-). However, low permeability to N-methyl-d-glucamine(+) and the propidium cation YO-PRO-1 indicates absence of the cytolytic pore that often accompanies P2X(7) receptor activation. ATP stimulation of internalization occurs in Na(+)-free, Ca(2+)-free, or low-Mg(2+) saline and therefore does not depend on cation influx through the ATP-gated channel. We conclude that ATP activation of a P2X(7) receptor stimulates membrane internalization in FRTL cells via a transduction pathway that does not depend on cation influx.
Collapse
Affiliation(s)
- M Y Kochukov
- Department of Physiology and Biophysics, University of Texas Medical Branch, 301 Univ. Boulevard, Galveston, TX 77555-0641, USA
| | | |
Collapse
|
7
|
Burnstock G, Knight GE. Cellular Distribution and Functions of P2 Receptor Subtypes in Different Systems. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 240:31-304. [PMID: 15548415 DOI: 10.1016/s0074-7696(04)40002-3] [Citation(s) in RCA: 581] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review is aimed at providing readers with a comprehensive reference article about the distribution and function of P2 receptors in all the organs, tissues, and cells in the body. Each section provides an account of the early history of purinergic signaling in the organ?cell up to 1994, then summarizes subsequent evidence for the presence of P2X and P2Y receptor subtype mRNA and proteins as well as functional data, all fully referenced. A section is included describing the plasticity of expression of P2 receptors during development and aging as well as in various pathophysiological conditions. Finally, there is some discussion of possible future developments in the purinergic signaling field.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Institute, Royal Free and University College Medical School, London NW3 2PF, United Kingdom
| | | |
Collapse
|
8
|
van der Wijk T, Tomassen SFB, Houtsmuller AB, de Jonge HR, Tilly BC. Increased vesicle recycling in response to osmotic cell swelling. Cause and consequence of hypotonicity-provoked ATP release. J Biol Chem 2003; 278:40020-5. [PMID: 12871943 DOI: 10.1074/jbc.m307603200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Osmotic swelling of Intestine 407 cells leads to an immediate increase in cell surface membrane area as determined using the fluorescent membrane dye FM 1-43. In addition, as measured by tetramethylrhodamine isothiocyanate (TRITC)-dextran uptake, a robust (>100-fold) increase in the rate of endocytosis was observed, starting after a discrete lag time of 2-3 min and lasting for approximately 10-15 min. The hypotonicity-induced increase in membrane surface area, like the cell swelling-induced release of ATP (Van der Wijk, T., De Jonge, H. R., and Tilly, B. C. (1999) Biochem. J. 343, 579-586), was diminished after 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester loading or cytochalasin B treatment. Uptake of TRITC-dextrans, however, was not affected. Treatment of the cells with the vesicle-soluble N-ethylmaleimide-sensitive factor attachment protein receptor-specific protease Clostridium botulinum toxin F not only nearly eliminated the hypotonicity-induced increase in membrane surface area but also strongly diminished the release of ATP, indicating the involvement of regulated exocytosis. Both the ATP hydrolase apyrase and the MEK inhibitor PD098059 diminished the osmotic swelling-induced increase in membrane surface area as well as the subsequent uptake of TRITC-dextrans. Taken together, the results indicate that extracellular ATP is required for the hypotonicity-induced vesicle recycling and suggest that a positive feedback loop, involving purinergic activation of the Erk-1/2 pathway, may contribute to the release of ATP from hypo-osmotically stimulated cells.
Collapse
Affiliation(s)
- Thea van der Wijk
- Department of Biochemistry, Erasmus University Medical Center, 3000DR Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
9
|
Mycielska ME, Fraser SP, Szatkowski M, Djamgoz MBA. Contribution of functional voltage-gated Na+ channel expression to cell behaviors involved in the metastatic cascade in rat prostate cancer: II. Secretory membrane activity. J Cell Physiol 2003; 195:461-9. [PMID: 12704656 DOI: 10.1002/jcp.10265] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The secretory membrane activities of two rat prostate cancer cell lines of markedly different metastatic potential, and corresponding electrophysiological characteristics, were studied in a comparative approach. In particular, voltage-gated Na(+) channels (VGSCs) were expressed in the strongly metastatic MAT-LyLu but not in the closely related, but weakly metastatic, AT-2 cells. Uptake and release of the non-cytotoxic marker horseradish peroxidase (HRP) were used as indices of general endocytotic and exocytotic membrane activity, respectively. The amount of tracer present in a given experimental condition was quantified by light microscopic digital imaging. The uptake of HRP was an active process, abolished completely by incubating the cells at low temperature (5 degrees C) and suppressed by disrupting the cytoskeleton. Interestingly, the extent of HRP uptake into the strongly metastatic MAT-LyLu cells was almost twice that into the weakly metastatic AT-2 cells. Vesicular uptake of HRP occurred in a fast followed by a slow phase; these appeared to correspond to cytoplasmic and perinuclear pools, respectively. Importantly, the overall quantitative difference in the uptake disappeared in the presence of 1 microM tetrodotoxin which significantly reduced the uptake of HRP into the MAT-LyLu cells. There was no effect on the AT-2 cells, consistent with functional VGSC expression occurring selectively in the former. A similar effect was observed in Na(+)-free medium. The uptake was partially dependent upon extracellular Ca(2+) but was not affected by raising the extracellular K(+) concentration. We suggest that functional VGSC expression could potentiate prostate cancer cells' metastatic ability by enhancing their secretory membrane activity.
Collapse
Affiliation(s)
- M E Mycielska
- Department of Biological Sciences, Sir Alexander Fleming Building, Imperial College of Science, Technology, and Medicine, London, United Kingdom
| | | | | | | |
Collapse
|
10
|
Lee SC, Fissore RA, Nuccitelli R. Sperm factor initiates capacitance and conductance changes in mouse eggs that are more similar to fertilization than IP(3)- or Ca(2+)-induced changes. Dev Biol 2001; 232:127-48. [PMID: 11254353 DOI: 10.1006/dbio.2001.0155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We used patch clamp electrophysiology and concurrent imaging with the Ca(2+)-sensitive dye, fura-2, to study the temporal relationship between membrane capacitance and conductance and intracellular free Ca(2+) concentration ([Ca(2+)](i)) during mouse egg fertilization. We found an approximately 2 pF step increase in egg membrane capacitance and a minor increase in conductance with no change in [Ca(2+)](i) at sperm fusion. This was followed approximately 1 min later by a rise in [Ca(2+)](i) that led to larger changes in capacitance and conductance. The most common pattern for these later capacitance changes was an initial capacitance decrease, followed by a larger increase and eventual return to the approximate starting value. There was some variation in this pattern, and sub-microM peak [Ca(2+)](i) favored capacitance decrease, while higher [Ca(2+)](i) favored capacitance increase. The magnitude of accompanying conductance increases was variable and did not correlate well with peak [Ca(2+)](i). The intracellular introduction of porcine sperm factor reproduced the postfusion capacitance and conductance changes with a similar [Ca(2+)](i) dependence. Raising [Ca(2+)](i) by the intracellular introduction of IP(3) initiated fertilization-like capacitance changes, but the conductance changes were slower to activate. Capacitance decrease could be induced when [Ca(2+)](i) was increased modestly by activation of an endogenous Ca(2+) current, with little effect on resting conductance. These results suggest that net turnover of the mouse egg surface membrane is sensitive to [Ca(2+)](i) and that sperm and the active component of sperm factor may be doing more than initiating the IP(3)-mediated release of intracellular Ca(2+).
Collapse
Affiliation(s)
- S C Lee
- Section of Molecular and Cellular Biology, University of California, Davis, California, 95616, USA
| | | | | |
Collapse
|
11
|
Monteil A, Chemin J, Bourinet E, Mennessier G, Lory P, Nargeot J. Molecular and functional properties of the human alpha(1G) subunit that forms T-type calcium channels. J Biol Chem 2000; 275:6090-100. [PMID: 10692398 DOI: 10.1074/jbc.275.9.6090] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We describe here several novel properties of the human alpha(1G) subunit that forms T-type calcium channels. The partial intron/exon structure of the corresponding gene CACNA1G was defined and several alpha(1G) isoforms were identified, especially two isoforms that exhibit a distinct III-IV loop: alpha(1G-a) and alpha(1G-b). Northern blot and dot blot analyses indicated that alpha(1G) mRNA is predominantly expressed in the brain, especially in thalamus, cerebellum, and substantia nigra. Additional experiments have also provided evidence that alpha(1G) mRNA is expressed at a higher level during fetal life in nonneuronal tissues (i.e. kidney, heart, and lung). Functional expression in HEK 293 cells of a full-length cDNA encoding the shortest alpha(1G) isoform identified to date, alpha(1G-b), resulted in transient, low threshold activated Ca(2+) currents with the expected permeability ratio (I(Sr) > I(Ca) >/= I(Ba)) and channel conductance ( approximately 7 pS). These properties, together with slowly deactivating tail currents, are typical of those of native T-type Ca(2+) channels. This alpha(1G)-related current was inhibited by mibefradil (IC(50) = 2 microM) and weakly blocked by Ni(2+) ions (IC(50) = 148 microM) and amiloride (IC(50) > 1 mM). We showed that steady state activation and inactivation properties of this current can generate a "window current" in the range of -65 to -55 mV. Using neuronal action potential waveforms, we show that alpha(1G) channels produce a massive and sustained Ca(2+) influx due to their slow deactivation properties. These latter properties would account for the specificity of Ca(2+) influx via T-type channels that occurs in the range of physiological resting membrane potentials, differing considerably from the behavior of other Ca(2+) channels.
Collapse
Affiliation(s)
- A Monteil
- IGH-CNRS UPR 1142, 141 rue de la Cardonille, F-34396 Montpellier cedex 05, France
| | | | | | | | | | | |
Collapse
|
12
|
Cribbs LL, Gomora JC, Daud AN, Lee JH, Perez-Reyes E. Molecular cloning and functional expression of Ca(v)3.1c, a T-type calcium channel from human brain. FEBS Lett 2000; 466:54-8. [PMID: 10648811 DOI: 10.1016/s0014-5793(99)01756-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Low voltage-activated T-type calcium channels are encoded by a family of at least three genes, with additional diversity created by alternative splicing. This study describes the cloning of the human brain alpha1G, which is a novel isoform, Ca(v)3.1c. Comparison of this sequence to genomic sequences deposited in the GenBank allowed us to identify the intron/exon boundaries of the human CACNA1G gene. A full-length cDNA was constructed, then used to generate a stably-transfected mammalian cell line. The resulting currents were analyzed for their voltage- and time-dependent properties. These properties identify this gene as encoding a T-type Ca(2+) channel.
Collapse
Affiliation(s)
- L L Cribbs
- Department of Physiology and the Cardiovascular Institute, Loyola University Medical Center, Maywood, IL, USA
| | | | | | | | | |
Collapse
|