1
|
Schneider A, Hage A, Stein ICAP, Kriedemann N, Zweigerdt R, Leffler A. A Possible Role of Tetrodotoxin-Sensitive Na + Channels for Oxidation-Induced Late Na + Currents in Cardiomyocytes. Int J Mol Sci 2024; 25:6596. [PMID: 38928302 PMCID: PMC11203718 DOI: 10.3390/ijms25126596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
An accumulation of reactive oxygen species (ROS) in cardiomyocytes can induce pro-arrhythmogenic late Na+ currents by removing the inactivation of voltage-gated Na+ channels including the tetrodotoxin (TTX)-resistant cardiac α-subunit Nav1.5 as well as TTX-sensitive α-subunits like Nav1.2 and Nav1.3. Here, we explored oxidant-induced late Na+ currents in mouse cardiomyocytes and human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) as well as in HEK 293 cells expressing Nav1.2, Nav1.3, or Nav1.5. Na+ currents in mouse cardiomyocytes and hiPSC-CMs treated with the oxidant chloramine T (ChT) developed a moderate reduction in peak current amplitudes accompanied by large late Na+ currents. While ChT induced a strong reduction in peak current amplitudes but only small persistent currents on Nav1.5, both Nav1.2 and Nav1.3 produced increased peak current amplitudes and large persistent currents following oxidation. TTX (300 nM) blocked ChT-induced late Na+ currents significantly stronger as compared to peak Na+ currents in both mouse cardiomyocytes and hiPSC-CMs. Similar differences between Nav1.2, Nav1.3, and Nav1.5 regarding ROS sensitivity were also evident when oxidation was induced with UVA-light (380 nm) or the cysteine-selective oxidant nitroxyl (HNO). To conclude, our data on TTX-sensitive Na+ channels expressed in cardiomyocytes may be relevant for the generation of late Na+ currents following oxidative stress.
Collapse
Affiliation(s)
- Anja Schneider
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, 30625 Hannover, Germany (A.H.); (I.C.A.P.S.)
| | - Axel Hage
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, 30625 Hannover, Germany (A.H.); (I.C.A.P.S.)
| | | | - Nils Kriedemann
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), REBIRTH—Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), REBIRTH—Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Andreas Leffler
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, 30625 Hannover, Germany (A.H.); (I.C.A.P.S.)
| |
Collapse
|
2
|
Risher JF, Tucker P. Alkyl Mercury-Induced Toxicity: Multiple Mechanisms of Action. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 240:105-149. [PMID: 27161558 PMCID: PMC10508330 DOI: 10.1007/398_2016_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
There are a number of mechanisms by which alkylmercury compounds cause toxic action in the body. Collectively, published studies reveal that there are some similarities between the mechanisms of the toxic action of the mono-alkyl mercury compounds methylmercury (MeHg) and ethylmercury (EtHg). This paper represents a summary of some of the studies regarding these mechanisms of action in order to facilitate the understanding of the many varied effects of alkylmercurials in the human body. The similarities in mechanisms of toxicity for MeHg and EtHg are presented and compared. The difference in manifested toxicity of MeHg and EtHg are likely the result of the differences in exposure, metabolism, and elimination from the body, rather than differences in mechanisms of action between the two.
Collapse
Affiliation(s)
- John F Risher
- Division of Toxicology and Human Health Sciences, Agency for Toxic Substances and Disease Registry, 1600 Clifton Road (MS F-58), Atlanta, GA, 30333, USA.
| | - Pamela Tucker
- Division of Toxicology and Human Health Sciences, Agency for Toxic Substances and Disease Registry, 1600 Clifton Road (MS F-58), Atlanta, GA, 30333, USA
| |
Collapse
|
3
|
Strege PR, Bernard CE, Kraichely RE, Mazzone A, Sha L, Beyder A, Gibbons SJ, Linden DR, Kendrick ML, Sarr MG, Szurszewski JH, Farrugia G. Hydrogen sulfide is a partially redox-independent activator of the human jejunum Na+ channel, Nav1.5. Am J Physiol Gastrointest Liver Physiol 2011; 300:G1105-14. [PMID: 21393430 PMCID: PMC3119119 DOI: 10.1152/ajpgi.00556.2010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hydrogen sulfide (H(2)S) is produced endogenously by L-cysteine metabolism. H(2)S modulates several ion channels with an unclear mechanism of action. A possible mechanism is through reduction-oxidation reactions attributable to the redox potential of the sulfur moiety. The aims of this study were to determine the effects of the H(2)S donor NaHS on Na(V)1.5, a voltage-dependent sodium channel expressed in the gastrointestinal tract in human jejunum smooth muscle cells and interstitial cells of Cajal, and to elucidate whether H(2)S acts on Na(V)1.5 by redox reactions. Whole cell Na(+) currents were recorded in freshly dissociated human jejunum circular myocytes and Na(V)1.5-transfected human embryonic kidney-293 cells. RT-PCR amplified mRNA for H(2)S enzymes cystathionine β-synthase and cystathionine γ-lyase from the human jejunum. NaHS increased native Na(+) peak currents and shifted the half-point (V(1/2)) of steady-state activation and inactivation by +21 ± 2 mV and +15 ± 3 mV, respectively. Similar effects were seen on the heterologously expressed Na(V)1.5 α subunit with EC(50)s in the 10(-4) to 10(-3) M range. The reducing agent dithiothreitol (DTT) mimicked in part the effects of NaHS by increasing peak current and positively shifting steady-state activation. DTT together with NaHS had an additive effect on steady-state activation but not on peak current, suggesting that the latter may be altered via reduction. Pretreatment with the Hg(2+)-conjugated oxidizer thimerosal or the alkylating agent N-ethylmaleimide inhibited or decreased NaHS induction of Na(V)1.5 peak current. These studies show that H(2)S activates the gastrointestinal Na(+) channel, and the mechanism of action of H(2)S is partially redox independent.
Collapse
Affiliation(s)
- Peter R. Strege
- Enteric Neuroscience Program, Division of Gastroenterology and Hepatology, Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Cheryl E. Bernard
- Enteric Neuroscience Program, Division of Gastroenterology and Hepatology, Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Robert E. Kraichely
- Enteric Neuroscience Program, Division of Gastroenterology and Hepatology, Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Amelia Mazzone
- Enteric Neuroscience Program, Division of Gastroenterology and Hepatology, Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Lei Sha
- Enteric Neuroscience Program, Division of Gastroenterology and Hepatology, Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Arthur Beyder
- Enteric Neuroscience Program, Division of Gastroenterology and Hepatology, Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Simon J. Gibbons
- Enteric Neuroscience Program, Division of Gastroenterology and Hepatology, Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - David R. Linden
- Enteric Neuroscience Program, Division of Gastroenterology and Hepatology, Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Michael L. Kendrick
- Enteric Neuroscience Program, Division of Gastroenterology and Hepatology, Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Michael G. Sarr
- Enteric Neuroscience Program, Division of Gastroenterology and Hepatology, Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Joseph H. Szurszewski
- Enteric Neuroscience Program, Division of Gastroenterology and Hepatology, Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Gianrico Farrugia
- Enteric Neuroscience Program, Division of Gastroenterology and Hepatology, Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
4
|
Dórea JG. Integrating Experimental (In Vitro and In Vivo) Neurotoxicity Studies of Low-dose Thimerosal Relevant to Vaccines. Neurochem Res 2011; 36:927-38. [DOI: 10.1007/s11064-011-0427-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2011] [Indexed: 12/01/2022]
|
5
|
Hsieh HY, Robertson CL, Vermehren-Schmaedick A, Balkowiec A. Nitric oxide regulates BDNF release from nodose ganglion neurons in a pattern-dependent and cGMP-independent manner. J Neurosci Res 2010; 88:1285-97. [PMID: 19937808 DOI: 10.1002/jnr.22291] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Activity of arterial baroreceptors is modulated by neurohumoral factors, including nitric oxide (NO), released from endothelial cells. Baroreceptor reflex responses can also be modulated by NO signaling in the brainstem nucleus tractus solitarius (NTS), the primary central target of cardiovascular afferents. Our recent studies indicate that brain-derived neurotrophic factor (BDNF) is abundantly expressed by developing and adult baroreceptor afferents in vivo, and released from cultured nodose ganglion (NG) neurons by patterns of baroreceptor activity. Using electrical field stimulation and ELISA in situ, we show that exogenous NO nearly abolishes BDNF release from newborn rat NG neurons in vitro stimulated with single pulses delivered at 6 Hz, but not 2-pulse bursts delivered at the same 6-Hz frequency, that corresponds to a rat heart rate. Application of L-NAME, a specific inhibitor of endogenous NO synthases, does not have any significant effect on activity-dependent BDNF release, but leads to upregulation of BDNF expression in an activity-dependent manner. The latter effect suggests a novel mechanism of homeostatic regulation of activity-dependent BDNF expression with endogenous NO as a key player. The exogenous NO-mediated effect does not involve the cGMP-protein kinase G (PKG) pathway, but is largely inhibited by N-ethylmaleimide and TEMPOL that are known to prevent S-nitrosylation. Together, our current data identify previously unknown mechanisms regulating BDNF availability, and point to NO as a likely regulator of BDNF at baroafferent synapses in the NTS.
Collapse
Affiliation(s)
- Hui-ya Hsieh
- Department of Integrative Biosciences, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | | | |
Collapse
|
6
|
Liu SI, Huang CC, Huang CJ, Wang BW, Chang PM, Fang YC, Chen WC, Wang JL, Lu YC, Chu ST, Chou CT, Jan CR. Thimerosal-induced apoptosis in human SCM1 gastric cancer cells: activation of p38 MAP kinase and caspase-3 pathways without involvement of [Ca2+]i elevation. Toxicol Sci 2007; 100:109-17. [PMID: 17698513 DOI: 10.1093/toxsci/kfm205] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Thimerosal is a mercury-containing preservative in some vaccines. The effect of thimerosal on human gastric cancer cells is unknown. This study shows that in cultured human gastric cancer cells (SCM1), thimerosal reduced cell viability in a concentration- and time-dependent manner. Thimerosal caused apoptosis as assessed by propidium iodide-stained cells and caspase-3 activation. Although immunoblotting data revealed that thimerosal could activate the phosphorylation of extracellular signal-regulated kinase, c-Jun NH2-terminal protein kinase, and p38 mitogen-activated protein kinase (p38 MAPK), only SB203580 (a p38 MAPK inhibitor) partially prevented cells from apoptosis. Thimerosal also induced [Ca2+](i) increases via Ca2+ influx from the extracellular space. However, pretreatment with (bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetate)/AM, a Ca2+ chelator, to prevent thimerosal-induced [Ca2+](i) increases did not protect cells from death. The results suggest that in SCM1 cells, thimerosal caused Ca2+-independent apoptosis via phosphorylating p38 MAPK resulting in caspase-3 activation.
Collapse
Affiliation(s)
- Shiuh-Inn Liu
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan 813
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Nabemoto M, Ohsawa K, Nakamura H, Hirabayashi T, Saito T, Okuma Y, Nomura Y, Murayama T. Reversible activation of secretory phospholipase A2 by sulfhydryl reagents. Arch Biochem Biophys 2005; 436:145-53. [PMID: 15752719 DOI: 10.1016/j.abb.2005.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2004] [Revised: 01/31/2005] [Indexed: 10/25/2022]
Abstract
Secretory phospholipase A(2)s (sPLA(2)s) have been implicated in physiological and pathological events, but the regulatory mechanism(s) of their activities in cells remains to be solved. Previously, we reported that phenylarsine oxide (PAO), a sulfhydryl reagent, stimulated arachidonic acid (AA) release in rat pheochromocytoma PC12 cells. In this study, we examined the effects of thimerosal, another sulfhydryl reagent, to clarify the sulfhydryl modification and activation of sPLA(2) molecules in cells. Like PAO, thimerosal-stimulated AA release in an irreversible manner and the responses were not additive. Dithiol compounds such as dithiothreitol inhibited AA release from both the thimerosal- and the PAO-treated cells, and monothiol compounds (l-Cys and glutathione) decreased the thimerosal response. Both sulfhydryl reagents stimulated AA release from the HEK293T cells expressing human sPLA(2)X, and stimulated the sPLA(2) activities of bee venom sPLA(2) and the soluble fraction of sPLA(2)X-expressing cells. Our results suggest that the sPLA(2)s in cells are inactive and modification of disulfide bonds in the molecules can be a trigger of sPLA(2) activation in cells. Sulfhydryl reagents are useful tools for studying the regulatory mechanism(s) of sPLA(2) activity in cells.
Collapse
Affiliation(s)
- Maiko Nabemoto
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Jin Y, Kim DK, Khil LY, Oh U, Kim J, Kwak J. Thimerosal decreases TRPV1 activity by oxidation of extracellular sulfhydryl residues. Neurosci Lett 2004; 369:250-5. [PMID: 15464274 DOI: 10.1016/j.neulet.2004.07.059] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Revised: 07/10/2004] [Accepted: 07/27/2004] [Indexed: 11/20/2022]
Abstract
TRPV1, a receptor for capsaicin, plays a key role in mediating thermal and inflammatory pain. Because the modulation of ion channels by the cellular redox state is a significant determinant of channel function, we investigated the effects of sulfhydryl modification on the activity of TRPV1. Thimerosal, which oxidizes sulfhydryls, blocked the capsaicin-activated inward current (I(cap)) in cultured sensory neurons, in a reversible and dose-dependent manner, which was prevented by the co-application of the reducing agent, dithiothreitol. Among the three cysteine residues of TRPV1 that are exposed to the extracellular space, the oxidation-induced effect of thimerosal on I(cap) was blocked only by a point mutation at Cys621. These results suggest that the modification of an extracellular thiol group can alter the activity of TRPV1. Consequently, we propose that such a modulation of the redox state might regulate the physiological activity of TRPV1.
Collapse
Affiliation(s)
- Yunju Jin
- Department of Physiology and Biophysics, Seoul National University College of Medicine, Seoul 110-799, South Korea
| | | | | | | | | | | |
Collapse
|
9
|
Risher JF, Murray HE, Prince GR. Organic mercury compounds: human exposure and its relevance to public health. Toxicol Ind Health 2002; 18:109-60. [PMID: 12974562 DOI: 10.1191/0748233702th138oa] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Humans may be exposed to organic forms of mercury by either inhalation, oral, or dermal routes, and the effects of such exposure depend upon both the type of mercury to which exposed and the magnitude of the exposure. In general, the effects of exposure to organic mercury are primarily neurologic, while a host of other organ systems may also be involved, including gastrointestinal, respiratory, hepatic, immune, dermal, and renal. While the primary source of exposure to organic mercury for most populations is the consumption of methylmercury-contaminated fish and shellfish, there are a number of other organomercurials to which humans might be exposed. The antibacterial and antifungal properties of organomercurials have resulted in their long use as topical disinfectants (thimerosal and merbromin) and preservatives in medical preparations (thimerosal) and grain products (both methyl and ethyl mercurials). Phenylmercury has been used in the past in paints, and dialkyl mercurials are still used in some industrial processes and in the calibration of certain analytical laboratory equipment. The effects of exposure to different organic mercurials by different routes of exposure are summarized in this article.
Collapse
Affiliation(s)
- John F Risher
- Agency for Toxic Substances and Disease Registry, Division of Toxicology, Toxicology Information Branch, Clifton Road, Atlanta, Georgia 30333, USA
| | | | | |
Collapse
|