1
|
Levic S. SK Current, Expressed During the Development and Regeneration of Chick Hair Cells, Contributes to the Patterning of Spontaneous Action Potentials. Front Cell Neurosci 2022; 15:766264. [PMID: 35069114 PMCID: PMC8770932 DOI: 10.3389/fncel.2021.766264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/29/2021] [Indexed: 11/30/2022] Open
Abstract
Chick hair cells display calcium (Ca2+)-sensitive spontaneous action potentials during development and regeneration. The role of this activity is unclear but thought to be involved in establishing proper synaptic connections and tonotopic maps, both of which are instrumental to normal hearing. Using an electrophysiological approach, this work investigated the functional expression of Ca2+-sensitive potassium [IK(Ca)] currents and their role in spontaneous electrical activity in the developing and regenerating hair cells (HCs) in the chick basilar papilla. The main IK(Ca) in developing and regenerating chick HCs is an SK current, based on its sensitivity to apamin. Analysis of the functional expression of SK current showed that most dramatic changes occurred between E8 and E16. Specifically, there is a developmental downregulation of the SK current after E16. The SK current gating was very sensitive to the availability of intracellular Ca2+ but showed very little sensitivity to T-type voltage-gated Ca2+ channels, which are one of the hallmarks of developing and regenerating hair cells. Additionally, apamin reduced the frequency of spontaneous electrical activity in HCs, suggesting that SK current participates in patterning the spontaneous electrical activity of HCs.
Collapse
Affiliation(s)
- Snezana Levic
- Center for Neuroscience, University of California, Davis, Davis, CA, United States
- Sensory Neuroscience Research Group, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
2
|
Plazas PV, Elgoyhen AB. The Cholinergic Lateral Line Efferent Synapse: Structural, Functional and Molecular Similarities With Those of the Cochlea. Front Cell Neurosci 2021; 15:765083. [PMID: 34712122 PMCID: PMC8545859 DOI: 10.3389/fncel.2021.765083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/21/2021] [Indexed: 11/25/2022] Open
Abstract
Vertebrate hair cell (HC) systems are innervated by efferent fibers that modulate their response to external stimuli. In mammals, the best studied efferent-HC synapse, the cholinergic medial olivocochlear (MOC) efferent system, makes direct synaptic contacts with HCs. The net effect of MOC activity is to hyperpolarize HCs through the activation of α9α10 nicotinic cholinergic receptors (nAChRs) and the subsequent activation of Ca2+-dependent SK2 potassium channels. A serious obstacle in research on many mammalian sensory systems in their native context is that their constituent neurons are difficult to access even in newborn animals, hampering circuit observation, mapping, or controlled manipulation. By contrast, fishes and amphibians have a superficial and accessible mechanosensory system, the lateral line (LL), which circumvents many of these problems. LL responsiveness is modulated by efferent neurons which aid to distinguish between external and self-generated stimuli. One component of the LL efferent system is cholinergic and its activation inhibits LL afferent activity, similar to what has been described for MOC efferents. The zebrafish (Danio rerio) has emerged as a powerful model system for studying human hearing and balance disorders, since LL HC are structurally and functionally analogous to cochlear HCs, but are optically and pharmacologically accessible within an intact specimen. Complementing mammalian studies, zebrafish have been used to gain significant insights into many facets of HC biology, including mechanotransduction and synaptic physiology as well as mechanisms of both hereditary and acquired HC dysfunction. With the rise of the zebrafish LL as a model in which to study auditory system function and disease, there has been an increased interest in studying its efferent system and evaluate the similarity between mammalian and piscine efferent synapses. Advances derived from studies in zebrafish include understanding the effect of the LL efferent system on HC and afferent activity, and revealing that an α9-containing nAChR, functionally coupled to SK channels, operates at the LL efferent synapse. In this review, we discuss the tools and findings of these recent investigations into zebrafish efferent-HC synapse, their commonalities with the mammalian counterpart and discuss several emerging areas for future studies.
Collapse
Affiliation(s)
- Paola V Plazas
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana Belén Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
3
|
Unraveling the Molecular Players at the Cholinergic Efferent Synapse of the Zebrafish Lateral Line. J Neurosci 2020; 41:47-60. [PMID: 33203744 DOI: 10.1523/jneurosci.1772-20.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/25/2020] [Accepted: 10/30/2020] [Indexed: 12/26/2022] Open
Abstract
The lateral line (LL) is a sensory system that allows fish and amphibians to detect water currents. LL responsiveness is modulated by efferent neurons that aid in distinguishing between external and self-generated stimuli, maintaining sensitivity to relevant cues. One component of the efferent system is cholinergic, the activation of which inhibits afferent activity. LL hair cells (HCs) share structural, functional, and molecular similarities with those of the cochlea, making them a popular model for studying human hearing and balance disorders. Because of these commonalities, one could propose that the receptor at the LL efferent synapse is a α9α10 nicotinic acetylcholine receptor (nAChR). However, the identities of the molecular players underlying ACh-mediated inhibition in the LL remain unknown. Surprisingly, through the analysis of single-cell expression studies and in situ hybridization, we describe that α9, but not the α10, subunits are enriched in zebrafish HCs. Moreover, the heterologous expression of zebrafish α9 subunits indicates that homomeric receptors are functional and exhibit robust ACh-gated currents blocked by α-bungarotoxin and strychnine. In addition, in vivo Ca2+ imaging on mechanically stimulated zebrafish LL HCs show that ACh elicits a decrease in evoked Ca2+ signals, regardless of HC polarity. This effect is blocked by both α-bungarotoxin and apamin, indicating coupling of ACh-mediated effects to small-conductance Ca2+-activated potassium (SKs) channels. Our results indicate that an α9-containing (α9*) nAChR operates at the zebrafish LL efferent synapse. Moreover, the activation of α9* nAChRs most likely leads to LL HC hyperpolarization served by SK channels.SIGNIFICANCE STATEMENT The fish lateral line (LL) mechanosensory system shares structural, functional, and molecular similarities with those of the mammalian cochlea. Thus, it has become an accessible model for studying human hearing and balance disorders. However, the molecular players serving efferent control of LL hair cell (HC) activity have not been identified. Here we demonstrate that, different from the hearing organ of vertebrate species, a nicotinic acetylcholine receptor composed only of α9 subunits operates at the LL efferent synapse. Activation of α9-containing receptors leads to LL HC hyperpolarization because of the opening of small-conductance Ca2+-activated potassium channels. These results will further aid in the interpretation of data obtained from LL HCs as a model for cochlear HCs.
Collapse
|
4
|
Chikova A, Grando SA. Naturally occurring variants of human Α9 nicotinic receptor differentially affect bronchial cell proliferation and transformation. PLoS One 2011; 6:e27978. [PMID: 22125646 PMCID: PMC3220719 DOI: 10.1371/journal.pone.0027978] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 10/28/2011] [Indexed: 02/06/2023] Open
Abstract
Isolation of polyadenilated mRNA from human immortalized bronchial epithelial cell line BEP2D revealed the presence of multiple isoforms of RNA coded by the CHRNA9 gene for α9 nicotinic acetylcholine receptor (nAChR). BEP2D cells were homozygous for the rs10009228 polymorphism encoding for N442S amino acid substitution, and also contained mRNA coding for several truncated isoforms of α9 protein. To elucidate the biologic significance of the naturally occurring variants of α9 nAChR, we compared the biologic effects of overexpression of full-length α9 N442 and S442 proteins, and the truncated α9 variant occurring due to a loss of the exon 4 sequence that causes frame shift and early termination of the translation. These as well as control vector were overexpressed in the BEP2D cells that were used in the assays of proliferation rate, spontaneous vs. tobacco nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced cellular transformation, and tumorigenicity in cell culture and mice. Overexpression of the S442 variant significantly increased cellular proliferation, and spontaneous and NNK-induced transformation. The N442 variant significantly decreased cellular transformation, without affecting proliferation rate. Overexpression of the truncated α9 significantly decreased proliferation and suppressed cellular transformation. These results suggested that α9 nAChR plays important roles in regulation of bronchial cell growth by endogenous acetylcholine and exogenous nicotine, and susceptibility to NNK-induced carcinogenic transformation. The biologic activities of α9 nAChR may be regulated at the splicing level, and genetic polymorphisms in CHRNA9 affecting protein levels, amino acid sequence and RNA splicing may influence the risk for lung cancer.
Collapse
Affiliation(s)
- Anna Chikova
- Department of Dermatology, University of California Irvine, Irvine, California, United States of America
- The D.I. Ivanovsky Institute of Virology of The Ministry of Health of The Russian Federation, Moscow, Russia
| | - Sergei A. Grando
- Department of Dermatology, University of California Irvine, Irvine, California, United States of America
- Cancer Center and Research Institute, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
5
|
Kelley MW, Mann ZF. Response to a Letter to the Editor. Hear Res 2011; 280:1-2. [DOI: 10.1016/j.heares.2011.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 04/14/2011] [Indexed: 11/15/2022]
|
6
|
The efferent medial olivocochlear-hair cell synapse. ACTA ACUST UNITED AC 2011; 106:47-56. [PMID: 21762779 DOI: 10.1016/j.jphysparis.2011.06.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 06/24/2011] [Indexed: 01/14/2023]
Abstract
Amplification of incoming sounds in the inner ear is modulated by an efferent pathway which travels back from the brain all the way to the cochlea. The medial olivocochlear system makes synaptic contacts with hair cells, where the neurotransmitter acetylcholine is released. Synaptic transmission is mediated by a unique nicotinic cholinergic receptor composed of α9 and α10 subunits, which is highly Ca2+ permeable and is coupled to a Ca2+-activated SK potassium channel. Thus, hyperpolarization of hair cells follows efferent fiber activation. In this work we review the literature that has enlightened our knowledge concerning the intimacies of this synapse.
Collapse
|
7
|
|
8
|
Gabashvili IS, Sokolowski BHA, Morton CC, Giersch ABS. Ion channel gene expression in the inner ear. J Assoc Res Otolaryngol 2007; 8:305-28. [PMID: 17541769 PMCID: PMC2538437 DOI: 10.1007/s10162-007-0082-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Accepted: 04/23/2007] [Indexed: 12/13/2022] Open
Abstract
The ion channel genome is still being defined despite numerous publications on the subject. The ion channel transcriptome is even more difficult to assess. Using high-throughput computational tools, we surveyed all available inner ear cDNA libraries to identify genes coding for ion channels. We mapped over 100,000 expressed sequence tags (ESTs) derived from human cochlea, mouse organ of Corti, mouse and zebrafish inner ear, and rat vestibular end organs to Homo sapiens, Mus musculus, Danio rerio, and Rattus norvegicus genomes. A survey of EST data alone reveals that at least a third of the ion channel genome is expressed in the inner ear, with highest expression occurring in hair cell-enriched mouse organ of Corti and rat vestibule. Our data and comparisons with other experimental techniques that measure gene expression show that every method has its limitations and does not per se provide a complete coverage of the inner ear ion channelome. In addition, the data show that most genes produce alternative transcripts with the same spectrum across multiple organisms, no ion channel gene variants are unique to the inner ear, and many splice variants have yet to be annotated. Our high-throughput approach offers a qualitative computational and experimental analysis of ion channel genes in inner ear cDNA collections. A lack of data and incomplete gene annotations prevent both rigorous statistical analyses and comparisons of entire ion channelomes derived from different tissues and organisms.
Collapse
|
9
|
Housley GD, Marcotti W, Navaratnam D, Yamoah EN. Hair Cells – Beyond the Transducer. J Membr Biol 2006; 209:89-118. [PMID: 16773496 DOI: 10.1007/s00232-005-0835-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2005] [Indexed: 02/06/2023]
Abstract
OVERVIEW This review considers the "tween twixt and twain" of hair cell physiology, specifically the signaling elements and membrane conductances which underpin forward and reverse transduction at the input stage of hair cell function and neurotransmitter release at the output stage. Other sections of this review series outline the advances which have been made in understanding the molecular physiology of mechanoelectrical transduction and outer hair cell electromotility. Here we outline the contributions of a considerable array of ion channels and receptor signaling pathways that define the biophysical status of the sensory hair cells, contributing to hair cell development and subsequently defining the operational condition of the hair cells across the broad dynamic range of physiological function.
Collapse
Affiliation(s)
- G D Housley
- Department of Physiology, University of Auckland, Private Bag, 92019, Auckland, New Zealand.
| | | | | | | |
Collapse
|
10
|
Luebke AE, Maroni PD, Guth SM, Lysakowski A. Alpha-9 nicotinic acetylcholine receptor immunoreactivity in the rodent vestibular labyrinth. J Comp Neurol 2005; 492:323-33. [PMID: 16217793 PMCID: PMC3221517 DOI: 10.1002/cne.20739] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Vestibular tissues (cristae ampullares, macular otolithic organs, and Scarpa's ganglia) in chinchilla, rat, and guinea pig were examined for immunoreactivity to the alpha9 nicotinic acetylcholine receptor (nAChR) subunit. The alpha9 antibody was generated against a conserved peptide present in the intracellular loop of the predicted protein sequence of the guinea pig alpha9 nAChR subunit. In the vestibular periphery, staining was observed in calyces around type I hair cells, at the synaptic pole of type II hair cells, and in varying levels in Scarpa's ganglion cells. Ganglion cells were also triply labeled to detect alpha9, calretinin, and peripherin. Calretinin labels calyx-only afferents. Peripherin labels bouton-only afferents. Dimorphic afferents, which have both calyx and bouton endings, are not labeled by calretinin or peripherin. In these experiments, alpha9 was expressed in both calyx and dimorphic afferents. A subpopulation of small ganglion cells did not contain the alpha9 nAChR but did stain for peripherin. We surmise that these are bouton-only afferents. Bouton (regularly discharging) afferents also show efferent responses, although they are qualitatively different from those in irregularly discharging (calyx and dimorphic) afferents, much slower and longer lasting. Thus, regular afferents are probably more affected via a muscarinic cholinergic or a peptidergic mechanism, with a much smaller superimposed fast nicotinic-type response. This latter response could be due to one of the other nicotinic receptors that have been described in studies from other laboratories.
Collapse
Affiliation(s)
- Anne E. Luebke
- Departments of Biomedical Engineering and Neurobiology and Anatomy, University of Rochester School of Medicine, Rochester, New York 14642
| | - Paul D. Maroni
- Department of Anatomy and Cell Biology, University of Illinois College of Medicine, Chicago, Illinois 60612
| | - Scott M. Guth
- Department of Anatomy and Cell Biology, University of Illinois College of Medicine, Chicago, Illinois 60612
| | - Anna Lysakowski
- Department of Anatomy and Cell Biology, University of Illinois College of Medicine, Chicago, Illinois 60612
| |
Collapse
|
11
|
Lioudyno M, Hiel H, Kong JH, Katz E, Waldman E, Parameshwaran-Iyer S, Glowatzki E, Fuchs PA. A "synaptoplasmic cistern" mediates rapid inhibition of cochlear hair cells. J Neurosci 2005; 24:11160-4. [PMID: 15590932 PMCID: PMC6730265 DOI: 10.1523/jneurosci.3674-04.2004] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cochlear hair cells are inhibited by cholinergic efferent neurons. The acetylcholine (ACh) receptor of the hair cell is a ligand-gated cation channel through which calcium enters to activate potassium channels and hyperpolarize the cell. It has been proposed that calcium-induced calcium release (CICR) from a near-membrane postsynaptic store supplements this process. Here, we demonstrate expression of type I ryanodine receptors in outer hair cells in the apical turn of the rat cochlea. Consistent with this finding, ryanodine and other store-active compounds alter the amplitude of transient currents produced by synaptic release of ACh, as well as the response of the hair cell to exogenous ACh. Like the sarcoplasmic reticulum of muscle, the "synaptoplasmic" cistern of the hair cell efficiently couples synaptic input to CICR.
Collapse
Affiliation(s)
- Maria Lioudyno
- The Cochlear Neurotransmission Laboratory, Center for Hearing and Balance, Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2195, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Matthews TM, Duncan RK, Zidanic M, Michael TH, Fuchs PA. Cloning and characterization of SK2 channel from chicken short hair cells. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2005; 191:491-503. [PMID: 15868189 DOI: 10.1007/s00359-005-0601-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2004] [Revised: 12/07/2004] [Accepted: 12/18/2004] [Indexed: 10/25/2022]
Abstract
In the inner ear of birds, as in mammals, reptiles and amphibians, acetylcholine released from efferent neurons inhibits hair cells via activation of an apamin-sensitive, calcium-dependent potassium current. The particular potassium channel involved in avian hair cell inhibition is unknown. In this study, we cloned a small-conductance, calcium-sensitive potassium channel (gSK2) from a chicken cochlear library. Using RT-PCR, we demonstrated the presence of gSK2 mRNA in cochlear hair cells. Electrophysiological studies on transfected HEK293 cells showed that gSK2 channels have a conductance of approximately 16 pS and a half-maximal calcium activation concentration of 0.74+/-0.17 microM. The expressed channels were blocked by apamin (IC(50)=73.3+/-5.0 pM) and d-tubocurarine (IC(50)=7.6+/-1.0 microM), but were insensitive to charybdotoxin. These characteristics are consistent with those reported for acetylcholine-induced potassium currents of isolated chicken hair cells, suggesting that gSK2 is involved in efferent inhibition of chicken inner ear. These findings imply that the molecular mechanisms of inhibition are conserved in hair cells of all vertebrates.
Collapse
Affiliation(s)
- T M Matthews
- Department of Biomedical Engineering, The Center for Hearing Sciences, Johns Hopkins University School of Medicine, 521 Traylor Building, 720 Rutland Ave., Baltimore, MD 21205-2195, USA
| | | | | | | | | |
Collapse
|
13
|
Gomez–Casati ME, Katz E, Glowatzki E, Lioudyno MI, Fuchs P, Elgoyhen AB. Linopirdine blocks alpha9alpha10-containing nicotinic cholinergic receptors of cochlear hair cells. J Assoc Res Otolaryngol 2004; 5:261-9. [PMID: 15492885 PMCID: PMC2504548 DOI: 10.1007/s10162-004-4025-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2003] [Accepted: 03/25/2004] [Indexed: 10/26/2022] Open
Abstract
Studies of the electrophysiological response to acetylcholine (ACh) in mammalian outer hair cells (OHCs) are hindered by the presence of a large potassium current, I(K,n), most likely mediated by channels containing the KCNQ4 subunit. Since I(K,n) can be blocked by linopirdine, cholinergic effects might be better revealed in the presence of this compound. The aim of the present work was to study the effects of linopirdine on the ACh-evoked responses through alpha9alpha10-containing native and recombinant nicotinic cholinergic receptors. Responses to ACh were blocked by linopirdine in both OHCs and inner hair cells (IHCs) of rats at postnatal days 21-27 (OHCs) and 9-11 (IHCs). In addition, linopirdine blocked responses of recombinant alpha9alpha10 nicotinic cholinergic receptors (nAChRs) in a concentration-dependent manner with an IC(50) of 5.2 microM. Block by linopirdine was readily reversible, voltage independent, and surmountable at high concentrations of ACh, thus suggestive of a competitive type of interaction with the receptor. The present results contribute to the pharmacological characterization of alpha9alpha10-containing nicotinic receptors and indicate that linopirdine should be used with caution when analyzing the cholinergic sensitivity of cochlear hair cells.
Collapse
Affiliation(s)
- María E. Gomez–Casati
- />Instituto de Investigaciones en Ingeniería Genética y Biología
Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, 1428 Argentina
| | - Eleonora Katz
- />Instituto de Investigaciones en Ingeniería Genética y Biología
Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, 1428 Argentina
- />Departamento de Biología, Facultad de Ciencias Exactas y
Naturales, Universidad de Buenos Aires, Buenos Aires, 1428 Argentina
| | - Elisabeth Glowatzki
- />The Center for Hearing and Balance, Department of Otolaryngology-Head
and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21205-2195 USA
| | - María I. Lioudyno
- />The Center for Hearing and Balance, Department of Otolaryngology-Head
and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21205-2195 USA
| | - Paul Fuchs
- />The Center for Hearing and Balance, Department of Otolaryngology-Head
and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21205-2195 USA
| | - A. Belén. Elgoyhen
- />Instituto de Investigaciones en Ingeniería Genética y Biología
Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, 1428 Argentina
| |
Collapse
|
14
|
Nie L, Song H, Chen MF, Chiamvimonvat N, Beisel KW, Yamoah EN, Vázquez AE. Cloning and Expression of a Small-Conductance Ca2+-Activated K+ Channel From the Mouse Cochlea: Coexpression with α9/α10 Acetylcholine Receptors. J Neurophysiol 2004; 91:1536-44. [PMID: 14657188 DOI: 10.1152/jn.00630.2003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Functional interactions between ligand-gated, voltage-, and Ca2+-activated ion channels are essential to the properties of excitable cells and thus to the working of the nervous system. The outer hair cells in the mammalian cochlea receive efferent inputs from the brain stem through cholinergic nerve fibers that form synapses at their base. The acetylcholine released from these efferent fibers activates fast inhibitory postsynaptic currents mediated, to some extent, by small-conductance Ca2+-activated K+ channels (SK) that had not been cloned. Here we report the cloning, characterization, and expression of a complete SK2 cDNA from the mouse cochlea. The cDNAs of the mouse cochlea α9 and α10 acetylcholine receptors were also obtained, sequenced, and coexpressed with the SK2 channels. Human cultured cell lines transfected with SK2 yielded Ca2+-sensitive K+ current that was blocked by dequalinium chloride and apamin, known blockers of SK channels. Xenopus oocytes injected with SK2 in vitro transcribed RNA, under conditions where only outward K+ currents could be recorded, expressed an outward current that was sensitive to EGTA, dequalinium chloride, and apamin. In HEK-293 cells cotransfected with cochlear SK2 plus α9/α10 receptors, acetylcholine induced an inward current followed by a robust outward current. The results indicate that SK2 and the α9/α10 acetylcholine receptors are sufficient to partly recapitulate the native hair cell efferent synaptic response.
Collapse
Affiliation(s)
- Liping Nie
- Department of Otolaryngology, University of California, Davis, California 95616, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Drescher DG, Ramakrishnan NA, Drescher MJ, Chun W, Wang X, Myers SF, Green GE, Sadrazodi K, Karadaghy AA, Poopat N, Karpenko AN, Khan KM, Hatfield JS. Cloning and characterization of α9 subunits of the nicotinic acetylcholine receptor expressed by saccular hair cells of the rainbow trout (Oncorhynchus mykiss). Neuroscience 2004; 127:737-52. [PMID: 15283971 DOI: 10.1016/j.neuroscience.2004.05.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Revised: 04/27/2004] [Accepted: 05/11/2004] [Indexed: 11/19/2022]
Abstract
alpha9/alpha10 Subunits are thought to constitute the nicotinic acetylcholine receptors mediating cholinergic efferent modulation of vertebrate hair cells. The present report describes the cloning and sequence analysis of subunits of the alpha9-containing receptor of a hair-cell layer from the saccule of the rainbow trout (Oncorhynchus mykiss). A major alpha9 subunit, termed alpha9-I, displayed typical features of a nicotinic alpha subunit, with total coding sequence of 572 amino acids including a 16 amino-acid signal peptide. It possessed an extended cytoplasmic loop between membrane-spanning regions M3 and M4, compared with mammalian homologs. Transcript for alpha9-I was robustly expressed in the saccular hair cell layer and less prominently in trout olfactory mucosa, spleen, pituitary gland, and liver, as determined by reverse transcription-polymerase chain reaction. alpha9-I cDNA was not detected in trout brain, skeletal muscle, retina, and kidney. The alpha9-I nicotinic receptor protein was immunolocalized, with an affinity-purified antibody directed against a trout alpha9-I epitope, to hair-cell and neural sites in the saccular hair-cell layer. Foci were found at basal and basolateral membrane sites on hair cells as well as on afferent nerve. Receptor clustering was observed in hair cells bordering non-sensory epithelium. Since in higher vertebrates the alpha9 is reported to associate with another nicotinic subunit, alpha10, we examined the possibility of expression of additional nicotinic subunits in trout saccular hair cells. Message for another nicotinic subunit, termed alpha9-II, was found to be expressed in the hair cells, although more difficult to amplify than alpha9-I. In contrast to alpha9-I, alpha9-II was expressed in brain, as well as in olfactory mucosa, less prominently in pituitary gland and liver, but not in spleen, skeletal muscle, retina, or kidney. The cloned alpha9-II had a total coding sequence of 550 amino acids, which included a 17-amino-acid signal peptide, and an extended M3-M4 loop. A third nicotinic subunit message, termed alpha9-III, was PCR-amplified from trout olfactory mucosa where it was strongly expressed. However, message for alpha9-III was not detected in hair cells. Message for alpha9-III was moderately expressed in trout brain, retina, and pituitary gland but not in trout spleen, skeletal muscle, liver, and kidney. Thus, alpha9-I and alpha9-II may together contribute to the formation of the hair-cell nicotinic receptor of teleosts, where no ortholog of alpha10 appears to exist. The current work is, to our knowledge, the first description of alpha9 coding sequences directly from a vertebrate hair cell source. Further, the generality of hair cell expression of subunits for the alpha9-containing nicotinic cholinergic receptor has been extended to fishes, suggesting a similar efferent mechanism across all vertebrate octavolateralis sensory systems.
Collapse
Affiliation(s)
- D G Drescher
- Laboratory of Bio-otology, Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Nicotinic acetylcholine receptors in the nervous system. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/s1569-2558(03)32012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
17
|
Ozeki M, Duan L, Hamajima Y, Obritch W, Edson-Herzovi D, Lin J. Establishment and characterization of rat progenitor hair cell lines. Hear Res 2003; 179:43-52. [PMID: 12742237 DOI: 10.1016/s0378-5955(03)00077-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cochlear progenitor hair cell lines are useful for studies of cellular specification, gene expression features, and signal transduction involved in the development of hair cells. To obtain embryonic and postnatal cochlear progenitor hair cell lines, we immortalized primary cultures of sensorineural epithelial cells from otocysts on embryonic day 12 (E12) and explants of the organ of Corti tissues on postnatal day 5 (P5). Primary cultures and explants were then transduced by the E6/E7 genes of human papilloma virus type 16. Transduced cells were passed for >50 passages and partial clonal cells were isolated from the above P5 organ of Corti explants by limiting dilution. The expression of neuronal, neural, epithelial, hair cell markers, and important transcription factors were then examined in these cell clones. Clones that express the above markers were considered as being progenitor hair cells. At least two representative cell lines, one from a mixed culture of otocyst epithelial cells and the other from the organ of Corti cells, ultimately expressed hair cell markers and neuronal/neural cell markers. The former only expressed the early hair cell marker oncomodulin and myosin VIIa, whereas the latter expressed oncomodulin, calretinin, myosin VIIa and Brn 3.1. These cell lines may represent progenitor hair cells at the different stages of cochlear development.
Collapse
Affiliation(s)
- Masashi Ozeki
- Department of Otolaryngology, University of Minnesota Medical School, University of Minnesota, 2001 Sixth Street S.E., 216 Lions Research Building, Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|
18
|
Morley BJ, Simmons DD. Developmental mRNA expression of the alpha10 nicotinic acetylcholine receptor subunit in the rat cochlea. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2002; 139:87-96. [PMID: 12414097 DOI: 10.1016/s0165-3806(02)00514-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A recently discovered alpha10 subunit of the nicotinic acetylcholine receptor (nAChR) family is believed to form a heteromeric receptor with the alpha9 nAChR subunit in auditory hair cells. In the present study, the alpha10 nAChR subunit expression in the developing and adult rat inner ear was analyzed by PCR and localized using isotopic in situ hybridization. Unlike the alpha9 subunit, the alpha10 subunit was not detected at embryonic day 18 (E18). From E21 through postnatal day 15 (P15), the alpha10 subunit was localized over both inner hair cell (IHC) and outer hair cell (OHC) regions, but in the mature cochlea detectable levels of alpha10 mRNA were found only over the OHC region. From E21 through adult ages, there was also a small but consistent basal to apical gradient of alpha10 expression; that is, higher levels in basal regions and lower levels in apical regions. Previously, we detected the alpha9 nAChR subunit over IHCs as early as E18 and throughout adult ages with a clear basal-apical gradient of expression. Our studies raise the question of whether the alpha9 and alpha10 subunits are differentially regulated during embryonic and postnatal development.
Collapse
Affiliation(s)
- Barbara J Morley
- Boys Town National Research Hospital, 555 North 30th St, Omaha, NE 68131, USA.
| | | |
Collapse
|
19
|
Simmons DD. Development of the inner ear efferent system across vertebrate species. JOURNAL OF NEUROBIOLOGY 2002; 53:228-50. [PMID: 12382278 DOI: 10.1002/neu.10130] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Inner ear efferent neurons are part of a descending centrifugal pathway from the hindbrain known across vertebrates as the octavolateralis efferent system. This centrifugal pathway terminates on either sensory hair cells or eighth nerve ganglion cells. Most studies of efferent development have used either avian or mammalian models. Recent studies suggest that prevailing notions of the development of efferent innervation need to be revised. In birds, efferents reside in a single, diffuse nucleus, but segregate according to vestibular or cochlear projections. In mammals, the auditory and vestibular efferents are completely separate. Cochlear efferents can be divided into at least two distinct, descending medial and lateral pathways. During development, inner ear efferents appear to be a specific motor neuron phenotype, but unlike motor neurons have contralateral projections, innervate sensory targets, and, at least in mammals, also express noncholinergic neurotransmitters. Contrary to prevailing views, newer data suggest that medial efferent neurons mature early, are mostly, if not exclusively, cholinergic, and project transiently to the inner hair cell region of the cochlea before making final synapses on outer hair cells. On the other hand, lateral efferent neurons mature later, are neurochemically heterogeneous, and project mostly, but not exclusively to the inner hair cell region. The early efferent innervation to the ear may serve an important role in the maturation of afferent responses. This review summarizes recent data on the neurogenesis, pathfinding, target selection, innervation, and onset of neurotransmitter expression in cholinergic efferent neurons.
Collapse
Affiliation(s)
- Dwayne D Simmons
- Harold W Siebens Hearing Research Center, Central Institute for the Deaf and Departments of Otolaryngology and of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, Missouri 63110, USA.
| |
Collapse
|
20
|
Zuo J. Transgenic and gene targeting studies of hair cell function in mouse inner ear. JOURNAL OF NEUROBIOLOGY 2002; 53:286-305. [PMID: 12382282 DOI: 10.1002/neu.10128] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Despite the rapid discovery of a large number of genes in sensory hair cells of the inner ear, the functional roles of these genes in hair cells remain largely undetermined. Recent advances in transgenic and gene targeting technologies in mice have offered unprecedented opportunities to genetically manipulate the expression of these genes and to study their functional roles in hair cells in vivo. Transgenic analyses have revealed the presence of hair-cell-specific promoters in the genes encoding Math1, myosin VIIa, Pou4f3, and the alpha9 subunit of the acetylcholine receptor (alpha9 AChR). Targeted inactivation using embryonic stem cell technology and transgenic expression studies have revealed the roles of several genes involved in hair cell lineage (Math1), differentiation (Pou4f3), mechanotransduction (Myo1c, and Myo7a), electromotility (Prestin), and efferent modulation (Chrna9, encoding alpha9 AChR). Although many of these genes also play roles in other tissues, inactivation of these genes in hair cells alone will soon be possible by using the Cre-loxP system. Also imminent is the development of genetic methods to inactivate genes specifically in mouse hair cells at a desired time, by using inducible systems established in other types of neurons. Combining these types of manipulation of gene expression will enable hearing researchers to elucidate some of the fundamental and unique features of hair cell function such as mechanotransduction, frequency tuning, active mechanical amplification, and efferent modulation.
Collapse
Affiliation(s)
- Jian Zuo
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, 332 North Lauderdale Street, Memphis, Tennessee 38105-2794, USA.
| |
Collapse
|
21
|
Abstract
Antibodies directed against choline acetyltransferase (ChAT), the synthesizing enzyme for acetylcholine (ACh) and a specific marker of cholinergic neurons, were used to label axons and nerve terminals of efferent fibers that innervate the chick basilar papilla (BP). Two morphologically distinct populations of cholinergic fibers were labeled and classified according to the region of the BP they innervated. The inferior efferent system was composed of thick fibers that coursed radially across the basilar membrane in small fascicles, gave off small branches that innervated short hair cells with large cup-like endings, and continued past the inferior edge of the BP to ramify extensively in the hyaline cell area. The superior efferent system was made up of a group of thin fibers that remained in the superior half of the epithelium and innervated tall hair cells with bouton endings. Both inferior and superior efferent fibers richly innervated the basal two thirds of the BP. However, the apical quarter of the chick BP was virtually devoid of efferent innervation except for a few fibers that gave off bouton endings around the peripheral edges. The distribution of ChAT-positive efferent endings appeared very similar to the population of efferent endings that labeled with synapsin antisera. Double labeling with ChAT and synapsin antibodies showed that the two markers colocalized in all nerve terminals that were identified in BP whole-mounts and frozen sections. These results strongly suggest that all of the efferent fibers that innervate the chick BP are cholinergic.
Collapse
Affiliation(s)
- Michael Zidanic
- The Center for Hearing and Balance, Department of Otolaryngology- Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore Maryland 21205-2195, USA.
| |
Collapse
|
22
|
Picciotto MR, Caldarone BJ, Brunzell DH, Zachariou V, Stevens TR, King SL. Neuronal nicotinic acetylcholine receptor subunit knockout mice: physiological and behavioral phenotypes and possible clinical implications. Pharmacol Ther 2001; 92:89-108. [PMID: 11916531 DOI: 10.1016/s0163-7258(01)00161-9] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) in the muscle, autonomic ganglia, and brain are targets for pharmacologically administered nicotine. Several of the subunits that combine to form neuronal nicotinic receptors have been deleted by knockout or mutated by knockin in mice using homologous recombination. We will review the biochemical, pharmacological, anatomical, physiological, and behavioral phenotypes of mice with genetically altered neuronal nAChR subunits. Clinically relevant mutations in nAChR genes will also be discussed. In addition, some of the signal transduction pathways activated through nAChRs will be described in order to delineate the longer-term changes that might result from persistent activation or inactivation of nAChRs. Genetically manipulated mice have greatly increased our understanding of the subunit composition and physiological properties of nAChRs in vivo. In addition, these mice have provided a model system to determine the molecular basis for many of the pharmacological actions of nicotine on neurotransmitter release and behavior. Genetic manipulations in mice have also elucidated the role of nAChR subunits in various disease states, and suggest several avenues for drug development.
Collapse
Affiliation(s)
- M R Picciotto
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT 06508, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Lustig LR, Peng H, Hiel H, Yamamoto T, Fuchs PA. Molecular cloning and mapping of the human nicotinic acetylcholine receptor alpha10 (CHRNA10). Genomics 2001; 73:272-83. [PMID: 11350119 DOI: 10.1006/geno.2000.6503] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report the isolation and initial characterization of a new member of the human nicotinic acetylcholine receptor (nAChR) subunit family, alpha10 (CHRNA10), from both inner-ear neuroepithelium and lymphoid tissue. The cDNA is 1959 nucleotides in length, with a coding region predicting a protein of 451 amino acids that is 90% identical to rat alpha10. The alpha10 gene was localized to chromosome 11p15.5. Human alpha10 was detected in human inner-ear tissue, tonsil, immortalized B-cells, cultured T-cells and peripheral blood lymphocytes using reverse transcriptase-polymerase chain reaction, Northern blot hybridization, and immunohistochemistry. We also detected the expression of the human nAChR alpha9 (CHRNA9) mRNA in these same tissues using RT-PCR and Northern blot hybridization.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Western
- Cell Line
- Chromosomes, Human, Pair 11/genetics
- Cloning, Molecular
- Exons/genetics
- Humans
- Immunohistochemistry
- In Situ Hybridization, Fluorescence
- Introns/genetics
- Molecular Sequence Data
- Protein Subunits
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Radiation Hybrid Mapping
- Rats
- Receptors, Nicotinic/analysis
- Receptors, Nicotinic/chemistry
- Receptors, Nicotinic/genetics
- Sequence Alignment
- Sequence Homology, Amino Acid
- Transfection
Collapse
Affiliation(s)
- L R Lustig
- The Center for Hearing Sciences, Johns Hopkins University, Baltimore, Maryland 21205, USA.
| | | | | | | | | |
Collapse
|
24
|
Abstract
Efferent feedback onto sensory organs provides a means to modulate input to the central nervous system. In the developing mammalian cochlea, inner hair cells are transiently innervated by efferent fibers, even before sensory function begins. Here, we show that neonatal inner hair cells are inhibited by cholinergic synaptic input before the onset of hearing. The synaptic currents, as well as the inner hair cell's response to acetylcholine, are mediated by a nicotinic (alpha9-containing) receptor and result in the activation of small-conductance calcium-dependent potassium channels.
Collapse
Affiliation(s)
- E Glowatzki
- The Center for Hearing Sciences, Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|